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ABSTRACT

Huerta, Mayra C., A New Approach to Ramanujan’s Partition Congruences. Master of Science (MS),

May, 2017, pp., 1 table, 32 references, 22 titles.

MacMahon provided Ramanujan and Hardy a table of values for p(n) with the partitions
of the first 200 integers. In order to make the table readable, MacMahon grouped the entries
in blocks of five. Ramanujan noticed that the last entry in each block was a multiple of 5. This

motivated Ramanujan to make the following conjectures,

p(5n+4) =0 (mod 5)
p(7n+35) =0 (mod 7)

p(11n+6) =0 (mod 11)

which he eventually proved.

The purpose of this thesis is to give new proofs for Ramanujan’s partition congruences.
This would be done by using theta functions to construct certain vector spaces of modular forms.
Computations within these vector spaces result in new proofs for Ramanujan’s partition congru-
ences modulo five and seven. Similar techniques will use to derive congruences for a wider class

of generating functions.
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CHAPTER I

INTRODUCTION

In this thesis, we will give new proofs for Ramanujan’s partition congruences and we will
derive new congruences for related modular forms. We will use a set of building blocks for repre-
senting generating functions and relevant series dissections. The work employs basic facts from
the theory of modular forms and linear algebra. The proofs for the congruences will be given
with parallel justifications. We will apply the same technique used to prove Ramanujan’s congru-
ence to prove the new congruences. To introduce the ideas involved, we need to consider some
definitions and examples. First, we introduce notation and definitions that will be use throughout

the entire thesis.

Definition 1.0.1. A partition of positive integer n is a finite nonincreasing sequence of positive

integers A, Ay, ..., A such that

The A; is called the part of the partition. [2} p.1]

To understand what an integer partition is, we provide the following example. This exam-

ple illustrates the process of finding the partitions for 4. Hence, we have

=14+1+141,



Now recall that two sums that differ only in the order of the summands is consider the same

partition; that is, 3+ 1 is the same as 1+ 3. The number of partitions of n denoted by p(n) which
is called the partition function of n. In the previous example, we can see that there are 5 different
ways to represent 4 as a sum of positive integers; so we have that p(4) = 5. In order to present the

generation function, we must first introduce some notation for finite and infinite products.

Definition 1.0.2. [g-Pochhammer symbol] For a,q € C, define

n—1

(@:q)n =[] (1—aqdb).

k=0

If the limit exists, denote

(a;q)e = lim (a;q),-

n—oo

Now that we have defined the g-Pochhammer symbol notation, we can introduce the

generating function for partitions.

Theorem 1.0.1. The generating function for partitions is given by

1 - "
=) p(n)q", p(n) € Z
(439)e Eg% ) )
Proof. The proof can be found in Number Theory by George Andrews [1, p.162]. [

Theorem 1.0.2. The set of absolutely convergent power series with integer coefficients form a ring.

Proof. Assume that

bnq"

Z a,q" and
n=0 0

o5}
n=

are power series with integer coefficients. Then



(Z aqu) (Zbiqi> =) | X @b |d"
k=0 i=0 n=0 \ k+i=n

Lt

where the inner sum is an integer. For simplicity, we denote

Cp = Z aib,

k+i=n
k,i>0
then we can write
Z Z akby | 4" = Z cng".
n=0 \ k+r=n n=0
k,r>0
Let
o= Z g, PB= Zﬁnqn and y= Z "q"
then

S S
Lre L

(a+B)y

( 0g"+ Y Bnq"> +) nd"
n=0 n=0
( (0 + Bn)g > + Z "

i (O +Bn+")q

= Z anq" + (Z (Bn ‘l’Yn)qn)
n=0 n=0
= i g + (i Bng" + i '}/nqn)

=a+(B+7).



Hence, the ring is associative under addition. Consider

0= Y 0"
n=0

then

o5 (o)

a+0=Y a.q"+ ) 0g"
n=0 n=0

=) (0, +0)q"
n=0

- Z (an)q"

n=0

— Z 0+ oty)q"
n=0

o>}

n=0 n=0

=0+c.

Thus, 0 is the additive identity. Denote oc~! € Z as follows:

then



1

Since o + o~ ! = 0 we have that o~ ! is the additive inverse. Now we have that

a+p= Zanqn+ Zﬁnqn

i &+ )"

n=

i (Bn+ t)q

)

= Z Bnq" + Z oq".
n=0

n=0

=f+ta

Hence, addition is commutative and we have an abelian group. Notice that

o= ((£er) (5 (Zov)

=) aiﬁj || Y md"
n=0 \ i+j=n n=0
0,j=0

o)

Y| Y aBn|d
n=0 \ i+j+l=n
i,.1>0

S
it

Onq ) Z Z Bjyl q"
n=0\ j+i=n
J,1=0

o) ((Z0e) (Z))

HMS

|
5

so multiplication is associative. Then

a(f+y) = (ZanQ> (iﬁnqn+i7nqn>
n=0 n=0



Il
VRS

i anqn> (i (Bn+ Vn)qn>
n=0 n=0

Y oBi+y) |4
i+j=n
i,j>0

I
s

3
Il
o

(o] o)

Z o;f;+ Z oY | 4"

|
s

n=0 \ i+j=n i+j=n
[,j=0 i,j=0
=Y | Y aBi|d+)X | X av|d
n=0 \ i+j=n n=0 \ i+j=n
i,j=0 £,j=0
= Z 0nq" Z B.q" | + Z anq" Z "q"
n=0 n=0 n=0 n=0
=af+ay.

Thus, the left distributive property holds. Similarly, we can check that the right distributive prop-

erty holds. Therefore, we have shown a power series with integer coefficients forms a ring. [

With the preceding notation and terminology, we are ready to state the main results of
this thesis. The purpose of this thesis is to provide new proofs the following congruences for the

partition function:

p(5n+4) =0 (mod 5)

p(7Tn+5) =0 (mod 7).

We also provide proofs for the new congruences using the same process.
1.1 History

During their research on p(n), Hardy and Ramanujan needed a table of values of p(n) to
check their work. Which was supplied by P.A. MacMahon. He made the table of the values of

p(n) for 1 <n <200. MacMahon did this by grouping the entries in blocks of five, like in Table



to make the table readable.

n p(n) n p(n) n p(n)
0 1 10 42 20 627
1 1 11 56 21 792
2 2 12 77 22 1002
3 3 13 101 23 1255
4 5 14 135 24 1575
5 7 15 176 25 1958
6 11 16 231 26 2436
7 15 17 297 27 3010
8 22 18 385 28 3718
9 30 19 490 29 4565

Table 1.1: Values for p(n) where 1 <n <29

Ramanujan noticed that in each block, the last p(n) entry was a multiple of 5. This motivated
Ramanujan to make conjectures which he eventually proved [3) p.51]. Ramanujan announced, in

1919, that he had found three congruences satisfied by p(n),

p(5n+4) =0 (mod 5) (1.1)
p(7Tn+5) =0 (mod 7) (1.2)
p(11n46) =0 (mod 11). (1.3)

In [18]], he proved and and later in [[19]], Ramanujan announced, [22], that he had
found a proof for (I.3)). In [19], he remarked that there does not exist similar properties for other
primes besides the ones above. [6, p.27]

In his book, Bruce C. Berndt gave two elementary proofs of Theorem 2.3.1 [4} p.31]
where the first proof was in Ramanujan’s [[18]], [22, pp.210-213] and reproduced in Hardy’s book
[12, pp.87-88]. He also gave a proof of the Theorem 2.4.1 [4, p.31] which was also taken from
Ramanujan’s paper [18]] and it was then sketched by Hardy [12), p.88]. John Drost, [11] gives an-

other proof of Theorem 2.3.1. Also, another elementary proof of the theorem is given in the paper

7



[13] by Michael D. Hirschhorn. The latest edition of Ramanujan’s Collected Papers [22, pp.372-
375] has been used to further prove Theorem 3.2.1. In his book, Berndt references other proofs
of Theorem 2.4.1. In the summer of 1918 from the nursing home Fitzrog House, Ramanujan, in
a letter to Hardy, summarized the congruences he had proved and the method used to prove them.
He remarked in [4] pp.192-193] that the divisibility by 547°11¢ where a = 0,1,2,3,b=0,1,2,3,
and ¢ =0, 1,2 amounting to 4 X 4 x 3 — 1 or 47 cases of the conjecture theorem were proved. Ra-
manujan’s statement is interesting for the following reasons. First, he proved special cases of his
general conjecture without leaving any proofs of these special cases. Second, in [21, pp.133-177]
he began a proof, which he was not able to complete, for an arbitrary b and a = ¢ = 0, but the
conjecture he made was false in this case. He formulated his conjecture using a table of values of
p(n) where 0 < n <200, and it was not until after his death that Cholwa [8] found that p(243) is
not divisible by 73. Lastly, the proofs that Ramanujan gave for his conjecture were for arbitrary

powers of 5 and it was established after the letter was written. [6, pp.49-50]
1.2 Theorems and Definitions

In this section, we introduce definitions and theorems that will be needed to prove Ra-

manujan’s congruences. We begin by introducing Ramanujan’s Theta function.

Definition 1.2.1. [Ramanujan’s Theta function] For |ab| < 1, let

f(a,b): i an(n-i—l)/an(n—l)/Z‘

fl—=—o0

When working with Ramanujan Theta functions, we often require the following product

formulation.

Theorem 1.2.1. [The Jacobi Triple Product Identity]
fla,b) = (—a;ab)w(—b;ab)«(ab;ab)cw.

Proof. The proof for this theorem can be found in Ramanujan’s Notebooks, Part I1I by B.C.

8



Berndt [, p.35]. []

Lemma 1.2.2. Fora,b € N

1
f(=q*—4")
is a power series in g with integer coefficients.
Proof. By the Jacobi Triple Product,
1 1

= . (1.4)
f(_qa7 _qb> (qa;qa-i-b)m(qb;qa+b)w<qa+b;qa+b)w

The product on right side of (I.4) is the generating function for the number of partitions of » into

parts congruent to a,b and a + b congruent to modulo a + b. This comes from the fact that
1 oo

I1 ~ =Y px(n)q"

ex(1=-4) 5

where pg(n) is the number of parts of n into parts form K. Thus,

— a4 beN
f(—q%,—4¢>)

is a power series in g with integer coefficients. [

Throughout the thesis, we will be dissecting power series. Note that the dissection is

analogous to the dissection of functions into even and odd parts.

Definition 1.2.2. For any h(q) having an absolutely convergent series expansion about g = 0, say
h(q) = Z mq"
n=0

we define the dissection components of h(q) modulo k as follows:



(h(@); =Y rensja"s  j=0,1,....k—1L
n=0

Note that
hg) =Y g+ Y ro1 @ o+ Y gt

n=0 n=0 n=0

= (h(q"))o+ (qh(d))1+ -+ (4" h(g") )1
k—1

=Y (¢"h(q"))m.

m=0

Most of the dissections will be in the variable ql/ ¥ instead of the variable ¢. In this case,

we will write

1@ = Y (" h(q))m

m=0

= (h(g))o+ (g"*h(g))1 + -+ (g% D *h(g))s1.

Throughout the thesis, we will need to dissect the product of a power series in ¢ and a

power series in ql/ P, The following theorem shows that j dissection of the product equals the j

dissection of the power series in ¢!/? times the power series in g.
Theorem 1.2.3.

X i rq".
j n=0

<i knqn/P X i rnqn> — (i knqn/P>
n=0 n=0 j n=0

Proof. Assume /, is a sequence such that

. a/p it plm,

0 otherwise.

