
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations - UTB/UTPA

5-2015

Efficient query processing over uncertain road networks Efficient query processing over uncertain road networks

Bamikole A. Ogundele
University of Texas-Pan American

Follow this and additional works at: https://scholarworks.utrgv.edu/leg_etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ogundele, Bamikole A., "Efficient query processing over uncertain road networks" (2015). Theses and
Dissertations - UTB/UTPA. 233.
https://scholarworks.utrgv.edu/leg_etd/233

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations - UTB/UTPA by an authorized administrator of ScholarWorks @ UTRGV. For
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/leg_etd
https://scholarworks.utrgv.edu/leg_etd?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/leg_etd/233?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

EFFICIENT QUERY PROCESSING OVER UNCERTAIN ROAD NETWORKS

A Thesis

by

BAMIKOLE A OGUNDELE

Submitted to the Graduate School of

The University of Texas- Pan American

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2015

Major Subject: Computer Science

EFFICIENT QUERY PROCESSING OVER UNCERTAIN ROAD NETWORKS

A Thesis

by

BAMIKOLE A OGUNDELE

COMMITTEE MEMBERS

Dr. Xiang Lian

Chair of Committee

Dr. Christine Reilly

Committee Member

Dr. Timothy Wylie

Committee Member

Dr. Dong-Chul Kim

Committee Member

May 2015

Copyright 2015 Bamikole Ogundele

All Rights Reserved

iii

ABSTRACT

Ogundele, Bamikole A., Efficient Query Processing Over Uncertain Road Networks.

Master of Science (MS), May, 2015, 41 pp., 4 tables, 10 figures, references, 30 titles.

One of the fundamental problems on spatial road networks has been the shortest traveling

time query, with applications such as location-based services (LBS) and trip planning. Algorithms

have been made for the shortest time queries in deterministic road networks, in which vertices and

edges are known with certainty. Emerging technologies are available and make it easier to acquire

information about the traffic. In this paper, we consider uncertain road networks, in which speeds

of vehicles are imprecise and probabilistic. We will focus on one important query type, continuous

probabilistic shortest traveling time query (CPSTTQ), which retrieves sets of objects that have the

smallest traveling time to a moving query point q from point s to point e on road networks with

high confidences. We propose effective pruning methods to prune the search space of our CPSTTQ

query, and design an efficient query procedure to answer CPSTTQ via an index structure.

iv

DEDICATION

This thesis is dedicated to my sweetheart and loving wife, Adekumbi, and my children,

Precious, Cherish, and Emmanuel. My mother-in-law, Yetunde and my mother Abigael. The

completion of my master program would not have been possible without the unfailing love,

sacrifice and support of my family. I give my deepest expression of love and appreciation for the

encouragement that you gave and the sacrifices you made during this graduate program. Thank

you for the support and company during late nights of typing and endurance when away from

home.

v

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Dr. Xiang Lian, chair of my thesis

committee, who contributed immensely to the success of my graduate program. He stood by me

from the day one of my program to the last day. He went far and beyond including being available

for me during the holiday just to make sure that I completed my program. He patiently corrected

my errors and provides best guidance for me. Words are not enough to appreciate his effort.

I would also like to thank my thesis committee members, Dr. Christine Reilly, Dr. Timothy

Wylie, and Dr. Dong-Chul Kim, for their contributions to this work. They have given me superb

scientific guidance, many insightful suggestions and demonstrated a sincere interest in my work.

I am fortunate to have such a group of intelligent professor as a team.

I would never forget the help of my classmate, roommate, and a brother, Chiemezie

Ukaumunna who has been a source of encouragement to me in completion of my program.

vi

TABLE OF CONTENTS

Page

ABSTRACT ...…….……………………………………………………………………………. iii

DEDICATION……………………………………………………………………………….. iv

ACKNOWLEDGEMENTS…………..…………………………………………………………. v

TABLE OF CONTENTS…….……………………………………………………………… vi-vii

LIST OF TABLES…………………………………………………………………………….. viii

LIST OF FIGURES…………………………………………………………………................... ix

CHAPTER I: INTRODUCTION……………………………………………………. 1

CHAPTER II: PROBLEM DEFINITION….………………………………………… 4

Uncertainty Model …………………………………………………………… 4

Definition 1……..…………………………………………………………… 6

Definition 2……..…………………………………………………………… 8

Definition 3……..…………………………………………………………… 8

Definition 4……..…………………………………………………………… 10

CHAPTER III: PRUNING METHODS…….……………………..………………… 13

vii

Time Bound Pruning………………………………………………………… 13

Lemma 1………..…………………………………………………………… 13

Lemma 2……………………………………………………………………… 15

Probabilistic Bound Pruning………………………………………………….. 18

Definition 5……..……………………………………………………………. 18

Lemma 3……………………………………………………………………… 19

CHAPTER IV: CPSTTQ PROCESSING…….……………………..………………… 24

CHAPTER V: RELATED WORK…………………………………………………….. 30

CHAPTER VI: CONCLUSION…………………………………….…………………. 34

REFERENCES………………………………………………………………………… 35

BIOGRAPHICAL SKETCH………………………………………………………….. 38

viii

LIST OF TABLES

Page

Table 1: The Nodes of Uncertain Road Networks...……………………………………………..10

Table 2: The Edges of Uncertain Road Networks……………………………………………….20

Table 3: Facilities on Uncertain Road Networks ………………………………………………..25

Table 4: Possible Traveling Times of road segments on path from q to gas station……………30

ix

LIST OF FIGURES

Page

Figure 1: Uncertain Road Network Model.……………………………………………………...11

Figure 2: Uncertain Road Network Model with Query Point………………………………........15

Figure 3: Illustration of Time Bound Pruning………………………………………………….20

Figure 4: A Query Point q on a Sub-Path of a Road Network ………………………………….23

Figure 5: Probabilistic Bound Pruning……………………………………………..……………25

Figure 6: Algorithm for computing β-upper bound ……………………………….…………….25

Figure 7: The Index Structure………...………………………………………………………….27

Figure 8: Minimum Bounding Rectangles (MBR)………………………………………………27

Figure 9: Offline pre-computation..……………………………………………………………..28

Figure 10: CPSTTQ Query Processing Algorithm………………………………………………30

1

CHAPTER I

INTRODUCTION

It has been a major problem determining the shortest traveling time from one location to

the other due to some variation in traffic. Finding objects like a gas station, hotel, or coffee shop

with the shortest traveling time on a path from a particular source point s to a destination point e

has been a challenge over the decades. One of the fundamental problems is the shortest traveling

time query, which has many significant applications, such as Web-based mapping services and

network routing. As a result, several methods have been developed for shortest time queries in

deterministic graphs, in which vertices and edges (associated with edge weights) are known with

certainty.

However, in some applications, the road networks may contain some uncertainties. For

example, a road network can be modeled as a graph, in which each edge represents a highway, but

in reality some highways are likely to have traffic jams and thus be associated with uncertain

vehicle speeds.

Therefore, route planning on such road networks should consider uncertain traveling time

on roads and provide reasonable paths for users in any circumstances. However, recent GPS-

enabled path services ignore the uncertainty inherently contained in traffic, and this uncertainty

leads to probabilistic graphs in which edges are labeled with uncertain velocity values (samples)

associated with existence probabilities. Moreover, the uncertainty could be as a result of noisy

measurements from sensors/experiments, the existence of unstable communication links, or

2

unknown factors such as traffic accidents, and weather conditions (e.g. snow or thunderstorms).

The existence probability of an edge can be predicted by some machine learning algorithm, or

inferred from historical traffic data.

Figure 1 below shows an example of a road network (graph), which contains 14 nodes that

are intersection points of roads n1, n2, . . ., n14 denoted as circles, and edges that are road segments,

𝑒𝑖,𝑗 may not exist between two nodes 𝑛𝑖 and 𝑛𝑗 (𝑓𝑜𝑟 1 ≤ 𝑖, 𝑗 ≤ 14). On road segments (e.g.,𝑒3,4),

there are several facilities like the gas station and the rest area denoted with a square shape

(e.g.,𝑜1 𝑎𝑛𝑑 𝑜8, respectively).

Figure 1: Uncertain Road Network Model

In many real-world applications such as route planning, some people may want to travel

from one location to another with the best alternate road. But the shortest traveling time from one

point (hotel) to another point (airport) is challenging. Many analysis has shown that the shortest

3

path from one location to another does not necessarily guarantee that it will have the shortest

traveling time. There are many factors (bad road, road traffic, accident, stop lights and signs) that

could contribute to the fact that the shortest path may take longer traveling time.

In this paper, we will investigate an important type of query, namely continuous

probabilistic shortest traveling time queries (CPSTTQ), over uncertain road networks, which

retrieves points of interest (POIs) or facilities on an uncertain road networks with the shortest

traveling time and high confidence, while a given query point q is moving from the source point s

to the destination point e on road networks. In order to efficiently process CPSTTQ queries, we

propose effective pruning methods, time bound pruning and probabilistic bound pruning, to reduce

the CPSTTQ search space. Even though many works have been proposed for various queries on

road networks, most of the prior works did not consider the uncertainty of the traveling time but

rather focused on certain shortest traveling path (with the shortest traveling distance). Thus, we

cannot borrow previous techniques to tackle our CPSTTQ query.

