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ABSTRACT 

Jonnalagadda, Sai Jyothsna. Global Entropy Based Greedy Algorithm for Discretization. Master 

of Science (MS), May, 2016, 48 pp., 15 tables, 6 figures, 60 references, 30 titles.  

Discretization algorithm is a crucial step to not only achieve summarization of continuous 

attributes but also better performance in classification that requires discrete values as input. In 

this thesis, I propose a supervised discretization method, Global Entropy Based Greedy 

algorithm, which is based on the Information Entropy Minimization. Experimental results show 

that the proposed method outperforms state of the art methods with well-known benchmarking 

datasets. To further improve the proposed method, a new approach for stop criterion that is based 

on the change rate of entropy was also explored. From the experimental analysis, it is noticed 

that the threshold based on the decreasing rate of entropy could be more effective than a constant 

number of intervals in the classification such as C5.0.
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CHAPTER 1 

INTRODUCTION 

 Artificial Intelligence (AI) is a system by which computers can think and act like humans 

and make intelligent decisions using a given set of data. Machine Learning (ML), a prominent 

and growing subdomain of AI, is the process by which a system can efficiently recognize 

patterns in a given dataset by virtue of computational learning techniques, predict decision-

making.  Essentially, ML is based on a conventional AI approach but focusses more on self-

learning from data without explicit predefined rules or instructions. Several scientific 

advancements such as robotics, computer vision, bioinformatics, etc. are underpinned by ML, 

which has resulted in its prominence as a key research topic both in academia and industry. 

Among the various research topics associated with ML, classification is the most important and 

serves as the backbone of ML process. 

              In ML, classification is the process that groups the output into specific classes. An 

algorithm which implements the classification process is called a classifier. Classification has 

been the focus of many researchers and has been applied to a variety of applications such as hand 

written digit recognition [HTA2004], malicious code detection [ZSJ2006], face detection and 

recognition and biomarker discovery [GDM2006]. Some classification algorithms such as AQ 

[KAR1999], CN2 [CPT1989], CLIP4 [CKL2004] can only handle numerical or nominal data, 

while some others can handle continuous attributes but perform well with discrete valued 

attributes [CTJ1991], [TCL2008]. To deal with this problem, several discretization algorithms 

have been developed [FUI1992], [DKS1995]. 
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               Discretization is a pre-processing mechanism that is used with ML algorithms that can 

only handle discrete data. In ML, it enhances the learning process and makes it more accurate 

and faster. The primary goal of a discretization algorithm is to transform continuous datasets into 

discrete ones by creating a set of intervals that span across the continuous datasets. For example, 

many discretization algorithms based on information entropy such as maximum entropy, which 

discretizes using the criterion of minimum information loss and Information Entropy 

Minimization (IEM) [KIR1995], [IKB1993], focus on efficiency and good performance. IEM 

consists of two parts, splitting criterion to divide an interval into two intervals and the other is the 

stopping criterion which terminates the iterative splitting algorithm.  

In this thesis, we propose a greedy discretization algorithm and explore a heuristic 

stopping criterion to improve the algorithm. As a performance evaluation, we first compare state 

of the art methods such as IEM, Class Attribute Interdependency Maximization (CAIM) 

[KLJ2004] and Class Attribute Contingency Coefficient (CACC) [TCL2008] with well-known 

bench marking datasets. We then compare these methods with the proposed methods, using a 

different number of intervals, to show that the proposed methods can outperform the state-of-the-

art methods when the number of intervals is properly defined. In addition, our experiment 

validated that the proposed heuristic stop criterion with decreasing rate of entropy could provide 

better performance than a number of intervals approach.  
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              This thesis is organized into different chapters each dealing with a specific task of the 

research. Chapter 1 deals with introduction, research goals of the project, and the organization of 

the thesis. Chapter 2 gives an overview of Discretization and Classification processes. Chapter 3 

analyzes different types of discretization methods. It gives detailed explanations of different 

types of methods and their criterion and also compares existing methods with newly 

implemented methods. Chapter 4 explores the idea of a new stopping criterion using a greedy 

approach for state of the art discretization algorithms. Chapter 5 presents experimental analysis 

by comparing performance and accuracy with different types of discretization algorithms and 

discusses the best results. Chapter 6 concludes with a summary of the thesis.

 

 

 

 

 

 

 

 

 

 

 



 

4 

 

CHAPTER II 

AN OVERVIEW OF DISCRETIZATION AND CLASSIFICATION PROCESS 

Data discretization is the process of simplifying large amounts of raw data by reducing 

the number of continuous values (or variables) by partitioning them into specific intervals. It is 

generally used in data-preprocessing for ML algorithms that are limited to the use of discrete 

data. Careful selection of an effective discretization method is extremely important to produce 

new and more accurate patterns. Effective discretization improves the efficiency of the machine 

learning algorithm and enhances the knowledge extracted from discretized dataset easy to 

understand and more useful. Discrete features also reduce memory usage and enhance 

representation of the knowledge. Discretization can significantly impact the performance of 

classification algorithms and has important implications in analyzing large and highly complex 

datasets. A well-developed discretization algorithm can not only reduce the continuous attributes 

into discrete ones for better understanding but can also make classification effective and 

efficient. Most importantly, a carefully developed discretization algorithm can significantly 

improve the accuracy and performance in classification. 

2.1 Classification 

  Classification is a process that classifies given data based on the training set and the 

values in a classifying attribute and uses it in classifying new data. Classification is a supervised 

learning technique used to assign instances to pre-defined classes. Generally, a classification 

model is created from the training data and is used to classify new instances or unknown cases 

and also estimate the accuracy of the model.  However, features (or attributes) for classification 
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data are often numerical (or continuous). Some of the classification algorithms can take nominal 

data as input and others discretize numeric data into nominal data during the learning process. 

Methods used to evaluate classification are accuracy, speed, robustness, scalability, 

interpretability and other measures such as goodness of rules, or compactness of the 

classification rules. 

              Numerous methods have been proposed for classification and data mining in the 

literature, some examples include Decision trees [CRM2007], Genetic algorithms [KSV2007], 

Neural networks [CFG2007] and Bayesian classification [RRY2006]. Among them, decision 

trees like C5.0 and Naïve Bayes Classifier (NBC) are widely used, efficient and also display a 

good classification when compared with other techniques. A decision tree like C5.0 [RQN2005] 

is a flowchart that resembles a tree structure, which can be built by using a recursive divide and 

conquer algorithm that partitions the data. Alternatively, the Naïve Bayes classifier (NBC) is 

based on Bayes theorem with strong independence assumptions between attributes. The main 

advantage of NBC is that it requires a small amount of training data to estimate the parameters 

and uses the maximum likelihood method. Therefore, both C5.0 and NBC have been used in 

many unsupervised and supervised discretization algorithms such as Equal Width and Equal 

Frequency [CWG1991], IEM [IKB1993], CAIM [KLJ2004], CACC [TCL2008], to evaluate 

accuracies and the number of intervals with different datasets. 

