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ABSTRACT

Hu, Mengqi, Sparse Representation For The ISAR Image Reconstruction . Master of Science (MS),

August, 2016, 29 pp, 1 table, 12 figures, 23 references, 26 titles.

In this thesis, a sparse representation for the data form a multi-input multi-output based

inverse synthetic aperture radar (ISAR) system is derived for two dimensions. The proposed sparse

representation motivates the use a of a Convex Optimization directly that recovers the image without

the loss information of the image with far less samples that that is required by Nyquist−Shannon

sampling theorem, which increases the efficiency and decrease the cost of calculation in radar

imaging.
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CHAPTER I

INTRODUCTION

MIMO radar is a very recent developed technology that is attracting the attention of re-

searchers. Unlike a traditional phased-array radar,which uses same waveform with different scaled

version and phase as its transmitted signal, a MIMO radar system transmits signal with different

waveform and phases. This diversity in waveform provides a MIMO radar system a great advantage

comparing against a normal radar system [12, 13, 25].

Inverse synthetic Aperture radar(ISAR) has been in development for more than 50 years.

It is a very important sensing technique providing the opportunity to collect data over a moving

object with the potential for high resolution [7, 9]. An ISAR system is based on relatively stationary

platforms such as a radar system settled on an island, mountain or so.

An ISAR system based on MIMO technique has some significant advantages comparing

with the tradition radar systems. For example, the cross-range resolution of an ISAR system is ρc,

and we have ρc = λ/2Δθ = λ 2ωT , where λ is the wavelength, Δθ is the variation of the aspect

angle during the coherent processing interval (CPI), ω is the rotational angular velocity, and T

is the CPI[7]. There are two main methods to improve the resolution here. One is to reduce the

wavelength λ which is restricted by the hardware. The other one is to shorten T which MIMO helps

a lot by y partially using space sampling instead of the time sampling [26]. Theoretically, we can

directly use a real aperture antenna array to achieve multiple radar detection and imaging, but doing

it this way will need too many antennas such that our current capability of hardware cannot support

such a system. Luckily, the MIMO technique allows us to use an equivalent receiving array in stead

of a real receiving array and hence we could still obtain a high resolution image using a smaller real
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antenna array.[1, 2]

Nowadays as the technology improves, the growing needs for high resolution of an ISAR

image lead to a significant increase of the data size that is collected from the target. It costs a lot of

time and space to restore and process these data and form the data into an image. This motivates the

scientific research in Compressive Sensing (CS). Compressive sensing – also known as compressed

sensing, compressive sampling, or sparse sampling – is a signal processing technique for efficiently

acquiring and reconstructing a signal. This is based on the principle that, through optimization,

the sparsity of a signal can be exploited to recover it from far fewer samples than required by the

Shannon-Nyquist sampling theorem.[4, 6, 5]

1.1 Thesis Chapter Outline

The rest of this thesis is organized as followed:

Chapter 2:

In this chapter we provide inverse synthetic aperture radar, MIMO system and compressive

sensing formulations

Chapter 3:

In this chapter we will we will present the proposed reconstruct algorithm and show some

simulation results

Chapter 4:

Conclusion and future work.
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CHAPTER II

MIMO ISAR MODELING

2.1 ISAR Modeling

We start with the model of an ISAR system which is what our proposed algorithm is based

on. Radar waves are electromagnetic waves and hence are governed by Maxwell’s equations.Rather

than using the full Maxwell equations, we use a simplified scalar model[7]

(
∇2 − 1

c(x)
∂ 2

∂ t2

)
E (t,x) = 0 (2.1)

in which c(x) is the propagation speed of electromagnetic wave and E (t,x) stands for the electric

field which spread in the free space following wave equation. See that in free space c(x) = c0. This

equation is a good model for the propagation of each Cartesian component of the electric field.

