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ABSTRACT 

 

Ogundele, Bamikole A., Efficient Query Processing Over Uncertain Road Networks. 

Master of Science (MS), May, 2015, 41 pp., 4 tables, 10 figures, references, 30 titles. 

One of the fundamental problems on spatial road networks has been the shortest traveling 

time query, with applications such as location-based services (LBS) and trip planning.  Algorithms 

have been made for the shortest time queries in deterministic road networks, in which vertices and 

edges are known with certainty. Emerging technologies are available and make it easier to acquire 

information about the traffic. In this paper, we consider uncertain road networks, in which speeds 

of vehicles are imprecise and probabilistic. We will focus on one important query type, continuous 

probabilistic shortest traveling time query (CPSTTQ), which retrieves sets of objects that have the 

smallest traveling time to a moving query point q from point s to point e on road networks with 

high confidences. We propose effective pruning methods to prune the search space of our CPSTTQ 

query, and design an efficient query procedure to answer CPSTTQ via an index structure.  
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CHAPTER I  

INTRODUCTION 

It has been a major problem determining the shortest traveling time from one location to 

the other due to some variation in traffic. Finding objects like a gas station, hotel, or coffee shop 

with the shortest traveling time on a path from a particular source point s to a destination point e 

has been a challenge over the decades. One of the fundamental problems is the shortest traveling 

time query, which has many significant applications, such as Web-based mapping services and 

network routing. As a result, several methods have been developed for shortest time queries in 

deterministic graphs, in which vertices and edges (associated with edge weights) are known with 

certainty.  

However, in some applications, the road networks may contain some uncertainties. For 

example, a road network can be modeled as a graph, in which each edge represents a highway, but 

in reality some highways are likely to have traffic jams and thus be associated with uncertain 

vehicle speeds.  

Therefore, route planning on such road networks should consider uncertain traveling time 

on roads and provide reasonable paths for users in any circumstances. However, recent GPS-

enabled path services ignore the uncertainty inherently contained in traffic, and this uncertainty 

leads to probabilistic graphs in which edges are labeled with uncertain velocity values (samples) 

associated with existence probabilities. Moreover, the uncertainty could be as a result of noisy 

measurements from sensors/experiments, the existence of unstable communication links, or
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unknown factors such as traffic accidents, and weather conditions (e.g. snow or thunderstorms). 

The existence probability of an edge can be predicted by some machine learning algorithm, or 

inferred from historical traffic data.  

Figure 1 below shows an example of a road network (graph), which contains 14 nodes that 

are intersection points of roads n1, n2, . . .,  n14 denoted as circles, and edges that are road segments, 

𝑒𝑖,𝑗 may not exist between two nodes 𝑛𝑖 and 𝑛𝑗 (𝑓𝑜𝑟 1 ≤ 𝑖, 𝑗 ≤ 14). On road segments (e.g.,𝑒3,4), 

there are several facilities like the gas station and the rest area denoted with a square shape 

(e.g.,𝑜1 𝑎𝑛𝑑 𝑜8, respectively).  

 

Figure 1: Uncertain Road Network Model 

In many real-world applications such as route planning, some people may want to travel 

from one location to another with the best alternate road. But the shortest traveling time from one 

point (hotel) to another point (airport) is challenging. Many analysis has shown that the shortest 
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path from one location to another does not necessarily guarantee that it will have the shortest 

traveling time. There are many factors (bad road, road traffic, accident, stop lights and signs) that 

could contribute to the fact that the shortest path may take longer traveling time.  

In this paper, we will investigate an important type of query, namely continuous 

probabilistic shortest traveling time queries (CPSTTQ), over uncertain road networks, which 

retrieves points of interest (POIs) or facilities on an uncertain road networks with the shortest 

traveling time and high confidence, while a given query point q is moving from the source point s 

to the destination point e on road networks. In order to efficiently process CPSTTQ queries, we 

propose effective pruning methods, time bound pruning and probabilistic bound pruning, to reduce 

the CPSTTQ search space. Even though many works have been proposed for various queries on 

road networks, most of the prior works did not consider the uncertainty of the traveling time but 

rather focused on certain shortest traveling path (with the shortest traveling distance). Thus, we 

cannot borrow previous techniques to tackle our CPSTTQ query.  
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CHAPTER II 

PROBLEM DEFINITION 

Uncertainty Model. In this paper, we will analyze the data model of traffic network over 

an uncertain road network with continuous probabilistic nearest neighbor queries. Several 

applications have been developed over the years to track the location of an object and calculate the 

traveling time. For example, GPS Tracking is installed on most phones which use state-of-the-art 

GPS technology quickly and accurately locate the people, providing real-time location updates 

using GPS navigation. We will consider the shortest traveling time to reach a nearest neighbor 

over continuous line segment. 

Figure 1 illustrates that there are intersection nodes (𝑛1 ~ 𝑛14) and POI objects (𝑜1 ~ 𝑜8) 

in a road network. The nodes are the intersection points of roads, which are denoted with 𝑛1, 𝑛2, 

…, 𝑛14 on the road network, whereas POI objects are facilities, which are denoted with 𝑜1, 𝑜2, ...., 

𝑜8 corresponding to a gas station, hotel, airport, coffee shop, hospital, restaurant, or rest area on 

the road network. Previous analyses have always considered the shortest traveling distance from 

one location to the other based on the belief that the shorter the distance, the faster approach to the 

destination. However, in reality, the road network may be associated with uncertain traffic 

information such as uncertain vehicle speeds, which can thus be modeled as an uncertain road 

network.  

In particular, each edge in uncertain road networks is associated with an uncertain speed 

variable, which follows some probabilistic distribution (pdf) (represented by vehicle speed 
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samples). Table 1 shows an example of nodes in uncertain road networks in Figure 1, and Table 

2 depicts the edge information of uncertain road network in Figure 1. For example, edge e1, 2 has 

3 possible speed samples, capturing the uncertainty of the vehicle speed on this edge. 

Node Location (𝒙, 𝒚) Node Location (𝒙, 𝒚) 

𝑛1 (6, 7) 𝑛8 (5, 3) 

𝑛2 (5, 8) 𝑛9 (7, 4) 

𝑛3 (4, 8) 𝑛10 (10, 4) 

𝑛4 (1,8) 𝑛11 (10, 6) 

𝑛5 (1, 6) 𝑛12 (10, 8) 

𝑛6 (2, 5) 𝑛13 (8, 8) 

𝑛7 (4, 4) 𝑛14 (8, 5) 

Table 1: The Nodes of Uncertain Road Networks 

 

Edge 

𝒆𝒊,𝒋 

Distance 

dist. (𝒏𝒊, 𝒏𝒋) 

Velocity 

 (𝒆𝒊,𝒋) 

𝑒1,2 √2 (35, 0.3) (36, 0.3) (37, 0.4) 

𝑒2,3 √1 (35, 0.4) (45, 0.2) (50, 0.4) 

𝑒3,4 3 (55, 0.3) (58, 0.3) (60, 0.4) 

𝑒3,6 √13 (30, 0.6) (32, 0.3) (35, 0.1) 

𝑒4,5 2 (40, 0.7) (42, 0.2) (45, 0.1) 

𝑒5,6 √2 (36, 0.2) (40, 0.4) (46, 0.4) 
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𝑒6,7 √5 (55, 0.3) (58, 0.3) (60, 0.4) 

𝑒7,8 √2 (42, 0.3) (45, 0.3) (50, 0.4) 

𝑒8,9 √5 (30, 0.5) (35, 0.2) (45, 0.3) 

𝑒9,10 3 (50, 0.3) (55, 0.3) (60, 0.4) 

𝑒10,11 2 (45, 0.6) (48, 0.1) (55, 0.3) 

𝑒11,12 2 (32, 0.1) (35, 0.4) (40, 0.5) 

𝑒11,14 √5 (28, 0.5) (38, 0.3) (48, 0.2) 

𝑒12,13 2 (25, 0.2) (30, 0.1) (35, 0.7) 

𝑒13,14 3 (40, 0.6) (42, 0.2) (47, 0.2) 

𝑒13,2 3 (50, 0.3) (55, 0.4) (60, 0.3) 

𝑒14,1 √8 (32, 0.7) (42, 0.1) (52, 0.2) 

Table 2: The Edges of Uncertain Road Networks 

DEFINITION 1. (Uncertain Road Network). An uncertain road network is define as a 

Graph 𝐺 = (𝑉, 𝐸, 𝑇)  where vertices 𝑉  is a set  𝑛1, 𝑛2, 𝑛3, . . . , 𝑛|𝑠|,   each 𝑛𝑖  (1 ≤  𝑖 ≤  |𝑆|) 

residing at a 2D location {𝑥(𝑛𝑖), 𝑦(𝑛𝑖)} , 𝐸 is a set of edges, where each 𝑒𝑖,𝑗 in E associated with 

a velocity variable 𝑍(𝑒𝑖,𝑗), and 𝑇  is a mapping from 𝑉 × 𝑉 𝑡𝑜 𝐸 with edges E that shows the 

traveling time along the edge e. 