2.1.1 Naïve Bayes Classifier  

A Naïve Bayes Classifier (NBC) is a simple probabilistic classifier based on applying 

Bayes theorem with strong or naïve independence assumptions. Bayes theorem was named after 

Thomas Bayes (1702 –1761), who invented a method to compute the distribution for the 

probability parameter of a binomial distribution. It is normally used in machine learning and is 
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typically a collection of classification algorithms based on Bayes theorem. Naïve Bayesian 

model is easy to build and is useful in analyzing large and complex datasets. Despite its 

simplicity, the Naïve Bayesian Classifier often outperforms more sophisticated classification 

methods. Essentially, NBC uses Bayes theorem for calculating the posterior probability. The 

Naïve Bayes classifier assumes that the effect of the value of a predictor (𝑋) on a given class (𝐶) 

is independent of the values of other predictors; this assumption is also called class conditional 

independence. Bayes theorem is as follows: 

: 

                  𝑃(𝐶|𝑋) =  
𝑃(𝑋|𝐶)𝑃(𝐶)

𝑃(𝑋)
                                      (1)  

 

where, 𝑃(𝐶|𝑋)is the posterior probability of class (target) given predictor (attribute), 𝑃(𝐶) is the 

prior probability of class, 𝑃(𝑋|𝐶) is the likelihood, which is the probability of a predictor given a 

class, and 𝑃(𝑋) is the prior probability of predictor.  

The Naïve Bayes algorithm is a classification algorithm, which is based on applying Bayes 

theorem with the naïve assumption of independence between every pair of features. Given a 

class variable C and a dependent feature vector 𝑥1 through 𝑥𝑛, Bayes theorem states the 

following relationship:  

        𝑃(𝐶|𝑥1, … , 𝑥𝑛) =
𝑃(𝐶)𝑃(𝑥1, … , 𝑥𝑛|𝐶)

𝑃(𝑥1, … , 𝑥𝑛)
                                         (2)    

 

              Using the naïve independence assumption, equation (2) can be written as  

 

𝑃(𝑥𝑖|𝐶, 𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛) = 𝑃(𝑥𝑖|𝐶)                                       (3) 
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              for all i, this relationship is simplified to 

 

       𝑃(𝐶|𝑥1, … , 𝑥𝑛) =
𝑃(𝐶) ∏ 𝑃( 𝑥𝑖|𝐶)𝑛

𝑖=1

𝑃(𝑥1, … , 𝑥𝑛)
                                            (4) 

 

              From this assumption, we can assume 𝑃 (𝑥1, …, 𝑥𝑛) is constant and can be written as: 

 

                     𝑃(𝐶|𝑥1, … , 𝑥𝑛) = 𝑃(𝐶) ∏ 𝑃(𝑥𝑖|𝐶)                                            (5)

𝑛

𝑖=1

 

 

The naïve Bayes classifier combines this model with a decision rule (which is known as  

 

maximum a posteriori or MAP decision rule. Hence, the corresponding classifier in the function  

 

classify can be defined as follows: 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 (𝑥1, … ,  𝑥𝑛)   =  𝑎𝑟𝑔𝑚𝑎𝑥𝐶𝑃(𝐶) ∏ 𝑃(𝑥𝑖|𝐶)             

𝑛

𝑖=1

 

 

Although it’s a simple classification, it can outperform other more sophisticated 

algorithms and is extremely useful in many applications such as spam detection, document 

classification, etc. The main advantages of this algorithm are that it is fast, simple and easily 

trained with a small dataset. The main disadvantage is that it assumes that every feature is 

independent, which is not always possible, particularly in practical applications. Despite its 

challenges, NBC is commonly used in the industry and as such we have considered it in our 

experiment.  

2.1.2 C5.0  

  The C5.0 classifier is an algorithm used in machine learning and is based on decision 

trees [RQR2011]. The C5.0 algorithm is an extension of C4.5 algorithms, which iteratively visits 

each decision node to select the optimal split. This process is continued until no further split is 

possible. The algorithm mainly uses the concept of information gain or entropy reduction to 



 

8 

 

select the optimal split. Information gain is the increase in information produced by partitioning 

the training data according to the candidate split. C5.0 algorithm chooses the split with highest 

information gain as the optimal split. The information gain measure is used to select the best 

attribute at each node in the decision tree. The C5.0 method uses post-pruning method and thus 

enhances the accuracy of the classification. C5.0 has many features such as large decision trees, 

which can be viewed as a set of rules; acknowledgment of missing and noisy data, and error 

pruning. The C5.0 classifier contains a simple command line interface that makes it easy to 

generate the decision trees. In classification technique, the C5.0 classifier can anticipate which 

attributes that are relevant or from those that are not. Compared to C4.5 and other state of the art 

discretization algorithms, C5.0 provides good accuracy and automatically eliminates unhealthy 

attributes. C5.0 also classifies the data in less time compared to other classifiers. Given that, C5.0 

is a commercial version of C4.5 which uses less memory, is fast, and builds smaller rule sets than  

C4.5, while being more accurate, we selected C5.0 classifier to compare classification accuracy 

and number of intervals in our experiment. 
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Description of the C5.0 algorithm is provided in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: C5.0 Algorithm 

2.2 Discretization 

               Discretization is a data pre-processing technique, which is used to convert numerical 

attributes into categorical attributes, using data mining techniques that can be used in a classifier. 

Discretization can be performed repetitively on an attribute data set to select the best cut points 

that splits continuous value ranges into discrete number of bins usually referred to as states.  

2.2.1 Supervised Discretization Process  

               A Supervised discretization process is used to find a set of cut points to partition a  

INPUT: Example, Target Attribute, Attribute  

OUTPUT: Classified instances  

Algorithm  

STEP 1: To make the tree, create a root node. 

STEP 2: Check for the base cases.  

STEP 3: Construct a Decision Tree using training data.  

STEP 4: Find the attribute with the highest Info gain (A_Best).  

STEP 5: A_Best is assigned with Entropy Minimization.  

STEP 6: Create a decision node that splits on A_Best.  

STEP 7: According to A_Best, Split into different partitions.  

STEP 8: Repeat on the sublists obtained by splitting on A_Best. 

By applying reduced Error-pruning technique, classification can be defined as follows: 

STEP 9: For each training data (ti), 𝑡𝑖∈𝐷, apply the Decision Tree to determine its class. 
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range of continuous values into a small number of sub-intervals. Two key aspects of 

discretization are: finding the number of intervals with the help of the user and determining the 

width and boundaries of a given range of continuous values. Typically, the process involves four 

steps: 1) Sorting the continuous values to be discretized; 2) Evaluating cut-point for splitting or 

adjacent intervals for merging; 3) Splitting or merging intervals of continuous values according 

to some criterion; and 4) Stopping at a point based on some criterion. Figure 1 presents a 

schematic.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Supervised Discretization Process 
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2.2.2 Categories of Discretization Methods  

                            There are several ways by which discretization methods can be categorized. 

The following categories are mentioned in some research papers [DKS1995], [DNA2007]. Some 

of these methods are Supervised vs Unsupervised, Splitting vs Merging, Local vs Global, Static 

vs dynamic and Non-incremental vs incremental. A brief explanation of these methods is 

provided in this sub-section. 