10



Then
Z rmq" = Z Enqn/P-
n=0 n=0

Let the subscript j denote j decomposition of the power series with respect to the variable ql/ P,

We have
Z knqn/p « Z gt | = Z knq”/l’ % Z rnqnp/p
n=0 n=0 j n=0 n=0 j
=) knq"'P x Y 0,q°P'P
r=0 s=0 j
= Z Z kA qn/p
n=0 r-+s=n
0<r,s<n .
J
= Z Z kA q(np+j)/p
n=0 \ r+s=nj+p
0<rs<n
:qj/P Z Z kls |
n=0 \ r+s=pn+j
0<r,s<n
= qj/p Z Z kers | 4"
n=0 \ r+sp=pn+j
0<rs<n
= qj/p Z Z kers | 4"
n=0 | r=p(n—s)+j
0<s<n
="YX kg | 4
n=0 \0<s<n
On the other hand,

Z knqn/p X Z mq" = Z kpn+jq(pn+j)/p X Z mq"
n=0 : o n=0 n=0 n=0

J

11



=q'" Y kparjq" % Y rsq’
d=0 s=0

:qj/PZ Z Kpa+jrs q"
n=0

d+s=n
0<d,s<n

7L (X ton )

= 0<s<n

Hence,

(i knq”/p X i rnqn> = (i knqn/p> X i I’nqn.
n=0 n=0 : n=0 - n=0

J J

To prove Ramanujan’s congruence, we will use basic facts from the theory of modular
forms. The remaining part of the chapter is devoted to theorems that will be used throughout the

rest of the thesis.

Definition 1.2.3. A modular form of weight k for a subgroup I of the modular group

war-{(: 3

A function f is a modular form of weight k for I and multiplier v(y) if

a,b,c,d € Z,ad — bc = 1}.

1. For any matrix in SLy € I we have that

F(552) =vinter+at o

2. fis a holomorphic function;
3. fis holomorphic at 7 = oo.

Definition 1.2.4. Let My (T") be the set of modular form of weight k for T.

12



Now let us define the congruence subgroups that will be relevant for later discussions.

Definition 1.2.5. Let N € N,

a=d= l(mOdN),bECEO(mOdN)},

a=d= l(modN),CEO(modN)}.

Theorem 1.2.4. Let I" be a finite index subgroup of SLy(7Z). Then My ('), is a vector space of finite

dimension over C.

Proof. The proof is given by P. Deligne and M. Rapoport in Les schémas de modules de courbes

elliptiques [9]. [

The following theorem shows that if we start with a modular form of weight one on

(I'1(N)) and we replace T with T/N, we get a modular form of weight one on (I'(N))

Theorem 1.2.5. If f(t) € M (I'1(N)), then g(t) = f(t/N) € M;(I'(N)).

Proof. Assume that f(t) € M;(I'{(N)) and let g(7) = f(7/N). Then, for each (CCI Z) € T'(N)

b
wehave [ © N er (N), so that
Nc d

Thus, if £(z) € My (1 (N)), then f(t/N) € M;(T(N)). O

Lemma 1.2.6. The product of a weight ki modular form and a weight ky modular form form the

same congruence group of SL(2,7) is a weight ki + k, modular form.

13



Proof. Suppose that f is a modular form of weight k; and g be a modular form of weight k». Let

y= (‘C’ Z) er

then

£(5550) = Crrarsie)
and

¢(40) = (e
Hence,

f at+b s at+b at+b
g ct+d) cT+d g cT+d

= (cT+d)17 fg(7).

Since f and g are modular forms we have that f and g are holomorphic functions. Then

ft+h)g(t+h)—f(1)g(7)

(fg)'(r) = lim

h—0 h

_ i JEERg(T+h) — f(T)g(e+h) + f(T)g(e+h) — £(T)g(7)
h—0 h

i L ENE( D) — f(D)g(Th) L f(D)g(T+R) — f(2)8(7)
h—0 h h—0 h

= lim <f(f+h})l—f(r>g(r+h>) i (f(T)g(T+h})l—g(’L’))

= f(v)g(r) + f()g ().

Hence, fg is holomorphic. Now we need to show that fg is holomorphic at 7y. Then,

14



(75 () = i TLELE L0800
_ i £ (9)8(7) — f(%0)g(7) + f(70)8(7) — /(70)8(0)
T—1) -1
_ i £ (0)8(7) — f(10)g(7) + lim f(10)g(7) — f(70)8(70)
T—=1T0 T—T7 T—1T) T— T
= tin (L2 e(0)) iy (=)

= f(70)g(%0) + f(70)¢' (%)

Thus, fg is holomorphic at 7y. Therefore, the product of two modular forms of weight k;

and k, is a modular form of weight k| + k». O

In the thesis, we work with functions denoted with T which are connected to Ramanu-

jan’s Theta functions. To understand what 7 functions are, we introduce the following definition.

Definition 1.2.6. For N > 3 and for odd integers r with 1 <r <N —1,

T(7) = exp (—%) N (7). g r/lN (0,N7),
where
(1) = ¢'"*(g:q)-,
and

r/N zir _, -
6 (NT) =exp (W) gV (W12 N gV 2 N (64 oo
1

The next theorem classifies the 7' functions as fractional weight modular forms for the

principal congruence subgroup I'(N).

15



Theorem 1.2.7. For a fixed N an appropriate fixed branch of the logarithm, T,(7) are weight llv

modular forms on T'(N) with the same multiplier satisfying v(y)N = 1.
Proof. A proof for this theorem can be given based on results in Ibukiyama’s paper [16]. [

As previously mentioned, we use parallel techniques to derive Ramanujan’s congruences
for the the partition function modulo 5 and 7. This is accomplished by through the following

3-step process:

1. Determine respective bases of weight one forms for I';(p) and for I'(p). This is done

through the following recipe:

(a) Determine the respective dimensions of M| (I';(p)) and M (T'1(p)).

(b) Use Theorem to find respective sets of linearly independent elements of M;(I';(p))

and M, (T'{(p)) with cardinality equal to the dimension of the vector space.

2. Apply Theorem to express each basis element for M| (T";(p)) at argument g'/? as a

linear combination of the elements in the basis for M (I (p)).

3. Find the dissection of the product of the elements forming a basis for M| (I';(p), and use

the resulting representation to prove Ramanujan’s congruences.

16



CHAPTER 1II
LEVEL FIVE RESULTS

The purpose of this chapter is to show the following congruence:
p(5n+4) =0 (mod 5). (2.1)

We will prove the above congruence by using properties of modular forms and linear algebra.
In order to do this, we first introduce some theorems and definitions. We start by stating the
relations connecting the 7; functions defined in Definition [[.2.6] with Ramanujan Theta functions

Definition

Theorem 2.0.1. Let g = ¢*™*. Then

f(=4,—4"
T; = ql/s—((q_q)s/s (554
[ 4%, 5. 5
o T

T, =
The quotients above will be denoted by
A=T; and B:=1.

2.1 Modular Forms and Linearly Independence

In this section, we use the theory of modular forms and linear algebra to find representa-
tions for A%(¢'/%) and B (¢'/?) in terms of a basis for weight one forms on I'(5). We begin by

proving the following theorem.

17



Theorem 2.1.1. A and B’ are linearly independent over C.

Proof. The functions

P(=4,—4%) , 5 55 5 (= —4), 5 s
A(q) =g——"5"(¢:¢)S and B(q) = (@:4°)2
(4:9)3, (4:9)3,
are linearly independent if the only solution to
c1A’(q)+c2B’(q) =0, (2.2)

is the trivial solution. Let

l=q.-4¢" (- —-¢)
G(q) = .
(@) =c1q (4:9)3, e (4:9)2,

The coefficients of equation (2.2) are linear equations in ¢ and ¢;. Where the restrictions on ¢
and ¢, are obtained by equating coefficients on both sides of G(g). From equating coefficients of
q, we get the equation ¢; + 3¢, = 0, and —2c¢; +4c¢, = 0. Therefore, we have the following system

of equations

—2c1+4c, =0,

—2c1+4c, =0,
and by solving the system of equations we obtain c; = ¢, = 0. Thus, we have that A>+ and B> are
linearly independent over C. U

The subsequent theorems provide the necessary evidence we need to conclude that A>(g)

and B>(g) form a basis for M (T';(5)).
Theorem 2.1.2. A and B> are modular forms of weight one for T'y(5).

Proof. From [[14, Theorem 2.2], A3(t) and B3(7) are linear combinations of Eisenstein series of

18



weight one twisted by Dirichlet characters modulo five. Since the twisted Eisenstein series are

modular forms on I'; (5), we conclude that A>(7) and B3(7) are elements of M (I'((5)). O
Theorem 2.1.3. dimM,; (T';(5)) = 2.

Proof. The dimension formula can be derived from [7, (10, p.91]. O]

Since A%(q) and B(q) are linearly independent over C and A>(q),B>(q) € M;(T";(5) and

since M} (' (5) has dimension 3, we obtain the following corollary.
Corollary 2.1.3.1. A basis for M;(I'|(5)) is {A>,B°}.

We need to find representations for A%(¢'/%) and B(¢4'/°) in terms of the basis for an-
other vector space spanned by monomials of degree five in A and B. We need to show that this

monomials in the other vector space are linearly independent.

Theorem 2.1.4. A3(q), A*(q)B(q), A*(q)B?(q), A%(q)B*(q), A(q)B*(q) and B>(q) are linearly

independent over C.

Proof. Let G(g) be a linear combination of the 6 monomials; that is

G(q) = c1A%(q) +c2B(q) +¢c3A*(q)B(q) +caA®(q)B*(q) + csA%(q)B> (q) + cs A(q)B* ().

We need to show that the only possible solution for G(q) =01is ¢, =0 for k=1,2,---,6. To obtain
the restrictions on ¢, we equate coefficients of successive powers of g on both sides of G(g). We
do this forn =1,2,---,12 and note that ¢" gives redundant information when n =6,7,8,9,11,12.

Therefore,

ce =0, (2.3)
cs =0, (2.4)
c4 =0, (2.5)
c3 =0, (2.6)

19



c1+3c; =0, (2.7)

—2c1+4c, =0. (2.8)

For example, by equating coefficients for n = 1, we obtained that ¢ = 0 and ¢4 = 0 was obtained
from equating coefficients for n = 3. From equations (2.7) and (2.8)), we obtain a system of equa-
tions and solving the system we obtained that ¢c; = ¢, = 0. Hence, we have shown that the 6

monomials are linearly independent over C. [l

Now that we have shown that the 6 monomials are linearly independent, we present the

following theorem which allows us to conclude 6 monomials represent a basis for M} (I'(5)).
Theorem 2.1.5. The 6 monomials are modular forms of weight one for T'(5).

Proof. This follows from Theorem [

We also need the dimension formula for the vector space of weight one forms on I'(5).
Theorem 2.1.6. dimM,;(I";(5)) = 6.
Proof. The proof appears in [7, 10, p.91]. [l

Using the fact that the 6 monomials are linearly independent and using Theorems [2.1.5]

and [2.1.6] we obtained the following corollary.
Corollary 2.1.6.1. A basis for M;(T'(5)) is {A>,A*B,A’B?, A’B>,AB*, B°}.

By combining the results of Theorems[2.1.2] [2.1.5] and[1.2.5] we obtain representations

for A>(¢'/°) and B3(g'/%) as linear combinations of the basis in the last Corollary.

Theorem 2.1.7.