In Definition 1, the variable of a velocity 𝑍(𝑒𝑖,𝑗) on each edge 𝑒𝑖,𝑗  of an uncertain road 

network follows a probabilistic distribution, represented by discrete velocity samples. In particular, 

each sample 𝑆𝑖,𝑗  of random variable 𝑍(𝑒𝑖,𝑗)  is associated with an appearance probability 

𝑆𝑖,𝑗 . 𝑝(∑ ∀𝑠𝑖,𝑗  𝑆𝑖,𝑗 . 𝑝 = 1). 
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Example 1. (Uncertain Road Network) In an uncertain road network from location 

𝑆 𝑡𝑜 𝐸 there are three possible path to arrive at location 𝐸 from the starting point of location 𝑆. 

The traveling time from all the three paths are different even though they are starting and arriving 

at the same location, but due to some uncertain traffic network on the road the traveling time varies.  

From the example of Figure 1, nodes 𝑛1, 𝑛2,…, 𝑛14 are the intersection points on road 

segments of a continuous road network. Table 1 illustrates all the locations of each node 𝑛𝑖 (1 ≤

 𝑖 ≤  14),  which is described by 2D coordinates. Moreover, 𝑒𝑖,𝑗  is an edge from node 

(𝑛𝑖, 𝑛𝑗) whose distance is denoted by 𝑑𝑖𝑠𝑡(𝑛𝑖 , 𝑛𝑗).  

Table 2 shows traveling distances and uncertain velocities on each edge, where each edge 

𝑒𝑖,𝑗  is associated with a probability distribution function, pdf (𝑒𝑖,𝑗) of the velocity variable. 

Facility Position (𝒙, 𝒚) Edge (𝒆𝒊,𝒋) 

O1 (Gas Station) (2, 8) (3, 4) 

O2 (Hotel) (3, 6.5) (3, 6) 

O3 (Airport) (6.5, 8) (2, 13) 

O4 (Coffee Shop) (8, 4) (9, 10) 

O5 (Hospital) (3, 4.5) (6, 7) 

O6 (Gas Station) (9, 5.5) (11, 14) 

O7 (Restaurant) (6, 3.5) (8, 9) 

O8 (Rest Area) (1, 7) (4, 5) 

Table 3: Facilities on Uncertain Road Networks  
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There are many paths from one point, u, to another destination location, v, on the road network. 

Following, we define the best path to a destination location. 

 

DEFINITION 2 (The Best Path to a Destination) In a graph 𝐺 = (𝑆, 𝑇, 𝑌), two points 

𝑢, 𝑣 ∈ 𝑉(𝐺) , and a probability threshold 𝛼 ∈ (0, 1), a probabilistic path query (𝑢, 𝑣) finds all 

paths 𝑙 ∈ 𝑝𝑎𝑡ℎ(𝑢, 𝑣), such that 𝑃𝑟 (𝑙)  ≥ 𝛼. 

There can be many paths between two vertices in a large graph. Often, a user is interested 

in only the "best" paths. In this paper, we will consider the best alternative path to a location that 

provides the shortest traveling time. Given a path, l, from vertex 𝑢 𝑡𝑜 𝑣 in an uncertain graph 𝐺, 𝑙 

is called the shortest path over G if and only if l is the shortest path in at least one instance of 𝐺. 

The probability that l is the shortest path from 𝑢 𝑡𝑜 𝑣 in G is denoted as Pr{l}. 

Example 2. Table 3 illustrates all the facilities points on the 𝑟𝑜𝑎𝑑 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 in Figure 1, 

𝑜1 (Gas Station),  𝑜2 (Hotel), 𝑜3 (Airport), 𝑜4 (Coffee Shop), 𝑜5 (Hospital), 𝑜6 (Gas Station), 

𝑜7(Restaurant), and 𝑜8 (Rest Area). Each facility  𝑜𝑖  (1 ≤  𝑖 ≤  8) has its own location on the 

road network and its corresponding edge, e.g., the facility Gas Station  𝑜1 is at position (2, 8) on 

road segment 𝑒3,4, Hotel  𝑜2 is at position (3, 6.5) on road segment 𝑒3,6, and so on.  

In the example, there are different paths to get to a location on the road network. For 

example, traveling on this road network from edge 𝑒1 to a facility Hotel 𝑜2 , there are different paths 

that lead to the facility. You may travel on the 𝑟𝑜𝑎𝑑 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (𝑅𝑁) from 𝑒1 → 𝑒2 → 𝑒3 →(𝑜2), or 

from 𝑒1 → 𝑒2 → 𝑒3 → 𝑒4 → 𝑒5 → 𝑒6 →(𝑜2), or from 𝑒1 → 𝑒8 → 𝑒7 → 𝑒6 →(𝑜2). We will discuss the best path 

to get to each location on the road network. 
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Definition 3 (Probabilistic Shortest Traveling Time Queries, PSTTQ). Consider a road 

network RN with a set of facilities 𝑜1 , 𝑜2 , . . . , 𝑜𝑛 𝑜𝑛 𝑅𝑁, a static query point 𝑞 with a probabilistic 

threshold 𝛼,  a PSTTQ returns a set of objects 𝑜𝑖  that have the shortest traveling time to the static 

query point q with probability, 𝑃𝑟PSTTQ(𝑞, 𝑜𝑖), ≥ 𝛼, that is, 

𝑃𝑟PSTTQ(𝑞, 𝑜𝑖) =∑(𝑃𝑟{𝑡(𝑞, 𝑜𝑖) = 𝑇}  ∏(1 − 𝑃𝑟{𝑡(𝑞, 𝑜𝑗) ≤ 𝑇}) )  ≥ 𝛼     (1) 

In Definition 3, we calculate the probability of the traveling time, 𝑡(𝑞, 𝑜𝑖) from 𝑞 to 𝑜𝑖, for 

each possible value 𝑇 of 𝑡(𝑞, 𝑜𝑖) which will allow us to find the query result with the shortest time 

to a moving query point 𝑞 and with high confidence.  

The condition below determines the probability that 𝑜𝑖 is the PSTTQ, i.e., The probability 

that the time cost 𝑡(𝑞, 𝑜𝑖) equals 𝑇 and the time costs 𝑡(𝑞, 𝑜𝑖) of any other objects are higher than 

𝑇 should be greater than or equal threshold α. Assuming independent velocities on connecting 

edges, the PSTTQ probability 𝑃𝑟 PSTTQ (𝑞, 𝑜𝑖) , is given by summing up the probabilities that 

𝑡(𝑞, 𝑜𝑖) = 𝑇 and 𝑡(𝑞, 𝑜𝑖) > 𝑇 for other objects 𝑜𝑗  over all possible values of 𝑇. 