 

 

 

 

 

Figure 2: Categories of Discretization Methods 

              Unsupervised methods can be discretized without the knowledge of class label whereas 

Supervised methods use class information to carry out discretization. The second category is 

Splitting vs Merging in which Splitting is a top-down method starts with an empty set of cut 

points and gradually divides these intervals and subintervals to obtain discretization. In contrast, 

Merging is a bottom-up approach that considers all the possible cut points and then eliminates 

these cut points by merging intervals. The third is Local vs Global where Local methods produce 

partitions that are applied to localize regions of instance space and Global methods use the entire 

space and form a mesh over entire n-dimensional continuous instance spaces, where each feature 

is partitioned into regions independent of other attributes. The fourth one is Static vs Dynamic in 

which Static methods require some parameters such that it indicates the largest number of 

intervals to discretize a feature and it is done prior to the classification task and on the opposite 

side, dynamic methods conduct a search through the space of possible k values for all features 

Unsupervised vs Supervised 

Splitting vs Merging 

Global vs Local 

Dynamic vs Static 

Univariate vs Multivariate 

Non-incremental vs incremental 
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simultaneously. The fifth one is Univariate vs Multivariate, where Univariate takes one feature 

at a time and Multivariate considers multiple features simultaneously. The last is non-

incremental methods that consider only the available historical data values. By taking time into 

consideration, data values can be completely new and are not considered while incremental 

methods try to cover the new values.
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CHAPTER III 

DISCRETIZATION METHODS 

               Discretization methods can be analyzed and are separated into two important groups 

being top-down versus bottom-up in which the top-down methods use Unsupervised (or class 

bind) algorithms discretize without using having the knowledge of class information. Some 

popular unsupervised discretization algorithms are equal width and equal frequency 

[CWG1991]. Supervised discretization algorithms discretize continuous attributes and have 

additional knowledge by considering class information. Some of these state of art supervised top-

down and bottom-up algorithms include Paterson-Niblett [APN1987], chi Merge [RKB1992], 

chi2 [HLS1997], Maximum Entropy [AWC1987], CADD (Class-Dependent Discretization for 

Inductive Learning from continuous and Mixed-Mode data) [JKC1995], IEM (Information 

entropy Maximization) [IKB1993], FCAIM (Fast Class Attribute Interdependence 

Maximization) [KLJ2003], CAIM (Class-Attribute Interdependence Maximization) [KLJ2004], 

CACC (Class-Attribute Contingency Coefficient) [TCL2008], DCR (Class Attribute Information 

to reduce Number of intervals) [PTK2009], UCAIM (Uncertain CAIM) [JYT2010],  CACM 

(Class Attribute Coherence Maximization) [LMN2011], MCAIM (Modified CAIM) 

[VSM2012], ECAIM (Enhanced Class-Attribute Interdependence Maximization) [SKW2012], 

Ur-CAIM (Improved CAIM Discretization algorithm) [CAO2016], CAIA (Class-Attribute 

Interval Average) [BAS2014].
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              In this chapter, we discuss two unsupervised discretization algorithms and three 

supervised discretization algorithms, methods, criterion and their importance when compared to 

other state of the art supervised discretization algorithms to analyze the performance, accuracy 

and how they provide an optimal solution to the problem. The following methods are discussed 

based on several research papers [DKS1995], [IKB1993], [KLJ2004], [TCL2008]. The two 

common unsupervised discretization methods considered are Equal Width, which requires the 

user specified number of intervals and adopts the heuristic formula also used in caim to estimate 

the number of discrete intervals and Equal Frequency, which is same as equal width in 

specifying the intervals with user supervision and it divides the range so that every interval 

contains the equal number of distributed sorted values. The main drawback of both these 

methods is the user input of intervals and the uneven distribution of values in case of Equal 

Width discretization. Three supervised discretization methods were considered: IEM (based on 

entropy), CAIM and CACC which uses the top-down (splitting) approach and provide the best 

results when compared with other state of the art algorithms. The main idea behind the IEM 

approach is to find a potential cut-point to split a range of continuous values into two intervals 

and also use class information entropy to select boundaries for discretization. It considers one big 

interval and then recursively partition this big interval into smaller sub intervals such that the 

stopping criterion (such as MDLP) satisfies. To overcome this, we use a better approach by using 

a greedy method in IEM as a stop criterion, more advanced approach than MDLP. The other two 

important supervised discretization algorithms are CAIM and CACC, such that CAIM is one of 

the most progressing algorithm which does not have user supervision and the main use of caim is 

it will test all possible cut-points and generate one in each loop for a continuous attribute and 

stops until it satisfies the specific condition and it also finds local maximum CAIM value.        
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Although it outperforms the other state of the art methods, it still has some limitations 

such as not considering the data distribution and also number of intervals is close to the target 

classes. In the case of CACC, it introduces a new term named the contingency coefficient to 

measure the strength of the dependence between variables. It introduces log(n) to reduce the 

huge influence of variable n which increases the discretization process. Both methods use a 

greedy approach to generate the sub-optimal discretization scheme but have a searching and 

stopping criterion problem. In this thesis, we focus on improving the stopping criterion problem 

in the greedy algorithm, check to find out whether cut points are more or less than S, and 

evaluate their potential to improve the threshold as a stopping criterion and show better 

performance by testing different intervals for the three supervised discretization algorithms. 

 

3.1 Unsupervised Discretization Methods 

Among the unsupervised discretization methods, the simple ones are Equal Width and 

Equal Frequency and the more sophisticated ones are based on the clustering analysis (such as k-

means discretization). They divide continuous ranges into sub-ranges based on user specified 

width or frequency. Each of these two discretization methods are discussed in detail in this 

section. 

3.1.1 Equal Width Discretization (EWD)   

Equal Width discretization is the simplest method, which is used to divide the range of 

observed values for a feature into 𝑁 equal sized bins, where 𝑁 is the parameter, which is 

provided by the user defining the specified number of intervals. This process involves solving 

the observed values of a continuous feature by finding the minimum and maximum values and 
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the interval can be computed by dividing the range of observed values into 𝑁 equally sized bins 

from the equation below. 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  
𝑋𝑚𝑎𝑥  − 𝑋𝑚𝑖𝑛

𝑁
                                    (7) 

 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 = 𝑋𝑚𝑖𝑛 + ( 𝑖 × 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 )              (8) 
 

              The boundaries can be built by 𝑖 = 1 … 𝑁 using equation (8). However, this type of 

discretization is sensitive to outliers and may drastically skew the range. The drawbacks of this 

method are uneven distribution of data points in which some intervals may have more data points 

than other which is not well distributed. An example is provided in Table 2 

Data values 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 

Original values 10 20 25 15 30 40 35 45 50 60 

Sorted values 10 15 20 25 30 35 40 45 50 60 

    

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

𝑁
  =  

60 − 10

2
=

50

2
= 25    𝑁 = 2 

 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 = 𝑋𝑚𝑖𝑛 + 𝑖 × 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 10 + 1 × 25 

Table 2: Equal Width Example 

3.1.2 Equal Frequency Discretization (EFD)  

Equal Frequency discretization is another simple form of discretization, which is similar 

to equal width but with some differences. It is used to determine the minimum and maximum 

value of the discretized attributes and sort all values in ascending order and divide the sorted 

continuous values into N equally sized bins such that each interval contains approximately 

𝑛 𝑁 ⁄ data instances with adjacent values. This algorithm tries to overcome the equal width 

discretization by dividing the domain in intervals with the same distribution of data points, which 
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is a little different compared to equal width discretization. The data instances with identical value 

must be placed in the same interval and it is not possible to generate exactly N equal frequency 

intervals. Since, these unsupervised discretization methods do not utilize instance labels in 

setting partition boundaries, the main problem is it is not always possible to generate exactly N 

equal frequency intervals because it tries to replace the data instance with an equivalent value in 

the same interval N = 2. Each interval will contain 10/2 = 5 instances. An example is provided in 

Table 3. 