5

CHAPTER II

PROBLEM DEFINITION

Uncertainty Model. In this paper, we will analyze the data model of traffic network over

an uncertain road network with continuous probabilistic nearest neighbor queries. Several

applications have been developed over the years to track the location of an object and calculate the

traveling time. For example, GPS Tracking is installed on most phones which use state-of-the-art

GPS technology quickly and accurately locate the people, providing real-time location updates

using GPS navigation. We will consider the shortest traveling time to reach a nearest neighbor

over continuous line segment.

Figure 1 illustrates that there are intersection nodes (𝑛1 ~ 𝑛14) and POI objects (𝑜1 ~ 𝑜8)

in a road network. The nodes are the intersection points of roads, which are denoted with 𝑛1, 𝑛2,

…, 𝑛14 on the road network, whereas POI objects are facilities, which are denoted with 𝑜1, 𝑜2,,

𝑜8 corresponding to a gas station, hotel, airport, coffee shop, hospital, restaurant, or rest area on

the road network. Previous analyses have always considered the shortest traveling distance from

one location to the other based on the belief that the shorter the distance, the faster approach to the

destination. However, in reality, the road network may be associated with uncertain traffic

information such as uncertain vehicle speeds, which can thus be modeled as an uncertain road

network.

In particular, each edge in uncertain road networks is associated with an uncertain speed

variable, which follows some probabilistic distribution (pdf) (represented by vehicle speed

5

samples). Table 1 shows an example of nodes in uncertain road networks in Figure 1, and Table

2 depicts the edge information of uncertain road network in Figure 1. For example, edge e1, 2 has

3 possible speed samples, capturing the uncertainty of the vehicle speed on this edge.

Node Location (𝒙, 𝒚) Node Location (𝒙, 𝒚)

𝑛1 (6, 7) 𝑛8 (5, 3)

𝑛2 (5, 8) 𝑛9 (7, 4)

𝑛3 (4, 8) 𝑛10 (10, 4)

𝑛4 (1,8) 𝑛11 (10, 6)

𝑛5 (1, 6) 𝑛12 (10, 8)

𝑛6 (2, 5) 𝑛13 (8, 8)

𝑛7 (4, 4) 𝑛14 (8, 5)

Table 1: The Nodes of Uncertain Road Networks

Edge

𝒆𝒊,𝒋

Distance

dist. (𝒏𝒊, 𝒏𝒋)

Velocity

 (𝒆𝒊,𝒋)

𝑒1,2 √2 (35, 0.3) (36, 0.3) (37, 0.4)

𝑒2,3 √1 (35, 0.4) (45, 0.2) (50, 0.4)

𝑒3,4 3 (55, 0.3) (58, 0.3) (60, 0.4)

𝑒3,6 √13 (30, 0.6) (32, 0.3) (35, 0.1)

𝑒4,5 2 (40, 0.7) (42, 0.2) (45, 0.1)

𝑒5,6 √2 (36, 0.2) (40, 0.4) (46, 0.4)

6

𝑒6,7 √5 (55, 0.3) (58, 0.3) (60, 0.4)

𝑒7,8 √2 (42, 0.3) (45, 0.3) (50, 0.4)

𝑒8,9 √5 (30, 0.5) (35, 0.2) (45, 0.3)

𝑒9,10 3 (50, 0.3) (55, 0.3) (60, 0.4)

𝑒10,11 2 (45, 0.6) (48, 0.1) (55, 0.3)

𝑒11,12 2 (32, 0.1) (35, 0.4) (40, 0.5)

𝑒11,14 √5 (28, 0.5) (38, 0.3) (48, 0.2)

𝑒12,13 2 (25, 0.2) (30, 0.1) (35, 0.7)

𝑒13,14 3 (40, 0.6) (42, 0.2) (47, 0.2)

𝑒13,2 3 (50, 0.3) (55, 0.4) (60, 0.3)

𝑒14,1 √8 (32, 0.7) (42, 0.1) (52, 0.2)

Table 2: The Edges of Uncertain Road Networks

DEFINITION 1. (Uncertain Road Network). An uncertain road network is define as a

Graph 𝐺 = (𝑉, 𝐸, 𝑇) where vertices 𝑉 is a set 𝑛1, 𝑛2, 𝑛3, . . . , 𝑛|𝑠|, each 𝑛𝑖 (1 ≤ 𝑖 ≤ |𝑆|)

residing at a 2D location {𝑥(𝑛𝑖), 𝑦(𝑛𝑖)} , 𝐸 is a set of edges, where each 𝑒𝑖,𝑗 in E associated with

a velocity variable 𝑍(𝑒𝑖,𝑗), and 𝑇 is a mapping from 𝑉 × 𝑉 𝑡𝑜 𝐸 with edges E that shows the

traveling time along the edge e.

In Definition 1, the variable of a velocity 𝑍(𝑒𝑖,𝑗) on each edge 𝑒𝑖,𝑗 of an uncertain road

network follows a probabilistic distribution, represented by discrete velocity samples. In particular,

each sample 𝑆𝑖,𝑗 of random variable 𝑍(𝑒𝑖,𝑗) is associated with an appearance probability

𝑆𝑖,𝑗 . 𝑝(∑ ∀𝑠𝑖,𝑗 𝑆𝑖,𝑗 . 𝑝 = 1).

7

Example 1. (Uncertain Road Network) In an uncertain road network from location

𝑆 𝑡𝑜 𝐸 there are three possible path to arrive at location 𝐸 from the starting point of location 𝑆.

The traveling time from all the three paths are different even though they are starting and arriving

at the same location, but due to some uncertain traffic network on the road the traveling time varies.

From the example of Figure 1, nodes 𝑛1, 𝑛2,…, 𝑛14 are the intersection points on road

segments of a continuous road network. Table 1 illustrates all the locations of each node 𝑛𝑖 (1 ≤

 𝑖 ≤ 14), which is described by 2D coordinates. Moreover, 𝑒𝑖,𝑗 is an edge from node

(𝑛𝑖, 𝑛𝑗) whose distance is denoted by 𝑑𝑖𝑠𝑡(𝑛𝑖 , 𝑛𝑗).

Table 2 shows traveling distances and uncertain velocities on each edge, where each edge

𝑒𝑖,𝑗 is associated with a probability distribution function, pdf (𝑒𝑖,𝑗) of the velocity variable.

Facility Position (𝒙, 𝒚) Edge (𝒆𝒊,𝒋)

O1 (Gas Station) (2, 8) (3, 4)

O2 (Hotel) (3, 6.5) (3, 6)

O3 (Airport) (6.5, 8) (2, 13)

O4 (Coffee Shop) (8, 4) (9, 10)

O5 (Hospital) (3, 4.5) (6, 7)

O6 (Gas Station) (9, 5.5) (11, 14)

O7 (Restaurant) (6, 3.5) (8, 9)

O8 (Rest Area) (1, 7) (4, 5)

Table 3: Facilities on Uncertain Road Networks

8

There are many paths from one point, u, to another destination location, v, on the road network.

Following, we define the best path to a destination location.

DEFINITION 2 (The Best Path to a Destination) In a graph 𝐺 = (𝑆, 𝑇, 𝑌), two points

𝑢, 𝑣 ∈ 𝑉(𝐺) , and a probability threshold 𝛼 ∈ (0, 1), a probabilistic path query (𝑢, 𝑣) finds all

paths 𝑙 ∈ 𝑝𝑎𝑡ℎ(𝑢, 𝑣), such that 𝑃𝑟 (𝑙) ≥ 𝛼.

There can be many paths between two vertices in a large graph. Often, a user is interested

in only the "best" paths. In this paper, we will consider the best alternative path to a location that

provides the shortest traveling time. Given a path, l, from vertex 𝑢 𝑡𝑜 𝑣 in an uncertain graph 𝐺, 𝑙

is called the shortest path over G if and only if l is the shortest path in at least one instance of 𝐺.

The probability that l is the shortest path from 𝑢 𝑡𝑜 𝑣 in G is denoted as Pr{l}.

Example 2. Table 3 illustrates all the facilities points on the 𝑟𝑜𝑎𝑑 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 in Figure 1,

𝑜1 (Gas Station), 𝑜2 (Hotel), 𝑜3 (Airport), 𝑜4 (Coffee Shop), 𝑜5 (Hospital), 𝑜6 (Gas Station),

𝑜7(Restaurant), and 𝑜8 (Rest Area). Each facility 𝑜𝑖 (1 ≤ 𝑖 ≤ 8) has its own location on the

road network and its corresponding edge, e.g., the facility Gas Station 𝑜1 is at position (2, 8) on

road segment 𝑒3,4, Hotel 𝑜2 is at position (3, 6.5) on road segment 𝑒3,6, and so on.

In the example, there are different paths to get to a location on the road network. For

example, traveling on this road network from edge 𝑒1 to a facility Hotel 𝑜2 , there are different paths

that lead to the facility. You may travel on the 𝑟𝑜𝑎𝑑 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (𝑅𝑁) from 𝑒1 → 𝑒2 → 𝑒3 →(𝑜2), or

from 𝑒1 → 𝑒2 → 𝑒3 → 𝑒4 → 𝑒5 → 𝑒6 →(𝑜2), or from 𝑒1 → 𝑒8 → 𝑒7 → 𝑒6 →(𝑜2). We will discuss the best path

to get to each location on the road network.