Example 3. Given a query point 𝑞  from location 𝑠 𝑡𝑜 𝑒  on a road network with a 

probabilistic threshold ≥ α, the PSTTQ query retrieves those objects (e.g. gas stations) from 𝑆 

(𝑜1, 𝑜6) that have the smallest traveling times with probabilities ≥ α. We compute the traveling 

time 𝑡 and its probability 𝑝 from point 𝑞 to 𝑜1 and 𝑜6  the traveling time and its probability on each 

edge are shown in the Table 4. 
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Path 𝒕(𝒒, 𝒏𝟏) p 𝒕(𝒏𝟏, 𝒏𝟐) p 𝒕(𝒏𝟐, 𝒏𝟑) p 𝒕(𝒏𝟑, 𝒐𝟏) p 

𝑃𝑎𝑡ℎ(𝑞, 𝑜1) 0.024 

0.022 

0.020 

0.019 

0.1 

0.2 

0.3 

0.4 

0.031 

0.046 

0.056 

0.053 

0.3 

0.5 

0.1 

0.1 

0.050 

0.048 

0.044 

0.041 

0.3 

0.3 

0.2 

0.2 

0.19 

0.17 

0.16 

0.14 

0.2 

0.1 

0.3 

0.4 

 𝒕(𝒒, 𝒏𝟏𝟒) p t(n14, 𝒐𝟔) p     

𝑃𝑎𝑡ℎ(𝑞, 𝑜6) 0.054 

0.049 

0.6 

0.4 

0.56 

0.54 

0.5 

0.5 

    

Table 4: Possible traveling times of road segments on path (𝒒, 𝒐𝒊) from 𝒒 to gas station 

 

In Table 4, 𝑡(𝑞, 𝑛1) records four possible values of the traveling time in minutes on the 

first edge 𝑒𝑞:𝑛1
 of the path from q 𝑡𝑜 𝑛1, and p represents their probabilities. Based on Eq. (1) we 

have 𝑃𝑟PSTTQ(𝑞, 𝑜1) = 0, 𝑃𝑟PSTTQ(𝑞, 𝑜6) = 89.663%. Object 𝑜6 has a high probability of having the 

shortest time to query object 𝑞, among all traveling times of the three objects. Thus, object 𝑜6 is 

one of our 𝑃𝑆𝑇𝑇𝑄 query answers. 

Definition 4 (Continuous Probabilistic Shortest Traveling Time Queries, CPSTTQ). 

Consider a road network RN with a set of facilities 𝑜1 , 𝑜2 , . . . , 𝑜𝑛 𝑜𝑛 𝑅𝑁, a moving query point 𝑞 

(moving from source point s to destination point e), and a probabilistic threshold 𝛼,  a continuous 

probabilistic shortest traveling time query (CPSTTQ) returns sub-paths of moving query point q 

between s and e on the road network, each associated with a set of objects 𝑜𝑖  that have the shortest 

traveling time to query point q within this sub-path with probability, 𝑃𝑟PSTTQ(𝑞, 𝑜𝑖) ≥ 𝛼, where 

𝑃𝑟PSTTQ(𝑞, 𝑜𝑖) is given by Eq. (1). 



 
 

11 
 

As an example, in Figure 2, we have a query point q moving along three connected sub-

paths, 𝑝1, 𝑝2, and 𝑝3, with a starting location 𝑠(5,7.5), through nodes 𝑛1  and 𝑛14 , and ending at 

location 𝑒(10,6).  The CPSTTQ retrieves these three sub-paths because the query point moves 

from point 𝑠 to 𝑒, and each sub-path is associated with an object set such that any object 𝑜𝑖 in the 

set has the shortest traveling time  𝑡(𝑞, 𝑜𝑖 ) to the moving query point q in this sub-path with 

probability greater than . 

From Eq. (1) in Definition 3 we can define the condition of the CPSTTQ answer by: ∀ q 

in the sub-path of path(s, e), 

    𝑃𝑟CPSTTQ(𝑞, 𝑜𝑖) =∑ (𝑃𝑟{𝑡(𝑞, 𝑜𝑖) = 𝑇} ∏(1 − 𝑃𝑟{𝑡(𝑞, 𝑜𝑗) ≤ 𝑇})𝑡(𝑠, 𝑜𝑖), 𝑡(𝑒, 𝑜𝑖)) ≥ 𝛼  (2) 

To find the query result with the shortest traveling time to point 𝑞,  we calculate the 

traveling time  𝑡(𝑞, 𝑜𝑖)  from 𝑞 𝑡𝑜  𝑜𝑖  , 𝑡(𝑠, 𝑜𝑖)  from 𝑠 𝑡𝑜  𝑜𝑖  and 𝑡(𝑒, 𝑜𝑖)  from 𝑒 𝑡𝑜  𝑜𝑖  and its 

probability for each possible value of 𝑇 of the traveling time. The shortest traveling time to a 

moving query point 𝑞 is then determined within each sub-path on the road network 𝑅𝑁 and each 

sub-path is associated with an object set which is the answer to that query point 𝑞. 
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Figure 2: Uncertain Road Network Model with Query Point 

 

Example 4. In the example of Figure 2, consider a moving query point 𝑞 on a road 

networks with a starting point 𝑠(5, 7.5) through a path 𝑛1, 𝑛14 and ending point 𝑒(10, 6) location. 

There are three sub-paths 𝑝1, 𝑝2, and 𝑝3 of the path, path(s, e), from the starting point 𝑠 to the 

ending point 𝑒. Each sub-path pi is associated with a set of objects such that the object set is the 

query answer to query point q on this sub-path. That is, no matter where the query point 𝑞 is on 

the sub-path pi, the object set within that sub-path is the PSTTQ answer set of q. 

Figure 2 illustrates an example on a road network with a moving query point q from starting 

point s to the ending point e. As the query point q moves on a road network in any of the sub-

paths 𝑝1, 𝑝2, and 𝑝3, the object set contains objects with the shortest traveling time to the query 

point 𝑞 with probability ≥  𝛼 . 
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CHAPTER III 

PRUNING METHODS 

The straightforward method to answer the CPSTTQ is to compute the PSTTQ answers for 

any static query point q on the path from s to e, which is quite inefficient. Therefore, in this section, 

we propose effective pruning methods to reduce the search space of the CPSTTQ problem. In 

particular, our goal is to retrieve a small candidate set of CPSTTQ answers for any particular query 

sub-path (on path(s, e)), by filtering out bad candidates.  

3.1 Time Bound Pruning 

In this subsection, we propose a time bound pruning mechanism which eliminates objects 

that are not CPSTTQ query answers. We consider the intervals of two traveling times on road 

networks 𝑡(𝑞, 𝑜𝑖) and 𝑡(𝑞, 𝑜𝑗). The basic idea of the time bound pruning is as follows. This time 

bound pruning method utilizes the lower/upper bounds of the traveling time to enable pruning. 

Specifically, if the upper bound of the traveling time 𝑡(𝑞, 𝑜𝑗) is less than the lower bound of the 

traveling time 𝑡(𝑞, 𝑜𝑖), then we can conclude that 𝑜𝑖 is not a query answer to the CPSTTQ due to 

the existence of 𝑜𝑗. This way, we can eliminate objects from a facility set, 𝑀 = (𝑜1 , 𝑜2 , . . . , 𝑜𝑛) by 

using this pruning method.  

LEMMA 1. (Time Bound Pruning). Assume that lower bound 𝑙𝑏_𝑡(𝑥, 𝑦) and upper 

bound 𝑢𝑏_𝑡(𝑥, 𝑦) are the bounds of the traveling time from location x to location 𝑦 on road 

networks, respectively. Given a candidate object 𝑜𝑖, we can safely prune 
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𝑜𝑖  from 𝑀(𝑠𝑒𝑡 𝑜𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠), if 𝑙𝑏_𝑡(𝑞, 𝑜𝑖) > 𝑢𝑏_𝑡(𝑞, 𝑜𝑗) assuming that 

t(𝑞, 𝑜𝑖)𝜖[𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)] and 𝑡(𝑞, 𝑜𝑗)𝜖 [𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)] for 𝑜𝑖 , 𝑜𝑗 𝜖𝑀.  

PROOF.  