Data values 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 

Original values 10 20 25 15 30 40 35 45 50 60 

Sorted values 10 15 20 25 30 35 40 45 50 60 

N = 2, So, each interval contains 10/2 = 5 instances 

instances 5 5 5 5 5 5 5 5 5 5 

Table 3: Equal Frequency Example 

3.2. Supervised Discretization Methods 

               As discussed above, various Supervised Discretization Methods are proposed in the 

literature but among these methods, entropy-based discretization, interval splitting and merging 

methods are the easiest to use. Supervised Discretization methods make use of class labels when 

partitioning the continuous features. We considered three methods in our experiment, each of 

these methods are discussed in detail in this section.  

3.2.1 Information Entropy Minimization (IEM)  

Fayyad and Irani proposed a method of discretization based on the entropy measure, also 

called as entropy minimization heuristic and this approach of discretization begins by sorting all 

the instance values of an attribute in ascending order. It then identifies the probable cut-points by 
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examining the class of each instance; if the class value changes between two instance values, 

then the mid-point of these values can be considered as a potential cut-point. After finishing a list 

of complete potential cut-points, it evaluates each potential cut point. 

 

                     𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = − ∑ 𝑝𝑖

𝑛

𝑖=1

𝑙𝑜𝑔2𝑝𝑖                                              (9) 

  where,  𝑝𝑖 is the probability of class i and is estimated as 𝑐𝑖 𝑆⁄  ,  𝑐𝑖 being the total number 

of data instances of class i. A log function of base 2 is used because the information is encoded 

in bits and n is the total number of instances. Based on this entropy measure, J. Ross and Quinlan 

developed an algorithm called ID3 to induce best split in decision trees. ID3 employs a greedy 

search to find potential split points within existing range of continuous values using the formula: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆, 𝑇) = −𝑝𝑙𝑒𝑓𝑡 ∑ 𝑝𝑗

𝑚

𝑗=1

, 𝑙𝑒𝑓𝑡 𝑙𝑜𝑔𝑝𝑗 , 𝑙𝑒𝑓𝑡 − 𝑝𝑟𝑖𝑔ℎ𝑡 ∑ 𝑝𝑗

𝑚

𝑗=1

, 𝑟𝑖𝑔ℎ𝑡 𝑙𝑜𝑔𝑝𝑗 , 𝑟𝑖𝑔ℎ𝑡     (10) 

From the above equation, pjleft and pjright are the probabilities that an instances belong 

to class j, which is on the left or right side of the potential split-point T and m is the number of 

classes. The cut-point minimized in equation (10) is the best split point and it is used to separate 

initial values into two subsets. This process is repeated recursively on each of the halves and 

continues until algorithm reaches a stopping criterion. The stopping criterion of the entropy 

method is MDLP (Minimum Description length principle). It will stop discretization only if the 

best split at the given level results in a lower information gain than the amount of information it 

would cost to encode the theory being created by the new split.

𝑔𝑎𝑖𝑛 <
𝑙𝑜𝑔(𝑁 − 1) + 𝑙𝑜𝑔2(3𝑘 − 2) − 𝐸𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) + 𝐸1𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑆1) + 𝐸2𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑆2)

𝑁
(11) 
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This can be calculated using equation (9), where N is the number of instances, c is the 

number of classes, E is the measure of entropy for the existing split, E1 and E2 measure the 

entropy in the proposed splits, with S1 and S2 as the number of classes in the proposed splits.  

Entropy minimization evaluates as a candidate cut-point, which is the mid-point between 

each successive pair of the sorted values. For this process to be in execution, to evaluate each 

candidate cut-point, the data are discretized into two intervals so that the resultant class 

information entropy is calculated. A binary discretization is determined by selecting by choosing 

the cut-point so that the entropy is smallest amongst all other candidate cut-points. So, the binary 

discretization is applied recursively so that it always selects the best cut-point. Hence, as 

mentioned earlier, to stop this discretization, a minimum description length is applied. The main 

use of this discretization algorithm is it makes use of class labels when partitioning the 

continuous features. A detailed description of the IEM algorithm is provided in Table 4.  
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Table 4: IEM Algorithm 

3.2.2 Class Attribute Interdependency Maximization (CAIM) Discretization 

Discretization transforms a continuous attribute’s values into a finite number of 

intervals and associates with each interval a numerical, discrete value. For mixed mode

Step 1 

1.1 Select data values from minimum to maximum. 

1.2 Select original continuous values based upon step 1.1. 

1.3 Use class labels when partitioning the continuous features before sorting values. 

1.4    Sort continuous values in ascending order. 

1.5    Find the cut-points in the continuous attributes based on the minimum and maximum  

 

          values of each class. 

         

Step 2 

 

2.1     Compute the class information entropy by considering each data value as a split point. 

 

2.2     Takes the one that generates the best gain out of all possibly splitting values. 

 

2.3     A binary discretization is determined by selecting the bin boundary for which the entropy  

 

          is minimal amongst all candidates. 

 

2.4     The above method in step 2.3 can be recursively applied until stopping criterion is   

              

          achieved. 

 

2.5     Minimum Description Length Principle (MDLP) is proposed to decide when to   

              

           terminate discretization process. 
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(continuous and discrete) data, discretization is usually performed prior to the learning process. 

Discretization is a two-step process. The first process is to find the number of discrete intervals. 

Only a few discretization algorithms execute this automatically, but the user must designate the 

number of intervals or provide a heuristic rule. The second process is to find the width or the 

boundaries of the intervals given the range of values of a continuous attribute. Our proposed 

CAIM algorithm performs both tasks by automatically selecting a number of discrete intervals 

and finding the width of every interval based on the interdependency between classes and 

attribute values at the same time. 

The CAIM algorithm not only discretizes an attribute into a small number of intervals, 

but also makes it much easier for the subsequent machine learning task by maximizing the class-

attribute interdependency. The algorithm does not require user supervision since it automatically 

selects the proper number of discrete intervals. The CAIM algorithm uses class-attribute 

interdependency as defined in the literature.  

The goal of our proposed CAIM algorithm is to find the minimum number of discrete 

intervals and minimum loss of the class-attribute interdependency. The algorithm uses the class 

attribute interdependency information as the criterion for the optimal discretization. We 

introduce several basic definitions for the criterion. For a certain classification task, assume that

we have a training data set consisting of M examples and that each example belongs to only one 

of the S classes. F indicates any of the continuous attributes from the mixed-mode data.  

Then, there exists a discretization scheme D on F, which discretizes the continuous 

domain of attribute F into n discrete intervals bounded by the pairs of number. 

