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ABSTRACT 
 

  
Fernandez, Luis M., A Study on Hispanic College Students’ Mathematics Anxiety, Study Habits, 

and Academic Performances on Mathematics. Master of Science (MS), July, 2015, 97 pp., 16 

tables, 12 figures, 58 references, 30 titles.  

Mathematics anxiety has been described as a feeling of apprehension, fear, tension, and 

discomfort when confronted with mathematics. Mathematics anxiety has also been shown to 

interfere with mathematics performance; therefore, for our research we investigated what 

portions of individuals seem to suffer higher levels of mathematics anxiety and to what extent 

they are affected by it. We also investigated the study habits of the students and how these affect 

their mathematics anxiety levels and overall mathematics performance. Our data was obtained 

from Hispanic undergraduate students (n=405) who took Elementary Algebra (Math 1300), 

Intermediate Algebra (Math 1334), College Algebra (Math 1340) or Elementary Statistics (2330) 

in Spring 2015 at the University of Texas Pan-American. Our mathematics anxiety score was 

obtained from the Mathematics Anxiety Rating Scale-Brief (MARS-B), a 30-question survey 

with 5 levels of agreement.  

Keywords: Mathematics Anxiety, Study Habits, Hispanics
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CHAPTER I 
 
 

INTRODUCTION 
 

Mathematical skills are an essential part of everyone’s life, especially during adulthood. 

We use mathematics to budget, tip at restaurants, file income tax returns, and interpret charts and 

graphs. Aside from technical careers, many non-technical careers in the education, social and 

behavioral science, and business fields also require a good set of mathematical skills (Preston, 

1987). Despite the importance of the subject, it appears that the American population, especially 

high school students, has accepted the idea that mathematics is an incredibly difficult subject and 

that the comprehension of basic mathematical ideas is something optional (Geary, 1994; 

Thompson & Joshua Shearer 2002). The idea is so widely accepted that many see it as part of the 

American pop culture (Ashcraft, 2002). One particular example is Mattel’s 1992 Teen Talk 

Barbie, a talking Barbie that had 270 pre-recorded messages and whose primary target audience 

was young girls. This Barbie was probably a gift for many girls who had yet to start grade school 

yet they quickly learned that, as Barbie told them right out of the box, “Math class is tough!” 

(Ashcraft, 2002). It is negative messages like these that could start the development of some sort 

of mathematics-related anxiety within the receptors. Consequently, they could start to develop 

mathematics anxiety, a specific type of anxiety related to mathematics, that could impede them 

to properly develop the necessary skills to perform mathematically. 
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An individual who suffers from mathematics anxiety usually shows symptoms of tension 

and anxiety that occurs when confronted with a mathematical task varying from ordinary life to 

academic scenarios (Richardson and Suinn, 1972). Despite the lack of agreement over the 

specific causes of math anxiety (Gough, 1954), researchers tend to agree on the serious effects of 

such phenomenon (Ma, 1999). It has been hypothesized that individuals with high levels of math 

anxiety cannot retain certain information as they try to assess a mathematical task. The thought 

of failure invades their mind and it is such the anxiety that they forget how to properly handle the 

mathematical task at hand (Ashcraft, 2002).  In an academic setting, Ashcraft and Faust (1994) 

claim that because of high levels of mathematics anxiety, students develop ‘global avoidance.’ 

What this means is that these students will most likely avoid any type of mathematics related 

curriculum. They will most likely take only the minimum math courses required by their school 

district, avoiding advanced courses, and it is likely that they could suffer from an academic 

disadvantage due to the lack of exposure to advanced mathematical material (Ma, 1999). 

Consequently, they might end up with lower math competence and achievement compared with 

students with less levels of math anxiety (Ashcraft, 2002), and many would have to resort into 

taking remedial mathematics courses once at a university level (Hembree, 1990).   

Researchers have claimed that the need for remedial mathematics courses could be 

attributed to mathematics anxiety (Hembree, 1990). What is most alarming about the situation is 

the high numbers of students having to enroll in such courses. Based on performance scores on 

placement tests, the vast majority of students enrolling in community colleges need remedial 

coursework in many subjects, but more noticeably in mathematics (Brown & Niemi, 2007). At a 

community college in California, over 70% of their incoming class of students failed to meet the 

performance levels required for entry-level mathematics courses and began their college 
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experience in remedial mathematics courses (Brown & Niemi, 2007). In the past decade alone, 

the need for college remedial courses in mathematics has grown to levels never seen before 

throughout the nation (Hegedorn et al., 1999). Data also shows that students that pertain to 

minority groups, especially Hispanic students, tend to score at significantly lower levels than 

Asian American and White students on both ability and mathematics assessment tests (Fox 2005). 

Because of this, one could infer that Hispanic students could suffer the most from mathematics 

anxiety but unfortunately research over the matter is limited (Ma, 1999).  

It seems that society has accepted the idea that mathematics is hard and that it is ok not to 

fully understand it, but such ideology could be a serious consequence of a much more serious 

phenomenon which is mathematics anxiety. It affects the students’ performance in mathematics, 

probably the most in Hispanic students, and because of that, students could suffer from serious 

academic disadvantages. It is because of the seriousness of this phenomenon as well as the lack 

of research done on Hispanic college students that our main focus will be to investigate the 

effects of mathematics anxiety on Hispanic college students. In this study, we will explore the 

differences in mathematics anxiety levels among Hispanic college students of different gender, 

academic classification, math courses, and colleges and	  whether the student is a full-time or part-

time student as well being full-time or part-time employed or having no job. Additionally, we 

will compare the mathematics anxiety levels of students whose family members have attended 

college before and the effects of having good studying habits on the levels of mathematics 

anxiety. We will also take into consideration the studying habits of the students and explore the 

interaction between those habits and the students’ mathematics anxiety and performance.  Lastly, 

we will study the overall effect of the previously mentioned student characteristics over their 

overall mathematics performance, measured by their math course final grades. 
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CHAPTER II 
 
 

THEORETICAL BACKGROUND 
 

2.1 Mathematics Anxiety 

For many years, researchers have tried to define mathematics anxiety. Dreger and Aiken 

(1957) described mathematics anxiety as “a syndrome of emotional reactions to arithmetic and 

mathematics, tentatively designed number anxiety” (p. 344). Similarly, Fennema and Sherman 

(1976) described math anxiety as “feelings of anxiety, dread, nervousness and associated bodily 

symptoms related to doing mathematics” (p. 326). Perhaps the most common definition used by 

researchers comes from Richardson and Suinn (1972) in which they state that mathematics 

anxiety involves “feelings of tension and anxiety that interfere with the manipulation of numbers 

and the solving of mathematical problems in a wide variety of ordinary life and academic 

situations” (p. 551).  With all these definitions combined, one can infer that highly math-anxious 

individuals seem to share the same symptoms: tension, apprehension, helplessness, or fear, and 

they all seem to be triggered when an individual is confronted with mathematics in one way or 

another (Wood, 1988; Ashcraft, 2002). Research has also shown that mathematics anxiety seems 

to interfere with mathematics performance in both adults (Quilter & Harper, 1988) and college 

students in particular (Betz, 1978; Freary & Ling, 1983). An example of this is found in 

Hembree’s (1990) meta-analysis where college students with higher levels of math anxiety 

reported an average correlation of -.31 between anxiety and achievement. Despite the extensive 

research over 
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research over mathematics anxiety, it is scarce when it comes to minority groups, especially 

Hispanic college students (Ma, 1999). It might be possible to infer that Hispanic college students 

suffer from higher levels of math anxiety compared to their Caucasian peers being that their 

performance scores in mathematics are usually lower than Caucasians but more research over the 

matter is required to make such inference (Brown & Niemi, 2007).  

 

2.1.1 Causes of Mathematics Anxiety 

Extensive research of mathematics anxiety has been done throughout the years yet the 

search for a clear cause of such phenomenon has been unsuccessful, usually leading to 

disagreements among researchers (Gough, 1954). Trujillo and Hadfield (1999) stated that 

according to Hadfield and McNeil (1994), the origin of math anxiety is attributed to three factors: 

intellectual, environmental, and personality factors. The intellectual factors consisted of being 

taught with different teaching styles, negative attitude from the students, and from having low 

confidence or self-esteem in mathematics (Cemen, 1987; Miller & Mitchell, 1994). 

Environmental factors include negative classroom experiences like non-participatory math 

courses, extremely demanding teachers and outside factors like parental pressure (Dossel, 1993; 

Tobias, 1990). Lastly the personality factors are mainly composed of the effects of high levels of 

shyness or general low self-esteem. This includes the reluctance to ask questions and viewing 

mathematics as a field dominated mostly by males (Cemen, 1987; Gutbezahl, 1995; Levine, 

1995; Miller et al., 1994). On the other hand, Ashcraft, Kirk and Hopko (1998) claim that the 

causes for mathetatics anxiety are non-intellectual, being that both successful and unsuccessful 

students showed similar levels of math anxiety. 
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Two theoretical models that have been influential in the research of the possible origins 

of mathematics anxiety are the Deficit Model and the Inferential Model (Ma, 1999). Based on 

the findings of Desiderato and Koskinen (1969), Mitchell and Ng (1972), and Wittmaier (1979), 

Tobias (1985) created the Deficit Model, shown in Figure 1, suggesting that poor study habits 

and testing skills could cause the development of mathematics anxiety. It starts by an individual 

being presented with a math task. These tasks could be academic like math homework or a math 

test or they can also be non-academic like calculating the tip of a restaurant’s check or being able 

to quickly know how much change is expected to be received after paying for goods or a service. 

It is then theorized that if the individual lacks good study habits or has poor testing skills, he will 

perform poorly in such task. Consequently, feelings of disappointment, tension and 

embarrassment soon start to develop within the individual and with that mathematics anxiety as 

well. Culler and Hollahan (1980) also reported that individuals with high levels of anxiety who 

developed good study skills did better academically than those with poor study skills.  