Scattering can be considered as a result of perturbations in the wave speed, which can be written as

1

c2 (x)
=

1

c2
0

−V (x) (2.2)

where V (x stands for the reflectivity function. Equations (2.1), (2.2) are very commonly used model

for radar scattering, but we need to notice that V (x) dose not correspond to the perturbation in

the electromagnetic wave speed exactly. It is actually a measure of the radar polarized reflectivity

measured by the antenna. More accurate models can be found in [3] and references there. For a

moving target, we use V (x, t) instead of the original stationary reflectivity function.

The fundamental solution[22] to the wave equation will help us modeling the scattering and

it is a generalized function satisfying

(∇2 − c−2
0 ∂ 2

t )g(t,x) =−δ (t)δ (x) (2.3)

3



The solution to equation (2.3) is

g(t,x) =
δ (t −|x|/c0)

4π|x| =
∫ e−iω(t−|x|/c0)

8π2|x| dω (2.4)

Here g(t,x) is the field at (t,x) generated by the source. If the source is located at the origin and

starts at time 0, it is called the outgoing fundamental solution or Green’s function[19].

With the help of Green’s function we can solve the wave equation under the constant-speed

condition with any source term. Particularly, we have the following result.

(∇2 − c−2
0 ∂ 2

t )u(t,x) =− j(t,x) (2.5)

u(t,x) =−
∫

g(t − t ′,x− y) j(t ′,y)dt ′dy (2.6)

The solution of equation (2.5) is (2.6) where j stands for the source of the wave. In frequency

domain, the above result can be written as

(∇2 + k2)G =−δ (2.7)

G(ω,x) =
eik|x|

4π|x| (2.8)

Now we apply the wave equation to the electronic field. We know that E tot = E in +

E sc, where E tot ,E in,E sc are total field, incidental field and scattered field respectively and for

simplification we assume that we have free space.Therefore, we have

(∇2 − c−2(x)∂ 2
t )E

tot(t,x) = j(t,x) (2.9)

(∇2 − c−2
0 ∂ 2

t )E
in(t,x) = j(t,x) (2.10)

where j stand for the source of the field or equivalently, the current density on the transmitting

antenna. Substituting equation (2.1) to (2.9) and then subtract (2.10), we have the equation for

scattered field

(∇2 − c−2
0 ∂ 2

t )E
sc(t,x) =−V (x)∂ 2

t E tot(t,x) (2.11)

Considering j =V (x)∂ 2
t E tot , the equation (2.11) has the same form of (2.5). We can use the result

of (2.6) to solve it which is

E sc =
∫∫

g(t − τ,x− z)V (z)∂ 2
t E totdτdz (2.12)

4



Apply (2.4) to (2.12) we have

E sc =
∫∫ δ (t − τ −|x− z|/c)

4π|x− z| V (z)∂ 2
t E totdτdz (2.13)

See that E tot = E in +E sc, E sc appears on both sides of (2.13). This means (2.13) is not a formula

but an equation to be solved for E sc. For solving this problem we Fourier transform the problem

into frequency domain.

E(ω) =
∫

eiωtE dt (2.14)

Thus by (2.7) and (2.8) we have

(∇2 +
ω2

c2(x)
)Etot = J(ω,x) (2.15)

(∇2 +
ω2

c2
0

)Ein = J(ω,x) (2.16)

and hence (2.13) becomes

Esc(ω,x) =−
∫ eik|x−z|

4π|x− z|V (z)ω2Etot(ω,z)dz (2.17)

Note that (2.17) can be written as

Esc =−G V Etot (2.18)

where G denotes the operator of convolution with Green’s function and V denotes the operator of

multiplication by V ω2. Thus we have

Etot = Ein −G V Etot (2.19)

We could solve the problem (2.19) by Ein = (I +G V )Etot using Neumann series

Etot = (I +G V )−1Ein =
∞∑

n=1

(−1)n(I +G V )nEin (2.20)

The series converges when the operator G V is small in some sense[18] which leads to a weak-

scattering assumption.