 

Figure 3: Illustration of Time Bound Pruning 

We prove that we are able to prune object 𝑜𝑖  from the facility set M as follows: 

Assume that: 𝑡(𝑞, 𝑜𝑖)ϵ[𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑖)]  and 𝑡(𝑞, 𝑜𝑗 ) 𝜖[𝑙𝑏_𝑡(𝑞, 𝑜𝑗), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)] , where 

[𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑖)]  represent the traveling time interval of 𝑡(𝑞, 𝑜𝑖)  from q to 𝑜𝑖  and 

[𝑙𝑏_𝑡(𝑞, 𝑜𝑗), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)]  is the traveling time interval of 𝑡(𝑞, 𝑜𝑗)  from 𝑞  to 𝑜𝑗 . By using the 

transitivity of the inequality, we have: 𝑡(𝑞, 𝑜𝑖) ≤  𝑢𝑏_𝑡(𝑞, 𝑜𝑖)  and 𝑡(𝑞, 𝑜𝑗) ≤  𝑢𝑏_𝑡(𝑞, 𝑜𝑗)  

Since the condition that 𝑡(𝑞, 𝑜𝑖) ≥  𝑙𝑏_𝑡(𝑞, 𝑜𝑖)  >  𝑢𝑏_𝑡(𝑞, 𝑜𝑗)  ≥ 𝑡(𝑞, 𝑜𝑗) holds, therefore, we can 

obtain 𝑡(𝑞, 𝑜𝑖) >  𝑡(𝑞, 𝑜𝑗). This result shows that 𝑜𝑖  has higher traveling time from 𝑞  than 𝑜𝑗 , 

which implies that it is not a CPSTTQ answer. Hence, object 𝑜𝑖 can be safely pruned from the 

facility set M.                     

          Lemma 1 allows us to use a time bound pruning method to filter out bad candidates 

via lower and upper bounds of the traveling time on a road network.  Intuitively, we use Lemma 1 

to prune object 𝑜𝑖  from the set of objects from the facilities M. 



 
 

15 
 

The Computation of Lower/Upper Bounds for the Traveling Time. To use the time bound 

pruning method, we need to compute the lower and upper bounds of the traveling time. For 

instance, consider the road network containing a path s  𝑛1  𝑛2  … 𝑛𝑘, where 𝑠 is the 

starting point and  𝑛𝑘 is an ending point of a segment on the road network. This segment on the 

road network has different sub-paths with nodes 𝑛𝑓, 𝑛𝑔 which belong to path (𝑞, 𝑜𝑖). Therefore, 

the velocity of the vehicle in this segment 𝑒𝑓,𝑔  on road networks is given by 𝑣 ∈ [𝑣−(𝑛𝑓 , 

𝑛𝑔), 𝑣+(𝑛𝑓, 𝑛𝑔)]. Thus, we have the lower and upper bounds of the traveling time from 𝑛𝑓to ng on 

edge 𝑒𝑓,𝑔, denoted as 𝑙𝑏_𝑡(𝑛𝑓, 𝑛𝑔) and 𝑢𝑏_𝑡(𝑛𝑓, 𝑛𝑔), which are given by 𝑙𝑏_𝑡(𝑛𝑓, 𝑛𝑔) = 𝑑𝑖𝑠𝑡(𝑛𝑓, 

𝑛𝑔)/𝑣+(𝑛𝑓, 𝑛𝑔) and 𝑢𝑏_𝑡(𝑛𝑓, 𝑛𝑔) = 𝑑𝑖𝑠𝑡(𝑛𝑓, 𝑛𝑔)/𝑣−(𝑛𝑓, 𝑛𝑔), respectively. Thus, the summation 

of 𝑙𝑏_𝑡(𝑛𝑓, 𝑛𝑔) for all edges 𝑒𝑓,𝑔 on path (𝑞, 𝑜𝑖) is the lower bound of the time cost 𝑙𝑏_𝑡(𝑛𝑓, 𝑛𝑔) of 

path from 𝑞 𝑡𝑜 𝑜𝑖 , whereas the summation of 𝑢𝑏_𝑡(𝑛𝑓, 𝑛𝑔) for all edges 𝑒𝑓,𝑔 on path (𝑞, 𝑜𝑖) is the 

upper bound of the time cost 𝑢𝑏_𝑡(𝑛𝑓, 𝑛𝑔) of path from 𝑞 𝑡𝑜 𝑜𝑖 .   

 

LEMMA 2. (Lower and Upper Bounds of the Traveling Time). The lower bound of the 

traveling time from a moving query point q on any subpath of a road network from 

a 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑡 𝑡𝑜  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑑 is given by: 

                           𝑙𝑏_𝑡(𝑞, 𝑜𝑖) = min{𝑙𝑏_𝑡(𝑠𝑡, 𝑜𝑖), 𝑙𝑏_𝑡(𝑒𝑑, 𝑜𝑖)}                         (3) 

The upper bound of the traveling time of a moving query point 𝑞 on the subpath of a road network 

from 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  𝑠 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  𝑒 is given by: 

               𝑢𝑏_𝑡(𝑞, 𝑜𝑖) = max{𝑢𝑏_𝑡(𝑠𝑡, 𝑒𝑑) + 𝑢𝑏_𝑡(𝑠𝑡, 𝑜𝑖), 𝑢𝑏_𝑡(𝑠𝑡, 𝑒𝑑) + 𝑢𝑏_𝑡(𝑒𝑑, 𝑜𝑖)}      (4) 

 



 
 

16 
 

  

Figure 4: A Query point q on a sub-path of a Road Network 

 

PROOF. 

We want to prove that Eq. 3 gives the minimum possible traveling time from 𝑞 to  𝑜𝑖. In 

particular, we consider two possible paths from q to 𝑜𝑖. Assume that query point q, is on a road 

segment from node 𝑠𝑡 to node 𝑒𝑑. Then, the path from q to 𝑜𝑖 may go through either node 𝑠𝑡 (i.e., 

q  𝑠𝑡  …𝑜𝑖) or node 𝑒𝑑 (i.e., 𝑞  𝑒𝑑  …𝑜𝑖). We have the following inequality with 

respect to the traveling time, 𝑡(𝑞, 𝑜𝑖), from q to 𝑜𝑖.  

𝑡(𝑞, 𝑜𝑖) ≥ min {(𝑙𝑏_𝑡(𝑞, 𝑠𝑡 ) + 𝑙𝑏_𝑡(𝑠𝑡, 𝑜𝑖)) , (𝑙𝑏_𝑡(𝑞, 𝑒𝑑 ) + 𝑙𝑏_𝑡(𝑒𝑑, 𝑜𝑖))}. 

Since we have: 

𝑙𝑏_𝑡(𝑞, 𝑠𝑡 ) ≥ 0 𝑎𝑛𝑑 𝑙𝑏_𝑡(𝑞, 𝑒𝑑 ) ≥ 0 

by the inequality transition, we can obtain 

𝑡(𝑞, 𝑜𝑖) ≥ min {𝑙𝑏_𝑡(𝑠𝑡, 𝑜𝑖) , 𝑙𝑏_𝑡(𝑒𝑑, 𝑜𝑖)}, 

which is exactly equal to the RHS of Eq. 3 (i.e., 𝑙𝑏_𝑡(𝑞, 𝑜𝑖)). Thus, 

min {𝑙𝑏_𝑡(𝑠𝑡, 𝑜𝑖) , 𝑙𝑏_𝑡(𝑒𝑑, 𝑜𝑖)} is the lower bound of the traveling time 𝑡(𝑞, 𝑜𝑖). 
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Similarly, we can also prove the correctness of the upper bound, 𝑢𝑏_𝑡(𝑞, 𝑜𝑖) , of the 

traveling time from q to 𝑜𝑖  in Eq. 4. Specifically, similar to the proof of the lower bound, we 

consider two paths through 𝑠𝑡 and 𝑒𝑑, respectively, on path path(𝑞, 𝑜𝑖), and derive the following 

inequality w.r.t. time upper bounds. 