9

Definition 3 (Probabilistic Shortest Traveling Time Queries, PSTTQ). Consider a road

network RN with a set of facilities 𝑜1 , 𝑜2 , . . . , 𝑜𝑛 𝑜𝑛 𝑅𝑁, a static query point 𝑞 with a probabilistic

threshold 𝛼, a PSTTQ returns a set of objects 𝑜𝑖 that have the shortest traveling time to the static

query point q with probability, 𝑃𝑟PSTTQ(𝑞, 𝑜𝑖), ≥ 𝛼, that is,

𝑃𝑟PSTTQ(𝑞, 𝑜𝑖) =∑(𝑃𝑟{𝑡(𝑞, 𝑜𝑖) = 𝑇} ∏(1 − 𝑃𝑟{𝑡(𝑞, 𝑜𝑗) ≤ 𝑇})) ≥ 𝛼 (1)

In Definition 3, we calculate the probability of the traveling time, 𝑡(𝑞, 𝑜𝑖) from 𝑞 to 𝑜𝑖, for

each possible value 𝑇 of 𝑡(𝑞, 𝑜𝑖) which will allow us to find the query result with the shortest time

to a moving query point 𝑞 and with high confidence.

The condition below determines the probability that 𝑜𝑖 is the PSTTQ, i.e., The probability

that the time cost 𝑡(𝑞, 𝑜𝑖) equals 𝑇 and the time costs 𝑡(𝑞, 𝑜𝑖) of any other objects are higher than

𝑇 should be greater than or equal threshold α. Assuming independent velocities on connecting

edges, the PSTTQ probability 𝑃𝑟 PSTTQ (𝑞, 𝑜𝑖) , is given by summing up the probabilities that

𝑡(𝑞, 𝑜𝑖) = 𝑇 and 𝑡(𝑞, 𝑜𝑖) > 𝑇 for other objects 𝑜𝑗 over all possible values of 𝑇.

Example 3. Given a query point 𝑞 from location 𝑠 𝑡𝑜 𝑒 on a road network with a

probabilistic threshold ≥ α, the PSTTQ query retrieves those objects (e.g. gas stations) from 𝑆

(𝑜1, 𝑜6) that have the smallest traveling times with probabilities ≥ α. We compute the traveling

time 𝑡 and its probability 𝑝 from point 𝑞 to 𝑜1 and 𝑜6 the traveling time and its probability on each

edge are shown in the Table 4.

10

Path 𝒕(𝒒, 𝒏𝟏) p 𝒕(𝒏𝟏, 𝒏𝟐) p 𝒕(𝒏𝟐, 𝒏𝟑) p 𝒕(𝒏𝟑, 𝒐𝟏) p

𝑃𝑎𝑡ℎ(𝑞, 𝑜1) 0.024

0.022

0.020

0.019

0.1

0.2

0.3

0.4

0.031

0.046

0.056

0.053

0.3

0.5

0.1

0.1

0.050

0.048

0.044

0.041

0.3

0.3

0.2

0.2

0.19

0.17

0.16

0.14

0.2

0.1

0.3

0.4

 𝒕(𝒒, 𝒏𝟏𝟒) p t(n14, 𝒐𝟔) p

𝑃𝑎𝑡ℎ(𝑞, 𝑜6) 0.054

0.049

0.6

0.4

0.56

0.54

0.5

0.5

Table 4: Possible traveling times of road segments on path (𝒒, 𝒐𝒊) from 𝒒 to gas station

In Table 4, 𝑡(𝑞, 𝑛1) records four possible values of the traveling time in minutes on the

first edge 𝑒𝑞:𝑛1
 of the path from q 𝑡𝑜 𝑛1, and p represents their probabilities. Based on Eq. (1) we

have 𝑃𝑟PSTTQ(𝑞, 𝑜1) = 0, 𝑃𝑟PSTTQ(𝑞, 𝑜6) = 89.663%. Object 𝑜6 has a high probability of having the

shortest time to query object 𝑞, among all traveling times of the three objects. Thus, object 𝑜6 is

one of our 𝑃𝑆𝑇𝑇𝑄 query answers.

Definition 4 (Continuous Probabilistic Shortest Traveling Time Queries, CPSTTQ).

Consider a road network RN with a set of facilities 𝑜1 , 𝑜2 , . . . , 𝑜𝑛 𝑜𝑛 𝑅𝑁, a moving query point 𝑞

(moving from source point s to destination point e), and a probabilistic threshold 𝛼, a continuous

probabilistic shortest traveling time query (CPSTTQ) returns sub-paths of moving query point q

between s and e on the road network, each associated with a set of objects 𝑜𝑖 that have the shortest

traveling time to query point q within this sub-path with probability, 𝑃𝑟PSTTQ(𝑞, 𝑜𝑖) ≥ 𝛼, where

𝑃𝑟PSTTQ(𝑞, 𝑜𝑖) is given by Eq. (1).

11

As an example, in Figure 2, we have a query point q moving along three connected sub-

paths, 𝑝1, 𝑝2, and 𝑝3, with a starting location 𝑠(5,7.5), through nodes 𝑛1 and 𝑛14 , and ending at

location 𝑒(10,6). The CPSTTQ retrieves these three sub-paths because the query point moves

from point 𝑠 to 𝑒, and each sub-path is associated with an object set such that any object 𝑜𝑖 in the

set has the shortest traveling time 𝑡(𝑞, 𝑜𝑖) to the moving query point q in this sub-path with

probability greater than .

From Eq. (1) in Definition 3 we can define the condition of the CPSTTQ answer by: ∀ q

in the sub-path of path(s, e),

 𝑃𝑟CPSTTQ(𝑞, 𝑜𝑖) =∑ (𝑃𝑟{𝑡(𝑞, 𝑜𝑖) = 𝑇} ∏(1 − 𝑃𝑟{𝑡(𝑞, 𝑜𝑗) ≤ 𝑇})𝑡(𝑠, 𝑜𝑖), 𝑡(𝑒, 𝑜𝑖)) ≥ 𝛼 (2)

To find the query result with the shortest traveling time to point 𝑞, we calculate the

traveling time 𝑡(𝑞, 𝑜𝑖) from 𝑞 𝑡𝑜 𝑜𝑖 , 𝑡(𝑠, 𝑜𝑖) from 𝑠 𝑡𝑜 𝑜𝑖 and 𝑡(𝑒, 𝑜𝑖) from 𝑒 𝑡𝑜 𝑜𝑖 and its

probability for each possible value of 𝑇 of the traveling time. The shortest traveling time to a

moving query point 𝑞 is then determined within each sub-path on the road network 𝑅𝑁 and each

sub-path is associated with an object set which is the answer to that query point 𝑞.

12

Figure 2: Uncertain Road Network Model with Query Point

Example 4. In the example of Figure 2, consider a moving query point 𝑞 on a road

networks with a starting point 𝑠(5, 7.5) through a path 𝑛1, 𝑛14 and ending point 𝑒(10, 6) location.

There are three sub-paths 𝑝1, 𝑝2, and 𝑝3 of the path, path(s, e), from the starting point 𝑠 to the

ending point 𝑒. Each sub-path pi is associated with a set of objects such that the object set is the

query answer to query point q on this sub-path. That is, no matter where the query point 𝑞 is on

the sub-path pi, the object set within that sub-path is the PSTTQ answer set of q.

Figure 2 illustrates an example on a road network with a moving query point q from starting

point s to the ending point e. As the query point q moves on a road network in any of the sub-

paths 𝑝1, 𝑝2, and 𝑝3, the object set contains objects with the shortest traveling time to the query

point 𝑞 with probability ≥ 𝛼 .

13

CHAPTER III

PRUNING METHODS

The straightforward method to answer the CPSTTQ is to compute the PSTTQ answers for

any static query point q on the path from s to e, which is quite inefficient. Therefore, in this section,

we propose effective pruning methods to reduce the search space of the CPSTTQ problem. In

particular, our goal is to retrieve a small candidate set of CPSTTQ answers for any particular query

sub-path (on path(s, e)), by filtering out bad candidates.

3.1 Time Bound Pruning

In this subsection, we propose a time bound pruning mechanism which eliminates objects

that are not CPSTTQ query answers. We consider the intervals of two traveling times on road

networks 𝑡(𝑞, 𝑜𝑖) and 𝑡(𝑞, 𝑜𝑗). The basic idea of the time bound pruning is as follows. This time

bound pruning method utilizes the lower/upper bounds of the traveling time to enable pruning.

Specifically, if the upper bound of the traveling time 𝑡(𝑞, 𝑜𝑗) is less than the lower bound of the

traveling time 𝑡(𝑞, 𝑜𝑖), then we can conclude that 𝑜𝑖 is not a query answer to the CPSTTQ due to

the existence of 𝑜𝑗. This way, we can eliminate objects from a facility set, 𝑀 = (𝑜1 , 𝑜2 , . . . , 𝑜𝑛) by

using this pruning method.