Explicitly, equation (2.19) can be written as

Etot(x) =Ein +
∫

G(x− x′)V (x′)ω2Ein(x′)dx′

+
∫

G(x− x′)V (x′)ω2
∫

G(x′ − x′′)V (x′′)ω2Ein(x′′)dx′dx′′+ · · ·
(2.21)
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In the (2.21), the first term on the right side stands for the incident field, second term stands

for the field that is scattered by scatterer at x′ with strength V (x′)ω2 and then propagated to the

measurement location at x, the third term is the field scattered at X ′′ first with strength V (x′)ω2

and then propagated to X ′, scattered again at x′ with strength V (x′)ω2 and then propagated to the

measurement location at x. For imaging purpose, we measure Esc at the antenna, and we would

like to determine the reflectivity function V . However they are both unknown in the neighborhood

of target V . Therefore, we need to apply Born approximation, also known as weak-scattering or

single-scattering approximation. The Born approximation drops all terms in (2.21) that has more

than 1 factor of V and hence we have

Esc ≈ Esc
B :=−

∫ eik|x−z|

4π|x− z|V (z)ω2Ein(ω,z)dz (2.22)

Here Ein can be obtained by solving (2.10). Since in most cases, the distance between the target and

antenna is far larger than the size of an antenna, here we use a point like antenna for simplification.

So we have j(t,x) = p(t)δ (x− x0) where p is the waveform of transmitted signal. In the frequency

domain, it is J(ω,x) = P(ω)δ (x−x0). Applying (2.8), we can get the incident field in the frequency

domain which is

Ein(ω,x) =−
∫

G(ω,x− y)Pωδ (y− x0)dy

=−P(ω)
eik|x−x0|

4π|x− x0| (2.23)

Substituting (2.23) to (2.22) we obtain the frequency and time domain expression for the scattered

field.

Esc
B (ω,x0) = p(ω)ω2

∫ e2ik|x0−z|

(4π)2|x0 − z|2V (z)dz (2.24)

E sc
B (t,x0) =

∫∫ e−iω(t−2|x0−z|/c)

2π(4π|x0 − z|)2
k2P(ω)V (z)dωdz (2.25)
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Now we apply matched filter to the scattered field to find the output of correlation receiver which is

η(t,x0)≈
∫

p∗(t ′ − t)E sc
B (t,x0)dt ′

=
∫∫

1

2π

∫
ei(ω ′−ω)t ′dt ′

e−iω(t−2|x0−z|/c)

(4π|x0 − z|)2
P(ω)P∗(ω ′)V (z)dω ′dωdz

=
∫∫ e−iω(t−2|x0−z|/c)

(4π|x0 − z|)2
k2|P(ω)|2V (z)dωdz (2.26)

This equation described the data that is collected by the receiver antenna which we see that it is still

a little bit complicated.We are going to simplify it later. We do not look for a Doppler shift since

high-range-resolution pulses are considered.We see that the effect of matched filtering is simply to

replace P(ω) by 2π|P(ω)|2.

Once more in most cases, the distance between the target and antenna is far larger than the

size of an antenna, here we apply far-field to the above equations.[7] When we have |x| � |y|

|x− y|=
»
(x− y) · (x− y) =

»
|x|2 −2x · y+ |y|2

= |x|
Ã

1− 2x̂ · y
|x| +

|y|2
|x|2 = |x|

(
1− x̂ · y

|x| +O
( |y|2
|x|2

))

= |x|− x̂ · y+O
( |y|2
|x|
)

(2.27)

where we used the Taylor expansion
√

1+a = 1+a/2+O(x2) and written x̂ = x/|x|.Note that this

far-field expansion involves an implicit choice of an origin of coordinates. Similarly for |x− y|−1

we have

1

|x− y| =
1

|x|
Ç

1+O
Ç |y|
|x|
åå

(2.28)

Now we apply (2.27),(2.28) with Taylor expansion ea = 1+O(a) and (1+a)−1 = 1+O(a) to the

Green’s function (2.8) to obtain

G(x− y) =
eik|x−y|

4π|x− y| =
eik|x|

4π|x|e
−ikx̂·y

Ç
1+O

Ç |y|
|x|
åå(

1+O
(

k|y|2
|x|

))
(2.29)

We see that if |y| � |x| and k|y|2 � |x|, the remainder is very small and could be ignored. Apply

(2.29) to (2.26) we have

ηB(t)≈ 1

(4π)2|x0|2
∫

e−iω(t−2|X0|/C+2x̂0·z/c)k2|p(ω)|2V (z)dωdz (2.30)

7



Now apply inverse Fourier transform to (2.30), we have our radar data in frequency domain.