A3(¢'%) = A%(q) — 3A%(q)B(q) +4A% (q)B*(q) — 2A%(q)B* (q) + A(q)B*(9), (2.9)

B (¢'°) = B3(q) + 3B*(q)A(q) + 4B (9)A%(q) + 2B (q)A%(q) + B(q)A*(q). (2.10)
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Proof. By Theorem the functions A>(¢q) and B>(q) are elements of M;(I";(5)) and the

6 monomials are elements of M;(I'(5)) by Theorem Hence, by Theorem we can

express A%(g'/°) as a linear combination of the 6 functions as follows

A%(g"P) = c1A(q) + 2B (q) + c3A*(q)B(q) + caA* (9)B*(q) + ¢ A% (q) B> (q) + c6 A(q)B*(q),

where ¢, € C for k= 1,2,---,6. To determine the restrictions on ¢, we equated coefficients for

q"/ Sforn=1,2,---,12. As a result, we obtained the following

ceg=1,
cs = —2,
cy =4,
c3 = —3,
c1+3c=1,
2c6 =2,
cs = —2,
—c3 =3,
—2c1+4cr)=-2,
2c6 =2,
c5 = —2.

2.11)
(2.12)
(2.13)
(2.14)
(2.15)
(2.16)
(2.17)
(2.18)
(2.19)
(2.20)

(2.21)

Note that whenn =6,7,8,9,11, and 12, q"/ > does not provided new information. From equations

(2.13) and (2.19), we get that ¢; = 1 and ¢, = 0. Thus, equation (2.9) is satisfied. Similarly, using

the same process, we can show that equation (2.10) is satisfied.
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2.2 Application to Partition Functions

In this section, we are going to start by proving

A(q)B(q) = , (2.22)

by using the Theorem [I.2.1] the Jacobi Triple Product Identity. Next we are going to dissect
equation (2.22) into components modulo five and show that each is a power series with integer

coefficients congruent to 0 (mod 5). This will prove the congruence (2.1)).

Theorem 2.2.1.

5..5\5
a(q:9°)2
A(q)B’(q) = :
(¢:9)e
Proof. First, we find a representation for A(g) as an infinite product. We let ¢ = —¢ and b = —¢*

in Theorem [I.2.1] to obtain

[eo)

f(—a,—g") = Y (=q)"" V2 (—g""" V2 = (4:6°)ee(q":0°) oo (010 )oo-

fl——o0

Thus,

o 2 2

n“+n+n“—n n2+n+4n274n
Y (DT g T = (60)=(6%4")=(q7:0)e

2 sn—3n
Y (D" T = (@:0)=(0"0)x(q347)o-
Since, n” and n have the same parity, the expression above simplifies to

n 5n273n
Y (1) 7 =(q:9")=(q"")w(q:0) -
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Hence,

(o)

Fa—a) = ¥ (-1 " = (¢:6)u(g"0°)u(d%:0)en

n—=—oo

Therefore, by the Jacobi Triple Product Identity

- .- 4 Sn2=3n ) oo (G40 )oo (07177 oo
Alg) =g B(g9 Y (~1)yg™ :ql/s(‘]CI) ((q Q)3)/5(q q)e
n=—oo 4:q)w

To find the representation for B(q), we let a = —g? and b = —¢>, so0 by the Jacobi Triple Product

Identity

oo

f(=*=a) = Y (=" "2 (=g = (2107)oo(:07) oo (410 o

n—-—oo

Thus,
i (=) IR (05 (0305) (6550
=
and so
n:iw(—l)"zqsnzf = (050 (T:0)oo(T:0 ) oo
Hence,
f =) = ¥ (1" = (0)ala )50

n—=—oo

Therefore, by the Jacobi Triple Product Identity

35 w52 (0%507)(q507)o0(q3 7)o
B(g) = (3:9)="° Y, (=1)'q > - ) <( )3)/5( o,
n=—oco q:9)=
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Now that we have found product representations for A(g) and B(q), we express A(q)B>(g) in

terms of infinite products to get

AS(Q)BS(Q) _ <q1/5 (q;q5>oo(q4;q5)oo(q5;q5)w)5‘ ((qz;q5>w(q3;q5)oo(q5;q5)w>5

(4:9)2° (4:9)2°
_ (@9)2¢49°)2(@°:9°)2 (0% 9°)2 (a7 4°)2 (a1 47)
(4:9)%
(4:9)2(4:4°)2,
(4:9)%(9:9)=
(@:q)3,
()=

Thus, we have proven that

Substituting ¢'/° for ¢ in (2.22)) implies

1/5(,. \5
5/ 1/5\p5/ . 1/5v _ 4 (Q,Q)m
£ PIPE") = (4"3:4'%)e

1/5

The denominator is the generating function for partitions where g is replaced by ¢'/~. Hence,

A(@'P)B(¢'°) =" (g:9)% Y p(n)g"?
n=0

(o)

2 Y bl

n=0

+1

wis
v

=(¢:9) n)q

— (0% Y. pln)g"
n=0

=(g:9)2 Y p(n—1)g"".

=1

n

Divide both sides of the above identity by (g; q)go to obtain
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AS(ql/S)BS(ql/S
(4:9)2

) _ i p(n—1)q"". (2.23)
n=1

Now we dissect the right side of (2.23) and obtain

Y p(n—1)q"5 =q Y p(5n+4)g™"?

n=1 n=0
4 - p(5n)g5 /5
n=0
+ p(Sn + 1)q(5n+2)/5
n=0
+ p(sn + 2)q(5n+3)/5
n=0
+ Y p(5n+3)gtHrs,
n=0

On the right side of equation (2.23) extract every fifth term of the series in g\’ starting with

(4'7)", to get

o>}

q Y p(s5n+4)g"P =gy p(5n+4)q". (2.24)
n=0 n=0

In the next theorem, we find the dissection components that correspond to equation
Theorem 2.2.2.

(o]

5
q ) p(5n+4)q" =
,;) (4:9)8,

Proof. Substituting equations (2.9) and (2.10) into the numerator on the left side of equation

(2.23), we obtain

25



A3(g')B°(q'F%) = (4°(q) —34%(9)B(q) +44* ()8 (g) —242(9)B*(q) +A(9)B"(9))
x (B3(g) +3B*(@)A(g) + 4B (9)4% () + 2B2(9)4° (9) + B(9)A4*(q) )
= 5A°(q)B’(q) +6A*(q)B°(q) +44°(¢)B" (¢) —A*(4)B*(q)

(2.25)
+A%(q)B(q) — 6A°(q)B*(q) + A*(q)B®(q) + A(q)B’(q).

We dissect the right side of equation (2.25)) and obtain the following

<A5 1/5 B5 1/5 _
0

<A5 1/5 B5 1/5 )1 _ 6A6(q)B4(q),
(AS 1/5 B5 1/5) —A
2

A5 1/5 Bs 1/5 >3: As(q)Bz(q)7

<A5 1/5)B3 (41/%) )4: (q)+A%(q)B(q).
By Theorem|[[.2.3]

1 s, 1svps 15 (A )B(¢'%)
)

<A5<q1/5>35<q1/5) ) — S F q).
0

(4:9)3, (4:9)%,

Therefore, by equating the dissection components, we get

(o)

54°(q)B’
% = qr;)p(5n+4)45"/5.
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Thus, from Theorem[2.2.1| we obtain

O

In the next theorem, we are going to show that the coefficients of the of the zero dissec-

tion are congruent to 0 (mod 5)

Theorem 2.2.3. For any natural number n,

p(5n+4)=0 (mod5).

1
(4:9)%
a power series in g with positive integer coefficients. Then

Proof. Since is the sixth power of the generating function for partitions Theorem|1.0.1} it is

=Y S SucZh.
=0
Hence,

5 5
5qA (6])3; (Q)_Sqq 4) <anq>

(4:9)%

Similarly, since (¢°;¢°)2, is a power series in ¢ with integer coefficients,

i Cls)i< Z an"> = 5q< Z lnq"> ( Z an”> , l,eZ
n=0 n=0 n=0

and by taking Product of the series, we obtain

5q< Y lnq”> ( Y an”) =59) 4", g€
n=0 n=0

n=0
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Therefore,

o)

q) p(5n+4)q"=59) gd", gn€L.
n=0 n=0

Hence, by equating coefficients on each side

p(Sn+4) =5g,, Vn > 0.

Thus, we can conclude that

p(5n+4)=0 (mod5).
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CHAPTER III
LEVEL SEVEN

This chapter is dedicated to prove the following congruence
p(7n+5) =0 (mod 7).

The congruence above will be proven in the same manner as the previous congruence. In order to
do this, we need to introduce essential definitions and theorems. We begin by listing a library of
relations connecting the 7; defined in Definition [I.2.6] with Ramanujan Theta functions introduce

in Definition [I.2.1] Note that in this chapter, N = 7 will be used in Definition [I.2.6]

Theorem 3.0.1.

T35T53 B f(_q27_q5)

_ 7; 7 i, 3.1
T Y =R (72 oy
TPT? f(=4,-4°) 7 43
_ :q")3, 3.2
T qu(—qz,—qS)(q 7) o
543 3 _ 4
Tl T3 . f( q,—q ) (q7;q7)§°’ (33)

s f2(—q,—4¢°)
T13T35 1/7 f(_‘l27_qs)

=g 2 (q":q")3, 34
s (o) @s4) GH
6
TTTS — 87 f(-4,—4°) .43 35
B =0 e ) g ) ()
T33T55 _ 97 f(_‘b_‘l6) 7. T\3
no (-4t @54 ) GO
3 4
TSTTe = 27 f(“l 4 ) .43, 37
I f(—q,—qﬁ)f(—qz,—qS)(q 7) G-D
1T = L (75} (3.8)
PR f(=q—q%) " T
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T _ 47 f(=4*—q*)

T m(q7;q7)§o, (3.9)
2 5
it =g (_qf_(q;; ; (_qq;_qél) (¢7:d")2 (3.10)
TIT3TS = el (3.11)
f(_q27_q5)
T T; = L(aﬂ;cf)i- (3.12)
f(_q37_q4)

We distinguish three of the quotients above and subsequently refer to them as:

T3 372 T3
xi==23 y="135 and z:=-123
I I3 T5
3.1 Results

The purpose of this section is to prove that the coefficients of power series expansion for
the zero dissection class of x(¢'/7)y(¢'/7)z(¢"/7) are integers congruent to 0 (mod 7). This will
be used to prove equation (I.2)). To do this, we must ensure that x, y and z are linearly indepen-
dent and form a basis for the modular form of weight one for I'; (7). We also need to show that
the 12 quotients (3.1)-(3.12) are linearly independent and the functions represent a basis for the

modular form of weight one for I'(7). This leads to the following theorem.

Theorem 3.1.1. The functions x = T35T1T53, y= T13T3TSS and 7 = TISTST33 are linearly independent over C.
Proof. Let

o) =T g,

¥(q) = ]qf{ ((__;:_265)) (q":q")2,

z(q) ?2((_—;:32 (q"3q7)3-
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The functions x(g), y(¢) and z(g) are linearly independent if the only solution to

ki -x(q)+ka-y(q) +k3-z(q) =0, (3.13)
iski=0fori=1,2,3. Let
qf (—4*,—q) qf(—g.—¢°) f(—=¢*,—4*)
G(q) =k +k 1k .
(@) =k (=3, - P (=) (=g, —¢°)

The coefficients in the g-expansion of G(g) are linear equations in ky,k>,k3. The restrictions

on the coefficients were obtained by equating coefficients of ¢" on both sides of G(g). The first
equation k; + kp + 2k3 = 0 was obtained from equating coefficients of g, —k, + 3k3 = 0 was
obtained from equating coefficients of ¢, and from equating coefficients of ¢> we get —kj + 2ks +
3k3=0. We used Mathematica to derive these coefficients. The corresponding code is contained in

Appendix [C| Hence, we obtained the following system of equations,

ki +ky +2kz =0,
—ky+3k3 =0,

—ki +2ky 4+ 3k; = 0.

Hence,

1 1 2| |k 0
0 —1 3| |k| = |0
-1 2 3| |k3 0

By row reducing, we obtained that the only solution to the system is k; = k; = k3 = 0. Therefore,

the functions x(g), y(¢) and z(g) are linearly independent over C. O

The preceding theorems are needed to conclude the following corollary.
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Theorem 3.1.2. The functions x, y, and z are elements of M;(I'1(7)).