LEMMA 1. (Time Bound Pruning). Assume that lower bound 𝑙𝑏_𝑡(𝑥, 𝑦) and upper

bound 𝑢𝑏_𝑡(𝑥, 𝑦) are the bounds of the traveling time from location x to location 𝑦 on road

networks, respectively. Given a candidate object 𝑜𝑖, we can safely prune

14

𝑜𝑖 from 𝑀(𝑠𝑒𝑡 𝑜𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠), if 𝑙𝑏_𝑡(𝑞, 𝑜𝑖) > 𝑢𝑏_𝑡(𝑞, 𝑜𝑗) assuming that

t(𝑞, 𝑜𝑖)𝜖[𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)] and 𝑡(𝑞, 𝑜𝑗)𝜖 [𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)] for 𝑜𝑖 , 𝑜𝑗 𝜖𝑀.

PROOF.

Figure 3: Illustration of Time Bound Pruning

We prove that we are able to prune object 𝑜𝑖 from the facility set M as follows:

Assume that: 𝑡(𝑞, 𝑜𝑖)ϵ[𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑖)] and 𝑡(𝑞, 𝑜𝑗) 𝜖[𝑙𝑏_𝑡(𝑞, 𝑜𝑗), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)] , where

[𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑖)] represent the traveling time interval of 𝑡(𝑞, 𝑜𝑖) from q to 𝑜𝑖 and

[𝑙𝑏_𝑡(𝑞, 𝑜𝑗), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)] is the traveling time interval of 𝑡(𝑞, 𝑜𝑗) from 𝑞 to 𝑜𝑗 . By using the

transitivity of the inequality, we have: 𝑡(𝑞, 𝑜𝑖) ≤ 𝑢𝑏_𝑡(𝑞, 𝑜𝑖) and 𝑡(𝑞, 𝑜𝑗) ≤ 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)

Since the condition that 𝑡(𝑞, 𝑜𝑖) ≥ 𝑙𝑏_𝑡(𝑞, 𝑜𝑖) > 𝑢𝑏_𝑡(𝑞, 𝑜𝑗) ≥ 𝑡(𝑞, 𝑜𝑗) holds, therefore, we can

obtain 𝑡(𝑞, 𝑜𝑖) > 𝑡(𝑞, 𝑜𝑗). This result shows that 𝑜𝑖 has higher traveling time from 𝑞 than 𝑜𝑗 ,

which implies that it is not a CPSTTQ answer. Hence, object 𝑜𝑖 can be safely pruned from the

facility set M.

 Lemma 1 allows us to use a time bound pruning method to filter out bad candidates

via lower and upper bounds of the traveling time on a road network. Intuitively, we use Lemma 1

to prune object 𝑜𝑖 from the set of objects from the facilities M.

15

The Computation of Lower/Upper Bounds for the Traveling Time. To use the time bound

pruning method, we need to compute the lower and upper bounds of the traveling time. For

instance, consider the road network containing a path s 𝑛1 𝑛2 … 𝑛𝑘, where 𝑠 is the

starting point and 𝑛𝑘 is an ending point of a segment on the road network. This segment on the

road network has different sub-paths with nodes 𝑛𝑓, 𝑛𝑔 which belong to path (𝑞, 𝑜𝑖). Therefore,

the velocity of the vehicle in this segment 𝑒𝑓,𝑔 on road networks is given by 𝑣 ∈ [𝑣−(𝑛𝑓 ,

𝑛𝑔), 𝑣+(𝑛𝑓, 𝑛𝑔)]. Thus, we have the lower and upper bounds of the traveling time from 𝑛𝑓to ng on

edge 𝑒𝑓,𝑔, denoted as 𝑙𝑏_𝑡(𝑛𝑓, 𝑛𝑔) and 𝑢𝑏_𝑡(𝑛𝑓, 𝑛𝑔), which are given by 𝑙𝑏_𝑡(𝑛𝑓, 𝑛𝑔) = 𝑑𝑖𝑠𝑡(𝑛𝑓,

𝑛𝑔)/𝑣+(𝑛𝑓, 𝑛𝑔) and 𝑢𝑏_𝑡(𝑛𝑓, 𝑛𝑔) = 𝑑𝑖𝑠𝑡(𝑛𝑓, 𝑛𝑔)/𝑣−(𝑛𝑓, 𝑛𝑔), respectively. Thus, the summation

of 𝑙𝑏_𝑡(𝑛𝑓, 𝑛𝑔) for all edges 𝑒𝑓,𝑔 on path (𝑞, 𝑜𝑖) is the lower bound of the time cost 𝑙𝑏_𝑡(𝑛𝑓, 𝑛𝑔) of

path from 𝑞 𝑡𝑜 𝑜𝑖 , whereas the summation of 𝑢𝑏_𝑡(𝑛𝑓, 𝑛𝑔) for all edges 𝑒𝑓,𝑔 on path (𝑞, 𝑜𝑖) is the

upper bound of the time cost 𝑢𝑏_𝑡(𝑛𝑓, 𝑛𝑔) of path from 𝑞 𝑡𝑜 𝑜𝑖 .

LEMMA 2. (Lower and Upper Bounds of the Traveling Time). The lower bound of the

traveling time from a moving query point q on any subpath of a road network from

a 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑡 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑑 is given by:

 𝑙𝑏_𝑡(𝑞, 𝑜𝑖) = min{𝑙𝑏_𝑡(𝑠𝑡, 𝑜𝑖), 𝑙𝑏_𝑡(𝑒𝑑, 𝑜𝑖)} (3)

The upper bound of the traveling time of a moving query point 𝑞 on the subpath of a road network

from 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑠 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑒 is given by:

 𝑢𝑏_𝑡(𝑞, 𝑜𝑖) = max{𝑢𝑏_𝑡(𝑠𝑡, 𝑒𝑑) + 𝑢𝑏_𝑡(𝑠𝑡, 𝑜𝑖), 𝑢𝑏_𝑡(𝑠𝑡, 𝑒𝑑) + 𝑢𝑏_𝑡(𝑒𝑑, 𝑜𝑖)} (4)

16

Figure 4: A Query point q on a sub-path of a Road Network

PROOF.

We want to prove that Eq. 3 gives the minimum possible traveling time from 𝑞 to 𝑜𝑖. In

particular, we consider two possible paths from q to 𝑜𝑖. Assume that query point q, is on a road

segment from node 𝑠𝑡 to node 𝑒𝑑. Then, the path from q to 𝑜𝑖 may go through either node 𝑠𝑡 (i.e.,

q 𝑠𝑡 …𝑜𝑖) or node 𝑒𝑑 (i.e., 𝑞 𝑒𝑑 …𝑜𝑖). We have the following inequality with

respect to the traveling time, 𝑡(𝑞, 𝑜𝑖), from q to 𝑜𝑖.

𝑡(𝑞, 𝑜𝑖) ≥ min {(𝑙𝑏_𝑡(𝑞, 𝑠𝑡) + 𝑙𝑏_𝑡(𝑠𝑡, 𝑜𝑖)) , (𝑙𝑏_𝑡(𝑞, 𝑒𝑑) + 𝑙𝑏_𝑡(𝑒𝑑, 𝑜𝑖))}.

Since we have:

𝑙𝑏_𝑡(𝑞, 𝑠𝑡) ≥ 0 𝑎𝑛𝑑 𝑙𝑏_𝑡(𝑞, 𝑒𝑑) ≥ 0

by the inequality transition, we can obtain

𝑡(𝑞, 𝑜𝑖) ≥ min {𝑙𝑏_𝑡(𝑠𝑡, 𝑜𝑖) , 𝑙𝑏_𝑡(𝑒𝑑, 𝑜𝑖)},

which is exactly equal to the RHS of Eq. 3 (i.e., 𝑙𝑏_𝑡(𝑞, 𝑜𝑖)). Thus,

min {𝑙𝑏_𝑡(𝑠𝑡, 𝑜𝑖) , 𝑙𝑏_𝑡(𝑒𝑑, 𝑜𝑖)} is the lower bound of the traveling time 𝑡(𝑞, 𝑜𝑖).

17

Similarly, we can also prove the correctness of the upper bound, 𝑢𝑏_𝑡(𝑞, 𝑜𝑖) , of the

traveling time from q to 𝑜𝑖 in Eq. 4. Specifically, similar to the proof of the lower bound, we

consider two paths through 𝑠𝑡 and 𝑒𝑑, respectively, on path path(𝑞, 𝑜𝑖), and derive the following

inequality w.r.t. time upper bounds.

𝑡(𝑞, 𝑜𝑖) ≤ max{𝑢𝑏_𝑡(𝑞, 𝑠𝑡) + 𝑢𝑏_𝑡(𝑠𝑡, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑒𝑑) + 𝑢𝑏_𝑡(𝑒𝑑, 𝑜𝑖)}.

Next, since we have:

𝑢𝑏_𝑡(𝑞, 𝑠𝑡) ≤ 𝑢𝑏_𝑡(𝑠𝑡, 𝑒𝑑) 𝑎𝑛𝑑 𝑢𝑏_𝑡(𝑞, 𝑒𝑑) ≤ 𝑢𝑏_𝑡(𝑒𝑠𝑡, 𝑒𝑑),

by the inequality transition, we can obtain:

𝑡(𝑞, 𝑜𝑖) ≤ max{𝑢𝑏_𝑡(𝑠𝑡, 𝑒𝑑) + 𝑢𝑏_𝑡(𝑠𝑡, 𝑜𝑖), 𝑢𝑏_𝑡(𝑠𝑡, 𝑒𝑑) + 𝑢𝑏_𝑡(𝑒𝑑, 𝑜𝑖)},

which is exactly equal to the RHS of Eq. 4 (i.e.,𝑢𝑏_𝑡(𝑞, 𝑜𝑖)).