 

 

 

Figure 1. Deficit Model 

In the Inference Model, based on the work of Liebert and Morris (1967), Mandler and 

Sarason (1952), and Wine (1971), researchers claim that there exists a similar linear relationship 

that causes mathematics anxiety. As shown in Figure 2, an individual first gets confronted with a 

mathematical task similar to the ones in the Deficit Model. These tasks then trigger memories of 

bad experiences with math tasks. Examples are remembering low math grades from grade school 

or negative comments from previous math teachers. These memories then lower the individual’s 

Poor performance due to 
bad studying habits 

and/or poor testing skills 

Mathematics anxiety 
is developed by the 

individual 

Individual is 
presented with a 

mathematical task 
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self-esteem and it is that emotional and psychological disturbance that creates mathematics 

anxiety.  

 

 

 

Figure 2. Inference Model 

 

2.1.2 Effects of Mathematics Anxiety 

Highly math-anxious students demonstrate an inability to do mathematics (Ma, 1999). 

They cannot seem to retain information as they try to solve a math problem and it has been 

hypothesized that this occurs because math anxiety disrupts the ongoing working memory 

process of the student (Ashcraft 2002). They devote too much attention to their thoughts and 

worries rather than the task at hand, making it difficult for them to remember basic arithmetic 

rules (Ashcraft, 2002). Because of their worries of failure, they impulsively answer the question 

instead of carefully analyzing what has been asked which could lead them into answering the 

problem incorrectly. Students with high levels of math anxiety also end up with lower math 

competence and achievement compared with students with less levels of math anxiety (Ashcraft, 

2002) and Hispanic students in particular are overrepresented in low math performance being 

that they score lower in math courses than their Caucasian peers (Brown & Niemi, 2007).     

Several characteristics of the relationship between math anxiety and math performance 

have been most commonly represented by two graphical models (Ma, 1999). One model is often 

represented as an inverted U-curve depicting a curvilinear relationship between anxiety and 

performance, also known as the Yerkes-Dodson Law (Hebb, 1955). The second graphical 

Low self-esteem due to the 
remembrance of negative 
math-related experiences 

similar to the one presented 

Mathematics anxiety 
is developed by the 

individual 

Individual is 
presented with a 
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representation mostly used by researchers shows a negative linear relationship between 

mathematics anxiety being the independent variable, and mathematics achievement being the 

dependent variable (Lazarus, 1974). Although both models (U-curve model and negative linear 

model) are used by researchers, there seems to be a slight incline into the negative linear 

relationship model because this negative relationship has been described in Quilter & Harper 

(1988), Betz (1978), Frary & Ling (1983), and Ma (1999).  

In addition to low performance in mathematics, both Hispanic and Caucasian students 

also tend to develop a strong tendency of avoiding any type of mathematics related curriculum 

(Ashcraft, 2002). They avoid mathematics courses, particularly advanced courses (Ma, 1999), 

and it is possible that because of such avoidance, they could suffer from an academic 

disadvantage since they are not being exposed to enough mathematics to have satisfactory levels 

of mathematics comprehension and competence (Ashcraft, 2002). This could become more 

noticeable when those students are about to begin their post-secondary education. Once at the 

college level, it is possible that students with high levels of math anxiety might be assigned a 

mathematics pre-collegiate basic skill course, or most commonly known as a math remedial 

course (Brown & Niemi, 2007), courses are designed for students who do not possess the basic 

mathematical skills to take a college-level mathematics course. After the successful completion 

of this course they are then permitted to enroll in college-level mathematics courses where the 

material covered is at a more advanced level, but by going through the remedial route, those 

students already enter the institution with many disadvantages over students not enrolled in 

remedial mathematics (Hegedorn, Siadat,Fogel, Nora, & Pascarella, 1999). Because of all of this, 

those students could be more likely to avoid college majors and career paths that depend heavily 

on mathematics and consequently this could undercut their math competence and foreclose 
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important career paths (Armstrong, 1985; Ashcraft, 2002; Betz, 1978; Brush, 1978; Burton, 1979; 

Donady & Tobias, 1977; Hendel, 1980; Preston, 1987; Richardson & Siunn, 1972; Tobias & 

Weissbrod, 1980).  

 

2.1.3 Measuring Mathematics Anxiety 

During the 1950’s, teachers began to observe students’ discomfort when confronted with 

a mathematical task. Soon they realized that it was not just present in their classrooms, but in 

classrooms around the nation. Consequently, it started to become a topic of interest for many 

educational researchers. It was not until 1957 when Dreger and Aiken formally introduced the 

term mathematics anxiety to refer to such phenomenon of discomfort with mathematics. In their 

definition, mathematics anxiety is the presence of a “syndrome of emotional reactions to 

arithmetic and mathematics,” but despite the difficulties of measuring math anxiety (Wood, 

1998), there have been several attempts to address the issue. One of the first instruments to be 

created for measuring math anxiety was the Dutton Scale (Dutton, 1954; Dutton & Blum, 1968). 

It was designed with the purpose of measuring feelings towards arithmetic. Other instruments 

were later developed by Gladstone, Deal, and Drevhdahl (1960) and Aiken and Dreger (1961). 

Dreger and Aiken (1957) also developed a Number Anxiety Scale specifically made for eight, 

ninth, and tenth graders. Later, Ainken (1974) developed an instrument with the intentions of 

measuring enjoyment of mathematics and the value within the subject.  

After extensive research and validation, Richardson and Suinn (1972) developed the 

Mathematics Anxiety Rating Scale (MARS), making it the first comprehensive instrument 

specifically designed to measure mathematics anxiety. The MARS contains 98 items that are 

composed of brief descriptions of behavioral situations, for example, “totaling up a dinner bill 
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that you think overcharged you,” that could yield high levels of mathematics anxiety (Richardson 

& Suinn, 1972). The individual taking the survey then has to evaluate how each item makes them 

feel using a 5-point Likert scale (1 = Not at all, 2 = A little, 3 = A fair amount, 4 = Much, 5 = 

Very much). Finally, the mathematics score is obtained by adding the values of all the items, 

hence the higher the number, the higher the mathematics anxiety level that the student suffers 

from. Because the MARS was created for college students only, the Mathematics Anxiety Scale 

for Children (MASC) was later developed by Chiu and Henry (1990).    

After the creation of MARS, many variations followed like the Mathematics Anxiety 

Rating Scale for Elementary school students  (MARS-E) (Suinn, Taylor & Edwards, 1988) and 

the Mathematics Anxiety Rating Scale for Adolescents (MARS-A) (Suinn & Edwards 1982). 

MARS-E has 26 questions with a 5-point Likert Scale and similarly to the original MARS, the 

MARS-A has 98 questions with a 5-point Likert Scale. There was also a similar instrument to 

MARS created called the Fennema-Sherman Mathematics Anxiety Scale (MAS) created for  

usage on high school students (Fennema & Sherman 1976, Wikoff & Buchalter, 1986). MAS 

measures feelings of anxiety, dread and nervousness associated with math and it only contains 12 

questions, being faster to administer to students. Because of the quickness of MAS, researchers 

became interested in such tool that they started to implement it on college students, but lack of 

research about the validity and reliability of MAS quickly led researchers to abandon the usage 

of MAS completely (Rounds & Handel, 1980). The Mathematics Attitude Inventory (MAI) was 

later developed by Sandman (1980).  It contains 48 questions that are divided into six categories 

measuring the constructs as (a) perception of the math teacher, (b) anxiety towards math (c) 

value of math in society (d) self-concept in math (e) enjoyment of math and (f) motivation in 
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math but, despite the research done with this tool, the validity data has never been reported 

(Mahmood & Khatoon, 2011).  

From all the math anxiety instruments mentioned, the MARS has been the math anxiety 

instruments most utilized for research and clinical studies (Mia, 1999; Pradeep, 2011; Mahmood 

& Khatoon, 2011) but despite the usefulness, many researchers have sought for a shorter version 

of the scale partly to reduce the administration time of the original MARS but yet being 

comparable to the MARS. Because of such demand, Suinn, the original creator of MARS, and 

Winston (2003) created the new Mathematics Anxiety Rating Scale-Brief (MARS-B) with only 

30 items. With a Cronbach alpha of .96, they confirmed that the MARS-B is comparable to the 

original MARS (Suinn & Winston, 2003). 



	   	  

12	  

 

CHAPTER III 
 
 

RESEARCH QUESTIONS 
 

We had conducted a previous study that consisted of data from approximately 1,600 

Hispanic undergraduate students from the University of Texas Pan-American between the years 

2008 and 2012. Data was collected with the aid of a general questionnaire created by a previous 

researcher and the Aiken and Dreger (1961) Mathematics Attitude Scale (MAS). The 

questionnaire provided data on gender, classification, college of major, school status (whether 

the student was full-time or part-time student), employment status (whether the student had no 

job or had a part-time or full-time job), parents’ education and siblings’ education. The MAS on 

the other hand was composed of 20 items, with items 3, 4, 5, 9, 11, 14, 15, 18, 19, and 20 being 

positively stated items and the rest were negatively stated items. Positive items denote a positive 

attitude toward mathematics and they are intended to measure low levels of mathematics anxiety 

while negatively stated items denote a dislike or fear of mathematics and yield high levels of 

math anxiety. An example of a positive item is item 9 that states, “The feeling that I have toward 

mathematics is a good feeling.” A negative item like item 13 states, “I approach math with a 

feeling of hesitation, resulting from a fear of not being able to do math.” Students were then 

asked to rate how much they agreed with each item by using a 5-point Likert scale (1 = Strongly 

Disagree, 2 = Disagree, 3 = Undecided, 4 = Agree, 5 = Strongly Agree).  The mathematics 

anxiety score was then calculated by subtracting the negatively stated items from the positively 

stated items, ranging from scores between 20 and 100. Based on our findings, there was no 
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significant difference of mathematics anxiety scores between the two developmental courses. 