Proof. The theorem is proven in [[15]] [

Theorem 3.1.3. dimM, (I';(7)) = 3.

Proof. A proof can be given using dimension formulas from [7, 10, p.91]. [l
Using the above theorems we obtain the following corollary.

Corollary 3.1.3.1. A basis for My (T'((7)) is {x,y,z}.

In the following theorem we will prove that the 12 quotients (3.1)-(3.12) are linearly

independent.
Theorem 3.1.4. The 12 quotients, equations (3.1)-(3.12), are linearly independent over C.

Proof. Let

27 f (. —q") I 7 &
f(=4,—4°) f (=4* —4°) o f(—q,—4°%) th f(=¢*—¢°) +k4f(—q3, —q*)
af (- -4°) | @ f(-4.—-4¢%)  af(-q.—4%

JE R R R O I R )
7" f(-4*,—q*) I Edh—d) " f (-4, —4°)
=) (44 2 (—q,—4%)
@ f(—q.—4°) " f (-4, —4°)
[(=¢*~a) f(—=¢*,—4*) f(=4,—4°) f(=¢* —q*)

G(q) =k

+ ks

+ kg

+kio

+ ki1 +ki2

To show that that the set of quotients (3.1)-(3.12), which forms a linear combination defining

G(q), are linearly independent, we need to show that the only possible solution for G(q) =0 is k; =
0fori=1,...,12. By equating coefficients on both sides of G(g), we obtained the restrictions for
k;. Next, we equate coefficients only forn = 1,2,...,21; note that ¢" gives redundant information
forn=10,12,13,15,...,20. We used Mathematica to derive these coefficients. The corresponding

code is contained in Appendix [C} Hence,

k1o =0, (3.14)
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ky =0,
ks +ki2 = 0,
ky =0,
ks =0,

ks + k7 4+ 2kg = 0,

2kio+k11 =0,
ki + ke =0,
ki =0,

k7 +3ko = 0,

—ks +2k7 4+ 3kg = 0.

(3.15)
(3.16)
(3.17)
(3.18)
(3.19)
(3.20)
(3.21)
(3.22)
(3.23)
(3.24)

(3.25)

For example, when we equated coefficients for n = 1, we obtained kjo = 0, and when we equated

coefficients for n = 4 we got kg + k12 = 0 and ks + k7 + 2kg = 0 was obtained when we equated

coefficient for n = 7. Now from equation (3.23) we have that k15 = 0, which implies that kg = 0

by equation (3.17)). Also from equation (3.15)) k; = 0, so using equation (3.22)) we have that kg = 0.

From equation (3.14), k1o = 0, which implies that k;; = 0 from equation (3.21). Notice that from

equation (3.24)) k7 = 3k, then using equation (3.20) we get

By using equation (3.25)), we have

k5—|—k7—|—2k920

— ks +3ko +2ko =0

— ks = —5ko.

—k5 +2k7 —|—3k9 =0
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= —(—5/(9) —|—2(3k9) +3kg =0

= k9 =0.

Since k7 = 3kg and ks = —5kg we have that k7 = ks = 0 is also true. Hence, we have that G(q) =0

only when the coefficients k; = 0 for i = 1,...,12. Therefore, we have shown that the 12 quotients

(3.1)-(3.12) are linearly independent over Z. O

We now present the subsequent theorem and lemma, which are essential for Corollary

Theorem 3.1.5. The following functions are modular forms on I'(7) of weight one

(=4 —7) 7. 7\3 f(~4:—4°) 7. 73 1/7f(_‘127_‘15) 7. .77\3
qf2(—q3,—q4)(q 4 W’qu(—qz,—qS)(q ) 4 fz(—q,—qﬁ)( 4 )
8/7 f(_‘17_‘16> (q7:q7)3 %" (q":q")> f(—q3,—q4)( 7.4)3

FE =) =) = 7= =) T fH =g, =g T
2/7 ) 7. 7\3 7 7. T\3 AT f(=4’.—q* 7. 7\3
E ] " 2,—q5)(q 4 ) f(—q,—4%) (4:4)= 4 fz(—qz,—qS)(q 4 )
4/7 f(_q27_q5) 7. 7\3 7 7. 1\3 9/7 f(=a _‘16) 7. 7\3
q )oos FTEr—" _q5>(q 14 ), 4 fz(_q3,_q4)(q 1q )

f(—q, —q6)f(—q3,—q4)(q e

Y

Proof. The proof follows from the fact that the twelve functions above agree with the twelve
quotients of 7 functions (3.1)-(3.12)). That these quotients, in turn are modular forms of weight
one for I'(7) follows from Theorem O

Lemma 3.1.6. dimM, (I'(7)) = 12.

Proof. A proof can be given using the dimension formulas from [7, 10, p.91]. [l

The following corollary follows from the fact that the twelve quotients (3.1)-(3.12) are
elements of M| (I'(7)) which has dimension 12 and the fact that the quotients are linearly indepen-

dent by Theorem[3.1.4]

Corollary 3.1.6.1. The quotients (3.1)-(3.12)) in Theorem represent a basis for M (I'(7)).
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Now that we have shown that x(7), y(7), and z(7) and the twelve quotients are linearly in-
dependent and form a basis of their respective modular forms, we need to find the representations
of x(¢"/7), y(¢"/7), and z(¢"/7) in term of the previously constructed basis of weight one forms

for T'(7).

Definition 3.1.1. Denote

and

Theorem 3.1.7. Let o1, 0, and 03 be defined by Definition then

x(q"") = (¢:9)?

( 3q6/7 q3/7 26]9/7062 C[4/7(X1 N 2q5/7

o o a? o? o
1 ’ , 8/1705 a3 1/7; 3t (3.26)
L 24 2+6123+q23+61 3>
o 03 OC1 062 (04X0%)
@) = (g:0) (_q6/7+2q3/7+q9/7a2_2c14/7a1 L%
e o o oF o o 327
_612/7061 _3618/7052+3q5/7+611/7063 .
03 a1 03 o o )
Uy o3 3q3/7 q4/7(X1 2q6/7 (]9/7a2 a
2(g") =(¢:9)% + s+ + "+
o o oy o o3
(3.28)

L3 e g 2611/2063) |
o G o o

Proof. We know from Theorem [3.1.2] that the functions x(g), y(¢) and z(g) are elements of

M;(T'((7)). Similarly, from Theorem [3.1.5]that the 12 quotients (3.I)-(3.12)) are elements of

M, (I'(7)). By Theorem|1.2.3| since x(¢) € M;(I';(7)) and by replacing ¢ with ¢'/7, we have that

x(¢q"/7) € M{(I'(7)). Therefore, we can write x(¢'/7) as linear combination of the twelve basis

elements ,(3.1)-(3.12)), of M;(I'(7)) as follows
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') = (kl q;/:afl th q;/; th q;/; T q;/: thw (—qq(;c,3 = e (q—(); ,aiq“)
) g T P Y e
. P 1 N q;/27aolc3> (4:q)2,
where k; € C fori=1,...,12. In order to determine restrictions on k;, we equated the coefficients
for q”/ 7 where n=1,2,...,21. We used Mathematica to derive these coefficients. The correspond-

ing code is contained in Appendix [D] Hence, we obtain the following

kio=1, (3.29)

ky =0, (3.30)
ky=—1, (3.31)

ks +kip =2, (3.32)
ks =2, (3.33)

ky = =3, (3.34)

ks +k7 +2ko =1, (3.35)
2k10+ k11 = 3, (3.36)
ki +ke=—2, (3.37)
k= —1, (3.38)

ki =3, (3.39)

—k7 + 3k = 0, (3.40)
k10— ki = 1, (3.41)
2ky — ke =2, (3.42)
ky = —1, (3.43)
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2kg = —2, (3.44)
ky =2, (3.45)

—ks +2k7 4 3kg = —1. (3.46)

Notice that equating the coefficients of q”/ 7 forn = 10,12,13,15,---,20 does not provide new
information. However, using equations (3.32)) and (3.39) we able to show that kg = —1. Also using

equations (3.33)), (3.40) and (3.46)) we obtain that ks = 1 and k7 = k9 = 0. Thus, we have shown

that (3.20) is satisfied. Similarly, we repeat this process to for solve y(ql/ ) and z(ql/ 7, so we

have that (3.27) and (3.28) are satisfied. O

Now that we found the representations x(¢'/7), y(¢'/7), and z(¢'/7), we can show that the
coefficients of the zero dissection of the product of the three functions mentioned, are congruent

to 0 (mod 7).

Theorem 3.1.8. The zero dissection of x(q"/7) y(q"/7)z(¢"/7) is a power series in q with integer

coefficients that are each congruent to 0 (mod 7).

Proof. Since x(q) y(q), and z(g) are weight one forms on I'j (7), the product x(¢q)y(g)z(q) is a
weight 3 form, refer to Lemma|1.2.6, on I'; (7). By Theorem [1.2.7} x(¢"/")y(¢"/")z(¢"/") is a
weight 3 form on I'(7); therefore it has a representation in terms of the dissection components.

Using Theorem we obtained

2 27/7 o3 2003 16 4o
1/7 1/7 V7N — (e )9 q 12/7 3 1 1)
X Z 1q)2

(CI ))’(CI)(Q) (q(Z)( 16 ‘HI (133 36—122 233
7¢% 8ar? 1702 15
q— q11/7( 3 1 )

o 3 2

+ 2ol oot oo
1 %2 203 2 U3

1741723/70522Jr 2 (705 28 | 140y
ol oo of

4

2/7 2 3 3
g o o a Ta 30
+—63+q6/7( 313"' >~ 4)
a
2
2" oyt ata 15 5
+ q 1 3+q15/7< 142 _)

< e B
o
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5 lla o? 3a; 13«
18/7( 2 11U 19/7( Y2 2W3 1OU2
T4 < o« oc3) T4 (a5 ot a2a2>
1 143 3 1 1%
T2 4o 708 143 130
+q3< 223__42)+(]10/7< L 3 1)
oy o o 0oy o oc2 a2 a3
K ool o 1 o 02 aza 5
1% 1 23 )
4o Ta? 15 llag 2040
"“1(—43_3—12)""1]6/7( e ety =
o, a5 0 o 00 o3
K o) wdoz) T o oy ogad
1 143 1 143 13
+q5/7(8_a32 50512>+ 8/7(50513 1705 11a1)
% oo way ooy o
3 3
+q25/7<0‘220‘3 S, >+q9/7( Soy 8o i)
of  afog ajes oy o
3 2 2
o o ate, ooz of

By selecting monomials that contributed to the desired dissection class, we were able to dissect

the right side of the above equation to obtain

l4oz  To? 702 28 l4a
17y 1/ 1/7)2 N 3 TH )y 2 3 1
(X(q (g )z(a 7)) (q,q)w<fJ( o ag%z) T\ mma; | ol
7o l4a
3 2 2
+ -— )
1 <a12a; o ))
58 1702 1la
17\a( A1) TNo( A1)7 ) 8/7 1 3 1
(6" M(a" M2a")) = (@)% (q ( 2ot T mad a3)
Lg%t 15 5
d al oy o))’
3 142 3
2/7 2 5063 8(X2 5
1/7 1/7 1/7 ) q~ o 03 9/7( 3 1 _)
X Z — Tt
((q (g Nq"T)), = (g:9)- ( o e S P R
1 oo o o ato '
13 142 3 143

The same process will allow us to write (x(q1/7)y(q1/7)z(q1/7)> for 0 < j < 6. Now, note that we
j

simplified the zero dissection class by factoring, and we have
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w9 (20 Ocl2 2¢° q2a22 qoc32 4q 2q 0
74(4:9)< T T332 a4 T a3t 32_060605Jr i |-
& Koy & apay Qo oz 03

Thus, we have shown that the coefficients of the zero dissection class of x(¢'/7)y(q'/7)z(¢"/7) are

congruent to 0 (mod 7). O
Theorem 3.1.9.