Thus, max{𝑢𝑏_𝑡(𝑠𝑡, 𝑒𝑑) + 𝑢𝑏_𝑡(𝑠𝑡, 𝑜𝑖), 𝑢𝑏_𝑡(𝑠𝑡, 𝑒𝑑) + 𝑢𝑏_𝑡(𝑒𝑑, 𝑜𝑖)} is the upper bound of the

traveling time 𝑡(𝑞, 𝑜𝑖).

Intuitively, to compute traveling time bounds from 𝑞 to 𝑜𝑖, we consider two possible paths.

The first path is q 𝑠𝑡 … 𝑜𝑖 and the other way is 𝑞 𝑒𝑑 … 𝑜𝑖. The traveling time

from 𝑞 to 𝑜𝑖 through the path 𝑠𝑡 is greater than that from 𝑠𝑡 to 𝑜𝑖 . Similarly, the traveling time

from 𝑞 𝑡𝑜 𝑜𝑖 through the path 𝑒𝑑 is greater than that from 𝑒𝑑 𝑡𝑜 𝑜𝑖. Therefore, the traveling time

from 𝑞 𝑡𝑜 𝑜𝑖 can be lower bounded by the minimum between the traveling time from 𝑒𝑑 to 𝑜𝑖 and

that from 𝑠𝑡 to 𝑜𝑖 .

Similarly, to compute the upper bound of the traveling time from 𝑞 𝑡𝑜 𝑜𝑖 , we also consider

two possible paths. The traveling time from 𝑞 to 𝑜𝑖 through the path 𝑠𝑡 is smaller than that

from 𝑒𝑑 to 𝑜𝑖 (through st). The traveling time from 𝑞 𝑡𝑜 𝑜𝑖 through the path 𝑒𝑑 is greater than that

18

from 𝑠𝑡 𝑡𝑜 𝑜𝑖 (through ed). Therefore, the traveling time from 𝑞 𝑡𝑜 𝑜𝑖 can be upper bounded by

the maximum between the traveling time from 𝑠𝑡 ed … 𝑜𝑖 and that from 𝑒𝑑 𝑠𝑡 …

𝑜𝑖 .

3.2 Probabilistic Bound Pruning

In this subsection, we will consider probabilistic information and propose an effective

probabilistic bound pruning method to filter out false alarms. For continuous queries, we will take

into account all possible locations within the sub-paths as the 𝑞 moves along the road network

from 𝑠 𝑡𝑜 𝑒. Specifically, we mainly focus on the shortest traveling time 𝑡(𝑞, 𝑜𝑖) on a sub-path,

path (q1, q2), within a road network as the query point q moves from one point 𝑞1 to another one 𝑞2.

We introduce a way to prune those false alarms 𝑜𝑖 that have low CPSTTQ probabilities (as given

in Eq. (2)).

DEFINITION 5 (β-Upper-Bound). Let the traveling time 𝑡(𝑞, 𝑜𝑖)𝜖[𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)] for

𝑜𝑖 ∈ 𝑀(𝑠𝑒𝑡 𝑜𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠), a β-upper-bound is denoted as (𝑢𝑏_𝑡(𝑞, 𝑜𝑖). 𝛽), which satisfies

Pr {𝑡(𝑞, 𝑜𝑖) ∈ [𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑖). 𝛽]} = 𝛽.

The β-upper-bound, 𝑢𝑏_𝑡(𝑞, 𝑜𝑖). 𝛽, is given by an upper bound of the traveling

time 𝑢𝑏_𝑡(𝑞, 𝑜𝑖) such that 𝑡(𝑞, 𝑜𝑖) is the shortest traveling time within the interval

 [𝑙𝑏𝑡(𝑞,𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗). 𝛽] with probability β.

LEMMA 3. (Probabilistic Bound Pruning). Assuming that t(𝑞, 𝑜𝑖) ∈ [𝑙𝑏_𝑡(𝑞, 𝑜𝑖),

𝑢𝑏_𝑡(𝑞, 𝑜𝑖)] and 𝑡(𝑞, 𝑜𝑗) ∈ [𝑙𝑏_𝑡(𝑞, 𝑜𝑗), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)] for 𝑜𝑖 , 𝑜𝑗 ∈ 𝑀, if it holds that 𝛽 >1-𝛼 and

𝑙𝑏_𝑡(𝑞, 𝑜𝑖) > 𝑢𝑏_𝑡(𝑞, 𝑜𝑗). 𝛽 , then object 𝑜𝑖 can be safely pruned from M (𝑠𝑒𝑡 𝑜𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠).

19

PROOF. We want to prove the correctness of our probabilistic bound pruning, by using the

diagram in Figure 5. Specifically, for 𝑜𝑖, 𝑜𝑗 ∈ 𝑀, 𝑡(𝑞, 𝑜𝑖) 𝑎𝑛𝑑 𝑡(𝑞, 𝑜𝑗) are within the intervals of

two traveling times, 𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑖) and 𝑙𝑏_𝑡(𝑞, 𝑜𝑗), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗) respectively.

Assume that, 𝑢𝑏_𝑡(𝑞, 𝑜𝑗). 𝛽 is a β-upper-bound of 𝑡(𝑞, 𝑜𝑗) which satisfies 𝑃𝑟 {𝑡(𝑞, 𝑜𝑗) ∈

[𝑙𝑏_𝑡(𝑞, 𝑜𝑗), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗). 𝛽]}= 𝛽. The 𝑢𝑏_𝑡(𝑞, 𝑜𝑗). 𝛽 from Definition 5 indicates that the Pr(𝑞, 𝑜𝑗)

of an object is ≥ 1. Since the probability of 𝑜𝑖 has the shortest traveling time to q, therefore:

PrCPSTTQ(q, oi) ≤ (Pr{t(q, oi)=T}∙ (1- Pr{t(q, oj) ≤ T})

≤ Pr{t(q, oi)=T}∙ ((1- Pr{t(q, oj) ≤ T | t(q, oj) [lb_t(q, oj), ub_t(q, oj).]})

∙ Pr{t(q, oj) [lb_t(q, oj), ub_t(q, oj).]}

+ (1- Pr{t(q, oj) ≤ T | t(q, oj) [ub_t(q, oj).ub_t(q, oj)]})

∙ Pr{t(q, oj) [ub_t(q, oj).ub_t(q, oj)]})

= Pr{t(q, oi)=T}∙ ((1- Pr{t(q, oj) ≤ T | t(q, oj) [lb_t(q, oj), ub_t(q, oj).]}) ∙

+ (1- Pr{t(q, oj) ≤ T | t(q, oj) [ub_t(q, oj).ub_t(q, oj)]}) ∙ (1-

Based on the lemma assumption that 𝑙𝑏_𝑡(𝑞, 𝑜𝑖) > 𝑢𝑏_𝑡(𝑞, 𝑜𝑗). 𝛽 and the definition of -

upper bound, we have:

T = t(q, oi) ≥ lb_t(q, oi) > ub_t(q, oj).

Then, in the formula above, we infer that:

Pr{t(q, oj) ≤ T | t(q, oj) [lb_t(q, oj), ub_t(q, oj).]} = 1.

Moreover, since probability is non-negative, we have:

20

Pr{t(q, oj) ≤ T | t(q, oj) [ub_t(q, oj).ub_t(q, oj)]} ≥ 0.

As a result, we can obtain:

PrCPSTTQ(q, oi) ≤ Pr{t(q, oi)=T}∙ (1-1-

We can thus conclude that (1- is an upper bound of 𝑃𝑟CPSTTQ(𝑞, 𝑜𝑖). If 𝛽 > 1 − 𝛼, that

is, 1 − 𝛽 < 𝛼, by the inequality transition, we can obtain 𝑃𝑟CPSTTQ(𝑞, 𝑜𝑖) < 𝛼. In other words, the

probability 𝑃𝑟CPSTTQ(𝑞, 𝑜𝑖) that object oi has the shortest traveling time to 𝑞 on the sub-path must

be less than 𝛼, and object 𝑜𝑖 cannot be the CPSTTQ answer. Hence, we can safely prune object 𝑜𝑖

from M.

How to compute the 𝜷-Upper-Bound. To enable the probabilistic bound pruning, we need to

compute the β-upper-bound. Assuming that t(𝑞, 𝑜𝑖) ∈ [𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)] and 𝑡(𝑞, 𝑜𝑗) ∈

[𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)], then 𝑡(𝑞, 𝑜𝑖), the traveling time on any subpath (𝑝1, 𝑝2, 𝑝3) within the

road segment such that we are able to satisfy Pr {𝑡(𝑞, 𝑜𝑖) ∈ (𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗) . 𝛽)} = 𝛽.

Let us assume that there are 𝑒 edges on any subpath within the road network which is upper

bounded by the interval [𝑙𝑏_𝑡𝑒(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡𝑒(𝑞, 𝑜𝑗)] such that the traveling time is within this

probability.