Females showed a significant higher math anxiety level than males (mean difference=4.89, p-

value<0.001, 95% CI: 2.95~6.82), but the effect size (Cohen’s d = 0.25) was medium. Non-

freshman students also showed a significantly higher level of math anxiety than the freshman 

students (mean difference=6.94, p-value<0.001, 95% CI: 4.66~9.21), while the effect size 

(Cohen’s d = 0.36) was medium. The averages of anxiety scores among different colleges were 

found significantly different (ANOVA p-value<0.001), and the effect size (η2=0.06) was 

medium. The school status, job status, parents’ education and siblings’ education showed no 

significant difference of math anxiety levels among them. In order to further investigate this 

phenomenon, we decided to conduct a new study using a more scholarly recognized mathematics 

anxiety instrument. We considered more factors like the grandparents’ college education level, 

the students’ final exam grades on mathematics courses and overall grade on their mathematics 

courses. Based on Tobias’ Deficit Model (1985), we also decided to investigate the possibility 

that bad study habits and math skills could yield high levels of mathematics anxiety, hence the 

students’ study habits were considered for this study as well.  As such, the following research 

questions were posed:  

Research Question 1: How much do the students’ mathematics anxiety levels vary depending on 

gender, classification, math course, college of major, and school status? 

Research Question 2: In what way are students’ mathematics anxiety levels influenced by their 

employment and their grandparents’, parents’ and siblings’ education? 

Research Question 3: Is there a relationship between the study habits of a student and their 

mathematics anxiety levels? 
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Research Question 4: How does the students’ mathematics anxiety in conjunction with their 

study habits affect their final course grade?  

Research Question 5: How are the students’ mathematics performance affected by their 

demographic factors, family’s education level, employment status, study habits, and 

mathematics anxiety? 
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CHAPTER IV 
 
 

METHODOLOGY 
 

4.1 Sample 

Data was collected during the spring academic semester of 2015 from a total of 405 

students at the University of Texas Pan-American, a Hispanic serving institute in the southwest 

region of the United States. Demographically, 62.7% (n = 254) were female and 57.8% (n = 234) 

were freshman. The average age of the students was 20.6 years (SD = 4.23). Data also indicated 

that 82.4% (n = 334) were full time students, 75.8% (n = 307) were non-STEM majors and 48.9% 

(n = 198) did not have a job.  In terms of course enrollment, 28.9 % (n = 117) were enrolled in 

Elementary Statistics, 26.2% (n = 106) in College Algebra, 26.2% (n = 106) in Intermediate 

Algebra and 18.8% (n = 76) in Elementary Algebra. For the inferential statistical analyses, the 

sample size varied depending on the completion of individual items on the surveys given to the 

students. For clarity, this matter will be discussed in more detail for each statistical procedure in 

the Results section in Chapter V.  

 

4.2 Data Collection 

Before our data collection took place, we selected 20 mathematics courses composed of 

five Elementary Algebra classes, five Intermediate Algebra classes, five College Algebra classes 

and five Elementary Statistics classes which we would collect data from. Table 1 contains a more
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detailed description of these courses as well as the number of student participants from each 

course. Survey packets were prepared according to the number of students in each classroom. 

Once our study was approved by the Institutional Review Board (IRB) at the University of Texas 

Pan-American, we proceeded with the classroom visitations within a timeframe of two weeks. 

Each visit was made during the last 25 minutes of class time. During that time, students were 

educated on what the study was about and were encouraged to participate; their participation was 

completely voluntarily. Survey packets were then handed to each student and were filled out 

only by those who agreed to participate in the study. Once the students were done, the survey 

packets were collected and randomly assigned pseudo codes were attached to them. Data was 

later recorded on Excel files after all 20 courses had been visited. That same data was then 

transferred to SPSS for further statistical analysis. Finally, by the end of the academic semester, 

the instructors of the 20 courses handed final exam grades and overall course grades of only the 

students who agreed to participate in the study. These grades were ultimately added to the rest of 

the data set.  

 

4.3 Survey Instrument and Measurements 

The survey instrument used in this study was composed of three parts. The first part 

elicited information about students’ gender, age, school classification, college of major, student 

status (whether the student was full-time or part-time student) and employment status (whether 

the student had no job or had a part-time or full-time job). It also provided information regarding 

the education level of their grandparents, parents and siblings. The second part of the survey 

consisted of a set of 57 items whose purpose was to measure the students’ studying habits; items 

that were obtained from a careful selection of items found in multiple online study habits surveys.  
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Additionally, these 57 items were broken into 7 different categories (Goals and Attitude, 

Time Management Skills, Study Environment, Test Taking/Preparation Skills, Note Taking 

Skills, Reading Skills, Math Skills) and the measurement was possible due to the 3-point Likert-

type scale (1= Not True, 2 = Sometimes True, 3 = Always True) that asked students how often 

they performed “good” study habits. For each category, higher scores yielded better study habits 

the student possessed whereas lower scores meant the student probably lacked “good” study 

skills.  

For the last part of the survey, we investigated which mathematics anxiety questionnaire 

had the most recognition among scholars. For that reason we opted for the 30-item Mathematics 

Anxiety Rating Scale-Brief version (MARS-B) which, as mentioned in section 2.1.3, is a 

condensed yet reliable version (Cronbach alpha of .96) of the scholarly recognized 98-item 

Mathematics Anxiety Rating Scale (MARS) (Suinn & Winston, 2003). The 30 items in the 

MARS-B are composed of brief descriptions of behavioral situations, for example, “receiving 

your final math grade in the mail,” and it prompted the students in our study to choose how 

frightened those situations made them feel using a 5-point Likert scale (1 = Not at all, 2 = A little, 

3 = A fair amount, 4 = Much, 5 = Very much). Adding the values of all the items gave us their 

mathematics anxiety score, hence the higher the score, the higher the mathematics anxiety that 

the student suffers from. Additionally, Suinn created a table with percentile equivalents of 

mathematics scores and states that values above the 75% (mathematics anxiety score of 78) 

indicate individuals with high levels of mathematics anxiety. A complete copy of the survey 

given can be found in Appendix C. 
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4.4 Statistical Analysis 

 IBM’s Statistical Package for the Social Sciences (SPSS) was used for all statistical 

analysis. The dependent variables were mathematics anxiety score measured by MARS-B, and 

the students’ final exam grade and course grade. The independent variables were gender, 

classification, courses, college of major, school status, grandparents’ education, parents’ 

education, siblings’ education, employment status and study habits (i.e. goals and attitude, time 

management skills, study environment, test taking/preparation skills, note taking skills, reading 

skills and math skills). Table 2 contains a more detailed description of all the previously 

mentioned variables. Descriptive statistics were reported for all of the variables. Next, we used 

student’s t-test and ANOVA to assess if there existed a difference in mathematics anxiety mean 

levels among different genders, age, classifications, courses, colleges, school status, and 

employment status. Student’s t-tests and ANOVA were also used to assess if there existed an 

association between the mean mathematics anxiety score and the education levels of the students’ 

grandparents, parents, and siblings. Multiple linear regression was used to investigate (1) 

whether a relationship existed between the study habits of each participant and their mathematics 

anxiety levels (2) the possible relationship between the students’ study habits and mathematics 

anxiety with their final course grade and (3) the effect of all the students’ factors (independent 

variables) on their final exam grade. Lastly, logistic regression was used to investigate the effect 

of all the students’ factors (independent variables) on their course grade. 

  

4.4.1 Statistical Model: Linear Regression Model 

In general, a simple linear regression model is composed of a line with one predictor, also 

called regressor or explanatory, variable and is written as follows: 
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                                                    𝑦 = 𝜇 + 𝜖, where 𝜇 = 𝐵! + 𝐵!𝑥                                           (1) 

Suppose that you have 𝑛  pairs of observations (𝑥! ,𝑦!)  where 𝑖 = 1, 2, 3,… ,𝑛.We can then 

characterize the these observations as  

characterize the these observations as 

                                                𝑦! = 𝐵! + 𝐵!𝑥! + 𝜖!                                                      (2) 

This model requires that the next four assumptions be met:  

1. The person involved with the experiment must have full control of the repressor variable.  

This means that 𝑥! , 𝑖 = 1, 2, 3,… ,𝑛 are to be taken as constants; not variables.  

2. 𝐸 𝜖! = 0, 𝑖 = 1, 2,… ,𝑛.This implies that that 𝜇! = 𝐸 𝑦! = 𝐵! + 𝐵!𝑥!, 𝑖 = 1, 2,… ,𝑛. 

3. 𝑉 𝜖! = 𝜎! is constant for all 𝑖 = 1, 2,… ,𝑛. This implies that the variances 𝑉 𝑦! = 𝜎! 

are all the same.  

4. Different errors 𝜖! and 𝜖!, and hence different responses 𝑦!   and 𝑦!, are independent.  

And the objectives of such analyses fall under one of the following two categories: 

1. Can we establish a relationship between 𝑥 and 𝑦  ? 

2. Can we predict 𝑦 from  𝑥 ? To what extent can we predict 𝑦 from 𝑥 ? 

Examples of possible scenarios for researchers to use a simple linear regression model are trying 

to predict the salary of a teacher based on his or her years of experience and the cost of a vehicle 

based on the number of previous owners that the vehicle has had.  

Now because we could draw many different lines through the cluster of data points, we need 

a method to choose the “best” line 𝜇! = 𝐵! + 𝐵!𝑥! that is “closest” to the points (𝑥! ,𝑦!). The 

method is the least-squares estimation, which requires for the errors to be as small as possible. 

This is possible by minimizing the function 

                        𝑆 𝛽!,𝛽! = 𝜖!!!
!!! = (𝑦! − 𝜇!)! = (𝑦! − 𝛽! − 𝛽!𝑥!)!                             (3) 
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with respect to 𝛽! and 𝛽!. This approach uses the squared distance as a measure of closeness. To 

achieve this, we use a symmetric loss function where positive and negative differences are 

treated the same. Then, the squared error loss function arises.  