D: {[d0, d1], [d1, d2],..., [dn-1, dn]}     (12) 
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Where d0 is the minimal values and dn is the maximal value of attribute F, and the values 

in (12) are organized in ascending order. These values constitute the boundary set {d0, d1, d2,…, 

dn} for the discretization D. Each value of attribute F can be classified into only one of the n 

intervals defined in (12). With the change of discretization D, the membership value of each 

value within a certain interval for attribute F may also change. The class variable and the 

discretization variable of attribute F can be treated as two random variables, thus, a two-

dimensional frequency matrix (called quanta matrix) can be set up as shown in Table 5. 

 

Class 

Interval  

Class Total [𝑑0, 𝑑1]      …       [𝑑𝑟−1,   𝑑𝑟]   …    [𝑑𝑛−1,   𝑑𝑛] 
𝐶1 
. 

. 

𝐶𝑖 
. 

. 

𝐶𝑠 

𝑞11        …             𝑞1𝑟          …           𝑞1𝑛 

.                                .                             . 

.                                .                             . 

𝑞𝑖1          …             𝑞𝑖𝑟           …             𝑞𝑖𝑛 

.                               .                             . 

.                               .                             . 

𝑞𝑠1        …              𝑞𝑠𝑟          …            𝑞𝑠𝑛 

𝑀1+ 
. 

. 

𝑀1+ 
. 

. 

𝑀1+ 

Interval Total 𝑀+1        …              𝑀+𝑟         …            𝑀+𝑛 𝑀 

TABLE 5 Quanta Matrix for Attribute F and Discretization Scheme D 

In tables, qir is the total number of continuous values belonging to the ith class that are 

within interval (dr-1, dr). Mi+ is the total number of object belonging to the ith class and M+r is the 

total number of continuous values of attribute F that are within interval (dr-1, dr), for i=1, 2,..., S 

and r =1, 2,…, n. 

Given the quanta matrix as shown in Table 5, the Class-Attribute Interdependency 

Maximization (CAIM) criterion that measures the dependency between the class variable C and 

the discretization variable D for attribute is defined as:  

 

         𝐶𝐴𝐼𝑀(𝐶, 𝐷|𝐹) =
∑

𝑚𝑎𝑥𝑟
2

𝑀+𝑟

𝑛
𝑟=1

𝑛
                      (13)
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where, n is the number of intervals, r iterates through all intervals, i.e., r = 1, 2, ..., n, maxr is the 

maximum value among all qir values (maximum value within the rth column of the quanta 

matrix), i = 1, 2, ..., S, M+r is the total number of continuous values of attribute F that are within 

the interval (dr-1, dr). The CAIM criterion is a heuristic measure that quantifies interdependence 

between classes and the discretized attribute. The criterion is independent of the number of 

classes and the number of the continuous attributes and has the following properties: 

1. The larger the value of CAIM, the higher the correlation between the class labels and the 

discrete intervals. The bigger the number of values belonging to class Ci within a 

particular interval, the higher the interdependence between Ci and the interval. If the 

number of values belonging to Ci within the interval is the largest, and then Ci is called 

the leading class within the interval. The CAIM criterion accounts for the trend of 

maximizing the number of values belonging to a leading class within each interval by 

using maxr. The value of CAIM grows when the values of maxr grow, which relates to 

the increase of the interdependence between the class labels and the discrete intervals. 

The highest interdependence between the class labels and the discrete intervals (and, at 

the same time, the highest value of CAIM) is achieved when all values within a particular 

interval belong to the same class for all intervals. 

In this case, maxr = M+r and CAIM = 𝑀 𝑛⁄  

2. It takes on real values from the interval [0, M], where M is the number of values of the   

continuous attribute F.  

3. The squared maxr value is divided by the M+r for a reason: To eliminate the negative 

impact that the values belonging to classes other than the class with the maximum 
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number of values within an interval have on the discretization scheme. The more such 

values the bigger the value of M+r will decrease the value of CAIM. 

4. Because the criterion favors discretization schemes with a smaller number of intervals, 

the summed value is divided by the number of intervals n. 

5. The Mi+ values from the quanta matrix are not used because they are defined as the total 

number of objects belonging to the ith class, which does not change with different 

discretization schemes. The value of the CAIM criterion is calculated with a single pass 

over the quanta and it maximizes the class-attribute interdependency. 
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TABLE 6 CAIM Discretization Algorithm 

3.2.3 Class Attribute Contingency Coefficient (CACC) Discretization

This is another type of discretization, which is similar to CAIM and implemented in order 

to raise the quality of the generated discretization scheme by extending the idea of contingency 

coefficient which combines with the greedy method. It also generates a better discretization 

method to obtain an enhancement of accuracy for C5.0. With regards to the execution time of the 

Given: Data consisting of M examples, S classes and continuous attributes Fi. For every Fi   

Step 1 

1.1 Find minimum (d0) and maximum (dn) values of Fi. 

1.2 Form a set of all distinct values of Fi in ascending order, and initialize all possible interval 

boundaries B with minimum, maximum and all the midpoints values of all the adjacent 

pairs in the set. 

1.3 Set the initial discretization scheme as D: {[d0, dn]}, set GlobalCAIM = 0. 

Step 2 

2.1    Initialize k=1. 

2.2    Tentatively add an inner boundary from B which is not already in D, and add it in D  

          and calculate corresponding CAIM value. 

2.3    After all the tentative additions have been tried, accept the one with highest CAIM  

        value. 

2.4     If (CAIM > GlobalCAIM) or k< S then update D with the boundary accepted in step   

          2.3 and set GlobalCAIM = CAIM.  

2.5     Set k = k+1 and go to step 2.2 

Output:  Discretization Scheme D 
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discretization, the number of generated rules and the execution time of C5.0, CACC also 

achieves promising results. By using the same Quanta matrix described in CAIM, researchers 

use the contingency coefficient as shown in the below equation to measure the strength of 

dependence between the variables. 

 

                                 𝐶 = √
𝑦

𝑦 + 𝑀′
                                                                 (14) 

   𝑤ℎ𝑒𝑟𝑒 𝑦 = 𝑀 [(∑ ∑
𝑞𝑖𝑟

2

𝑀𝑖+𝑀+𝑟

𝑛

𝑟=1

𝑠

𝑖=1

) − 1]                                              (15) 

  M is the total number of instances, n is the number of intervals and qir is the number of 

samples with class i (i=1, 2, …, S) and r (r= 1, 2, …, n) in the interval (dr-1, dr). Mi+ is the total 

number of samples with class i and M+r is the total number of samples in the interval (dr-1, dr). 