DB(ω)≈ e2ik|x0|

(4π)2|x0|2 k2|p(ω)|2
∫

e−2ikx̂0·zV (z)dz (2.31)

Note that the data DB is actually collected in three dimensions, according to different imaging

situations we will need to project the three dimensional data into two dimensions. After that we

need use a interpolation method to translate the polarized data into rectangular data D̃B. Fig. 2.1

shows the idea of such interpolation. After Fourier transform D̃B back to time domain, we got a

proper image.

Figure 2.1: The Process of Interpolating from a Polar Grid to a Rectangular Grid

2.2 MIMO Basics

Unlike a normal radar system who usually has only one transmitter and one receiver, a

MIMO radar system has multiple transmitting and receiving units. Each transmitting unit could

have a completely different waveform to the other transmitting units. This waveform diversity

8



enables superior capabilities compared with a standard phased array radar system [12, 13] who

also has multiple transmitting and receiving units but each unit transmits the same waveform with

different a phase or amplitude parameter. Figure 2.2 shows the difference between a MIMO Radar

Figure 2.2: MIMO Radar (a) versus Phased-Array Radar(b)

and a Phased-Array Radar.

Consider a MIMO radar system who has Mt transmitting antennas and Mr receiving antennas.

Let Xm(n) denote the discrete-time baseband signal transmitted by mth transmit antenna at nth time

9



sample. Let θ denote the location parameters in a polarized coordinate system, namely its azimuth

angle and range. Then with the assumption that the transmitted signals are narrowband and that the

propagation is in free space, we have the baseband signal expression at the target location.[14]

Mt∑
m=1

e− j2π f0τm(θ)Xm(n) = a∗(θ)x(n), n = 1, · · · ,N (2.32)

Here f0 is the carrier frequency of the radar, τm(θ) the time needed for signal transmitted via the

mth transmitting antenna to reach the target, (·)∗ is the conjugate transpose, N denotes the number

of samples of each transmitted pulse.

x(n) = [x1(n)x2(n) · · ·xMt (n)]
T (2.33)

a(θ) = [e− j2π f0τ1(θ)e− j2π f0τ2(θ) · · ·e− j2π f0τMt (θ)]T (2.34)

where (·)t denotes the transpose. If we have the transmit array of the radar calibrated, a(θ) is a

known function of θ .

Let ym(n) denote the signal received by the mth receive antenna and

y(n) = [y1(n)y2(n) · · ·yMr(n)]
T (2.35)

b(θ) = [e− j2π f0τ̃1(θ)e− j2π f0τ̃2(θ) · · ·e− j2π f0τ̃Mr (θ)]T (2.36)

where τ̃m(θ) is the time needed for signal scattered by the target at position θ to reach the mth

receiving antenna. For simplification we assume that the target is point-like and we will have the

received data vector as[14]

y(n) =
K∑

k=1

βkbc(θk)a∗(θk)x(n)+ ε(n) n = 1, · · · ,N (2.37)

where K is the number of targets that reflects the signals back to the receiving antenna, βk stands

for the complex amplitude that is proportional to the radar cross sections of the kth target, θk is the

location parameter of the kth target, ε(n) is the noise term and (·)c denotes the complex conjugate.

10



CHAPTER III

COMPRESSIVE SENSING

The traditional method of reconstructing signals from measured data follows the well-known

Nyquist-Shannon sampling theorem [23], which states that the sampling rate must be at least twice

the highest frequency of the original signal. Similarly, the fundamental theorem of linear algebra

suggests that the number of collected samples of a discrete finite-dimensional signal should be

at least as large as its length (its dimension) in order to collect enough information to ensure the

full reconstruction of the original signal. This principal is used in most of our current technology

such as analog-to-digital conversion, medical imaging and so on.The novel theory of compressive

sensing (CS) provides a fundamentally new approach to data acquisition, which overcomes this

common wisdom. It states that certain signals are actually sparse in some domain such that it can

be recovered by using samples much less than what Nyquist-Shannon theorem requires.