 Taking derivatives with respect to 𝛽!and 𝛽!, and setting the derivatives to zero, 

𝜕𝑆 𝛽!,𝛽!
𝜕𝛽!

= −2 𝑦! − 𝛽! − 𝛽!𝑥! = 0 

and 

𝜕𝑆 𝛽!,𝛽!
𝜕𝛽!

= −2 𝑦! − 𝛽! − 𝛽!𝑥! = 0 

leads to the two equations: 

𝑛𝛽! + 𝑥! 𝛽! = 𝑦! 

                                                                                                                                              (4) 

𝑥! 𝛽! + 𝑥!! 𝛽! = 𝑥!𝑦! 

These are referred to as normal equations. Suppose that 𝛽! and 𝛽! denote the solutions for 𝛽! 

and 𝛽! respectively in the two-equation system (4). Simple algebra shows that these solutions are 

given by 

𝛽! =
𝑥!𝑦! −

( 𝑥!) ( 𝑦!)
𝑛

𝑥!! −
𝑥! !

𝑛

=
(𝑥! − 𝑥) (𝑦! − 𝑦)

(𝑥! − 𝑥)!
=
𝑆!"
𝑆!!

 

                                                                                                                                              (5) 

𝛽! = 𝑦 − 𝛽!𝑥,        where  𝑦 = !!
!

     and     𝑥 = !!
!

   

They are called the least squares estimates (LSEs) of 𝛽! and 𝛽!, respectively.  
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Variability among the 𝑦!’s is usually measured by their deviations from the mean, 𝑦! − 𝑦. 

Thus, a measure of the total variation about the mean is provided by the total sum of squares 

(SST): 

                                                            SST= (𝑦! − 𝑦)!!
!!!                                                   (6) 

If SST=0, all observations are the same. The greater is SST, the greater is the variation among 

the 𝑦 observations. The total sum of squares can be written as: 

SST= 𝑦! − 𝑦 ! = 𝜇 − 𝑦 ! + 𝑦! − 𝜇! ! + 2 (𝜇 − 𝑦)(𝑦! − 𝜇!) 

       = 𝜇! − 𝑦 ! + 𝑦! − 𝜇! ! 

                          = SSR + SSE                                                                                                   (7) 

Where SSR is the regression sum of squares (the variation in the observed values of the response 

variable explained by the regression) and SSE is the error sum of squares (the variation in the 

observed values of the response variable not explained by the regression). 

Lastly, in order to measure the degree of linear association between 𝑦 and 𝑥, we use a 

descriptive measure called the coefficient of determination: 𝑅!. Before we do so, consider the 

identity (7): 

SST=SSR+SSE 

The ratio 

                                                                     𝑅! = !!"
!!"

= 1− !!"
!!"

                                                (8) 

is used to assess the “fit” of a regression model. It expresses the proportion of the total variation 

of the response around the mean that is explained by the regression model. 𝑅! must be in 

between 0 and 1 where 𝑅! = 0 indicates that none of the variability in the 𝑦 is explained by the 

regression model. SSE=0 and 𝑅! = 1 indicate that all observations fall exactly on the fitted line.  
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In a multiple linear regression model, we consider the following model: 

                                                   𝑦 = 𝐵! + 𝐵!𝑥! + 𝐵!𝑥! +…+ 𝐵!𝑥! + 𝜖                                (9) 

 

This model links the response variable 𝑦 to several independent variables 𝑥!, 𝑥!,… , 𝑥!. Similarly 

as the simple linear regression model, we must meet the next four assumptions (Warner, 2008) 

so  

 

that the validity of the procedure is ensured: 

1. The Y outcome variable should be quantitative with scores that are approximately 

normally distributed. This assumption can be assessed by looking at the univariate 

distributions of scores on Y.  

2. The relations among all pairs of variables should be linear. This assumption of linearity 

can be assessed by examining bivariate scatterplots for all possible pairs of these 

variables.  

3. There should be no interactions between variables, such that the slope that predicts Y 

from Xn differs across groups that are formed based on scores on Xn+1. This assumption 

can be checked by grouping subjects based on scores on the Xn+1 variable and running a 

separate Xn , Y scatter plot for each group. The slopes should be similar across groups.  

4. Variance in Y scored should be homogeneous across all levels of X. This assumption can 

be assessed by examining bivariate scatter plots to see whether the range of variance of Y 

scores varies across levels of X. 
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Multiple linear regression is best fit when researchers want to predict a single numerical variable 

from several independent variables. These independent variables can be numerical, dichotomous, 

or a combination of both. Categorical variables with more than 2 levels are also allowed but they 

require dummy coding. Real life applications for multiple linear regression are predicting the 

growth of a certain plant based on the quantity of water and fertilizer received and estimating the 

cost of a house based on the number of rooms and floors the house has. 

Once the model is built, the next step would be optimizing it for the best results. A 

common way to assess this task is to build variations of the same model, either by dropping or 

adding variables, and compare their adjusted-R2. Techniques that allow us to build such models 

are normally referred to as Stepwise Procedures. These procedures can be broken down into 3 

different categories: 

1. Forwards selection starts with an empty model.  The variable that has the smallest p-

value when it is the only predictor in the regression equation is placed in the model. Each 

subsequent step adds the variable that has the smallest p-value in the presence of the 

predictors already in the equation. Variables are added one-at-a-time as long as their p-

values are small enough, typically less than 0.05 or 0.10. 

2. Backwards elimination starts with all of the predictors in the model. The variable that is 

least significant--that is, the one with the largest p-value--is removed and the model is 

refitted. Each subsequent step removes the least significant variable in the model until all 

remaining variables have individual p-values smaller than some value, such as 0.05 or 

0.10. 

3. Stepwise regression is similar to forward selection except that variables are removed 

from the model if they become non-significant as other predictors are added. 
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Forward selection is recommended when researchers want to build a model with the least 

number of predictors as possible. Backward elimination is best used when the researcher 

wants to take all the variables into consideration and build a more comprehensive model, 

even if this one contains a significant amount of predictor variables. Stepwise regression is 

used when the researcher is looking for the most optimal model, regardless of the amount of 

predictor variables that will be in the model.  
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CHAPTER V 
 
 

RESULTS 
  

5.1 Descriptive Statistics 

Descriptive statistics, shown in detail in Table 3, showed that female students had an 

average mathematics anxiety (MA) score of 86.02 (SD = 22.73) and males had an average MA 

score of 72.41 (SD = 24.51). Students who were freshman reported an average MA score of 

80.03 (SD = 23.89) whereas students who were seniors reported an average MA score of 84.58 

(SD = 28.07). Students whose major pertained to the College of Arts and Humanities reported an 

average MA score of 89.56 (SD = 20.94). On the other hand, students from the College of 

Science and Mathematics reported an average MA score of 71.54 (SD = 24.01). In terms of 

school status, full-time students reported an average MA score of 80.38 (SD = 24.43) and part-

time students reported an average MA score of 84.61 (SD = 23.23). The average MA score of 

students whose grandparents, parents, and siblings attended college was 82.38 (SD = 24.09), 

78.95 (SD = 23.97) and 80.42 (SD = 23.82) respectively. Lastly, students who were employed 

full time reported an average MA score of 84.49 (SD = 24.42) but students who were not 

employed at the time of the study reported an average MA score of 78.12 (SD = 23.09). We also 

compared the percentile equivalents of mathematics anxiety scores from Suinn with the 

mathematics anxiety scores of the Hispanic students from our study. Table 4 shows the 

comparison between both percentile equivalent tables. 
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5.2 Research Questions Results 

5.2.1 Research Question 1 Results 

Research Question 1 investigated possible differences of mathematics anxiety scores 

among students’ demographic factors. These included gender, classification, courses, college of 

major, and school status. ANOVAs and independent sample t-tests were performed. Results for 

ANOVAs are reported in Table 5 and results for the independent sample t-tests are reported in 

Table 6. 

 

Gender 

An independent samples t-test was performed to assess whether the mean mathematics anxiety 

scores differed significantly between genders (Males=1, Females=2). Preliminary data screening 

indicated the mathematics anxiety scores were normally distributed for females but not for 

males, as assessed by Shapiro-Wil’s test (p = .015), but the departure from normality was not 

judged serious enough to require the use of a non-parametric test. The assumption of 

homogeneity of variance was assessed by the Levene test, F=0.759, p=0.384; this indicated no 

significant violation of the equal variance assumption; therefore, the pooled variances version of 

the t-test was used. Females had a significantly higher anxiety mean score than males (mean 

difference= 13.61, p-value<0.001, 95% CI: 8.74~18.48), and the effect size (Cohen’s d=0.58) 

was medium.   

 

Classification 

Our sample was not evenly distributed for our variable, hence we went ahead and converted the 

4-level variable classification into a 3-level variable (Freshman=1, Sophomores=2, Juniors or 
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Seniors=3). Next, a one-way ANOVA was done to compare the mean scores among the 3 levels 

but there was not enough evidence to state that there was a statistically significant difference.  

Furthermore, we went ahead and investigated the possible difference among mathematics anxiety 

levels between two groups, freshman students (Freshman=1) and non-freshman students (Non-

freshman=2) but again there was not enough evidence to state that there was a statistically 

significant difference between them. 

 

Courses 

A one-way ANOVA was done to compare the mean scores of mathematics anxiety for the 4 

mathematics courses (Elementary Algebra=1, Intermediate Algebra=2, College Algebra=3, 

Elementary Statistics=4). Preliminary data screening indicated that the mathematics anxiety 

scores were normally distributed for all levels except Elementary Statistics, as assessed by 

Shapiro-Wil’s test (p = .045), but the departure from normality was not judged serious enough to 

require the use of a non-parametric test. The assumption of homogeneity of variance was 

assessed by the Levene test, F=0.543, p=0.653; this indicated no significant violation of the 

equal variance assumption. The overall F-statistic for the one-way ANOVA was statistically 

significant, F(3,379)=9.218, p-value<0.001. This corresponds to an effect size of η2=0.68 which 

is medium. Furthermore, all possible pairwise comparisons were made using the Bonferroni 

procedure. Based on this test (using α = 0.05 / 4 = .0125), it was found that Intermediate Algebra 

had a significantly higher mathematics anxiety mean score (M=90.24, SD=23.25) than 

Elementary Algebra (M=79.06, SD=23.82), College Algebra (M=80.26, SD=22.24), and 

Elementary Statistics (M=74.39, SD=24.93). Elementary Algebra, College Algebra, and 

Elementary Statistics did not differ significantly from one another.  