𝑡(𝑞, 𝑜𝑖) ≤ max{𝑢𝑏_𝑡(𝑞, 𝑠𝑡) + 𝑢𝑏_𝑡(𝑠𝑡, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑒𝑑) + 𝑢𝑏_𝑡(𝑒𝑑, 𝑜𝑖)}. 

Next, since we have: 

𝑢𝑏_𝑡(𝑞, 𝑠𝑡 ) ≤ 𝑢𝑏_𝑡(𝑠𝑡, 𝑒𝑑) 𝑎𝑛𝑑 𝑢𝑏_𝑡(𝑞, 𝑒𝑑 ) ≤ 𝑢𝑏_𝑡(𝑒𝑠𝑡, 𝑒𝑑), 

by the inequality transition, we can obtain: 

𝑡(𝑞, 𝑜𝑖) ≤ max{𝑢𝑏_𝑡(𝑠𝑡, 𝑒𝑑) + 𝑢𝑏_𝑡(𝑠𝑡, 𝑜𝑖), 𝑢𝑏_𝑡(𝑠𝑡, 𝑒𝑑) + 𝑢𝑏_𝑡(𝑒𝑑, 𝑜𝑖)}, 

which is exactly equal to the RHS of Eq. 4 (i.e.,𝑢𝑏_𝑡(𝑞, 𝑜𝑖)).  

Thus, max{𝑢𝑏_𝑡(𝑠𝑡, 𝑒𝑑) + 𝑢𝑏_𝑡(𝑠𝑡, 𝑜𝑖), 𝑢𝑏_𝑡(𝑠𝑡, 𝑒𝑑) + 𝑢𝑏_𝑡(𝑒𝑑, 𝑜𝑖)} is the upper bound of the 

traveling time 𝑡(𝑞, 𝑜𝑖).     

Intuitively, to compute traveling time bounds from 𝑞 to 𝑜𝑖, we consider two possible paths. 

The first path is q  𝑠𝑡  … 𝑜𝑖 and the other way is 𝑞  𝑒𝑑  … 𝑜𝑖. The traveling time 

from 𝑞 to 𝑜𝑖  through the path 𝑠𝑡 is greater than that from 𝑠𝑡 to 𝑜𝑖 . Similarly, the traveling time 

from 𝑞 𝑡𝑜 𝑜𝑖  through the path 𝑒𝑑 is greater than that from 𝑒𝑑 𝑡𝑜 𝑜𝑖. Therefore, the traveling time 

from 𝑞 𝑡𝑜 𝑜𝑖 can be lower bounded by the minimum between the traveling time from 𝑒𝑑 to 𝑜𝑖 and 

that from 𝑠𝑡 to 𝑜𝑖 . 

Similarly, to compute the upper bound of the traveling time from 𝑞 𝑡𝑜 𝑜𝑖 , we also consider 

two possible paths. The traveling time from 𝑞 to  𝑜𝑖  through the path 𝑠𝑡  is smaller than that 

from 𝑒𝑑 to 𝑜𝑖 (through st). The traveling time from 𝑞 𝑡𝑜 𝑜𝑖  through the path 𝑒𝑑 is greater than that 
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from 𝑠𝑡 𝑡𝑜 𝑜𝑖 (through ed). Therefore, the traveling time from 𝑞 𝑡𝑜 𝑜𝑖 can be upper bounded by 

the maximum between the traveling time from 𝑠𝑡  ed  … 𝑜𝑖 and that from 𝑒𝑑  𝑠𝑡  … 

𝑜𝑖 . 

3.2 Probabilistic Bound Pruning 

In this subsection, we will consider probabilistic information and propose an effective 

probabilistic bound pruning method to filter out false alarms. For continuous queries, we will take 

into account all possible locations within the sub-paths as the 𝑞 moves along the road network 

from 𝑠 𝑡𝑜 𝑒. Specifically, we mainly focus on the shortest traveling time 𝑡(𝑞, 𝑜𝑖) on a sub-path, 

path (q1, q2), within a road network as the query point q moves from one point 𝑞1 to another one 𝑞2. 

We introduce a way to prune those false alarms 𝑜𝑖  that have low CPSTTQ probabilities (as given 

in Eq. (2)).  

DEFINITION 5 (β-Upper-Bound). Let the traveling time 𝑡(𝑞, 𝑜𝑖)𝜖[𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)] for 

𝑜𝑖 ∈ 𝑀(𝑠𝑒𝑡 𝑜𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠), a β-upper-bound  is denoted as (𝑢𝑏_𝑡(𝑞, 𝑜𝑖). 𝛽), which satisfies 

Pr {𝑡(𝑞, 𝑜𝑖) ∈ [𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑖). 𝛽]} = 𝛽.  

The β-upper-bound, 𝑢𝑏_𝑡(𝑞, 𝑜𝑖). 𝛽,  is given by an upper bound of the traveling 

time  𝑢𝑏_𝑡(𝑞, 𝑜𝑖)  such that  𝑡(𝑞, 𝑜𝑖) is the shortest traveling time within the interval 

 [𝑙𝑏𝑡(𝑞,𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗). 𝛽] with probability β. 

 

LEMMA 3. (Probabilistic Bound Pruning). Assuming that t(𝑞, 𝑜𝑖) ∈ [𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 

𝑢𝑏_𝑡(𝑞, 𝑜𝑖)] and 𝑡(𝑞, 𝑜𝑗) ∈ [𝑙𝑏_𝑡(𝑞, 𝑜𝑗), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)] for 𝑜𝑖  , 𝑜𝑗 ∈   𝑀, if it holds that 𝛽 >1-𝛼 and 

𝑙𝑏_𝑡(𝑞, 𝑜𝑖) >  𝑢𝑏_𝑡(𝑞, 𝑜𝑗). 𝛽 , then object 𝑜𝑖  can be safely pruned from M (𝑠𝑒𝑡 𝑜𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠). 
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PROOF. We want to prove the correctness of our probabilistic bound pruning, by using the 

diagram in Figure 5. Specifically, for 𝑜𝑖, 𝑜𝑗 ∈ 𝑀, 𝑡(𝑞, 𝑜𝑖) 𝑎𝑛𝑑 𝑡(𝑞, 𝑜𝑗) are within the intervals of 

two traveling times, 𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑖)  and   𝑙𝑏_𝑡(𝑞, 𝑜𝑗), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗) respectively. 

Assume that, 𝑢𝑏_𝑡(𝑞, 𝑜𝑗). 𝛽 is a β-upper-bound of 𝑡(𝑞, 𝑜𝑗) which satisfies 𝑃𝑟 {𝑡(𝑞, 𝑜𝑗) ∈

[𝑙𝑏_𝑡(𝑞, 𝑜𝑗), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗). 𝛽]}= 𝛽. The 𝑢𝑏_𝑡(𝑞, 𝑜𝑗). 𝛽 from Definition 5 indicates that the Pr(𝑞, 𝑜𝑗) 

of an object is ≥ 1. Since the probability of  𝑜𝑖 has the shortest traveling time to q, therefore: 

PrCPSTTQ(q, oi) ≤  (Pr{t(q, oi )=T}∙  (1- Pr{t(q, oj ) ≤ T}) 

≤  Pr{t(q, oi )=T}∙ ((1- Pr{t(q, oj ) ≤ T | t(q, oj )  [lb_t(q, oj), ub_t(q, oj).]}) 

∙ Pr{t(q, oj )  [lb_t(q, oj), ub_t(q, oj).]} 

+ (1- Pr{t(q, oj ) ≤ T | t(q, oj )  [ub_t(q, oj).ub_t(q, oj)]}) 

∙ Pr{t(q, oj )  [ub_t(q, oj).ub_t(q, oj)]}) 

=  Pr{t(q, oi )=T}∙ ((1- Pr{t(q, oj ) ≤ T | t(q, oj )  [lb_t(q, oj), ub_t(q, oj).]}) ∙  

+ (1- Pr{t(q, oj ) ≤ T | t(q, oj )  [ub_t(q, oj).ub_t(q, oj)]}) ∙ (1- 

Based on the lemma assumption that 𝑙𝑏_𝑡(𝑞, 𝑜𝑖) >  𝑢𝑏_𝑡(𝑞, 𝑜𝑗). 𝛽 and the definition of -

upper bound, we have: 

T = t(q, oi) ≥ lb_t(q, oi) > ub_t(q, oj). 