2 (qq")L,

x(q)y(q)z(q) = @)

Proof. First, we find the representation for x(¢) as an infinite product.Using Theorem|1.2.1} Ja-

cobi Triple Product Identity, and letting a = —g? and b = —¢g° we obtain

(=2 =a") = (6%4")=(0":4") (a3 ). (3.47)
Also, letting a = —¢° and b = —g* we have that

(=% =4") = (¢%:d")=(a%4")(d":0 ). (3.48)

Substituting equations (3.47)) and (3.48)) into equation (3.1)) we get

f(=¢*—4°)
f(—=43,—q*)
(0%:97)eo(a”:9")oo(q"5q7) oo

7. 7)3

x(q) =q (q":q")=

7. 7\3
=q (439" )=
(a*:9")2 (g% q")2(q":q7)%
Similarly, to find the representation of y(g) as an infinite product we let a = —g and b = —¢% and
we get
f(=4,-4°) = (¢:0))=(4°47)(d":0")oo- (3.49)

Therefore, substituting equations (3.47) and (3.49) into equation (3.2)) we obtain
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_ f(—q,—QG) 7. 7\3
y(q)—q—f(_qzj_qS)( S/
g (q;q7)oo(q6;q7)oo(q7;q7>w( 7.7
(¢%:9")4(q%:9)a(q7:9)E " 77 T

Finally, we find the representations of z(g) as an infinite product. We substitute equations (3.48))

and (3.49) into (3.3) and we obtain

3 4
o) = G )
( 3;q7)oo(q4;q7)oo(q7;q7)m( 7.47)}

2 [ochd

~ (:9)%(9%47)2(q7:97)2

Then taking the product of x(¢), y(q), and z(g) we obtain

(@%q")oe (@37 )oo (@737 )oo
x(Q)(Q)Z(Q): <C[ 3. N2 4. N2 (T T 2(q7’q7)§o
(¢%:97)%(q%q97)2(q7:9")%
y (q (4:07)(q%q")(q":q") % q7)3>
(*:9N)%(4%:97)%(q7:97)2 °°
y ((q3,q7)oo(q4;q7)oo q7,q7)oo)
(g:97)2(4%47)2(q"597)2
ROl DRCHT DR G RO DR R DUt DECUT S
(*9")2(q%49)2(d% 972 (% 47)2(a:97) 2 (9% 97)2(q7:97)8,
_ Al a9
(:9)2(q7597)%
~ 5(q9")]
(4:9)es
Theorem 3.1.10.
d 20 o  2q%w 2 o2 o?
_ w20 i P gy g0
ZP(7H+5>61”—7Q<4,61)00( 2 B o Tow ol
n=0 2 23 1 13 1%

4q 2qoy
01003 OC;1 ’
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Proof. In the last theorem we showed that

1/7

substituting g with g'/’ we obtain

-7
YTy Ty /Ty 27 (@)
Mg meAa ) =g T

Note that the denominator is the generating function for partitions in the variable ql/ 7. Then,

x(q1/7)y(6]1/7)2(q1/7) _ q2/7(q;q)zo i p(n)qn/7

n=0
= (¢:9)L. Y p(n)g"+277
n=0
= (¢:9)L Y. p(n—2)g""".
n=2
By dividing both sides by (g;¢)., we obtain
(g My(e'Mz(d"7) _ ¢ 07
— pn—2 . (3.50)
@l nZ::z (n—2)q
We now decompose equation (3.50) into
(g (e Ma(g") _ ¢ /7
=) p(Tn+5)q
(4:9)% ;) (fn+3)
+Y p(7n +6)g /7
n=0
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n=0
4+ Z p(7n+4)q(7n+6)/7.
n=0
Therefore,
x(ql/7)}’(611/7)2(611/7) 1 1/7 1/7 1/7 - n
= —= |X Z = Tn+5)q".
( @ O (q;q)Zo( (@"")(a"M)x(a" 7)) n;)p( )q

In Theorem we showed that

20 o> 2¢7c GFai  qod
<X(q1/7)y(ql/7)Z(ql/7)> =7q(q;q)i( R T S €

0 o oo af okl ood
49 | 290
aopoy oy )
Thus,
> 20 o 247 qPal  qoi
Tn+35)q" =79(q:9)% e 2 3
N
4q 2q0
ooz af )
]
Theorem 3.1.11.
p(Tn+5) =0 (mod 7).

Proof. This follows Theorem [3.1.10]and Theorem|[1.0.2] and the last Theorem. O

3.2 Other Congruences

In this section, we demonstrate two things. First the coefficients of x>(¢'/7), y*(¢'/7)
and z2(¢'/7) for terms with index congruent to n (mod 7), where n = 3,5, 6, are congruent to

0 (mod 14). Second, that the coefficients of the j dissection, where j =0, 1,--- 6, for the different
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combinations of x(¢'/7), y(¢'/7) and z(g'/") are congruent to 0 (mod 1) where n = 7,21,49. But

first we need to introduce the following theorem.

Theorem 3.2.1. Klein’s Relation

a4 LPd—d) s =)

R " f(=¢*—4°)  f(—q9,—4¢%)

Proof. The proof of this theorem is given in [17, 20, p.300]. 0

The next theorems will show that the coefficients of x2(¢'/7), y?(¢'/7) and z%(¢"/") for

terms with index congruent to n (mod 7), where n = 3,5, 6, are congruent to 0 (mod 14).

Theorem 3.2.2. Let
(q) = Y anq", ap € 2.
n=0

Then agy,13 is congruent to 0 (mod 14).

Proof. In Theorem . we found the representation for x(ql/ 7) and by taking the second power

we obtained

20 1T\ — (e )6
X = (:9)a| — - -
(¢7)=(a:9) ( o aa? ooz of wa; 0303

20 4« 10 24« 14¢"5/7 o
+q9/7(———]>+q10/7(—— 3)+ q 2

2¢*7 a3 a2 10  ao? 607 20y
—3_|_q8/7 -3 _|__1 +C[5/7 3

o o o2 ooy o}
2
T4 3 T4 2 3 3 (3.5D)

L (B 18 (200 120 +5q6/7+q2/70632
d oot ol wot ool o? o
103 1 203 145 2 2

4 16/7 05 _4mas +4418/70‘22+ 2 O‘_%_ﬂ
1 oo o o T\ a '
143 1 1 1 143

Then, by dissecting the right side of equation (3.51)), we obtained
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200 12 o 4o

20,.1/7 ) . \6 1 3 2 (93 2
X = ' q ) 9
( (/") 0 (2:9) (Q( ) 32 ] 22)+q ( ;1 12 3))

o2 10 o 14¢5/7 o
<x2(q1/7)>1 _ (Q’Q)So (q8/7 ( 3 _ _|__1) +¥> ,

el oz of o
2847 a2 20 4«
2 1/7) SN N 3,4 3 9/7 _
X - ) [} + +
( (@), = (a:9) < & a N\ Gn @

10 24« 4477 o2
<x2(611/7)>3:(q;q)i (q10/7 <—2— > 3>_ o 2)

We dissect the right side of equation (3.51]) by selecting the monomials that contributed to a
corresponding dissection class. Using this process, we were able to find the dissection for each

congruence class. In particular, simplifying the 3 dissection class by factoring we get

1203 2
24" (q:q)8 (— g — 22524 . 5)

By applying Klein’s relation, recall Theorem [3.2.1] we obtained

144197 (020 — 203 497\ [ o2 a2q
( (21 2 3)+ — 2 (_1__3+L) (q;q)?o

o005 oy as (04] (09) (04}
10/7 (- ,\6 2 3
_ l4gq / (9:9)2 (OC1 o — 2063)
o 2 2

The coefficients have a common factor of 14 . [
The proofs for the following theorems are similar to the proof of Theorem 3.2.2]

Theorem 3.2.3. Let
yz(Q) = Z anq", an € 7.
n=0
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Then ay,¢ is congruent to 0 (mod 14).

Theorem 3.2.4. Let
= Z anq", a, € 7.

Then ay,. s is congruent to 0 (mod 14)

Finally, the following theorems will demonstrate that the coefficients of the j dissection
for the different products of x(¢'/7), y(¢"/7) and z(¢'/7) are congruent to 0 (mod 1) where n =

7,21, or 49.

Theorem 3.2.5. Let
3g) = Zanq”, an € Z.

Then agy1 is congruent to 0 (mod 7) and a7,+4 is congruent to 0 (mod 21).

Proof. First, we show that the coefficients of the one dissection of x° (ql/ 7) are congruent to
0 (mod 7). Using Theorem [3.1.7, we can write x(¢'/7) a combination of the quotients (3.1)-(3.12)

and taking the third power we get

4503 120 21y o 903 3oy
xs(q1/7)=(q;q)i<q12/7< - ———+————L +q6/7(—35——>

4

93a3 3o} ) Y < 601 27a32>
q — —
alo oc2 o ooy wos ooy

180a 602 6603 150
37 6 T2 L 60 | o (—é— 2_12)
2 2
< 45053 1440, 3oy ) g9/ (183(x3 105a2)

4 4 2.2
O‘1 o3 005 o o5 o3

i _153oc3 159 2l | »p T50p05 4505
q Bl oo 4 q 5 3,2
R & aj 03

2400 117 3o« 6302 60’
+q16/7 ( 3 + 1 2) +q23/7 ( 2 2 3) (352)

v

4 g2

3 2 5 4 6
05005} o 03 o3 o 03 o
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T _1230532Jr 201 18 o o 48a
d ora, Ao ol 1 oad o
12 1 U3 3 13 1
s (05 1440p 18053 257 (120505 605
+q |\ —% 7 73 ) 1t4 6 4.2
o o 00 o oy 05

3 3
K (30063 31 N 302 )+q /7a§’ 3¢ 702

6 5
0 o

ofoy o5 ooy
3002 231 53 827773 9qu
Jr6115/7+< 3 +_>_ 9 2 799

4.2 2 3 6 4

903 246+54oc2) 12q26/70623>

18/7 B
T4 (oc5oc o ool 3
1 02 i 1063 oy o3

We dissected the right side of equation (3.52)), by selecting monomials that contribute to the

desire dissection, we obtained
9ga 15302 159 21la
3 1/7) o[ 2493 | o 3 2l
(x @), (q,q)m( o +q ( pn T s o )
3 2
o 144 ¢ 18
+q (_36_ 42+ 2 23> ,
oy o e
6oy 2702 3008 231 53
31/7)2 N9 [ 87 (I 3\ 4 15/ 3 122
(x (") | (q,q)w(q (— —) q <—a;‘a22 wo

vz ooy
2
+4q 5 32|
o oy 05

30 31 30 24003 117 3aqo
3 1/7) — (9 [ 97 320 L 2R ) 167 3 4 2%
<x (@), = (@:q) (q (0‘12 P ag) ( 5

34, 2
050 0] o 03 o3

+4q 7 6 :
aloz o

The missing dissections can be found by using the same process above. Hence, we have that one

dissection is
8/7(,. 19
9" (4:9)w 2 6 5 4 6, 22 2.5 4 4.5
oo (_6a2a3a1+27a3a1+45°‘20‘3“1q ~75¢" ;05 —53q 05

+231qo5 050 — SOqoczzoc360q> .
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By applying Klein’s relation we obtain

3

() 7¢%7 (=540 05 + 5107 02 + 1503 g+ 140t o q)
o oo

N ( 3¢%7 (1170305 +5q 03 (30512052—50533))> (“12 o N a%q))

atos ol o owm o

74%7(g:9)2 (—5407 05 + 5107 0005 + 1505 afq + 1407 g q)

443
oy 0 03

Therefore, we have shown that the coefficients for the third dissection of x> (ql/ ") is congruent to
0 (mod 7). Similarly, repeating the same process we can prove that the four dissection of x°(¢'/7)

is congruent to 0 (mod 21). H

The following theorems can be proven by applying the same process used to prove the

above theorem.