	   	  

28	  

 

Lastly, we wanted to compare the mathematics anxiety scores between developmental math 

courses (Elementary algebra=0, Intermediate Algebra=0) and non-developmental math courses 

(College Algebra=1, Elementary Statistics=1). This was possible by combining the 4-level 

variable courses into a binary variable. We then performed an independent samples t-test to 

assess whether the mean mathematics anxiety scores differed significantly between 

developmental mathematics courses and non-developmental mathematics courses. Mathematics 

anxiety scores were normally distributed, as assessed by Shapiro-Wil’s test (p > .05). The 

assumption of homogeneity of variance was assessed by the Levene test, F=0.010, p=0.922; this 

indicated no significant violation of the equal variance assumption; therefore, the pooled 

variances version of the t-test was used. The mean mathematics anxiety score for students in the 

developmental mathematics courses had a significantly higher anxiety mean score than those in 

the non-developmental mathematics courses (mean difference= 8.84, p-value<0.001, 95% CI: 

4.00~13.68), and the effect size (Cohen’s d=0.37) was small. 

 

College of major 

A one-way ANOVA was done to compare the mean scores of math anxiety for students that 

pertained to different colleges (College of Arts and Humanities=1, College of Social and 

Behavioral Sciences=2, College of Business=3, College of Education=4, College of Science and 

Mathematics=5, College and Engineering=6, College and Health and Human Services=7). Prior 

to the analysis, the Levene test for homogeneity of variance was used to examine whether there 

were serious violations of the assumption of homogeneity of variance across groups, but no 

significant violation was found: F(6, 370)= 0.485, p=0.819. Mathematics anxiety scores were 

also normally distributed for all levels, as assessed by Shapiro-Wil’s test (p > .05). The overall F-
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statistic for the one-way ANOVA was statistically significant, F(6,369)=3.541, p-value=0.002. 

This corresponds to an effect size of η2=0.054 which is small. Additionally, all possible pairwise 

comparisons were made using the Bonferroni procedure. Based on this test (using α = 0.05 / 7 = 

.007), it was found that the College of Education had a significantly higher mathematics anxiety 

mean score (M= 89.32, SD= 21.66) than the College of Science and Mathematics (M= 71.54, 

SD= 24.01). The remaining colleges did not differ significantly among them. 

Additionally, we wanted to compare the mathematics anxiety scores between STEM colleges 

(College of Science and Mathematics=1 and College of Engineering=1) and Non-STEM colleges 

(College of Arts and Humanities=0, Social and Behavioral Sciences=0, Business=0, Education=0, 

and Health and Human Services=0). This was possible by combining the 7-level college of major 

variable into a binary variable. We then performed an independent samples t-test to assess 

whether the mean mathematics anxiety scores differed significantly between STEM colleges and 

Non-STEM colleges. Preliminary data screening showed that mathematics anxiety scores were 

normally distributed for both STEM and Non-STEM colleges, as assessed by Shapiro-Wil’s test 

(p > .05). The assumption of homogeneity of variance was assessed by the Levene test, F=0.090, 

p=0.765; this indicated no significant violation of the equal variance assumption; therefore, the 

pooled variances version of the t-test was used. The mean mathematics anxiety score for students 

in Non-STEM colleges had a significantly higher anxiety mean score than those in STEM 

colleges (mean difference=8.28, p-value=0.006, 95% CI: 2.42~14.12), but the effect size 

(Cohen’s d=0.34) was small.    
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School Status 

An independent samples t-test was performed to assess whether the mean mathematics anxiety 

scores differed depending on the students’ school status (Full-Time Students=1, Part-Time 

Students=2) but there was not enough evidence to state that there was a statistically significant 

difference among those two groups.  

 

5.2.2 Research Question 2 Results 

Research Question 2 investigated whether the students’ employment status, grandparents’ 

education, parents’ education, and siblings’ education played a role in their mathematics anxiety 

levels. Because of this, ANOVAs and independent sample t-tests were performed. Results for 

ANOVAs are reported in Table 7 and results for the independent sample t-tests are reported in 

Table 8.  

 

Employment Status 

A one-way ANOVA was done to compare the mean scores of mathematics anxiety for 

employment status (Full-Time Employee=1, Part-Time Employee=2, Not Employed=3) but there 

was not enough evidence to state that there was a statistically significant difference. 

Because of this, we went ahead and investigated the possible difference among mathematics 

anxiety levels between employed students (Employed=0) and non-employed students (No 

Employment=1). This was possible by combining the 3-level variable employment status into a 

binary variable. We then performed an independent samples t-test to assess whether the mean 

mathematics anxiety scores differed significantly between them. Mathematics anxiety scores 

were normally distributed for all levels, as assessed by Shapiro-Wil’s test (p > .05). The 
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assumption of homogeneity of variance was assessed by the Levene test, F=1.358, p=0.245; this 

indicated no significant violation of the equal variance assumption; therefore, the pooled 

variances version of the t-test was used. The mean mathematics anxiety score for employed 

students was significantly higher than the non-employed students (mean difference= 5.47, p-

value=0.014, 95% CI: 0.63~10.30), but the effect size (Cohen’s d=0.22) was small. 

 

Grandparents’ Education, Parents’ Education and Siblings’ Education 

An independent samples t-test was performed to assess whether the mean mathematics anxiety 

scores differed significantly between students whose at least one parent attended or graduated 

from college (Yes=2) and those whose parents did not attend or graduated from college (No=1). 

Preliminary data screening indicated that mathematics anxiety scores were not normally 

distributed for students whose at least one parent attended or graduated from college (Yes=2), as 

assessed by Shapiro-Wil’s test (p = .037), but the departure from normality was not judged 

serious enough to require the use of a non-parametric test. The assumption of homogeneity of 

variance was assessed by the Levene test, F=0.240, p=0.625; this indicated no significant 

violation of the equal variance assumption; therefore, the pooled variances version of the t-test 

was used. The mean mathematics anxiety score for students whose parents did not attend or 

graduated from college had a significantly higher anxiety mean score than those students whose 

at least one parent attended or graduated from college (mean difference= 4.23, p-value=0.045 95% 

CI: -0.64~9.10), but the effect size (Cohen’s d=0.18) was small.   

An independent samples t-test was also performed to assess whether the mean mathematics 

anxiety scores differed significantly between students whose at least one grandparent or sibling 

attended or graduated from college (Yes=2) an those whose grandparents or siblings did not 
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attend or graduated from college (No=1), but there was not enough evidence to state that there 

was a statistically significant difference. 

 

5.2.3 Research Question 3 Results 

A multiple linear regression analysis was conducted in order to investigate the 

relationship between the students’ study habits (i.e. goals and attitude, time management skills, 

study environment, test taking/preparation skills, note taking skills, reading skills and math skills) 

(independent variables) and the students’ overall mathematics anxiety score (dependent variable).  

The total N for this sample was 405 but 45 cases were dropped due to missing data; 

hence for this analysis, N = 360. Next, despite various transformations attempted on all variables, 

only five variables were able to show signs of linearity when partial regression plots were 

inspected as shown in Figure 3. Those variables were: goals and attitude, time management skills, 

note taking skills, reading skills, and math skills. The lack of fit test confirmed our assumption of 

linearity with only those 5 variables (F=2.730, p=.306). Because of this, our sample was now 

N=369. The assumption of homogeneity of variance was assessed via an inspection of a 

scatterplot plotting the unstandardized predicted values against the studentized residuals. In this 

scatterplot, there existed a relatively random display of points, where the spread of residuals 

appears fairly constant over the range of values of the independent variable, thus providing 

evidence of homogeneity of variance. Figure 4 contains a more detailed description of such 

scatterplot. There was independence of residuals, as assessed by a Durbin-Watson statistic of 

1.996. Lastly, the histogram of the regression standardized residuals showed that the distribution 

of residuals followed a bell-shape distribution well enough to support a conclusion that the 
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residuals are normally distributed. Figure 5 contains a more detailed description of the histogram. 

With these assumptions met, the validity of our statistical procedure was ensured. 

 Multiple linear regression was performed using the Backwards elimination with the F-to-

remove criterion value set at the probability of F being 0.10. This resulted in the following order 

of removal: STEP 1, reading skills; STEP 2, note taking skills; STEP 3, time management skills, 

thus creating a total of four models including the full model. Results of this sequential regression 

are summarized in Table 9.  

 Out of the four models from Table 9, the best choice would be Model 4 since it follows 

the principle of parsimony, which is having a model to be as simple as possible, without 

containing redundant parameters or factor levels. Overall, Model 4 was statistically significant, 

adjusted R2= .135, F(2, 367)= 29.674, p < .001. To further assess the contributions of both 

variables individually, the t-ratios for the individual regression slopes were examined. Both 

variables were significantly predictive of mathematics anxiety scores; results were goals and 

attitude, t(367) = -2.087, p = 0.038; and math skills, t(367) = -5.716, p < .001. Additionally, we 

found that with every one-point increase in: (1) math skills, there is an approximate 2.8 point 

decrease in the students’ mathematics anxiety score; and (2) goals and attitude, there is an 

approximate 0.7 decrease in the students’ mathematics anxiety score. 