Then, in the formula above, we infer that:  

Pr{t(q, oj ) ≤ T | t(q, oj )  [lb_t(q, oj), ub_t(q, oj).]} = 1. 

Moreover, since probability is non-negative, we have: 



 
 

20 
 

Pr{t(q, oj ) ≤ T | t(q, oj )  [ub_t(q, oj).ub_t(q, oj)]} ≥ 0. 

As a result, we can obtain: 

PrCPSTTQ(q, oi) ≤  Pr{t(q, oi )=T}∙ (1-1- 

We can thus conclude that (1- is an upper bound of 𝑃𝑟CPSTTQ(𝑞, 𝑜𝑖). If 𝛽 > 1 − 𝛼, that 

is, 1 − 𝛽 < 𝛼, by the inequality transition, we can obtain 𝑃𝑟CPSTTQ(𝑞, 𝑜𝑖) < 𝛼. In other words, the 

probability 𝑃𝑟CPSTTQ(𝑞, 𝑜𝑖) that object oi has the shortest traveling time to 𝑞 on the sub-path must 

be less than 𝛼, and object 𝑜𝑖 cannot be the CPSTTQ answer. Hence, we can safely prune object 𝑜𝑖 

from M.  

How to compute the 𝜷-Upper-Bound. To enable the probabilistic bound pruning, we need to 

compute the β-upper-bound. Assuming that t(𝑞, 𝑜𝑖)  ∈  [𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)] and  𝑡(𝑞, 𝑜𝑗 ) ∈ 

[𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗)], then 𝑡(𝑞, 𝑜𝑖), the traveling time on any subpath (𝑝1, 𝑝2, 𝑝3) within the 

road segment such that we are able to satisfy Pr {𝑡(𝑞, 𝑜𝑖) ∈ (𝑙𝑏_𝑡(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡(𝑞, 𝑜𝑗) . 𝛽)} = 𝛽.  

Let us assume that there are 𝑒 edges on any subpath within the road network which is upper 

bounded by the interval  [𝑙𝑏_𝑡𝑒(𝑞, 𝑜𝑖), 𝑢𝑏_𝑡𝑒(𝑞, 𝑜𝑗)] such that the traveling time is within this 

probability. 

Greedy Algorithm to Compute the β-Upper-Bound. Here, we are getting a very small β-upper-

bound of the traveling time on each sub-path on a road network segment by not considering all the 

sample combinations but very specific with few sample combinations to be considered. We vary 

the length and progressively extend our greedy algorithm paths, 𝑢, from 1 to 𝑙, and will then 

compute 𝑀(𝑢𝑏_𝑡𝛽(𝑙), 𝛽) with path (𝑞, 𝑜𝑗). 



 
 

21 
 

Initial Case. 𝑃1 is the first subpath from location 𝑠 𝑡𝑜 𝑒 on the road network segment with length 

𝑢 = 1 and edge of path with 𝑝𝑎𝑡ℎ(𝑞, 𝑜𝑗) that we first consider. Assuming 𝑎𝑟𝑟_𝑡𝑑  is a sorted array 

of size for 𝑐1, which contains 𝑐1 discrete time samples in ascending order of the traveling time on 

𝑃1 . For every time sample 𝑎𝑟𝑟_𝑡𝑑[𝑖] (1 ≤ 𝑖 ≤ 𝑐1), which is associated with 

probability  𝑎𝑟𝑟_𝑡𝑑[𝑖]. 𝑝 . If the 𝑢𝑏_𝑡𝛽(1) = 𝑢𝑏 = 𝑎𝑟𝑟_𝑡𝑑[𝑖]  holds, since the corresponding  𝛽 

value is given as 𝑧1 = ∑ 𝑎𝑟𝑟_𝑡𝑑[𝑗]. 𝑝𝑖
𝑗=1  the probability that the traveling time on 𝑃1 is not greater 

than 𝑎𝑟𝑟_𝑡𝑑[𝑗]. From 𝑐1 traveling time samples from array 𝑎𝑟𝑟_𝑡𝑑,  randomly select 𝑀 and denote 

it as 𝑡𝑑
(𝑎)

, 𝑡𝑑
(𝑏)

, … , 𝑡𝑑
(𝑛)

 therefore 𝑡𝑑
(𝑎)

≤   𝑡𝑑
(𝑏)

 and so on.  

Progressive Computation. For 𝑃𝑘, a subpath of 𝑝𝑎𝑡ℎ(𝑞, 𝑜𝑗)  has length 𝑘 (𝑖. 𝑒. , 𝑢 =  𝑘), we can 

obtain two arrays, 𝑎𝑟𝑟_𝑢𝑏𝑘 and 𝑎𝑟𝑟_𝛽𝑘 , which contain 𝑀 𝛽-upper-bounds and 𝑀 corresponding 

β values for subpath 𝑃𝑘 (in ascending order), respectively. When we consider the subpath, 𝑃𝑘 + 1, 

of path 𝑝𝑎𝑡ℎ(𝑞, 𝑜𝑗)  (𝑢 =  𝑘 +  1), we combine the β-upper bound on subpath 𝑃𝑘 with that of the 

(𝑘 +  1) −th edge on 𝑝𝑎𝑡ℎ(𝑞, 𝑜𝑗). 

Therefore we obtain combinations of 𝑀 𝛽-upper-bound 𝑎𝑟𝑟_𝑢𝑏𝑘 [𝑖], for subpath 𝑃𝑘, and 𝐶𝑘 + 1 

traveling time samples, 𝑡𝑘+1
𝑗

  on the (𝑘 + 1) −th edge of the path. Each combination results in  𝛽-

upper-bounds, 𝑎𝑟𝑟_𝑢𝑏𝑘  [𝑖] + 𝑎𝑟𝑟_𝑡𝑘+1[𝑗] , and its 𝛽  value 𝑎𝑟𝑟_𝛽𝑘[𝑖]. 𝑧𝑘+1
(𝑗)

,  where 𝑧𝑘+1
(𝑗)

=

∑ 𝑡𝑘+1
(𝑟)

. 𝑝,
𝑗
𝑟=1  for 1 ≤ 𝑖 ≤ 𝑀 and 1 ≤ 𝑗 ≤ 𝑐𝑘+1. 𝑀 out of (𝑚. 𝑐𝑘+1) combinations where ≥ 1 − 𝛼 

. The 𝛽-upper-bounds and their values in arrays 𝑎𝑟𝑟_𝑢𝑏𝑘+1 and 𝑎𝑟𝑟_𝛽𝑘+1 could be store pairs, 

therefore we are able to derive arrays, 𝑎𝑟𝑟_𝑢𝑏𝑖  and 𝑎𝑟𝑟_𝛽𝑖, for path 𝑝𝑎𝑡ℎ(𝑞, 𝑜𝑗)   of length  𝑙 . 

𝑢𝑏_𝑡𝛽(𝑞, 𝑜𝑗) smallest value 𝑎𝑟𝑟_𝑢𝑏𝑖[𝑖], as the 𝛽-upper-bound, where 𝑎𝑟𝑟_𝛽𝑖,[𝑖] ≥ 1 − 𝛼, for 1 ≤

𝑖 ≤ 𝑙. 
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Algorithm Compute_Beta_UB{ 

Input: arrays arr_tu (1 ≤ u ≤ l) 

Output: arrays arrub1 and arr_βi 

(1) randomly select M samples, from C1 traveling time samples from array, arrti 

(2) let the array arr_ub1 (i)= ti  for M ≥ I ≥ 1 

(3) let the array arrβi (i)=z for M ≥ I ≥ 1 

(4) for k=1 to l-1 

(5)        for each of the (M.P(k+1) ) where i∈[1,M]and j∈[1, P(k+1)] 

(6)                   compute the β-upper-bounds (arr_ubk(i)+ arr_tk+1(j))     

(7)       randomly select M out of (M.P(k+1))   

(8)      store M pairs to arrays arr_ub1 k+1 and arrβk+1 ) 

(9) return arrys arr_ubi and arr_βi      

} 

Figure 6-Algorithm for computing β-upper-bound 

 

Algorithm of Computing β-Upper-Bound. Figure 6 demonstrates the pseudo-code for 

computing the 𝑀 𝛽-upper-bound of the traveling time on path 𝑝𝑎𝑡ℎ(𝑞, 𝑜𝑗)  where 𝛽 ≥ 1 − 𝛼. 