Theorem 3.2.6. Let

YS(Q) = Z anq", ay € 2.
n=0

Then azy,+1 is congruent to 0 (mod 21) and a7, is congruent to 0 (mod 7).

Theorem 3.2.7. Let
ZS(Q) = Z anqn» an E Z
n=0

Then a4 is congruent to 0 (mod 21) and azy,+4 is congruent to O (mod 7).

Theorem 3.2.8. Let

PQ)yq) =Y ang",  an€.
n=0

Then ay, is congruent to 0 (mod 49) and a7, 5 is congruent to 0 (mod 7).
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Theorem 3.2.9. Let

Y(g)x(q) =Y and",  an€Z.
n=0

Then ay, and a7, are congruent to 0 (mod 7).

Theorem 3.2.10. Let

2(@zq) =Y and".  an €L
n=0

Then ay, and a7, are congruent to 0 (mod 7).

Theorem 3.2.11. Let

2(@)x(q)= Y arg",  an €L
n=0

Then ay, and a7,¢ are congruent to 0 (mod 7).

Theorem 3.2.12. Let

Y(@)uq) =Y ang",  an€L.
n=0

Then ay, is congruent to 0 (mod 49) and a7,3 is congruent to 0 (mod 7).

Theorem 3.2.13. Let

Z(@y(g) =Y anq",  an€Z.
n=0

Then ay, and a7,14 are congruent to 0 (mod 7).

Using a new approach, we were able to prove Ramanujan’s congruences with a parallel
justification. By applying the same techniques, we proved new congruences for a more general

class of series that include those used to prove Ramanujan’s congruences.
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APPENDIX A

LEVEL FIVE LINEARLY INDEPENDENT CODE

Al )= P ) 0 (1 sy,

s - G LB o, - o)

Series [ (Alal)® + ca(Bla))*, {4,0,3}]

c2+(c1+3c2) g+ (—2¢1 +4c2) ¢* + (dey +2¢2) ¢ + O[q)*

Solve [{SeriesCoefficient [c1(A[g])’ + c2(B[g])°,{g,0,1}] ==0,
SeriesCoefficient [c1(A[g])’ +c2(Blg])°, {g,0,2}] == 0} ,{c1,c2}]
{{c1 = 0,c5 — 0}}

SeriesCoefficient [c1(A[q])® + c2(B[g])°, {4,0,1}]

I <

SeriesCoefficient [c1(A[g])° +c2(Blq]), {4,0,2}]

c1+3c

—2c1+4c;

Gla_] = c1(Alg])’ +c2(Blq])’ +c3 (Alg])* * Blg] +ca (Alg])* * (Blq])?

+es (Alq])* * (Blg])* +cs Alg] * (Blg))*.q — ¢°;

Solve[{SeriesCoefficient|G|q], {g,0, 1}] == 0, SeriesCoefficient|G|q],{g,0,2}] == 0,
SeriesCoefficient|G[q],{g,0,3}] == 0, SeriesCoefficient[G[q],{q,0,4}] == 0,
SeriesCoefficient|G|q], {g,0,5}] == 0, SeriesCoefficient[G[q],{g,0,6}] == 0,
SeriesCoefficient|G[q],{q,0,7}] == 0, SeriesCoefficient[G[q],{q,0,8}] == 0,
SeriesCoefficient|G[q],{g,0,9}] == 0, SeriesCoefficient[G[q],{q,0,10}] == 0,
SeriesCoefficient[G[qg], {g,0,11}] == 0, SeriesCoefficient[G[q|,{g,0, 12}] == 0},

{e1,¢2,¢3,ca,c¢5, c6}]
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{{c1 = 0,c0 > 0,¢3 = 0,¢4 — 0,¢5 — 0,c6 — 0} }
SeriesCoefficient|G|q], {q,0,1}]
SeriesCoefficient[G[q], {¢,0,2}]
SeriesCoefficient|G|q], {g,0,3}]
SeriesCoefficient[G[q],{g,0,4}]
SeriesCoefficient|G[q],{g,0,5}]
SeriesCoefficient|G[q],{g,0,6}]
SeriesCoefficient|[G[q],{¢,0,7}]
SeriesCoefficient|[G[q],{g,0,8}]
SeriesCoefficient|G|q], {q,0,9}]
SeriesCoefficient[G[q],{g,0,10}]
SeriesCoefficient|[G[q],{¢,0,11}]
SeriesCoefficient[G[g], {¢,0,12}]
C6

Cs

C4

3

c1+ 3¢

2cq

cs

0

—c;

—2c1+4cr

2¢q

Cs

33
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APPENDIX B

LEVEL FIVE COEFFICIENTS

Alg ] = 22— (2(14"+)
] (O2o(1- qg"r*l*%o))((llhq")zi/sqs"”))
B[g ] == (2, (1- qn)_)3/5 (

2, (1-4");

(G2 (1-4™));

Gla_] = c1(Alg])’ +c2(Blq])’ +c3 (Alg])* * Blg] +ca (Alq])’ * (Blq])®

+es (Alq])* * (Blg])* +cs Alg] * (Blg])*;

SeriesCoefficient [G[q], {4,0, 1 } | ==SeriesCoefficient
SeriesCoefficient [G[q], {,0, # }] ==SeriesCoefficient

SeriesCoefficient [G[q], {,0, 2 }] ==SeriesCoefficient

SeriesCoefficient |G[q], {q, ) 5}

SeriesCoefficient |G[q], {q,

SeriesCoefficient [G[q], {¢,0, 2 } ] ==SeriesCoefficient
SeriesCoefficient [G[q], {¢,0, 2 } | ==SeriesCoefficient
SeriesCoefficient [G[q], {¢,0, 12 } | ==SeriesCoefficient

SeriesCoefficient [G[q], {¢,0, ! } | ==SeriesCoefficient

[
[
[
[
[
SeriesCoefficient [Glq], {4,0,1}
[
[
[
[
[

SeriesCoefficient [G[q], {¢,0, 12 } | ==SeriesCoefficient

C6::1

C5 == -2

SeriesCoefficient

SeriesCoefficient

|==

|==
SeriesCoefficient [G[q], {,0, $ }] ==SeriesCoefficient

] ==SeriesCoefficient

]
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cy==4

c3==-3
c1+3c;==1

206 ==2

s == —2

True

—y ==
—2c1+4cr == -2
206 ==2

c5 == —2

SeriesCoefficient [G[q], {¢,0, 1 } | ==SeriesCoefficient
SeriesCoefficient [G[q], {4,0,
SeriesCoefficient [G[q], {¢,0, 3 } | ==SeriesCoefficient

SeriesCoefficient [G[q], {¢,0, 2 } | ==SeriesCoefficient

SeriesCoefficient
SeriesCoefficient [G[q], {¢,0, 1}
SeriesCoefficient [G[q], {¢,0, $ } | ==SeriesCoefficient
SeriesCoefficient [G[q], {¢,0, 2 } | ==SeriesCoefficient
SeriesCoefficient [G[q), {g,
SeriesCoefficient [G[q], {,0,

SeriesCoefficient (Glq], {q,

C6 _= =

C5 ==4

]
]
]
]
SeriesCoefficient [G[q], {4,0, 2 }] ==SeriesCoefficient
6] ==
]
]
]

(3[#4)" ta0h
—=SeriesCoefficient (B :q%: )5 {4,0,2
(5[¢])’ (a0
(5[])’ ta0.3)
(5[et)) o
SeriesCoefficient (B :q%: )5 {4,0,
—=SeriesCoefficient (B :q%: )5 {4,0,1}
(o) a0
(o)’ a0
0,10}] ==SeriesCoefficient (B :q%: )5 {4,0,
11}] ==SeriesCoefficient | (B q*] )5 {4,
0,12}] ==SeriesCoefficient (B :q%: )5 {4,0,
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cqg==72

c3 ==
c1+3c;==3
2c6 ==06

5 ==

True

—c3 == —1
—2c1+4cy ==4
2c6 ==06

C5 ==4
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APPENDIX C
LEVEL SEVEN LINEARLY INDEPENDENT CODE

flh_,m_]=Y10 o gt/ 2pn(n=1)/2,

6/7___1

_ .21 I 1 /11
i o s N o R e I ooy
tksq f|—qz,—q5! kg f[-a—4°] +hrg f[-9—4 +kgg?? fl-4*—4'] +k9f[—q3,—q]

Todl g Lol qﬁ{[—qﬁ—qﬁ]’ f[fqzq,z—qsqr] sad]
1/7f_[__ L 1 8/7 fl-a— 4/7 fl-4,— .
R L e 1 v I R e e (A

Solve[{SeriesCoefficient|G|q], {g,0,1}] == 0, SeriesCoefficient[G[q],{q,0,2}] == 0,
SeriesCoefficient[G[q],{q,0,3}] == 0},{ks,k7,ko}]

{{ks = 0,k7 — 0,kg — 0}}

SeriesCoefficient|G[q],{g,0,1}]

SeriesCoefficient[G[g], {¢,0,2}]

SeriesCoefficient[G[q], {¢,0,3}]

ks + k7 + 2kg

—k7 + 3ko

—ks +2k7 + 3kg

Solve[{SeriesCoefficient|G|q], {g,0,1}] == 0, SeriesCoefficient[G[q],{q,0,2}] == 0,
SeriesCoefficient[G[q|, {g,0,3}] == 0, SeriesCoefficient|G[q],{q,0,4}] == 0,
SeriesCoefficient|G[q],{g,0,5}] == 0, SeriesCoefficient[G[q],{q,0,6}] == 0,
SeriesCoefficient[G[q],{g,0,7}] == 0, SeriesCoefficient[G[q],{q,0,8}] == 0,
SeriesCoefficient[G[g|, {g,0,9}] == 0, SeriesCoefficient|G[g],{q,0,10}] == 0,
SeriesCoefficient[G[g], {¢,0,11}] == 0, SeriesCoefficient|G[q|, {¢,0,12}] == 0,
SeriesCoefficient[G[q],{q,0,13}] == 0, SeriesCoefficient[G[q],{q,0,14}] == 0,
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SeriesCoefficient|G|q|, {g,0,21}] == 0},{k1,k2,k3,k4, ks, ke, k7,kg, ko, k10,k11,k12}]
{{ki = 0,kp = 0,k3 — 0,ks — 0,ks — 0,k¢ — 0,k7 — 0,kg — 0,kg — 0,k10 — O,
kiy — 0,k;p — 0}}
SeriesCoefficient[G[q],{¢,0,1}]
SeriesCoefficient[G[q], {¢,0,2}]
SeriesCoefficient|G[q],{g,0,3}]
SeriesCoefficient|G[q],{g,0,4}]
SeriesCoefficient|[G[q],{g,0,5}]
SeriesCoefficient|G[q],{g,0,6}]
SeriesCoefficient|G|q], {q,0,7}]
SeriesCoefficient[G[q],{g,0,8}]
SeriesCoefficient|G|q], {q,0,9}]
SeriesCoefficient|G[q],{g,0,10}]
SeriesCoefficient|G[q],{g,0,11}]
SeriesCoefficient|G[q],{g,0,12}]
SeriesCoefficient|G[q],{g,0,13}]
SeriesCoefficient|G[q],{g,0,14}]
SeriesCoefficient[G[q],{g,0,15}]
SeriesCoefficient|G[q],{g,0,16}]
SeriesCoefficient|G[q],{¢,0,17}]
SeriesCoefficient|G[q],{g,0,18}]
SeriesCoefficient|G[q],{g,0,19}]
SeriesCoefficient|G[q],{q,0,20}]
SeriesCoefficient[G[g], {g,0,21}]
SeriesCoefficient|G[q],{g,0,22}]
kio

ki
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kg + k12
k3
ky
ko
ks +k7+2
2k10 + k11
ki + ke
ko
k2
0
0
k7 + 3k9
1
2k —k
2y — ke
ko
2kg
k3
O 3kg
_|_
2k
ks 4
2k10 + k11
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APPENDIX D