From Formula (15), the contingency coefficient takes a distribution of all samples into account 

by using [(qir)
2/Mi+M+r]. The contingency coefficient is a very good criterion to measure the 

interdependence between target class and discretized attributes, which can be considered as two 

variables. However, we divide y by log (n) and define the cacc value as: 

𝑐𝑎𝑐𝑐 = √
𝑦′

𝑦′ + 𝑀′
                             (16) 

𝑦′ =
[(∑ ∑

𝑞𝑖𝑟
2

𝑀𝑖+𝑀+𝑟

𝑛
𝑟=1

𝑠
𝑖=1 ) − 1]

𝑙𝑜𝑔(𝑛) 
            (17) 

We divide y by log (n) for two reasons such as (a) to speed up the discretization process, 

and (b) a discretization scheme may contain too many intervals and should not suffer from an 
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overfitting problem. CAIM also took these reasons into account so that in the CAIM criterion, 

the summed value was divided by the number of intervals n and it makes its discretization 

schemes unreasonable due to the huge influence of the variable n. CAIM almost always 

generates a number of discretization schemes in which the number of intervals is very close to 

the number of target classes. Hence, cacc uses log (n) to reduce its influence of n as in CAIM. In 

order to reduce the computation cost, cacc also uses the greedy method like caim to generate a 

sub-optimal discretization scheme. In other words, cacc not only finds the best division point but 

records a Globalcacc value. If the generated cacc value in loop k+1 is less than the Globalcacc 

obtained in loop k, cacc would terminate and output the discretization scheme. To generate a 

rational discrete result, such a greedy mechanism is ignored if the number of generated intervals 

is less than the number of target classes. Since the main framework of cacc is similar to that of 

CAIM. The CAIM and CACC algorithm work in a greedy top-down manner. They start with a 

single interval that covers all possible values of a continuous attribute and divide it iteratively. 

From all possible division points that are tried (with replacement) in Step 2.2, it chooses the 

division boundary that gives the highest value of the CAIM and CACC criterion. The algorithm 

assumes that every discretized attribute needs at least a number of intervals equal to the number 

of classes because this guarantees the discretized attribute that can improve subsequent 

classification. The CAIM and CACC algorithms use a trade-off between finding a discretization 

with the highest possible class-attribute interdependency and a reasonable computational cost. 

The main advantage of this algorithm is that it finds a small number of discretization intervals, 

which gives a low computational cost, and at the same time high class-attribute interdependency. 

The literature survey proposed various discretization methods with the help of greedy algorithm. 

However, in this thesis, we focus mainly on finding the best decreasing rate using searching 
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algorithm which is used to find the new stopping criterion in which we want to see the criterion 

increases or decreases in case of searching algorithms by using a greedy algorithm and also test 

whether the criterion increases or decreases. In IEM, it is used repetitively to find stop points 

using a decreasing rate and also for finding an optimal threshold which needs to do cross 

validation in the training data set.
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TABLE 7 CACC Discretization Algoritm

 

 

 

 

 

 

Given: Data consisting of M examples, S classes and continuous attributes Fi. For every Fi  

Step 1 

1.1      Find minimum (d0) and maximum (dn) values of Fi. 

1.2      Form a set of all distinct values of Fi in ascending order, and initialize all possible    

          interval boundaries B with minimum, maximum and all the midpoints values of all        

          the adjacent pairs in the set. 

1.3      Set the initial discretization scheme as D: {[d0, dn]}, set GlobalCACC = 0 in  

           consideration with cacc algorithm. 

Step 2  

2.1      Initialize k=1. 

2.2      Tentatively add an inner boundary from B which is not already in D, and add it in D  

            and calculate corresponding CACC value. 

2.3      After all the tentative additions have been tried, accept the one with highest CACC  

          value.                  

2.4      If (CACC > GlobalCACC) or k< S then update D with the boundary accepted in  

          step 2.3. Set GlobalCACC = CACC, else terminate. 

2.5      Set k = k+1 and go to step 2.2 

Output:  Discretization Scheme D 
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CHAPTER IV 

 

 

GLOBAL ENTROPY BASED GREEDY ALGORITHM 

 

 

In classification, decision tree and Bayesian network classifiers require discretization 

during preprocessing; IEM has been consistently used even though CAIM and CACC were 

proposed with better experimental results. The reason to conventionally use IEM is probably its 

own theoretical background and competitive performance. Our preliminary experiment also 

shows that CAIM and CACC were not clearly superior to IEM as shown in the Table 8. 

In this chapter, we propose a global Entropy-based greedy algorithm. Global Entropy 

(GE) was originally defined in [WMP2005], to search for cut-points with GE as a fitness 

function. In the proposed method, instead of recursively splitting intervals in IEM, searching cut-

points are iteratively decided by measuring GEs for all possible cut-points and selecting a cut-

point that has minimum entropy. While the entropy in IEM is for only two intervals, Global 

Entropy (GE), is measured with multiple intervals. This is similar with CAIM and CACC where 

caim and cacc values are iteratively measured in their algorithms. GE is defined as follows. 

∑ [ ( |𝑝𝑖|(𝑙𝑜𝑔2|𝑝𝑖|) − ∑ |𝑝𝑖𝑚|(𝑙𝑜𝑔2|𝑝𝑖𝑚| )] (
|𝑃𝑖|

𝑞
)                   (18)

𝑚

𝑗=1

𝑛

𝑖=1
 

From this equation (18), n is the number of partitions, 𝑝𝑖 the set of instances in the ith 

partition, m is the number of unique class labels in  𝑝𝑖,  𝑝𝑖𝑚 the set of instances of partition  𝑝𝑖 

that have the mth class label, and q the number of instances in the entire input file. 
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In the CAIM and CACC algorithms, intervals are continually split as long as caim and 

cacc are greater than the values in previous iterations or the number of intervals is less than the 

number of classes, S. It means that the number of intervals can be greater than S only when caim 

and cacc is increasing after the number of intervals is S. However, the preliminary experiment 

(Tables 10 and 11), CAIM and CACC algorithms return S as the final number of intervals in 

most data sets, and also GE always decrease when the number of intervals increase. Thus, only S 

is considered as a stopping criterion in the proposed algorithm but not the GE value. More 

precisely, intervals are iteratively split as long as the number of intervals is less than S, which is 

the number of classes. The GE-based greedy algorithm is defined in Table 8. Although, it seems 

that S is a good number as a threshold to stop splitting, it is worth exploring the performance 

could be influenced by the threshold. To this end, first we have observed how GE changes with a 

different number of intervals. In the experimental results, the change rate of GE had a similar 

pattern in most datasets as mentioned above. More precisely, GE was exponentially decreasing 

and converged when the number of interval was increasing as shown in figures 5 and 6. 

Therefore, it is better when the threshold is determined by the decreasing rate of GE rather than a 

constant number such as S.
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Table 8: Global Entropy Based Algorithm 

The decreasing rate of GE is simply defined as 1-GEi-1/GEi. If the decreasing rate of GE is used 

as a threshold, Step 2.4 in the algorithm (Table 8) should be changed as follows.

2.4      If 1-GEi-1/GEi > threshold then update D with the boundary accepted in step 2.3. 

Given: Data consisting of M examples, S classes and continuous attributes Fi. For every Fi   

Step 1 

1.1    Find minimum (d0) and maximum (dn) values of Fi. 

1.2    Form a set of all distinct values of Fi in ascending order, and initialize all possible  

         interval boundaries B with minimum, maximum and all the midpoints values of all the  

         adjacent pairs in the set. 

1.3    Set the initial discretization scheme as D: {[d0, dn]}. 

Step 2 

2.1    Initialize k=1. 

2.2    Tentatively add an inner boundary from B which is not already in D, and add it in D  

          and calculate corresponding GE value. 

2.3    After all the tentative additions have been tried, accept the one with lowest GE 

        value (GEi).  