Since we have subpaths 𝑃1, 𝑃2, 𝑃3  we begin from the first edge 𝑃1  on path 𝑝𝑎𝑡ℎ(𝑞, 𝑜𝑗)  and 

randomly selected 𝑀 out of 𝐶1 traveling time samples from array 𝑎𝑟𝑟_𝑡𝑖  and updates 𝛽 𝑎𝑟𝑟_𝛽1 

array and  𝛽-upper-bound 𝑎𝑟𝑟_𝑢𝑏1 each time. The 𝑃𝑘 subpath is extended by adding the (𝑘 +

 1)-th edge on path 𝑝𝑎𝑡ℎ(𝑞, 𝑜𝑗) by considering 𝑚. 𝑐𝑘+1  combinations of 𝑚 𝛽-upper-bounds of 

possible traveling times on path 𝑃𝑘  and 𝑐𝑘+1  time samples on the (𝑘 +  1) − th edge, then 

calculate their corresponding pairs of β-upper-bounds and β values for the path 𝑃𝑘+1. We also 

randomly select 𝑀  out of 𝑚. 𝑐𝑘+1  combinations satisfying  𝛽 ≥  1 − 𝛼 , and update the 

arrays  𝑎𝑟𝑟_𝑢𝑏𝑘+1  and 𝑎𝑟𝑟_𝛽𝑘+1  with 𝛽 − upper-bounds and 𝛽  values for path 𝑃𝑘+1 . The 

iterations  (𝑙 −  1) , for path 𝑃𝑙  therefore, we return the 𝑀 𝛽 -upper-bounds in 𝑎𝑟𝑟_𝑢𝑏𝑙 and 𝛽 

values in 𝑎𝑟𝑟_𝛽𝑙. 
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CHAPTER IV 

CPSTTQ PROCESSING 

In this section, we consider building an index over offline pre-computed data, in terms of 

Minimum Bounding Rectangle (MBR), from each object 𝑜𝑖  which could lead to improved 

efficiency of CPSTTQ processing.  

4.1 Index Construction 

Data Structure of the Index. Firstly, we consider constructing a spatial index R-tree over the 

Minimum Bounding Rectangles (MBRs) of objects 𝑜𝑖 and their pre-computed data, which can be 

used to retrieve CPSTTQ answers. We use the example in Figure 6 to illustrate our index structure 

over 8 objects, 𝑜1, 𝑜2 , ...., 𝑜8 . Specifically, we first pre-compute the neighbors (breadth-first 

search) of each object in the road networks, and then use an MBR to bound this object and its 

neighbors. Thus, we can obtain 8 MBRs for 8 objects, respectively. Figure 6 illustrates the R-tree 

index over these 8 MBRs, which are inserted into the R-tree with the normal insertion method of 

the R-tree code. The R-tree index is a tree structure, which contains both leaf and non-leaf nodes.  

Leaf Nodes. Each of the leaf nodes has entry 𝐴𝑖 that stores octuplet with objects 𝑜1 to 𝑜8. MBRs 

of objects are stored in each leaf node, each of which tightly bounds objects 𝑜𝑖  and their 

corresponding neighbors in the road network. Here, the reason that we use MBRs to bound objects 

and their neighbors is that we can utilize these MBRs to retrieve CPSTTQ candidates. 
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Intuitively, if a path, path(s, e), intersects with MBRs (including objects and their neighbors on 

road networks),then these MBRs might be CPSTTQ candidates (i.e., PSTTQ answers of query 

point) for query point moving from s to e.  

In the example of Figure 6, there are 4 leaf nodes, 𝐴4 ~ 𝐴7, each of which contains MBRs 

of two objects. For instance, leaf node 𝐴4 contains MBRs of two objects, 𝑜2 and 𝑜5. In particular, 

the neighbors of object 𝑜2 are 𝑜5 and 𝑜7. Thus, the MBR of 𝑜2 tightly bounds objects 𝑜2, 𝑜5 and 

𝑜7. 

Non-Leaf Nodes. For non-leaf nodes, we recursively use MBRs to bound MBR of their child 

nodes on a lower level. In the example of Figure 6, we have non-leaf nodes 𝐴2 and 𝐴3, which 

contain pointers, pointing to child nodes 𝐴4, 𝐴5 and 𝐴6, 𝐴7, respectively. In particular, the MBR of 

non-leaf node A2 tightly bounds child entries A4 and A5 under A2. The case of A3 is similar. 

Furthermore, the root of the tree, A1, recursively bounds MBRs of A2 and A3. 

The Construction of the Tree Structure. We are interested in showing our pre-computed 

minimum value from object (𝑜𝑖, 𝑜𝑗) to its nearest neighbor by inserting the Minimum Bounding 

Rectangles (MBR) in the R-tree. Figure 7 illustrates how we determine the minimum values to 

objects 𝑜𝑖 and give more explanation on the construction of the tree index. We are able to insert 

Minimum Bounding Rectangles (MBR) of the object 𝑜𝑖 into the R-tree tightly bounded to its 

nearest neighbor through the standard insertion method to be able to locate the nearest neighbor 

and we considered all the nearest neighbor and all points associated within our Minimum 

Bounding Rectangles (MBR). To insert an object, the tree is traversed recursively from the root 

node. At each step, all rectangles in the current directory node are examined, and a candidate is 

chosen by choosing the rectangle which requires least enlargement. The search then descends into 
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this page, until reaching a leaf node. If the leaf node is full, it must be split before the insertion is 

made 

A1

A2 A3

A4 A5

O7

A6

O2 O5 O3 O1 O4 O6 O8

A7

The Index Structure 
 

Figure 7- The Index Structure  

 

Figure 8- Minimum Bounding Rectangles (MBR) 
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Figure 9-Offline pre-computation 

4.2 Query Procedure 

Pruning with the Index. We are able to use the pruning method with the R-tree index to reduce 

the search space, and retrieve the CPSTTQ candidates by traversing the tree index. We use the 

example in Figure 6 to illustrate our basic idea. From the root node 𝐴1 in the index tree, we begin 

to check the MBR of each child node (i.e., 𝐴2 ~ 𝐴7) and the path, path(s, e), of moving query point 

𝑞 from s to e. When the query path, path(s, e), is not intersecting with node Ai, then we can safely 

prune all objects o under this node Ai. This is because the CPSTTQ answers can only be those 

neighbor objects, NN(𝑜𝑖), of each object o under Ai, but not object  𝑜𝑗 (i.e., the traveling time from 

q on path path(s, e) to neighbor NN(𝑜𝑖) is always greater than or equal to that from q to 𝑜𝑗, since q 

is not in the MBR of object  𝑜𝑗). Thus, we are able to safely prune objects 𝑜𝑖 under Ai. On the other 

hand, if an index node Ai intersects with the query path path(s, e), then we cannot prune this node 
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Ai, and we need to further check its children to retrieve CPSTTQ candidates through the index 

traversal. 

LEMMA 4. (Index Pruning). Given a query point q moving along a path, path(s, e), from 

location s to location e, and Minimum Bounding Rectangle (MBR) of a node 𝐴𝑖, we can safely 

prune 𝐴𝑖, if the MBR,MBR (Ai), of node 𝐴𝑖 intersects with path(s, e). 