LEVEL SEVEN COEFFICIENTS

flh_,m_]=Y10 o gt/ 2pn(n=1)/2,

Y R | | JT__ 1 /71 6/7__ 1
Glg | =kig 3 e s q5]+k2q3 m+k3q5 W+k4q m
s qf|—q2,—q5! kg flra—d] 4 g f-a- |+ ke f[-,—4'] +k9f[—q3,—ql

-, Z;] ) fl-a, q4][ {[ -2, qS] f[fq; qu];] fl-a-4]
f fl-a, f
Hhiog /T G Heng g qz,-qslif[-qs,-qﬂ*"uq TCaAl-d]’
g ]= q;j[j—_;s]]z (2, (1-4™)) >
Yo l= ﬁﬂ}z(n,, (1-4")>%

Z[q ] = ﬂﬂ; (HZO 7n )3;

SeriesCoefﬁc1ent [Glq],{4,0,1}] ==SeriesCoefficient x[q?], {q,O,%}-
SeriesCoefficient [G[q], {¢,0, 2 } | ==SeriesCoefficient :x :q%: ,{4,0, %}
SeriesCoefficient [G[q], {g,0, 3 }] ==SeriesCoefficient :x :q%: {a, O,%}:
SeriesCoefficient [G[q], {¢,0, 4 } | ==SeriesCoefficient :x :q%: ,{9,0,3 :
SeriesCoefficient [G[q], {¢,0, 3 } | ==SeriesCoefficient :x :q’li: ,{4,0, %}
SeriesCoefficient [G[q], {¢,0, § } | ==SeriesCoefficient :x :q%: ,{4,0, g}:
SeriesCoefficient [G[q], {,0, 7}] ==SeriesCoefficient :x :q%: {4, O,%}:
SeriesCoefficient [G[q], {¢,0, 8 } | ==SeriesCoefficient :x :q%: ,{4,0, %}:
SeriesCoefficient [G[q], {¢,0, 2 } | ==SeriesCoefficient :x :q%: , {q,O,%}:
SeriesCoefficient [G[q], {¢,0,2}] =SeriesCoefﬁcient- -x- q% , {q,0,17d -
SeriesCoefficient [G[q], {g,0, 1} } ]| ==SeriesCoefficient |x g, {4,0,4
SeriesCoefficient [G[q], {¢,0, 12 } | ==SeriesCoefficient x -q%- ,{g,0,12
SeriesCoefficient [G[q], {¢,0, 4} } | ==SeriesCoefficient :x :q%: ,{g,0,2
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SeriesCoefficient [G[q], {¢,0, 1} } | ==SeriesCoefficient
SeriesCoefficient [G[q], {¢,0, & } | ==SeriesCoefficient _
SeriesCoefficient [G[q], {¢,0, 18 } | ==SeriesCoefficient _

SeriesCoefficient [G[q], {g,0, X }| ==SeriesCoefficient |

SeriesCoefficient [G[q], {¢,0, 2 } | ==SeriesCoefficient |

[
[
[
[ !
SeriesCoefficient [G[q], {¢,0, 12 } | ==SeriesCoefficient
[ L
SeriesCoefficient [G[q], {¢,0, 2 } | ==SeriesCoefficient
[

SeriesCoefficient [G[q], {¢,0, 3! } ] ==SeriesCoefficient

kip ==1

ky ==

ky ==—1

kg +kip ==2
ky ==

ky == —3

ks + ke + 2ko ==
2k +kip ==3
ki +kg == —2
kp == —1

kip == 3

True
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Q"Q"hﬁ”hﬁ"hﬁ”hﬁ”&'
Q- b - - - - ==

—
)L

1 {a0.)
1 (a0}
1 o013
a0
1 tao )
a0}
a0
,{4,0,% :




True

ks + 2k + ko == —1
SeriesCoefficient [G[g], {g,0
Gla],{4,0
Glg],{4,0

SeriesCoefficient
SeriesCoefficient
SeriesCoefficient |G[q], {q,
SeriesCoefficient |G[q], {q,
SeriesCoefficient |G[q], {q,
SeriesCoefficient [G[q], {g,0
SeriesCoefficient (Glq], {q,
SeriesCoefficient |G[q], {q,
SeriesCoefficient |G[q], {q,

SeriesCoefficient [G[q], {g,

SeriesCoefficient [G[q], {4,0,

SeriesCoefficient [G[q), {g,
SeriesCoefficient [G[q), {g,
SeriesCoefficient [G[q), {g,

SeriesCoefficient [G[q], {,0,

[

[

[

[

[

[

[

[

[
SeriesCoefficient [G[q], {g,
[

[

[

[

[

[
SeriesCoefficient [G[q), {g,
SeriesCoefficient [G[q], {q,
SeriesCoefficient [G[q], {g,
SeriesCoefficient [G[q), {g,
kio ==

k== —1

ky =——

kg +kip == =2

,8}] ==SeriesCoefficient

,4}] ==SeriesCoefficient
)7 }] ==SeriesCoefficient
,3}] ==SeriesCoefficient
,#1] ==SeriesCoefficient
)7 }] ==SeriesCoefficient
,$}] ==SeriesCoefficient
,7}] ==SeriesCoefficient

]

]

\ 7} ==SeriesCoefficient

0,191] ==SeriesCoefficient
0,411] ==SeriesCoefficient

0, 42}] ==SeriesCoefficient

% }] ==SeriesCoefficient

0, 1t}] ==SeriesCoefficient
0,11] ==SeriesCoefficient

0,11] ==SeriesCoefficient

17—7 }] ==SeriesCoefficient

0,181] ==SeriesCoefficient
0, 2}] ==SeriesCoefficient
0,22}] ==SeriesCoefficient

0,%'}] ==SeriesCoefficient
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o e e e e e e e e

S 1"
~)—-

svnlbvalbvalvabvabvalvalvalvalvalvalze

QI'QIIQIIQIIQ!IQI'QIIQII
- - - - - - -

'Q '
==

| a0y
.{4:0,3
-K%Q%{
,{4,0,3
,Mﬁé{
- {2.0.9}]
-,{qﬂl%}:
a@ﬁ%{
|.{9.0.5}
1] (0.0}
:K%Q?
,{4,0,%
{40, 2
].{a,0.4
{205
:i%@?
{204
:&%Q?
].{a,0.%
| {a.0.2
:&%Qg




ks ==3
ky == —1
ks + k7 42k ==1

2kio+kip == —1
ki + ke ==

ky ==2

kip ==

True

True

k7 + 3k == —1
2kio—ki1 ==35
2k1 —kg == -3
ko ==2

kg == —4

ks ==

True

ks + 2k + kg ==

SeriesCoefficient [G[q], {¢,0, 1 } | ==SeriesCoefficient

SeriesCoefficient |G
SeriesCoefficient |G

SeriesCoefficient [G[g], {4,0, 7}

[a], {q, ) 7} ==SeriesCoefficient

[q] {q7 ’7}
SeriesCoefficient |G[q], {q, ) 7}

SeriesCoefficient

SeriesCoefficient

SeriesCoefficient

SeriesCoefficient

SeriesCoefficient

SeriesCoefficient [G[q], {¢,0, 8 } | ==SeriesCoefficient

]
]=
I=
]
SeriesCoefficient (G[q], {q, ) -,}]
]
]=
]
]

SeriesCoefficient [G[q], {¢,0, 2 } | ==SeriesCoefficient

SeriesCoefficient [G[q], {g,

[
[
[
[
SeriesCoefficient [G[q], {¢,0, 5}
[
[
[
[
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Z

Z

hQ”hQ”hQ”hQ”hQ”hﬁl
~—- = ~i—- = ~i—- N

|ba ”Q u'.Q 1
~l|'-'I \ll—'I \I'—I

| {a0.3)]
,{4,0,3
| {a0.3)]
{4:0,3
| {a0.3)]
| {a.0.}
| (@03}
{a.0,3}
- {2.0.9}]

0, %’}] ==SeriesCoefficient [z [q%] , {q,O, 1.?




SeriesCoefficient [G[q], {g,0, 4} } | ==SeriesCoefficient -
SeriesCoefficient [G[q], {¢,0, 12 } | ==SeriesCoefficient [
SeriesCoefficient [G[q], {g,0, 12 }] ==SeriesCoefficient [
SeriesCoefficient [G[q], {¢,0, 1} } | ==SeriesCoefficient [
SeriesCoefficient [G[q], {¢,0, & } | ==SeriesCoefficient :

[

[

[

[

[ L

SeriesCoefficient [G[q], {¢,0, 18 } | ==SeriesCoefficient

SeriesCoefficient [G[q], {¢,0, 17 } | ==SeriesCoefficient :

SeriesCoefficient [G[q], {¢,0, 4 } | ==SeriesCoefficient [

SeriesCoefficient [G[q], {¢,0, 2 } | ==SeriesCoefficient [

SeriesCoefficient [G[q], {¢,0, 2 } | ==SeriesCoefficient [
[

SeriesCoefficient [G[q], {g,0, % }| ==SeriesCoefficient

kio ==
ky ==
ky ==3
ks +kip ==
ks ==1
kg ==

ks + ko + 2kg == 2
2kio+kip ==4

ki + kg ==

ky ==3

kip ==

True

True
kg + 3y ==
2kyo — ki ==4
2ky — kg ==
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”Q”Q”Q”Q”Q”Q”QI
=~ ~i—- ~i—- \ll—“ \I'—“ ~i—- -

S ”hQ 1
-

r S 1
-

Q
S-S
I I L

:,{q70’17_l :
){qa0,1‘7_2 |

,{4,0,$ :

,{2,0,4}]
1 (a0 )
1 (a0}
a0y

,{‘1,0,% :
,{q)0’17_9 |

] ,{q,O,Q |
] ,{q,O,% |




kpy ==73
2kg ==
kzy ==
True

—ks -+ 2k7 + 3ko ==
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APPENDIX E
LEVEL SEVEN MATHEMATICA CODE

«Notation

Symbolize [__]

F[C] C 9021 4,030 _,C4: _,C50 _,C6:_,C7:_,C8: _,C9:_,C10- _,C11:_,C12 :_] =

21 f[-4'—4'] 3/7__ 1 /11 6/7___ 1
(CIq f[_q’_q6]f[_42’_q5] +czq fl_qa_q6| +C3q5 fl_qzv_q5| +C4q fl_qsa_q4|
|_ _ | |_ _ 6| |_ _ 6| 3 4 3 4