 

5.2.4 Research Question 4 Results 

A multiple linear regression analysis was conducted in order to investigate the 

relationship between the students’ study habits (i.e. goals and attitude, time management skills, 

study environment, test taking/preparation skills, note taking skills, reading skills and math skills) 

and their mathematics anxiety scores (independent variables) and the students’ course grade 
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(dependent variable). We then had to drop 72 cases being that those students did not take their 

final exam, dropped from the course, or were missing information for their study habits 

questionnaire. This made our total sample be N=333.   

Next, despite various transformations attempted on all variables, only five variables were 

able to show signs of linearity when partial regression plots were inspected as shown in Figure 6. 

Those variables were: time management skills, study environment, test taking/preparation skills, 

reading skills, and math skills. The lack of fit test confirmed our assumption of linearity with 

only those 5 variables (F=4.797, p=.109). Because of this, our sample became N=355. The 

assumption of homogeneity of variance was assessed via an inspection of a scatterplot plotting 

the unstandardized predicted values against the studentized residuals. In this scatterplot, there 

existed a relatively random display of points, where the spread of residuals appears fairly 

constant over the range of values of the independent variable, thus providing evidence of 

homogeneity of variance. Figure 7 contains a more detailed description of such scatterplot. There 

was independence of residuals, as assessed by a Durbin-Watson statistic of 1.921. Lastly, the 

histogram of the regression standardized residuals did not show strong evidence of normality but 

the regression analysis was done anyway because it is fairly robust to non-normality (Bartlett, 

1935; Eisenhart, 1947; Lorenzen and Anderson, 1993; Pearson, 1931). Figure 8 contains a more 

detailed description of this histogram.  

 Multiple linear regression was performed using the Backward method with the F-to-

remove criterion value set at the probability of F being 0.10. This resulted in the following order 

of removal: STEP 1, test taking skills, thus creating only two models including the full model. 

Results of this sequential regression are summarized in Table 10.  
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Out of all the models from Table 10, the best one was Model 2 since it does not contain 

redundant parameters or factor levels. Overall, Model 2 was statistically significant, adjusted 

R2= .120, F(4, 350)= 11.899, p < .001. To further assess the contributions of all variables 

individually, the t-ratios for the individual regression slopes were examined. Only the variables 

time management skills, t(350) = 3.873, p < .001;  reading skills, t(350) = -2.527, p = .012; and 

mathematics skills, t(350) = 4.466, p < .001 were significantly predictive of the students’ course 

grade. Additionally, we found that with every one-point increase in: (1) math skills, there is an 

approximate 1.7 point increase in the students’ course grade; (2) time management skills, there is 

an approximate 2 point increase in the students’ course grade; (3) reading skills, there is an 

approximate 1 point decrease in the students’ course grade; and (4) study environment, there is 

an approximate 0.6 point decrease in the students’ course grade. 

 

5.2.5 Research Question 5 Results 

 For our comprehensive research question, we wanted to explore the relationship among 

the students’ gender, classification (freshman, non-freshman), course of enrollment 

(developmental math course, non-developmental math course), college of major (STEM, non-

STEM), grandparents’ education, parents’ education, siblings’ education, employment status 

(employed, non-employed), school status (full-time, part-time), study habits (i.e. goals and 

attitude, time management skills, study environment, test taking/preparation skills, note taking 

skills, reading skills and math skills), and mathematics anxiety score (all independent variables) 

and the students’ mathematics performance, that is, final exam grade and course grade (both 

dependent variables). Because of this, two models were required to investigate each relationship 

individually, one for final exam grade and another one for course grade. Note that along with 
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numerical variables, we are also dealing with categorical variables as predictors hence why we 

opted to use the categorical variables with only two levels. We could have created dummy 

variables and considered all levels of each categorical variable but such action did not seem 

necessary for the purposes of our study. The distribution for each categorical variable would 

have also not been well distributed. Refer to Table 11 for more details over the categorical 

variables used in this regression model and their corresponding re-coding. 

Furthermore, in multiple linear regression, there exists a rule of thumb that suggests to 

have approximately 15 to 20 cases per parameter used in the model to have reliable results and 

that was not possible with our data given that there was a total of 17 parameters considered and 

our sample size would not suffice. In order to address this matter, factor analysis was performed 

on the 57 items that pertained to the 7 variables under study habits. Results showed that the 57 

items loaded into 3 factors that measured similar characteristics of students’ study habits. These 

3 factors became our new study habits variables: (1) academic self-discipline which was 

composed of 29 items that measured the discipline students have towards their education (2) 

reading and writing skills which was composed of 14 items that measured how well students 

read and write and (3) mathematics and test taking skills which was composed of 14 items that 

measured how well students perform on mathematics and tests in general. Additionally, factor 

analysis was performed on the 30 items pertaining to the MARS-B. Results showed that the 30 

items loaded into two factors, a finding that has been seen in similar studies where factor 

analysis has been performed on the MARS-B (Suinn & Winston, 2003).  Based on those studies, 

we were able to classify the two factors as two new variables (1) mathematics test anxiety which 

was composed of 15 items that measured the anxiety individuals experience when they are 

exposed to any type of mathematics testing and (2) numerical anxiety which contained 15 items 
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that measured anxiety felt by the manipulation of numbers. A detailed description of the factorial 

analysis performed on the 57 items of the study habits questionnaire and the 30 items of the 

MARS-B are found in Table 12 and Table 13 respectively.  

 

Final Exam Grade 

A multiple linear regression analysis was conducted in order to investigate the relationship 

between the students’ gender, classification (freshman, non-freshman), course of enrollment 

(developmental math course, non-developmental math course), college of major (STEM, non-

STEM), grandparents’ education, parents’ education, siblings’ education, employment status 

(employed, non-employed), school status (full-time, part-time), study habits (i.e. academic self-

discipline, reading and writing skills and mathematics and test taking skills), and mathematics 

anxiety score (all independent variables) and the students’ final exam grade (dependent variable).  

For this procedure, 156 cases had to be dropped due to missing data, making our total sample 

N=249. Furthermore, after close inspection of our partial regression plots, linearity was only 

shown for the variables numerical anxiety, academic self-discipline, reading and writing skills 

and mathematics and test taking skills. Figure 9 contains a summary of all partial regression plots. 

In order to assess “linearity” between our 2-level categorical variables and the students’ final 

exam grade, independent sample t-tests were performed. Based on these results, only variables 

classification, courses, school status, and employment status showed statistically significant 

differences in the students’ final exam grade, therefore only those categorical variables were 

considered in the regression model. Table 14 contains the results for all the independent sample 

t-test. The assumption of homogeneity of variance was assessed via an inspection of a scatterplot 

plotting the unstandardized predicted values against the studentized residuals. In this scatterplot, 
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there existed a relatively random display of points, where the spread of residuals appears fairly 

constant over the range of values of the independent variable, thus providing evidence of 

homogeneity of variance. Figure 10 contains a more detailed description of such scatterplot. 

There was independence of residuals, as assessed by a Durbin-Watson statistic of 1.875. Lastly, 

the histogram of the regression standardized residuals showed that the distribution of residuals 

followed a bell-shape distribution well enough to support a conclusion that the residuals are 

normally distributed. Figure 11 contains a more detailed description of the histogram. With these 

results, our sample became N=315 and the validity of our statistical procedure was ensured. 

Similarly to previous research questions, multiple linear regression was performed using the 

Backward method with the F-to-remove criterion value set at the probability of F being 0.10. 

This resulted in the following order of removal: STEP 1, classification; STEP 2, numerical 

anxiety; STEP 3, school status; and STEP 4, academic self discipline; thus creating a total of 5 

models including the full model. Results of this sequential regression are summarized in Table 

15.  

Out of all the models given in Table 15, the best one was the last model since it contained a high 

R2 and did not contain redundant parameters or factor levels. Overall, our chosen model was 

statistically significant, adjusted R2= .234, F(4, 310)= 24.948, p < .001. To further assess the 

contributions of the variables individually, the t-ratios for the individual regression slopes were 

examined. The variables course, t(310) = -9.146, p < .001; mathematics and test taking skills, 

t(310) = 3.798, p < .001; reading and writing skills, t(310) = -2.083, p= .038; and employment 

status, t(310) = 2.277 p= .023; were significantly predictive of the students’ final exam grade. 

Additionally, we found that with every one-point increase in: (1) mathematics and test taking 

skills, there is an approximate 1.2 point increase in the students’ final exam grade; and (2) 
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reading and writing skills, there is an approximate half point decrease in the students’ final exam 

grade. In terms of our categorical variables: (1) students in the developmental mathematics 

courses reported an approximate 20 point decrease in their final exam grade when compared 

with students in the non-developmental mathematics courses and (2) students who are non-

employed reported an approximate 5 point increase in their final exam grade when compared 

with employed students.  

 

Course Grade 

A logistic regression analysis was conducted because of the non-normal distribution, found in the 

histogram on Figure 12, of the variable course grade. In this analysis, we wanted to investigate 

the relationship between the students’ gender, classification (freshman, non-freshman), course of 

enrollment (developmental math course, non-developmental math course), college of major 

(STEM, non-STEM), grandparents’ education, parents’ education, siblings’ education, 

employment status (employed, non-employed), school status (full-time, part-time), study habits 

(i.e. academic self-discipline, reading and writing skills and mathematics and test taking skills), 

and mathematics anxiety score (all independent variables) and the students’ course grade 

(dependent variable). Note that the variable course grade was originally a numerical variable but 

it had to be converted into a binary categorical variable given the nature of logistic regression. 

Students who scored less than a 60 on their course were coded under “unsatisfactory 

performance” and students who scored a 60 or higher were coded under “satisfactory 

performance.” The coding was done based on the grading policies from the University of Texas 

Pan-American.  
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For this procedure, 139 cases had to be dropped due to missing data, making our total sample 

N=266. Chi-Square tests indicated a significant association between 1) student status and course 

grade and 2) employment status and course grade, therefore only those categorical variables 

were considered for the model. The Box-Tidwell procedure indicated that all numerical variables 

were linearly associated with course grade, hence all numerical variables were considered for the 

model.  Lastly, the error terms yielded independence and with this, our assumptions were met 

given that in logistic regression the independent variables do not need to be multivariate normal, 

the residuals do not need to be multivariate normally distributed, and homoscedasticity is not 

needed as opposed to multiple linear regression. With these results, our sample became N=327 

and the validity of our statistical procedure was ensured. 