Greedy Algorithm to Compute the β-Upper-Bound. Here, we are getting a very small β-upper-

bound of the traveling time on each sub-path on a road network segment by not considering all the

sample combinations but very specific with few sample combinations to be considered. We vary

the length and progressively extend our greedy algorithm paths, 𝑢, from 1 to 𝑙, and will then

compute 𝑀(𝑢𝑏_𝑡𝛽(𝑙), 𝛽) with path (𝑞, 𝑜𝑗).

21

Initial Case. 𝑃1 is the first subpath from location 𝑠 𝑡𝑜 𝑒 on the road network segment with length

𝑢 = 1 and edge of path with 𝑝𝑎𝑡ℎ(𝑞, 𝑜𝑗) that we first consider. Assuming 𝑎𝑟𝑟_𝑡𝑑 is a sorted array

of size for 𝑐1, which contains 𝑐1 discrete time samples in ascending order of the traveling time on

𝑃1 . For every time sample 𝑎𝑟𝑟_𝑡𝑑[𝑖] (1 ≤ 𝑖 ≤ 𝑐1), which is associated with

probability 𝑎𝑟𝑟_𝑡𝑑[𝑖]. 𝑝 . If the 𝑢𝑏_𝑡𝛽(1) = 𝑢𝑏 = 𝑎𝑟𝑟_𝑡𝑑[𝑖] holds, since the corresponding 𝛽

value is given as 𝑧1 = ∑ 𝑎𝑟𝑟_𝑡𝑑[𝑗]. 𝑝𝑖
𝑗=1 the probability that the traveling time on 𝑃1 is not greater

than 𝑎𝑟𝑟_𝑡𝑑[𝑗]. From 𝑐1 traveling time samples from array 𝑎𝑟𝑟_𝑡𝑑, randomly select 𝑀 and denote

it as 𝑡𝑑
(𝑎)

, 𝑡𝑑
(𝑏)

, … , 𝑡𝑑
(𝑛)

 therefore 𝑡𝑑
(𝑎)

≤ 𝑡𝑑
(𝑏)

 and so on.

Progressive Computation. For 𝑃𝑘, a subpath of 𝑝𝑎𝑡ℎ(𝑞, 𝑜𝑗) has length 𝑘 (𝑖. 𝑒. , 𝑢 = 𝑘), we can

obtain two arrays, 𝑎𝑟𝑟_𝑢𝑏𝑘 and 𝑎𝑟𝑟_𝛽𝑘 , which contain 𝑀 𝛽-upper-bounds and 𝑀 corresponding

β values for subpath 𝑃𝑘 (in ascending order), respectively. When we consider the subpath, 𝑃𝑘 + 1,

of path 𝑝𝑎𝑡ℎ(𝑞, 𝑜𝑗) (𝑢 = 𝑘 + 1), we combine the β-upper bound on subpath 𝑃𝑘 with that of the

(𝑘 + 1) −th edge on 𝑝𝑎𝑡ℎ(𝑞, 𝑜𝑗).

Therefore we obtain combinations of 𝑀 𝛽-upper-bound 𝑎𝑟𝑟_𝑢𝑏𝑘 [𝑖], for subpath 𝑃𝑘, and 𝐶𝑘 + 1

traveling time samples, 𝑡𝑘+1
𝑗

 on the (𝑘 + 1) −th edge of the path. Each combination results in 𝛽-

upper-bounds, 𝑎𝑟𝑟_𝑢𝑏𝑘 [𝑖] + 𝑎𝑟𝑟_𝑡𝑘+1[𝑗] , and its 𝛽 value 𝑎𝑟𝑟_𝛽𝑘[𝑖]. 𝑧𝑘+1
(𝑗)

, where 𝑧𝑘+1
(𝑗)

=

∑ 𝑡𝑘+1
(𝑟)

. 𝑝,
𝑗
𝑟=1 for 1 ≤ 𝑖 ≤ 𝑀 and 1 ≤ 𝑗 ≤ 𝑐𝑘+1. 𝑀 out of (𝑚. 𝑐𝑘+1) combinations where ≥ 1 − 𝛼

. The 𝛽-upper-bounds and their values in arrays 𝑎𝑟𝑟_𝑢𝑏𝑘+1 and 𝑎𝑟𝑟_𝛽𝑘+1 could be store pairs,

therefore we are able to derive arrays, 𝑎𝑟𝑟_𝑢𝑏𝑖 and 𝑎𝑟𝑟_𝛽𝑖, for path 𝑝𝑎𝑡ℎ(𝑞, 𝑜𝑗) of length 𝑙 .

𝑢𝑏_𝑡𝛽(𝑞, 𝑜𝑗) smallest value 𝑎𝑟𝑟_𝑢𝑏𝑖[𝑖], as the 𝛽-upper-bound, where 𝑎𝑟𝑟_𝛽𝑖,[𝑖] ≥ 1 − 𝛼, for 1 ≤

𝑖 ≤ 𝑙.

22

Algorithm Compute_Beta_UB{

Input: arrays arr_tu (1 ≤ u ≤ l)

Output: arrays arrub1 and arr_βi

(1) randomly select M samples, from C1 traveling time samples from array, arrti

(2) let the array arr_ub1 (i)= ti for M ≥ I ≥ 1

(3) let the array arrβi (i)=z for M ≥ I ≥ 1

(4) for k=1 to l-1

(5) for each of the (M.P(k+1)) where i∈[1,M]and j∈[1, P(k+1)]

(6) compute the β-upper-bounds (arr_ubk(i)+ arr_tk+1(j))

(7) randomly select M out of (M.P(k+1))

(8) store M pairs to arrays arr_ub1 k+1 and arrβk+1)

(9) return arrys arr_ubi and arr_βi

}

Figure 6-Algorithm for computing β-upper-bound

Algorithm of Computing β-Upper-Bound. Figure 6 demonstrates the pseudo-code for

computing the 𝑀 𝛽-upper-bound of the traveling time on path 𝑝𝑎𝑡ℎ(𝑞, 𝑜𝑗) where 𝛽 ≥ 1 − 𝛼.

Since we have subpaths 𝑃1, 𝑃2, 𝑃3 we begin from the first edge 𝑃1 on path 𝑝𝑎𝑡ℎ(𝑞, 𝑜𝑗) and

randomly selected 𝑀 out of 𝐶1 traveling time samples from array 𝑎𝑟𝑟_𝑡𝑖 and updates 𝛽 𝑎𝑟𝑟_𝛽1

array and 𝛽-upper-bound 𝑎𝑟𝑟_𝑢𝑏1 each time. The 𝑃𝑘 subpath is extended by adding the (𝑘 +

 1)-th edge on path 𝑝𝑎𝑡ℎ(𝑞, 𝑜𝑗) by considering 𝑚. 𝑐𝑘+1 combinations of 𝑚 𝛽-upper-bounds of

possible traveling times on path 𝑃𝑘 and 𝑐𝑘+1 time samples on the (𝑘 + 1) − th edge, then

calculate their corresponding pairs of β-upper-bounds and β values for the path 𝑃𝑘+1. We also

randomly select 𝑀 out of 𝑚. 𝑐𝑘+1 combinations satisfying 𝛽 ≥ 1 − 𝛼 , and update the

arrays 𝑎𝑟𝑟_𝑢𝑏𝑘+1 and 𝑎𝑟𝑟_𝛽𝑘+1 with 𝛽 − upper-bounds and 𝛽 values for path 𝑃𝑘+1 . The

iterations (𝑙 − 1) , for path 𝑃𝑙 therefore, we return the 𝑀 𝛽 -upper-bounds in 𝑎𝑟𝑟_𝑢𝑏𝑙 and 𝛽

values in 𝑎𝑟𝑟_𝛽𝑙.

23

CHAPTER IV

CPSTTQ PROCESSING

In this section, we consider building an index over offline pre-computed data, in terms of

Minimum Bounding Rectangle (MBR), from each object 𝑜𝑖 which could lead to improved

efficiency of CPSTTQ processing.

4.1 Index Construction

Data Structure of the Index. Firstly, we consider constructing a spatial index R-tree over the

Minimum Bounding Rectangles (MBRs) of objects 𝑜𝑖 and their pre-computed data, which can be

used to retrieve CPSTTQ answers. We use the example in Figure 6 to illustrate our index structure

over 8 objects, 𝑜1, 𝑜2 ,, 𝑜8 . Specifically, we first pre-compute the neighbors (breadth-first

search) of each object in the road networks, and then use an MBR to bound this object and its

neighbors. Thus, we can obtain 8 MBRs for 8 objects, respectively. Figure 6 illustrates the R-tree

index over these 8 MBRs, which are inserted into the R-tree with the normal insertion method of

the R-tree code. The R-tree index is a tree structure, which contains both leaf and non-leaf nodes.

Leaf Nodes. Each of the leaf nodes has entry 𝐴𝑖 that stores octuplet with objects 𝑜1 to 𝑜8. MBRs

of objects are stored in each leaf node, each of which tightly bounds objects 𝑜𝑖 and their

corresponding neighbors in the road network. Here, the reason that we use MBRs to bound objects

and their neighbors is that we can utilize these MBRs to retrieve CPSTTQ candidates.

24

Intuitively, if a path, path(s, e), intersects with MBRs (including objects and their neighbors on

road networks),then these MBRs might be CPSTTQ candidates (i.e., PSTTQ answers of query

point) for query point moving from s to e.