-2~ -] -2 ¢ fl-a—aT

171/~ 87 f]-9-4"] a1__ -] 3.
+CIO‘I #[—q,—wqﬂl +Cllq f[—q2,—q5]f[—q3,—q4] +012‘1 f[—q,—q“]f[—q:‘,—q“] (qq ) ’

x[0] = F [a1,a2,a3,a4,as,a¢,a7,a8,a9,a10,a11,a12]/.{a1 = 0,a — 0,a3 — 0,

as — 0,as — 1,a6 — 0,a7 — 0,a3 — 0,a9 — 0,a10 — 0,a1; — 0,a12 — 0};
x[l] = F[a1,az,a3,a4,a5,a6,a7,ag,a9,a10,a11,alg]/. {a1 — O,a2 — 0,a3 — 0,
as — 0,a5 — 0,a6 — O,a7 — O,ag — 0,a9 — O,alo — l,a11 — l,a12 — 0};
x[2] = F [a1,a2,a3,a4,as,a¢,a7,as,a9,a19,a11,a12)/.-{a1 = 0,a, — 0,a3 — 0,
as — 0,a5 — 0,06 — —2,a7 — O,ag — 0,a9 — O,am — O,a11 — 0,012 — 0};
x[3] = F [a1,a2,a3,a4,as,a¢,a7,as,a9,a10,a11,a12)/.{a; = 0,a - —1,a3 — 0,
a4 — 0,a5 — 0,a¢ — 0,a7 — 0,ag — 0,a9 — 0,a19 — 0,a1; — 0,a;2 — 0};
x[4] = F[al,az,a3,a4,a5,a6,a7,a3,a9,a10,a11,alz]/. {a1 — O,a2 — 0,a3 — 0,
as — 0,as — 0,a6 — 0,a7 — 0,a3 — —1,a9 — 0,a;0 — 0,a;; — 0,a12 — 3};
x[5] = F[a1,az,ag,a4,a5,a5,a7,ag,a9,a10,a11,alz]/. {a1 — 0,(12 — 0,a3 — 2,
as — 0,a5 — 0,a6 — O,a7 — O,ag — 0,a9 — 0,a10 — 0,a11 — 0,a12 — 0};

x[6] = F [a1,a2,a3,a4,a5,a¢,a7,a8,a9,a190,a11,a12] /. {a1 = 0,a — 0,a3 — 0,
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as — —3,(15 — 0,a6 — 0,a7 — O,ag — O,ag — 0,a10 — O,a11 — 0,a12 — 0};

¥[0] = F [a1,a3,a3,a4,as,a¢,a7,a3,a9,a10,a11,a12) /. {a; = 0,a3 — 0,a3 — 0,
as — 0,a5 — 0,06 — 0,a7 — l,ag — O,ag — O,al() — 0,a11 — 0,a12 — 0};
y[1] = F [a1,a3,a3,a4,as5,a¢,a7,a3,a9,a10,a11,a12)/. {a1 — 0,a3 — 0,a3 — 0,
a4 — 0,as5 — 0,a¢ — 0,a7 — 0,ag — 0,a9 — 0,a19 — 1,a1; — —3,a12 — 0};
y[2] =F[al,a2,a3,a4,a5,a6,a7,a3,a9,a10,a11,alz]/. {a1 — —1,a2 — O,a3 — 0,
as — 0,as — 0,a¢ — 1,a7 — 0,a3 — 0,a9 — 0,a10 — 0,a1; — 0,a12 — 0};
y[3] = F [a1,a3,a3,a4,a5,a6,a7,as,a9,a10,a11,a12]/.-{a; = 0,a, — 2,a3 — 0,
as — 0,a5 — 0,a6 — 0,a7 — O,ag — 0,a9 — 0,a10 — 0,a11 — 0,a12 — 0};
y[4] = F |a1,a3,a3,a4,as,a¢,a7,a3,a9,a10,a11,a12)/. {a; = 0,a3 — 0,a3 — 0,
as — 0,a5 — 0,a6 — O,a7 — O,ag — —2,a9 — 0,010 — O,a11 — 0,a12 — 0};
y[5] = F |a1,a3,a3,a4,as,a¢,a7,a3,a9,a10,a11,a12) /. {a1 = 0,a3 — 0,a3 — 3,
a4 — 0,a5 — 0,a¢ — 0,a7 — 0,ag — 0,a9 — 0,a19 — 0,a1; — 0,a;2 — 0};
y[6] =F [a1,a2,a3,a4,a5,a6,a7,ag,a9,a10,a11,a12]/. {a1 — 0,a2 — 0,a3 — 0,

as — —1,a5 — 0,a¢ — 0,a7 — 0,ag — 0,a9 — 0,a19 — 0,a1; — 0,a;2 — 0};

z[0] = F [a1,a2,a3,a4,as,a¢,a7,as,a9,a19,a11,a12)/.-{a1 — 0,a, — 0,a3 — 0,
a4 — 0,as5 — 0,a¢ — 0,a7 — 0,ag — 0,a9 — 1,a19 — 0,a1; — 0,a;2 — 0};
Z[l] =F [al,az,a3,a4,a5,a6,a7,ag,a9,a10,a11,alz] /. {al — O,a2 — O,a3 — 0,
as — 0,as — 0,a6 — 0,a7 — 0,a3 — 0,a9 — 0,a10 — 2,a1; — 0,a12 — 0};
2[2] =F [a1,a2,a3,a4,a5,a5,a7,ag,a9,a10,a11,a12] /. {a1 — 3,a2 — 0,(13 — 0,
as — 0,a5 — 0,a6 — l,a7 — O,ag — O,a9 — 0,a10 — 0,a11 — 0,a12 — 0};
z[3] = F [a1,a2,a3,a4,as,a¢,a7,as,a9,a19,a11,a12)/.-{a1 — 0,a, — 3,a3 — 0,
as — 0,a5 — O,a6 — O,a7 — O,ag — O,ag — 0,a10 — O,a11 — 0,a12 — 0};
z[4] = F [a1,a2,a3,a4,as,a¢,a7,as,a9,a19,a11,a12)/.-{a1 — 0,a, — 0,a3 — 0,

a4 — 0,a5 — 0,a¢ — 0,a7 — 0,ag — 1,a9 — 0,a19 — 0,a1; — 0,a12 — 1};
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z[5] = F [a1,a2,a3,a4,as,a¢,a7,as,a9,a19,a11,a12) /. {a1 = 0,a, — 0,a3 — 1,
as — 0,as — 0,a¢ — 0,a7 — 0,ag — 0,a9 — 0,a10 — 0,a1; — 0,a12 — 0};
z[6] = F [a1,a2,a3,a4,as,a¢,a7,as,a9,a19,a11,a12)/-{a1 — 0,a, — 0,a3 — 0,
as — 2,as5 — 0,a6 — 0,a7 — 0,ag — 0,a9 — 0,a19 — 0,a1; — 0,a;2 — 0} ;
K([s_,n_]:=Flatten[Table[Permutations|IntegerPartitions[s, {n}, {0,1,2,3,4,5,6}]([z]]],
{z,1,Length|[IntegerPartitions|s, {n},{0,1,2,3,4,5,6}]]}],1];
Twolq_,e_,d_]:=Expand[Sum[q[K[d, 2][[]][[1]]]e[Kd, 2] [[A]][[2]]],
{i,1,Length[K[d,2]]}]];

Threelq_,e_,r_,d_|:=Sumg[K[d, 3][[i]][[1]]]e[K[4, 3] [ [[21]][K[d, 3] ([0 [[3]]],
{i,1,Length[K[d, 3]]}];

Simplify[Three|[x, y, z,0] + Threel[x, y, z, 7] + Three|x, y, z, 14]]

o [ 2f]-*—4] 28 f]-4.—4°] af[-P—) P-4
7499 <f[—q7—q6]4 - —a]"  flra—af fl-d—a*]  fl-a?—a) f]-a =]
B 4q Ll -4’ —d*] - -4 )

flma—dlf === —4*] * fl-¢2 -] fl-a—a] f]-a—a)
Taqc® (Zf[—q2,—t15] 2% f[-a—d] -] __ &lad]
I I I T s L o

_ 4 ufl-¢~] ___ s[-¢~d P
i e i s ) i) R MR f[—q,—q6]3f[fq2,—qs]2)/ Sl g

1.f[-4,—4%] = al.f [-¢*—q] > o
7qqq ( Zq 062 +2q061 + q 062 (;12 4 +2(13 + qOC3 )

2 2
of o wai oo of ' aiad

Do[Prmt[Slmphfy[Two[x,x, 0+ n] + Two[x,x,7 + n| + Twolx, x, 14 +n],
-2 _fl-@~a] | afl-aa] __
e~ e +qf[ P = "H ’{”’0’6}]
qqqﬁ(qf [*612,*615]4*26f[ f[ :] q£]§ ] +16ch[[i’q2? )
- —a) - 4]

3 6
s7,6( 2[4 " /(-4 qs] P 2)
q7’°9q < f[fq_qu] f[ o q6] ' 3, q4]2 f[ q, ‘1]

fl-—4°]
5 2
27 o[ 260~ 4af[-*—d°] s g I[P -P) [P
i < f[-a.-4b ! _f[quqq fl-a3 4" off-r ] f[-a.-49]
- -]’

2513
140197406 [ 1 2f[’q ’q]
1 < f[~a—a8) f[-a3—*)"

fl-—a)
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T2 _51% 5 53
ot (e e )
f[-a*—4°]
q5/7qq6( 29f[—q27—615]5+2qf[—q7—q6]4f[—q37—q4]+25f[—q,—q6]f[—q2,—q5]zf[—q37—q4]2)
a1~ ~a) 143~ ]

6/7.. 6 5 18qf[—4*,—4] 84f[—q.—4°]
¢"/aq (f[—%—qé]z TR * f[—q2,—qs]2f[—q37—q4])
Do|Print[Simplify[Three[x, x, x,0 + n] + Three[x, x, x, 7 + n] + Three[x, x, x, 14 +n],

412 2 612
T~ s = "H ’{”"”6}]
ac® ( —29861f[—q,—q6]2f[—q2,—q5]6f[—q37—614]21330f[—612,—4615]5f[—q3,—Sq“]s—39qf[—q,—q6]4f[—q37—614]6
fl=a—d f[-4—a°) f|-4*,—4*]
f[~4.—4°] (qf[fqzﬁf]97321f[fq2ﬁqs]zf[ftf7*q4]7) )
fl~a—a]' -2 —a) |- ="

516 513 12,0 3 4
76870 [ 140+ 15qf[ q —q] _ 54f[ q —q] +Slf[ q —q] _f[_q —q ])
T ( i T
-~

q9/7qq9(339f[—q2»—q5]8f[—q3,—q4]3—520f[— Co g i e e W e
fl~a—a°]" f[-o? qu] s
f[—q,—q6]2(—6qf[—q27—q5]9+183f[—q2,—615]2f[—q —q ]7))
fl~a—d]* ]2 —a) f|-4* =]
9 ( 192 f[-q,~¢°] f[-a*—a*]" 488 [~ 2] |- —a*] + 752 [0~ ) [~ 2= °) P~

_|_

—¢*"qq

fl~a—a’ -2 —) " - =]
fl-a—4] (171qf[—q27—q5]8—265f[—q27—q5]f[—q37—614]7)
fl~a—a’ f[-?—) " |- =] )
214'/7qq° < 171~~~ —a*] +18f[-0.~¢) [~ —a) f]-4 4]
fl~a—a f[-a2—a) -]
f~a.-a (qf[—qzrqs]7—3f[—q3,—q4]7) +f[~a.—4] (qf[—q27—q5]7—3f[—q3,—q4]7>
fl~a—a) f[-2—a) -4~ )
—qq? (435f (2 —°)* f[-4* —¢"] —570f [*q,fsqé]f [7612,725]51” [*q3ﬁf314]5+qf [~¢.—a° f[-4* —¢"]°
fl=a—d f[-—a°) f|-4*,—4*]
~6f[-a.-¢°)’ (40af[-*~¢"] ~23f (-2~ f[-a* 4] )
i flra—a*) fl~a?—a) f-a2—a*] )
6/7qq° (394f 2~ [~ —4"] —615¢ [*q,fsqﬁ]f [7‘1277q55]5f [*q3ﬁq: I’ +9qf[-a,—¢°] f[~4*—4*]°
fl=a—a f[-*—a°) f|-4*—4*]
fl-a—a (*53qf[*q2ﬁq5]9+227f[fq2ﬁq5]Zf[fcf,fq4]7)
fl~a—a) f[-a?—a) f]-a*—a*]” )

+

_|_

q

_|_
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