2.4     If k<S then update D with the boundary accepted in step 2.3. 

2.5     Set k = k+1 and go to step 2.2 

Output:  Discretization Scheme D 
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CHAPTER V 

AN EXPERIMENTAL ANALYSIS 

In this Experimental Analysis, the results of the searching algorithms such as IEM, 

CAIM, and CACC with five other leading Discretization algorithms are analyzed on thirteen 

well-known continuous and mixed-mode datasets.  

5.1 The Experimental Setup 

The thirteen datasets used to test the searching algorithms with better performance and 

accuracies are: 

1. Breast Cancer Wisconsin (Original) Dataset (bre). 

2. Bupa Liver Disorders Dataset (bup). 

3. Glass Identification Dataset (gla). 

4. Statlog Project Heart Disease Dataset (hea). 

5. John Hopkins University Ionosphere Dataset (ion). 

6. Iris Plants Dataset (iri). 

7. Optical Recognition of Hand-Written Digits (opt). 

8. Page Blocks Classification Dataset (pag). 

9. Pen-Based Recognition of Hand-Written Digits (pen). 

10. Pima Indians Diabetes Dataset (pid). 

11. Statlog Project Satellite Dataset (sat).

12. Thyroid Disease Dataset (thy). 
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13. Waveform Dataset (wav). 

  All of these thirteen datasets have been obtained from Machine Learning Repository 

[LCM2013]. Tests were performed for the five discretization algorithms with two classifiers. The 

five Discretization algorithms used in our experiment are: 

Unsupervised:  Equal Width and Equal Frequency. 

Supervised:   IEM, CAIM and CACC 

Classifiers:   NBC and C5.0. 

TABLE 9:  Datasets 

5.2 Analysis of Classifications using Discretized Datasets 

  In this analysis, the accuracy and number of intervals were compared for the five 

discretization algorithms. Since C5.0 and NBC can generate data models from continuous 

attributes by comparing its performance while it generates rules from raw data against the results 

achieved using discretized data using five algorithms. We investigate the cut-points and also 

discretize intervals by performing five-fold cross-validation on training data for the three 

searching algorithms to find an optimal threshold. 

 

 

 

 

Datasets bre bup gla hea ion iri opt  pag pen  pid sat thy wav 

# instances 699 345 214 270 351 150 5620 5473 10992 768 6435 7200 5000 

# attributes 9 6 9 13 34 4 62 10 16 8 36 21 21 

# continuous attributes 9 6 9 5 32 4 61 10 16 8 36 6 21 

# classes 2 2 6 2 2 3 10 5 10 2 6 3 3 
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Datasets bre bup gla hea ion iri opt pag pen pid sat thy wav avg 

EW 

acc 96.8 63.3 62.4 81.4 87.3 87.3 89.4 93.0 88.1 74.9 80.1 93.7 80.6 82.9 

sd 2.1 7.8 10.4 7.4 5.9 8.1 1.2 1.0 1.0 4.7 1.5 0.9 1.7 4.1 

rank 2 1 4 4 5 5 5 5 1 1 5 5 2 3.5 

EF 

acc 97.6 62.6 66.5 82.2 92.8 88.5 91.6 93.0 87.6 74.9 80.4 98.5 81.0 84.4 

sd 1.8 8.3 10.0 7.3 4.3 8.4 1.1 1.0 1.0 4.8 1.5 0.5 1.7 4.0 

rank 1 3 1 3 1 4 1 4 2 2 4 3 1 2.3 

IEM 

acc 96.7 62.8 65.1 82.4 90.0 92.2 90.0 93.7 86.0 74.2 80.7 98.6 72.9 83.5 

sd 2.1 8.4 10.5 7.1 5.0 7.2 1.3 1.0 1.0 4.9 1.5 0.5 2.1 4.0 

rank 5 2 3 2 3 3 4 1 5 3 3 1 5 3.1 

CAIM 

acc 96.7 62.4 65.7 82.4 87.3 93.4 90.5 93.6 86.9 72.7 80.8 98.2 79.9 83.9 

sd 2.2 8.5 10.3 7.2 6.5 6.4 1.2 1.1 1.1 5.0 1.6 0.8 1.8 4.1 

rank 4 4 2 1 4 1 2 3 4 4 2 4 3 2.9 

 

 

CACC 

acc 96.8 62.3 42.6 81.1 90.2 93.4 90.5 93.7 86.9 72.5 81.2 98.5 78.9 82.2 

sd 2.2 8.3 10.4 7.8 4.9 6.5 1.2 1.2 1.0 5.1 1.5 0.6 1.9 4.0 

rank 3 5 5 5 2 2 3 2 3 5 1 2 4 3.2 

TABLE 10: NBC ACCURACIES 

Table 10 and 11 describes the best accuracies among five discretization algorithms with 

two classifiers separately.  NBC shows the average best accuracies when compared with C5.0 in 

bre, bup, thy and also C5.0 has better accuracies with datasets hea, iri, and page. IEM performs 

accuracies well with NBC when analyzed with C5.0, even though it is more competitive studied 

with the other supervised discretization algorithms CAIM and CACC, which were developed 

after IEM. Overall, C5.0 shows the highest average accuracies when compared with NBC. 
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Datasets bre bup gla hea ion iri opt pag pen pid sat thy wav avg 

EW 

acc 94.5 60.9 63.4 79.8 87.3 91.8 88.1 93.9 95.7 73.8 86.3 94.6 75.3 83.5 

sd 2.6 7.7 10.2 7.5 5.6 6.9 1.4 1.0 0.6 4.8 1.3 0.8 1.9 4.0 

rank 5 3 4 2 5 5 4 5 1 2 1 5 3 3.5 

EF 

acc 94.6 60.1 67.8 80.1 88.1 93.0 88.9 96.0 95.7 73.7 85.5 99.0 75.1 84.4 

sd 2.6 8.9 10.1 7.5 5.4 6.8 1.3 0.8 0.6 5.0 1.4 0.4 1.9 4.1 

rank 4 5 2 1 4 4 1 4 2 3 4 2 4 3.1 

IEM 

acc 95.4 60.1 66.8 78.9 91.6 94.4 87.7 96.4 90.7 74.2 85.0 99.2 69.2 83.8 

sd 2.5 8.9 10.1 7.6 4.9 6.1 1.4 0.8 1.0 4.8 1.4 0.3 2.2 4.0 

rank 3 4 3 3 1 1 5 1 5 1 5 1 5 2.9 

CAIM 

acc 95.4 62.0 68.7 78.5 89.3 93.9 88.7 96.2 95.3 73.1 85.8 98.7 77.2 84.8 

sd 2.6 8.7 9.8 7.4 5.2 5.9 1.4 0.8 0.7 4.8 1.4 0.7 1.9 4.0 

rank 1 1 1 4 2 3 2 2 3 5 2 4 1 2.4 

CACC 

acc 95.4 61.1 51.3 78.2 88.9 94.0 88.6 96.2 94.7 73.5 85.7 98.9 76.0 83.3 

sd 2.6 8.8 11.5 7.6 5.0 5.8 1.4 0.8 0.8 5.0 1.4 0.5 1.9 4.1 

rank 2 2 5 5 3 2 3 3 4 4 3 3 2 3.2 

TABLE 11: C5.0 ACCURACIES 

 Experimental results in Tables 12 and 13 show the number of intervals and classes (𝑆) of three 

supervised discretization algorithms. However, from these two tables, CAIM and CACC return S 

as the final number of intervals in most datasets, and GE always decrease when the number of 

intervals increases and hence, 𝑆 can be considered as a stopping criterion and the intervals are 

recursively split as long as the number of intervals is less than the number of classes 𝑆. Although 