Logistic regression was performed using the Backward method where the removal of variables is 

based on the probability of the Wald statistic. This resulted in the following order of removal: 

STEP 1, courses; STEP 2, numerical anxiety; STEP 3, mathematics and test taking skills; STEP 

4, mathematics test anxiety; and STEP 5, school status; thus creating a total of 6 models 

including the full model.  

Out of all the models given by the sequential regression, the model chosen to have the best fit 

was the one given after STEP 3 given that it contained a high Nagelkerke R2 and did not contain 

a significant amount of redundant parameters or factor levels. Overall, our chosen model 

significantly predicted course grade, Nagelkerke R2= .151, χ2(6)= 30.80, p < .001, and it 

successfully classified 83.8% of the cases. To further assess the contributions of the variables 

individually, the Wald statistics for the individual regression slopes were examined. The 

variables academic self-discipline, Wald statistic equal to 11.812, p = .001; reading and writing 

skills, Wald statistic equal to 10.366, p = .001; and employment status, Wald statistic equal to 
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5.834, p= .016; were significantly predictive of the students’ course grade. Table 16 contains the 

summary of such model. Additionally, after a close inspection of the odds ratios, we found that 

(1) an increase in academic self-discipline is associated with a probability of approximately 1.1 

that the student will perform at a satisfactory level in their mathematics course and (2) an 

increase in mathematics and test taking skills is associated with a probability of approximately 

1.05 that the student will perform at a satisfactory level in their mathematics course. On the other 

hand, our results showed that (1) an increase in reading and writing skills was associated with a 

probability of approximately 0.9 that the student will perform at a satisfactory level in their 

mathematics course (2) an increase in test anxiety was associated with a probability of 

approximately 0.98 that the student will perform at a satisfactory level in their mathematics 

course (3) students who are employed reported a probability of approximately 0.43 that they will 

perform at a satisfactory level in their mathematics course and (4) students who are part-time 

only reported a probability of approximately 0.6 that they will perform at a satisfactory level in 

their mathematics course.  
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CHAPTER VI 
 
 

CONCLUSIONS AND DISCUSSIONS 
  

The main focus on this study was to investigate the phenomenon of mathematics anxiety 

on Hispanic college students. Our results from Research Question 1 showed that females had 

higher significant levels of mathematics anxiety than males. Furthermore, freshman students and 

non-freshman students seem to share similar levels of mathematics anxiety given that there was 

not enough evidence to state the contrary. Our data also showed that students enrolled in 

developmental mathematics courses have higher levels of mathematics anxiety than students 

enrolled in non-developmental mathematics courses. Students enrolled in developmental 

mathematics have failed to meet the minimum mathematics requirement set by the university, 

telling us that those students probably lacked basic math skills throughout their secondary 

education. Because of that, it is possible that those students might suffer from low self-esteem. 

These feelings of embarrassment and disappointment could then foster higher levels of 

mathematics anxiety, as explained by the Inference Model compared to students who are not 

enrolled in developmental math courses (Liebert & Morris, 1967; Mandler & Saraso, 1952; Wine, 

1971). Furthermore, our data showed that students whose major is at the College of Humanities 

or College of Education have significantly higher levels of mathematics anxiety than those 

whose major is at the College of Science and Mathematics. An explanation could be that students 

who already suffer of high levels of mathematics anxiety tend to avoid careers that rely on  

mathematical



	   	  

43	  

 

 mathematical skills, hence why choosing careers in the humanities or education fields (Ashcraft, 

2002; Ma, 1999). A comparison was also done when comparing STEM and non-STEM colleges, 

but the differences, although significant, were not significantly strong. A possible reason for this 

could be that students from the College of Engineering (which falls under the STEM category) 

appeared to show high levels of math anxiety.  

In response to Research Question 2, our results showed that students who had a full time 

job had higher levels of mathematics anxiety than those who were not employed. The pressures 

of having a full-time job in conjunction to going to school could be the explanation for the 

development of higher mathematics anxiety than those students who do not have a job. On the 

other hand, being a full-time student or part-time student seems to play no role on the students’ 

mathematics anxiety level given that there was not enough data to state that the math anxiety 

levels differed among those two groups. Lastly, we wanted to investigate if there existed a family 

influence on students’ mathematics anxiety levels. We did this by investigating whether having 

at least one grandparent, parent, or sibling who attended college affected the students’ math 

anxiety levels. Data did not show that there existed an influence from a grandparent or sibling, 

but there was evidence of such influence from part of the parent. Students whose at least one 

parent attended college reported a significant lower level of mathematics anxiety than those 

whose parents never attended college. A possible explanation could be that those students whose 

parents attended college might receive more support from their parents. Being that at least one 

parent attended college, students might receive more advice as to how to handle college-related 

stress and anxiety than first generation college students.  

Research Question 3 was meant to assess the possible relationship between the study 

habits of a student and their mathematics anxiety levels. We wanted to know if having good 
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studying skills yielded lower levels of mathematics anxiety. If such relationship existed, we 

wanted to see which factors of studying habits were more important. Data showed that from the 

study habits, an increase in goals and attitude and math skills was associated with a decrease in 

mathematics anxiety levels. What this says is that the better attitude the student has towards their 

education as well as stronger math skills, the lower their mathematics anxiety should be. This 

result tells us that if we want a student to reduce their mathematics anxiety level, we must 

reinforce how important education is. We must also help them build a stronger foundation in 

mathematics, hence building a stronger confidence when confronted with a mathematical task 

and therefore decreasing their anxiety.  

For Research Question 4, we wanted to explore the impact that good studying habits and 

mathematics anxiety could have on students’ mathematics performance, measured by their math 

course grade. Our results showed that increasing the students’ math skills and time management 

skills was associated with an increase in their math course grade. Good time management skills 

could be crucial for a mathematics course given that in those courses, students are expected to 

learn multiple mathematical definitions and procedures and it takes time to be able to learn those 

skills, let alone master. On the other hand, our data showed that an increase in reading skills and 

a good study environment was associated with a decrease in the students’ math course grade. A 

possible explanation could be that students with higher reading skills are probably students 

whose majors require a lot of literature-related assignments and not mathematical assignments 

hence why the negative relationship was found in our results. Also, our model could imply that 

having a good place to study does not necessarily mean that there will be an increase in the 

students’ math course grade. In fact, the more the student might focus on having a place to study 

and having everything organized, the less time they could have to actually study, hence 
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decreasing their math course grade. Lastly, it is important to note that although mathematics 

anxiety was not considered a statistically significant predictor in our model, there was evidence 

of a negative relationship between mathematics anxiety and math course grade; a result that has 

been present throughout the literature (Ma, 1999).  

For our last research question, Research Question 5, we wanted to consider all possible 

factors of a student and the possible impact that those could have on the students’ mathematics 

performance, that is their final exam grade and course grade. Two models were created because 

of it (multiple regression model and logistic model) rather than exanimating each factor 

individually using independent sample t-tests or simple linear regressions. Our final exam grade 

model (multiple regression) showed that an increase in mathematics and test taking skills was 

associated with an increase in the students’ final exam grade. This is not a surprise being that 

students with better mathematics skills are more likely to score higher on their mathematics 

assignments and tests. In order for this to happen, mathematics instructors should not only master 

their field but also have the proper training required to teach the material to students. Another 

factor that showed a positive relationship was students who were not employed. These non-

employed students were associated with an increase in their final exam scores. It is possible that 

because they do not have a job, they have more time to study and better prepare for their 

mathematics courses. Non-employed students could also experience less stress compared with 

students with either a part-time or full-time job, thus focusing more on their studies. On the other 

hand, our final exam grade model showed that being in a developmental mathematics course was 

associated with a decrease in the students’ final exam grade. A possible explanation could be that 

students enrolled in developmental mathematics courses suffer more from mathematics anxiety 

than students enrolled in non-developmental mathematics courses, thus they are more likely to 
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score lower on their mathematics final exam grade. Lastly, an increase in reading and writing 

skills was associated with a decrease in the students’ final exam grade. This relationship was 

confusing at first but a possible explanation was made after exanimating the items that measured 

the reading and writing skills. After close inspection of such items, it became clear that they 

measured a more passive style of reading rather than an analytical style required for reading 

science and mathematics books. This showed us that having “good” reading skills is not enough 

to perform satisfactory in mathematics courses and it could even hinder the students’ 

mathematics performance. Reading courses should implement a more diverse curriculum that 

includes assignments that enhance the analytical reading skills of students so that this negative 

relationship that was seen on our model could be inverted in the future.  

Similar findings were encountered in our course grade model (logistic regression). In this 

model, we found that students who are more disciplined in their academics have a higher 

probability of passing their mathematics course. This included studying beforehand for 

upcoming tests and going to see their mathematics professors when they have questions 

regarding the material covered. An increase in students’ mathematics and test taking skills was 

also associated with a higher probability of passing their mathematics courses. On the other hand, 

an increase in the students’ test anxiety was associated with a lower probability of passing their 

mathematics courses. This coincides with findings that suggest that anxiety interferes with 

students’ mathematics performance therefore the low probability of passing such courses. 

Students who were part-time only and employed also reported a lower probability of passing 

their mathematics courses respectively. This could be because these students probably have a job 

or other responsibilities outside of school therefore spending less time focusing on their studies.  

Unfortunately there is not much that can be done in this case but these students should try to 
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dedicate as much time and dedication to their studies, even if this means making sacrifices.  