In the example of Figure 6, there are 4 leaf nodes, 𝐴4 ~ 𝐴7, each of which contains MBRs

of two objects. For instance, leaf node 𝐴4 contains MBRs of two objects, 𝑜2 and 𝑜5. In particular,

the neighbors of object 𝑜2 are 𝑜5 and 𝑜7. Thus, the MBR of 𝑜2 tightly bounds objects 𝑜2, 𝑜5 and

𝑜7.

Non-Leaf Nodes. For non-leaf nodes, we recursively use MBRs to bound MBR of their child

nodes on a lower level. In the example of Figure 6, we have non-leaf nodes 𝐴2 and 𝐴3, which

contain pointers, pointing to child nodes 𝐴4, 𝐴5 and 𝐴6, 𝐴7, respectively. In particular, the MBR of

non-leaf node A2 tightly bounds child entries A4 and A5 under A2. The case of A3 is similar.

Furthermore, the root of the tree, A1, recursively bounds MBRs of A2 and A3.

The Construction of the Tree Structure. We are interested in showing our pre-computed

minimum value from object (𝑜𝑖, 𝑜𝑗) to its nearest neighbor by inserting the Minimum Bounding

Rectangles (MBR) in the R-tree. Figure 7 illustrates how we determine the minimum values to

objects 𝑜𝑖 and give more explanation on the construction of the tree index. We are able to insert

Minimum Bounding Rectangles (MBR) of the object 𝑜𝑖 into the R-tree tightly bounded to its

nearest neighbor through the standard insertion method to be able to locate the nearest neighbor

and we considered all the nearest neighbor and all points associated within our Minimum

Bounding Rectangles (MBR). To insert an object, the tree is traversed recursively from the root

node. At each step, all rectangles in the current directory node are examined, and a candidate is

chosen by choosing the rectangle which requires least enlargement. The search then descends into

25

this page, until reaching a leaf node. If the leaf node is full, it must be split before the insertion is

made

A1

A2 A3

A4 A5

O7

A6

O2 O5 O3 O1 O4 O6 O8

A7

The Index Structure

Figure 7- The Index Structure

Figure 8- Minimum Bounding Rectangles (MBR)

26

Figure 9-Offline pre-computation

4.2 Query Procedure

Pruning with the Index. We are able to use the pruning method with the R-tree index to reduce

the search space, and retrieve the CPSTTQ candidates by traversing the tree index. We use the

example in Figure 6 to illustrate our basic idea. From the root node 𝐴1 in the index tree, we begin

to check the MBR of each child node (i.e., 𝐴2 ~ 𝐴7) and the path, path(s, e), of moving query point

𝑞 from s to e. When the query path, path(s, e), is not intersecting with node Ai, then we can safely

prune all objects o under this node Ai. This is because the CPSTTQ answers can only be those

neighbor objects, NN(𝑜𝑖), of each object o under Ai, but not object 𝑜𝑗 (i.e., the traveling time from

q on path path(s, e) to neighbor NN(𝑜𝑖) is always greater than or equal to that from q to 𝑜𝑗, since q

is not in the MBR of object 𝑜𝑗). Thus, we are able to safely prune objects 𝑜𝑖 under Ai. On the other

hand, if an index node Ai intersects with the query path path(s, e), then we cannot prune this node

27

Ai, and we need to further check its children to retrieve CPSTTQ candidates through the index

traversal.

LEMMA 4. (Index Pruning). Given a query point q moving along a path, path(s, e), from

location s to location e, and Minimum Bounding Rectangle (MBR) of a node 𝐴𝑖, we can safely

prune 𝐴𝑖, if the MBR,MBR (Ai), of node 𝐴𝑖 intersects with path(s, e).

CPSTTQ Processing Algorithms. In the sequel, we will discuss how to use the index to

answer the CPSTTQ query. Given a path, path(s, e), of a moving query point q from s to e. First,

calculate the shortest path from point s to e for query point q, and then check if this shortest path,

path(s, e), intersect the Minimum Bounding Rectangles (MBR), MBR (Ai), and then traverse the

index 𝐼 by maintaining a queue Q.

For each non-leaf node, check each child node whether the shortest path, path(s, e), is

intersecting with the corresponding MBR of 𝐴𝑖 (lines 7-9) in algorithm CPSTTQ processing. If

they intersect with each other, we will add it to the queue (line 10). But if not, we will ignore it,

because it cannot contain any CPSTTQ candidates within the MBR.

For the leaf node that contains objects 𝑜𝑖, we will check one by one if we are able to apply

our proposed pruning methods (lines 12-13). Then, we will do the pruning for each object oi. We

first use the index pruning to see whether or not path(s, e) intersects with MBR(oi) (line 13). If the

answer is yes, then oi is a potential CPSTTQ answer. We will further check whether oi can be

pruned by the time bound pruning or probabilistic bound pruning. If oi survives, then we will add

it to the candidate set Scand (lines 14-15). Finally, we will refine the candidates in the set Scand by

computing actual CPSTTQ answers (line 16).

Algorithm CPSTTQ_Processing

28

Input: index I, a query path, path(s, e), from s to e, and a probability threshold α

Output: CPSTTQ Answer

(1) initialize a queue Q accepting the tree nodes

(2) Scand=∅; r=rβ=+∞

(3) calculate the shortest path from s to e

(4) insert root, into queue Q

(5) while Q is not empty

(6) node A=de-queue Q

(7) if A is a non-leaf node

(8) for each entry Ai of A

(9) if path(s, e) intersects with Ai.MBR

(10) insert Ai into queue Q

(11) else

(12) for each object oi in leaf node Ai

(13) if path(s, e) intersects with oi.MBR

(14) if oi cannot be pruned by time bound pruning and probabilistic bound pruning

(15) add to candidate set to Scand

(16) refine candidates in Scand and return the actual CPSTTQ answers.

Figure 10: CPSTTQ Query Processing Algorithm

29

CHAPTER V

RELATED WORK

The study from this paper is related to some previous works on probabilistic shortest time

queries over uncertain databases, continuous nearest neighbor, path queries on probabilistic graphs

and on uncertain road networks.

Uncertain Databases and Continuous Nearest Neighbor. Probabilistic databases

[CP1987] can store types of information that cannot be represented using the relational model.

Probabilistic databases may also be viewed as generalizations of relational databases; any

relational database can be represented without loss of information by a probabilistic database.

Cavallo and Pittarelli [CP1987] defined a new project-join mapping for relational databases that

is based on transforming a relational to a probabilistic database. Probabilistic databases [Z1997],

are formalized by means of logic theories based on a probabilistic first-order language proposed

by Halpem.

Probabilistic shortest time queries considers the uncertainty of traveling times in uncertain

road networks, it considers the probabilistic path problem of traveling time from query point q to

a facility, with the shortest traveling time. A probabilistic database [DS2007] comprises of a list

of x-tuples and each x-tuple has one or more exclusive alternatives in which each of these

alternatives is associated with an existence probability. [CKP2003] studied probabilistic query

evaluation based upon uncertain data. They proved that classification of queries is made based

upon the nature of the result set and thereby they develop algorithms for

30

computing probabilistic answers. They also address the important issue of measuring the quality

of the answers to the queries, and provide algorithms for efficiently pulling data from relevant

sensors or moving objects in order to improve the quality of the executing queries. [CKP2003]

considers all the possible semantic world over the uncertain road networks, due to the fact that

each possible world is a deterministic road network which could eventually appear in the real

world.

 Many times probabilistic database query processing mostly looks into the avenue of

semantics. [DS2007] in their previous works describe an optimization algorithm that can compute

efficiently most queries. They show the data complexity of some queries is #P-complete, which

implies that these queries do not admit any efficient evaluation methods. There are an exponential

number of possible worlds in a probabilistic database and many previous works including nearest

neighbor queries [CKP2003], skyline queries [PJLY2007], and top-k queries. [LSD2009] have

address the issue. Frank [F1969] simulates a system which generates a set of random branch-length

vectors according to given probability distributions and thereby apply a shortest path algorithm to

compute the value for this simulation.

[YPS2002] studied how a continuous nearest neighbor query retrieves the nearest neighbor

(NN) of every point on a line segment. In their result they have a set of (point, interval) tuples,

such that point is the nearest neighbor of all points in the corresponding interval. [RKV1995]

studied the efficient branch-and-bound R-tree traversal algorithm to find the nearest neighbor

object to a point, and then generalize it to finding the k nearest neighbors. They furthermore

discussed the metrics for an optimistic and a pessimistic search ordering strategy as well as for

pruning and propose a depth-first method that starts from the root of the tree to the leaf node in

which the process is repeated recursively until the first nearest neighbor is detected.

31

[ZR2001], [BJKS2002] in their previous work they addressed the problem of finding k nearest

neighbors for moving query point (k-NNMP) and in dealing with the problem they assume that the

query point is not static, as in k-nearest neighbor problem, but varies its position over time.

Probabilistic Graphs Path Queries. Some of the works that have been previously studied

under the probabilistic graph and on uncertain road networks include a study by Rasteiro and Anjo

[RA2004] who examine the issue of optimal paths in directed random networks in which this path

is the path that maximizes utility function expected values. Ming and Pei [MP2010] in their model

consider arbitrary weight distributions and correlations between the weights of adjacent edges.