Early development in sparse representation for images and signals are focused on finding

the most significant part of the original signal in some space[16, 24, 10]. We actually have the

original signal or image already and transform it into a sparse representation. But if we apply this

method directly to radar imaging it will cause a problem. We need to collect the data following

the Shannon-Nyquist sampling theorem first, then transform the collected data into some function

space, compress it with taking the most significant part of the original signal in this specific space,

and then recover the image with the compressed signal. What we are doing is actually collecting

the full information and then throwing some insignificant part away. Such method works well when

we have enough time and space, but it is actually inefficient comparing with taking less samples

at the very beginning. Hence given a discrete signal x ∈ C
N , taking m linear measurements of this

11



signal is equivalent to applying a matrix A ∈ C
m×N

y = Ax (3.1)

Here A is called the measurement matrix and y is called the measurement vector. For compressive

sensing, we are interested in the case m � N. Without any other restriction to the problem, this

is of course a highly under-determined linear system and hence have infinitely many solutions.

But if we have the assumption that the vector x is a k-sparse, we could transfer this problem to a

l0-minimization problem

min‖z‖0 subject to Az = y (3.2)

Unfortunately, this optimization problem is a NP-hard problem which is computationally unsolvable

[15]. Therefore, we need to transform the problem (3.2) into a problem that can be solved . With the

assumption that the solution to problem (3.2) is sparse enough,this problem has a unique solution

and it is equivalent to the solution of the following l1-minimization problem[11]

min‖z‖1 subject to Az = y (3.3)

Problem (3.3) is a convex optimization problem which could be solved by some algorithms that

already exist, for example, a second-order cone program.

For further analysis on a l1-minimization we will need the help of following properties[21].

The first one is called the null space property.

Definition 1. A matrix A ∈ C
m×N is said to satisfy the null space property (NSP) of order k with

constant γ ∈ (0,1) if

‖ηT‖1 ≤ γ‖ηtc‖1 (3.4)

for all sets T ⊂ {1,2, · · · ,N},#T ≤ k and for all η ∈ kerA

The following sparse recovery result is based on this definition.

Theorem 1. Let A ∈ C
m×N be a matrix that satisfies the NSP of order k with constant γ ∈ (0,1).

Let x ∈ C
N and y = Ax and let x∗ be a solution of the l1-minimization (3.3) problem. Then

‖x− x∗‖1 ≤ 2(1+ γ)
1− γ

σk(x)1 (3.5)
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In particular, if x is k-sparse then x∗ = x.

Here σk(x)1 is the best k-term approximation of the vector x in l1 norm, which can be

obtained using a non-increasing rearrangement of x. Let r(x) = (|xi1 |, |xi2 |, · · · , |xiN |) where i j

denotes a permutation of indexes such that |xi j | ≤ |xi j+1
| for j = 1, · · · ,N − 1, then we have the

following expression for σk(x)1,

σk(x)1 =

Ñ
N∑

j=k+1

|r j(x)|
é

(3.6)

It could be showed that if all k-sparse x can be recovered from y = Ax using l1-minimization then A

has to satisfy the NSP of order k with some constant γ ∈ (0,1) [8]. However, to show a matrix that

satisfies NSP directly in real cases are really difficult. Thus we need an easier property which is

called the restricted isometry property (RIP) to help us determining either a matrix satisfies NSP or

not.