𝑆 can be used as a good number for the threshold but there is a need to explore the performance 

and how it can be influenced by the threshold. Therefore, we have observed how GE changes 

with a different number of intervals when compared with both classifiers. Hence, C5.0 generated 

the average highest number of intervals when compared with NBC. 
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Table 12: NBC Intervals 

Datasets bre bup gla hea ion iri opt pag pen pid sat thy wav 

# of classes 2 2 6 2 2 3 10 5 10 2 6 3 3 

IEM # int 2.4 6.1 3.3 1.7 4.0 3.7 11.0 24.0 71.5 7.6 31.3 137.3 4.4 

CAIM # int 2.0 2.0 6.0 2.0 2.0 3.0 9.5 5.0 10.0 2.0 6.0 3.0 3.0 

CACC # int 2.0 4.3 22.6 4.4 2.9 3.1 10.0 5.4 22.6 2.8 8.3 28.1 3.4 

Table 13: C5.0 Intervals 

 

In tables 14 and 15, we compare the IEM discretization algorithm with the proposed 

Global Entropy based approach such that the stopping criterion of MDLP is less than the 

proposed approach when we considered number of intervals is equal to the number of classes by 

using Global Entropy Based Greedy approach. From this observation, we measured the 

decreasing rate of all the datasets to show that the GE always decreases and converges. 

 

 

 

 

 

Datasets bre bup gla hea ion iri opt pag pen pid sat thy wav 

# of classes 2 2 6 2 2 3 10 5 10 2 6 3 3 

IEM # int 3.0 7.1 4.1 4.8 4.4 4.7 11.8 26.4 75.9 8.5 32.1 143.8 16.1 

CAIM # int 2.0 2.0 6.0 2.0 2.0 3.0 9.5 5.0 10.0 2.0 6.0 3.0 3.0 

CACC # int 2.0 4.3 22.6 4.4 2.9 3.1 10.0 5.4 22.6 2.8 8.3 28.1 3.4 
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 Hence, the results proved that the GE approach is more effective and shows the highest 

average accuracies when used with both classifiers and also both Classifiers show that a greater 

number of datasets have an improvement in accuracy when tested with GE approach. Hence, the 

proposed GE approach is more robust and shows the best performance. 

 

Table 14: NBC Results for GE Approach 

Table 15: C5.0 Results for GE Approach 

 

 

 

 

Datasets bre bup gla hea ion iri opt pag pen pid sat thy wav avg 

 

 

IEM 
MDLP 

acc 96.7 62.8 65.1 82.4 90.0 92.2 90.0 93.7 86.0 74.2 80.7 98.6 72.9 83.0 

sd 2.1 8.4 10.5 7.1 5.0 7.2 1.3 1.0 1.0 4.9 1.5 0.5 2.1 4.5 

# int 3.0 7.1 4.1 4.8 4.4 4.7 11.8 26.4 75.9 8.5 32.1 16.1 143.8  

 

GE 

greedy 

# intervals 

== 

# classes 

acc 97.2 65.7 65.1 82.6 88.4 94.0 90.4 92.5 87.4 73.7 81.3 98.3 80.4 84.4 

sd 2.0 8.1 10.4 7.1 5.5 6.1 1.2 1.3 1.0 4.9 1.4 0.5 1.7 3.9 

# int 3.0 3.0 7.0 3.0 3.0 4.0 10.3 6.0 11.0 3.0 7.0 4.0 4.0  

Datasets bre bup gla hea ion iri opt pag pen pid sat thy wav avg 

IEM 

MDLP 

acc 95.4 60.1 66.8 78.9 91.6 94.4 87.7 96.4 90.7 74.2 85.0 99.2 69.2 83.8 

sd 2.5 8.9 10.1 7.6 4.9 6.1 1.4 0.8 1.0 4.8 1.4 0.3 2.2 4.0 

# int 2.4 6.1 3.3 1.7 4.0 3.7 11.0 24.0 71.5 7.6 31.3 4.4 137.3  

GE 

greedy 
# intervals 

== 

# classes 

acc 95.3 64.4 68.4 78.6 88.3 93.7 88.8 96.5 95.7 72.0 85.8 98.5 77.4 84.9 

sd 2.6 7.7 9.8 7.6 5.5 6.3 1.3 0.8 0.7 4.9 1.4 0.5 1.9 3.9 

# int 2.0 2.0 6.0 2.0 2.0 3.0 9.5 5.0 10.0 2.0 6.0 3.0 3.0  
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Figure 3: GE Entropy Based Greedy by intervals for NBC 

 

Figure 4: GE Entropy Based Greedy by intervals for C5.0. 
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Figure 5: GE based greedy algorithm for NBC 

 

Figure 6: GE Based greedy algorithm for C5.0 

Figure 3 and Figure 4 investigates the potential to find the thresholds as a stopping 

criterion but not considered S as a good stopping criterion to stop splitting when tested with 

different number of intervals. Hence, we can observe from this graph that the GE constantly 
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changes the accuracy rate with different datasets. In case of NBC, glass dataset shows the best 

accuracy by but bupa and glass have better accuracy in C5.0 by using number of intervals as a 

threshold. More number of datasets such as glass, bupa, hea and opt have better accuracy with 

NBC. Therefore, by comparing with both datasets NBC shows the better results rather than C5.0 

but both performs well with different number of intervals. 

Figure 5 and 6 shows that GE have the best change rate compare to other datasets and it 

was exponentially decreasing and converged when the number of interval is increasing. 

Therefore, it can be understood that the threshold can be determined by the decreasing rate of GE 

rather than used with S. NBC and C5.0 shows the best cut-point with 25 percent when considered 

decreasing rate as a threshold when compared with all the other datasets. The tests result shows 

that GE based approach is mostly effective. 
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CHAPTER VI 

CONCLUSION 

In conclusion, many discretization algorithms have been proposed based on IEM, which 

are more competitive due to their efficiency and good performance in classification stage while 

CAIM and CACC came after IEM. The main contribution of this paper is to propose a new 

threshold as a stopping criterion. In this thesis, we proposed a global entropy-based greedy 

algorithm, with GE as a fitness function. In the proposed method, searching cut-points are 

recursively decided by measuring GEs for all possible cut-points that has minimum entropy. In 

short, GE is measured with multiple intervals when compared with IEM, which has only two 

intervals. In contrast, intervals are continually split as long as caim and cacc are greater than the 

values and the number of intervals is greater than the number of classes, S. Although it seems 

that S is a good number as a threshold to stop splitting, the performance could be explored and 

influenced by the threshold. However, from the experimental analysis, GE was exponentially 

decreasing and converged when the number of intervals was increasing. Therefore, it is better 

when the threshold is determined by the decreasing rate of GE rather than a constant number, 

such as S. 
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