Also in tackling the problem of traffic uncertainty they proposed probabilistic path queries and

two new types of top-k path queries.

[HL2009], [JLDW2011], [PBGK2010] are some of the other previous works that review

the RDF graph with containing edges associated with existence probabilities. Also previous works

from [WMGH2008], [F2005], [LC2011] use graphical models to model the probabilistic graph, in

which the labels of vertices connecting through edges are dependent and also they are represented

by the conditional probability tables. [CA2012] considers a new network reachability problem

where their goal is to find the most reliable path between two nodes in a network, represented as a

directed acyclic graph. They computed a path between two end nodes when each edge has a failure

probability.

[HP2010] studied how to take traffic uncertainty into account in answering path queries in

road networks. They proposed to capture the uncertainty in traffic such as the travel time between

two vertices and the weight of an edge is modeled as a random variable and is approximated by a

set of samples. They also proposed three novel types of probabilistic path queries using basic

probability principles and reviewed uncertain traffic information by studying the path queries on

32

road networks of which they consider the paths between two vertices having a total weight less

than a threshold with high probability.

[L1983] studied the proposed simulation method to approximate the probability

distribution of the shortest path and defined the utility function that specifies the preferences

among the paths. Moreover, [RA2004] studied the problem of optimal paths in directed random

networks, whereby the cost of each arc is a real-valued random variable whereas the optimal path

is regarded as the path that maximizes the expected values of a utility function. They consider the

linear, quadratic, and exponential cases, presenting a theoretical formulation based on multi-

criteria models as well as the resulting algorithms and computational tests.

33

CHAPTER VI

CONCLUSIONS

In this paper, we studied the uncertain road network by modelling the road network

traffic and considered many factors which may cause speeds of vehicles to be imprecise and

probabilistic. We therefore focus more on continuous probabilistic shortest traveling time query

(CPSTTQ), which retrieves sets of objects that have the smallest traveling time to a moving

query point q from one location to the other on road networks with high confidences. We

propose effective pruning methods and time bound pruning to prune the search space of our

CPSTTQ query and filter out CPSTTQ false alarms. Moreover, we designed an efficient query

procedure to answer CPSTTQ via an index structure and are thereby able to retrieve the

CPSTTQ answer efficiently.

34

REFERENCES

[BFM2006] Bast, H., Funke, S., and Matijevic, D. (2006). “TRANSIT—ultrafast shortest-path

queries with linear-time preprocessing." 9th Discrete Mathematics and

Theoretical Computer Science Implementation Challenge [1] (2006).

[BFMSS2007] Bast, H., Funke, S., Matijevic, D., Sanders, P., and Schultes, D. "In Transit to

Constant Time Shortest-Path Queries in Road Networks." In Algorithm

Engineering and Experiments. 2007.

[BJKS2002] Benetis, R., Jensen, C. S., Karciauskas, G., and Saltenis, S. "Nearest neighbor and

reverse nearest neighbor queries for moving objects." In Database Engineering

and Applications Symposium, 2002. Proceedings. International, pp. 44-53. IEEE,

2002.

[CP1987] Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. Very Large Data

Bases 71–81 (1987)

[CA2012] Chang, A. and Amir, E. "Reachability under uncertainty." arXiv preprint

arXiv:1206.5253 (2012).

[CKP2003] Cheng, R., Kalashnikov, D. V., and Prabhakar, S. "Evaluating probabilistic

queries over imprecise data." In Proceedings of the 2003 ACM SIGMOD

international conference on Management of data, pp. 551-562. ACM, 2003.

35

[DS2007] Dalvi, N., and Suciu, D. Efficient query evaluation on probabilistic databases.

Very Large Data Bases J., 16(4), 2007.

[DS1996] Dey, D., Sarkar, S. A probabilistic relational model and algebra. ACM Trans.

Database Syst. 21(3), 339–369 (1996).

[F1969] Frank, H. Shortest paths in probabilistic graphs. Operations Research, 17(4):583–

599, 1969.

[F2005] Fukushige, Y. “Representing probabilistic relations in RDF,” in Proc.

International Semantic Web Conference, 2005, pp. 106–107.

 [HP2010] Hua, M., and Pei, J. "Probabilistic path queries in road networks: traffic

uncertainty aware path selection." Proceedings of the 13th International

Conference on Extending Database Technology. ACM, 2010.

[HL2009] Huang, H. and Liu, C. Query evaluation on probabilistic RDF databases.

Springer Berlin Heidelberg, 2009.

 [JLDW2011] Jin, R., Liu, L., Ding, B., and Wang, H. “Distance-constraint reachability

computation in uncertain graphs,” in Proc. Very Large Data Bases, Jun. 2011, pp.

551–562.

[MYPM2006] Mouratidis, K., Yiu, M. L., Papadias, D. and Mamoulis, N. "Continuous nearest

neighbor monitoring in road networks." In Proceedings of the 32nd international

conference on Very large data bases, pp. 43-54. Very Large Data Bases

Endowment, 2006.

36

[LSD2009] Li, J., Saha, B. and Deshpande, A. A unified approach to ranking in probabilistic

databases. Very Large Data Bases, 2(1), 2009.

[LC2011] Lian, X. and Chen, L. “Efficient query answering in probabilistic RDF graphs,” in

Proc. Special Interest Group on Management of Data, Athens, Greece, 2011.

[LC2014] Lian, X., and Chen, L. "Trip Planner over Probabilistic Time-Dependent Road

Networks." Knowledge and Data Engineering, IEEE Transactions on 26.8

(2014): 2058-2071.

[L1983] Loui, R. P. Optimal paths in graphs with stochastic or multidimensional weights.

Commun. ACM, 26(9):670–676, 1983.

[PJLY2007] Pei, J., Jiang, B., Lin, X., and Yuan, Y. Probabilistic skylines on uncertain data. In

Very Large Data Bases, 2007.

[PBGK2010] Potamias, M., Bonchi, F., Gionis, A., and Kollios, G. “K-nearest neighbors in

uncertain graphs,” in Proc. Very Large Data Bases, Singapore, Sep.2010.

[RA2004] Rasteiro, D. D. M. L., and Anjo, A. J. B. "Optimal paths in probabilistic

networks." Journal of Mathematical Sciences 120, no. 1 (2004): 974-987.

[RKV1995] Roussopoulos, N., Kelley, S., and Vincent, F. "Nearest neighbor queries." ACM

Special Interest Group on Management of Data record. Vol. 24. No. 2. ACM,

1995.

[SS2005] Sanders, P. and Schultes, D. Highway hierarchies hasten exact shortest path

queries. In Enterprise Software and Applications 2005.

37

[SS2006] P. Sanders and D. Schultes. Engineering highway hierarchies. In Enterprise

Software and Applications 2006

[SKS2002] Shahabi, C., Kolahdouzan, M. R. and Sharifzadeh, M. A road network embedding

technique for k-nearest neighbor search in moving object databases. In

Geographical Information Systems, 2002.

[YPS2002] Tao, Y., Papadias, D., and Shen, Q. "Continuous nearest neighbor

search." Proceedings of the 28th international conference on Very Large Data

Bases. Endowment, 2002.

[WMGH2008] Wang, D. Z., Michelakis, E., Garofalakis, M., and Hellerstein, J. “Bayestore:

Managing large, uncertain data repositories with probabilistic graphical models,”

in Proc. Very Large Data Bases, 2008, pp. 922–933.

[WJYQ2003] Yimin, W., Jianmin, X., Yucong, H., and Qinghong, Y. "A shortest path

algorithm based on hierarchical graph model." In Intelligent Transportation

Systems, 2003. vol. 2, pp. 1511-1514. IEEE, 2003.

 [ZR2001] Song, Z., and Roussopoulos, N. "K-nearest neighbor search for moving query

point." In Advances in Spatial and Temporal Databases, pp. 79-96. Springer

Berlin Heidelberg, 2001.

[Z1997] Zimányi, E. "Query evaluation in probabilistic relational databases." Theoretical

Computer Science 171, no. 1 (1997): 179-219.

38

BIOGRAPHICAL SKETCH

Bamikole Ajibola Ogundele, the author was born in a city called Ile-Ife in western part

of Nigeria, West Africa in mid 1970s to his mother Abigael and his father Nathaniel Ogundele. He

attended his elementary and secondary school education in Nigeria. He migrated to United States

of America where he attended Century Community College, White Bear Lake, Minnesota and

received his Associate Degree in Microcomputer Support Technology in May 2009. He then

transferred his credit to Metropolitan State University, Saint Paul, Minnesota and completed his

Bachelor of Science Degree in Management Information System in December 2012. The author

finally decided to pursue his Master degree from University of Texas Pan American where he

received his Master of Science in Computer Science in May 2015.

He briefly worked for State of Minnesota until December of 2013 and Chevron Corporation

in 2014 as Project Manager where he supervised software application development. He also

worked as Graduate Teaching Assistant at University of Texas Pan American from 2014 till 2015.

The author is married with three children. His mailing address is 3079 Chisholm Court North,

Maplewood MN. 55109.

	Efficient query processing over uncertain road networks
	Recommended Citation

	tmp.1680017355.pdf.01C6R