Definition 2. The restricted isometry constant δk of a matrix A ∈C
m×N is the smallest number such

that

(1−δk)‖z‖2
2 ≤ ‖Az‖2

2 ≤ (1−δk)‖z‖2
2 (3.7)

for all z that are k-sparse vectors

Definition 3. A matrix A is said to satisfy the restricted isometry property of order k with constant

δk if its restricted isometry constant δk ∈ (0,1)

It could be showed that if a matrix A satisfies RIP then it satisfies NSP[21].
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CHAPTER IV

SIMULATIONS AND RESULTS

In this chapter, we are going to do give a reconstruction algorithm for a ISAR system.

a Random Sampling: For received data of scattered field, we do a random sampling instead of

standard sampling requested by Nyquist-Shannon theorem. This means in (3.1), we are

choosing a random matrix. In this paper we select partial Fourier matrix which is proved to

satisfy restricted isometry property and can be applied to CS reconstruction[6, 17, 20]. This

is a matrix of selecting m rows out of a total N rows uniformly with all entries in the selected

row

Fj,k =
1√
N

e2π jk/N (4.1)

b Recover the Signal: For sampled data, we use a l1-minimization method to find the most sparse

representation z of the original signal.

c Image Reconstruction: Apply Fourier transform to recovered data to form a image.

Here is the simulation parameters

The main parameters for the below simulations are listed in Table 4.1. To compare with the

time-domain CS method, the most common chirp signal is chosen as the transmitted signal. The

frequency of chirp signal ranges from 3.0GHz to 3.4GHz.

4.1 Results And Discussion

The image Fig 4.14.2 are two pseudo-targets that is used for simulation. The first one is

a ring and the second is a pseudo-aircraft in the form of a combination of scatterers. Figure 4.3

14



Table 4.1: Main simulation parameters

parameter Value

speed of EM wave 3.0×108 m/s

SFR Starting frequency 3 GHZ

Frequency bandwidth 384 MHZ

Pulse duration 3.3073e-07 s

Pulse repetition frequency 20 KHZ

Initial azimuth angle 0

Angular velocity 0.15 rad/s

Initial distance 1300 m

Look angle 30◦

Transmitting Array Size 4

Receiving Array Size 4

Sample rate 0.45 × 3.4GHZ
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Figure 4.1: Target: A Ring

Figure 4.2: Target: A Pseudo-Aircraft
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4.4 shows the ISAR Image of the targets under the parameters provided in table 4.1. This image

is formed before rotation compensation, so we could see that there are still some parts does not

match strictly, but basically it shows what the original object is. Figure 4.5 4.6 shows the image

with rotation compensation and we see that it matched the original image exactly.

Now we apply sparse representation to the collected data. Figure 4.7 4.8 are the images

generated by sparse representation. We see that there is estimation error added to the original,

and clearly we lose some contrast. But considering our sampling rate is only 45% of the highest

frequency which is only 22.5% of what is requested by Nyquist-Shannon theorem, this is already

a acceptable result. Now we try to apply rotation compensation to both images to improve the

quality of the image. The result is given by Figure 4.9 4.10. We see that basically nothing can be

distinguished with in the image. Rotation compensation is failed.

4.2 Conclusion And Future Work

In this paper, we used Maxwell equation to derive a far field model of ISAR system. After

that, we applied MIMO model and Compressive sensing technology to the original ISAR model and

analyzed the the CS problem. This generates the sparse representation of an MIMO ISAR system.

In simulation we used a random sample method instead of the original uniform sample and samples

at only 22.5% of the original sample rate and get a good result. We still see that with low sampling

rate, the image loses SNR and contrast, which leads to a failure on rotation compensation, so the

future work of this paper will be increase the quality of the sparse image.
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Figure 4.3: ISAR Image of the Ring
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Figure 4.4: ISAR Image of the Pseudo-Aircraft
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Figure 4.5: ISAR Image with Rotation Compensation of the Ring
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Figure 4.6: ISAR Image with Rotation Compensation of the Pseudo-Aircraft
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Figure 4.7: ISAR Image with Sparse Representation of the Ring
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Figure 4.8: ISAR Image with Sparse Representation of the Pseudo-Aircraft
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Figure 4.9: ISAR Image with Sparse Representation and Rotation Compensation of the Ring
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Figure 4.10: ISAR Image with Sparse Representation and Rotation Compensation of the Pseudo-

Aircraft
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