CPSTTQ Processing Algorithms. In the sequel, we will discuss how to use the index to 

answer the CPSTTQ query. Given a path, path(s, e), of a moving query point q from s to e. First, 

calculate the shortest path from point s to e for query point q, and then check if this shortest path, 

path(s, e), intersect the Minimum Bounding Rectangles (MBR), MBR (Ai), and then traverse the 

index 𝐼 by maintaining a queue Q.  

For each non-leaf node, check each child node whether the shortest path, path(s, e), is 

intersecting with the corresponding MBR of 𝐴𝑖 (lines 7-9) in algorithm CPSTTQ processing. If 

they intersect with each other, we will add it to the queue (line 10). But if not, we will ignore it, 

because it cannot contain any CPSTTQ candidates within the MBR.  

For the leaf node that contains objects 𝑜𝑖, we will check one by one if we are able to apply 

our proposed pruning methods (lines 12-13). Then, we will do the pruning for each object oi. We 

first use the index pruning to see whether or not path(s, e) intersects with MBR(oi)  (line 13). If the 

answer is yes, then oi is a potential CPSTTQ answer. We will further check whether oi can be 

pruned by the time bound pruning or probabilistic bound pruning. If oi survives, then we will add 

it to the candidate set Scand (lines 14-15). Finally, we will refine the candidates in the set Scand by 

computing actual CPSTTQ answers (line 16). 

Algorithm CPSTTQ_Processing 
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Input: index I, a query path, path(s, e), from s to e, and a probability threshold α 

Output: CPSTTQ Answer 

(1) initialize a queue Q accepting the tree nodes 

(2) Scand=∅; r=rβ=+∞ 

(3) calculate the shortest path from s to e 

(4) insert root, into queue Q 

(5) while Q is not empty 

(6)      node A=de-queue Q  

(7)      if A is a non-leaf node 

(8)           for each entry Ai of A 

(9)                  if path(s, e) intersects with Ai.MBR 

(10)                            insert Ai  into queue Q 

(11)     else 

(12)          for each object oi in leaf node Ai 

(13)                            if path(s, e) intersects with oi.MBR 

(14)                     if oi cannot be pruned by time bound pruning and probabilistic bound pruning 

(15)                        add to candidate set to Scand 

(16) refine candidates in Scand and return the actual CPSTTQ answers.   

 

Figure 10: CPSTTQ Query Processing Algorithm 
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CHAPTER V 

RELATED WORK 

The study from this paper is related to some previous works on probabilistic shortest time 

queries over uncertain databases, continuous nearest neighbor, path queries on probabilistic graphs 

and on uncertain road networks. 

Uncertain Databases and Continuous Nearest Neighbor. Probabilistic databases 

[CP1987] can store types of information that cannot be represented using the relational model. 

Probabilistic databases may also be viewed as generalizations of relational databases; any 

relational database can be represented without loss of information by a probabilistic database. 

Cavallo and Pittarelli [CP1987] defined a new project-join mapping for relational databases that 

is based on transforming a relational to a probabilistic database. Probabilistic databases [Z1997], 

are formalized by means of logic theories based on a probabilistic first-order language proposed 

by Halpem.  

Probabilistic shortest time queries considers the uncertainty of traveling times in uncertain 

road networks, it considers the probabilistic path problem of traveling time from query point q to 

a facility, with the shortest traveling time. A probabilistic database [DS2007]  comprises of a list 

of x-tuples and each x-tuple has one or more exclusive alternatives in which each of these 

alternatives is associated with an existence probability. [CKP2003] studied probabilistic query 

evaluation based upon uncertain data. They proved that classification of queries is made based 

upon the nature of the result set and thereby they develop algorithms for 



 
 

30 
 

computing probabilistic answers. They also address the important issue of measuring the quality 

of the answers to the queries, and provide algorithms for efficiently pulling data from relevant 

sensors or moving objects in order to improve the quality of the executing queries. [CKP2003] 

considers all the possible semantic world over the uncertain road networks, due to the fact that 

each possible world is a deterministic road network which could eventually appear in the real 

world. 

 Many times probabilistic database query processing mostly looks into the avenue of 

semantics. [DS2007] in their previous works describe an optimization algorithm that can compute 

efficiently most queries. They show the data complexity of some queries is #P-complete, which 

implies that these queries do not admit any efficient evaluation methods. There are an exponential 

number of possible worlds in a probabilistic database and many previous works including nearest 

neighbor queries [CKP2003], skyline queries [PJLY2007], and top-k queries. [LSD2009] have 

address the issue. Frank [F1969] simulates a system which generates a set of random branch-length 

vectors according to given probability distributions and thereby apply a shortest path algorithm to 

compute the value for this simulation.  

[YPS2002] studied how a continuous nearest neighbor query retrieves the nearest neighbor 

(NN) of every point on a line segment. In their result they have a set of (point, interval) tuples, 

such that point is the nearest neighbor of all points in the corresponding interval. [RKV1995] 

studied the efficient branch-and-bound R-tree traversal algorithm to find the nearest neighbor 

object to a point, and then generalize it to finding the k nearest neighbors. They furthermore 

discussed the metrics for an optimistic and a pessimistic search ordering strategy as well as for 

pruning and propose a depth-first method that starts from the root of the tree to the leaf node in 

which the process is repeated recursively until the first nearest neighbor is detected.  
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[ZR2001], [BJKS2002] in their previous work they addressed the problem of finding k nearest 

neighbors for moving query point (k-NNMP) and in dealing with the problem they assume that the 

query point is not static, as in k-nearest neighbor problem, but varies its position over time. 

Probabilistic Graphs Path Queries. Some of the works that have been previously studied 

under the probabilistic graph and on uncertain road networks include a study by Rasteiro and Anjo 

[RA2004] who examine the issue of optimal paths in  directed random networks in which this path 

is the path that maximizes utility function expected values. Ming and Pei [MP2010] in their model 

consider arbitrary weight distributions and correlations between the weights of adjacent edges. 

Also in tackling the problem of traffic uncertainty they proposed probabilistic path queries and 

two new types of top-k path queries.   

[HL2009], [JLDW2011], [PBGK2010] are some of the other previous works that review 

the RDF graph with containing edges associated with existence probabilities. Also previous works 

from [WMGH2008], [F2005], [LC2011] use graphical models to model the probabilistic graph, in 

which the labels of vertices connecting through edges are dependent and also they are represented 

by the conditional probability tables. [CA2012] considers a new network reachability problem 

where their goal is to find the most reliable path between two nodes in a network, represented as a 

directed acyclic graph. They computed a path between two end nodes when each edge has a failure 

probability.  

[HP2010] studied how to take traffic uncertainty into account in answering path queries in 

road networks. They proposed to capture the uncertainty in traffic such as the travel time between 

two vertices and the weight of an edge is modeled as a random variable and is approximated by a 

set of samples. They also proposed three novel types of probabilistic path queries using basic 

probability principles and reviewed uncertain traffic information by studying the path queries on 
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road networks of which they consider the paths between two vertices having a total weight less 

than a threshold with high probability.  

[L1983] studied the proposed simulation method to approximate the probability 

distribution of the shortest path and defined the utility function that specifies the preferences 

among the paths. Moreover, [RA2004] studied the problem of optimal paths in directed random 

networks, whereby the cost of each arc is a real-valued random variable whereas the optimal path 

is regarded as the path that maximizes the expected values of a utility function. They consider the 

linear, quadratic, and exponential cases, presenting a theoretical formulation based on multi-

criteria models as well as the resulting algorithms and computational tests. 
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CHAPTER VI 

CONCLUSIONS  

In this paper, we studied the uncertain road network by modelling the road network 

traffic and considered many factors which may cause speeds of vehicles to be imprecise and 

probabilistic. We therefore focus more on continuous probabilistic shortest traveling time query 

(CPSTTQ), which retrieves sets of objects that have the smallest traveling time to a moving 

query point q from one location to the other on road networks with high confidences. We 

propose effective pruning methods and time bound pruning to prune the search space of our 

CPSTTQ query and filter out CPSTTQ false alarms. Moreover, we designed an efficient query 

procedure to answer CPSTTQ via an index structure and are thereby able to retrieve the 

CPSTTQ answer efficiently. 
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