Lastly, an increase in the students’ reading and writing skills also showed a lower probability in 

them passing their mathematics courses. This finding was similar to the one in the final exam 

model (multiple regression) that suggests that having good passive reading skills is not enough 

and could even hurt their mathematics performance. Again, reading instructors should emphasize 

on the importance of analytical reading skills. Mathematics instructors should also implement 

assignments in their courses that foster such skills.  

It is important to also note the factors that were not considered significant by either 

model. Mathematics anxiety yielded a negative relationship in both models, as shown on 

numerous studies, yet it was not considered a significant factor. This could had been avoided if 

the grades that were collected came from instructors who shared similar grading scales, but it is 

still possible that such insignificance could had still been present. Also, having a family member 

who has attended college or not seems to play no important role on whether the student will 

score higher or lower on their final exam and course grade. This tells us that first generation 

students have the same potential in succeeding in their mathematics courses as students whose 

family members have had attended college and experienced the demands of such institutions.  

Lastly, gender, classification, and college of major were not considered significant in our models. 

This tells us that both males and females, freshman and non-freshman, and STEM and non-

STEM majors also have the same potential to succeed in their mathematics courses.  
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CHAPTER VII 
 
 

LIMITATIONS AND FUTURE WORK 
 

 Despite the careful planning of this study, there still existed some limitations. We were 

able to receive the students’ grades on their final exam and overall course from all instructors 

who agreed to participate in the study, yet it was clear that they all graded differently. Some 

instructors gave grades with no decimal points while others graded up to 3 decimal places. 

Another thing that could have affected the results of this study was that it was not always clear 

whether the scores received from the instructors were raw, curved, or with extra points added to 

them by extra credit assignments or corrections. To better enhance a study like this, we would 

advice to have some control over the grading scheme so that the scores would not differ as much 

regardless of the instructor but of course this could be an inconvenience to many instructors 

given that they have probably developed their own grading schemes. Another limitation for this 

study was the sample size. By increasing our sample size, it could have been possible to gather a 

better-distributed sample. Examples of this are found in the descriptive statistics of the college of 

major and classification where the sample was not evenly distributed, hence why we had to 

create new variables to accommodate this issue. By increasing our sample size we could of also 

have found statistically significant findings on variables in which we were not able to with our 

current sample size.  

        For future work, we want to collect more information from the students. This includes more 

data on their mathematics performance, which would be their ACT and SAT mathematics scores.
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 We want to investigate the relationship these might have with the students’ mathematics anxiety 

levels. Additionally we would also like to develop our own theoretical model that explains how 

mathematics anxiety is created. So far we have an idea of what factors contribute to higher levels 

of math anxiety but with more research done over the factors, we could create a theoretical 

model that could help us then develop a program to alleviate the symptoms of anxiety and 

overall reduce mathematics anxiety levels on the students. With a program like this, not only 

students could benefit from it but anyone whose lives are affected in any way by their 

mathematics anxiety. 
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APPENDIX A 
 
 

TABLES 
 
 

Table 1. Course descriptions  
 

Course Title Course Description 
Elementary 
Algebra 

Topics include basic operations on real numbers, elementary geometry, introduction to algebra, 
linear equations and graphs, linear equations with applications, exponent properties, systems of 
linear equations in two unknowns, polynomials and factoring methods. 
 

Intermediate 
Algebra 

Topics include factors of polynomials; rational expressions; radical expressions; an introduction 
to complex numbers; quadratic equations; rational equations, radical equations and elementary 
inequalities. 
 

College 
Algebra 

Topics include nonlinear and absolute value inequalities, functions, complex numbers, 
polynomial and rational functions, exponential and logarithmic functions, systems of linear and 
nonlinear equations, and matrices. 
 

Elementary 
Statistics 

Topics include the definitions and fundamental theorems concerning measures of central 
tendency and dispersion, empirical and theoretical concepts of probability, the central limit 
theorem, tests of hypotheses, interval estimation, chi-square tests and regression and 
correlation. 

Course Title 
Course 
Code 

Total Students 
Enrolled in Course 

Total Student 
Participants in 

Study 

Course Format  
 

 
Elementary  

 
1300.01 

 
22 

 
14 

 
Computer Based 

Algebra 1300.02 28 22 Computer Based 
(MATH 1300) 1300.03 30 18 Computer Based 
 1300.04 30 12 Computer Based 
 1300.05 24 12 Computer Based 
     
Intermediate  1334.01 28 22 Computer Based 
Algebra 1334.02 30 21 Computer Based 
(MATH 1334) 1334.05 30 25 Computer Based 
 1334.06 29 21 Computer Based 
 1334.07 29 17 Computer Based 
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College  1340.05 26 19 Computer Based 
Algebra 1340.16 19 14 Computer Based 
(MATH 1340) 1340.21 32 24 Lecture Based 
 1340.24 32 19 Lecture Based 
 1340.26 32 30 Lecture Based 
     
Elementary  2330.05 32 30 Lecture Based 
Statistics 2330.07 30 25 Computer Based 
(MATH 2330) 2330.16 30 21 Lecture Based 
 2330.17 29 25 Lecture Based 
 2330.18 23 16 Computer Based 
Note: Final exam was common and comprehensive for all courses.  
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Table 2. List of variables used in the study 

Variables Description Values 
Dependent Variables 
 

  

Mathematics Anxiety 
Score 

Numerical score of math anxiety. 
The higher the score, the more 
anxious the student. 
 

30~150 

Final Exam Grade Grade obtained by the students on 
their respective course’s final 
exam 
 

0~100 

Course Grade Overall course grade obtained by 
the students  

0~100 

Independent Variables 
 
Gender Student gender 1=Male 

 2=Female 
 

Classification 
 

School classification status 1=Freshman 
2=Sophomore 
3=Junior 
4=Senior 
 

Courses Course enrollment at time of study 1=MATH 1300 (Elementary Algebra) 
2=MATH 1334 (Intermediate Algebra) 
3=MATH 1340 (College Algebra) 
4=MATH 2330 (Elementary Statistics) 
 

College of major College that pertains to the major 
of the student 

1=College of Arts and Humanities 
 2=College of Social and Behavioral Sciences 
 3=College of Business 
 4=College of Education 
 5=College of Science and Mathematics 
 6=College of Engineering 
 7=College of Health and Human Services 

8=I do not know 
 

School Status Enrollment status of student 1=Full-Time Student  
  2=Part-Time Student 

 
Grandparents’ education 

 
 

“At least one of my four 
grandparents attended or graduated 
from college” 

2=Yes  
1=No  
0=I do not know 
 

Parents’ education 
 
 

“At least one of my two parents 
attended or graduated from 
college” 

2=Yes  
1=No  
0=I do not know 
 

Siblings’ education “I have at least one older 
brother/sister who attended or 
graduated college”  
 

1=Yes  
0=No  
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Employment Status Employment status of the student 1=Full-Time Employee  
 2=Part-Time Employee  
 3=Not Employed  

 
 
Study Habits 
 

  

Goals and Attitude Overall attitude towards education 16~48 
 

Time Mgmt. Skills Good time-managing skills 6~18 
 

Study Environment Good studying environment 8~24 
 

Test 
Taking/Preparation 
Skills 

Good preparation for a test and 
good test taking skills. 

7~21 

Note Taking Skills Good note taking skills 8~24 
 

Reading Skills Good reading skills 6~18 
 

Math Skills 
 

Good math skills 6~18 
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Table 3. Mean mathematics anxiety scores by all 9 factors  
 
  N MA Mean SD 
     
Gender Male  141 72.41 24.51 

Female  
 

243 86.02 22.73 

Classification 
 

Freshman  219 80.03 23.89 
Sophomore  97 83.36 25.10 
Junior  46 79.02 23.69 
Senior  
 

19 84.58 28.07 

Courses MATH 1300 (Elementary Algebra)  63 79.06 23.82 
MATH 1334 (Intermediate Algebra)  104 90.24 23.25 
MATH 1340 (College Algebra) 103 80.26 22.24 
MATH 2330 (Elementary Statistics) 
 

114 74.39 24.93 

College of major College of Arts and Humanities  32 89.56 20.94 
 College of Social and Behavioral Sciences  71 83.85 26.26 
 College of Business  30 78.70 24.89 
 College of Education  41 89.32 21.66 
 College of Science and Mathematics  61 71.54 24.01 
 College of Engineering  25 82.00 24.94 
 College of Health and Human Services  117 79.24 23.62 

 
School Status Full-Time Student  317 80.38 24.43 
 Part-Time Student  66 84.61 23.23 
     
Grandparents’ education 

 
 

Yes  49 82.38 24.09 
No  279 81.61 24.90 
I do not know 
 

56 76.89 20.98 

Parents’ education 
 
 

Yes  192 78.95 23.97 
No  184 83.18 24.08 
I do not know 
 

8 81.12 34.34 

Siblings’ education Yes  191 80.42 23.82 
No  
 

189 81.75 24.97 

Employment Status Full-Time Employee  82 84.49 24.42 
Part-Time Employee  114 83.35 25.67 
Not Employed  188 78.12 23.09 

 Note: N = sample size; MA: Mathematics Anxiety Score; SD = standard deviation 
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Table 4. Comparison of percentile equivalents for Suinn’s study and our study of 
Hispanic students.  

 
Percentage Suinn’s Percentile Equivalents for Students’ 

Mathematics Anxiety Scores 
Our Percentile Equivalents for Hispanic 
Students’ Mathematics Anxiety Scores 

5% 34 39 
10% 37 48 
25% 46 66 
50% 59 80 
75% 78 98 
90% 97 112 
95% 108 123 
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Table 5. Summary of ANOVAs for mathematics anxiety mean score differences for 
variables classification, courses, and college of major.  
 

 Sum of squares df Mean square F Sig. 
       
Classification Between groups 1021.281 2 510.640 .867 .421 
 Within groups 221978.853 377 588.803   
 Total 223000.134 379    
       
Courses Between groups 15180.200 3 5060.067 9.218 .000 
 Within groups 208042.400 379 548.925   
 Total 223222.601 382    
       
College of major Between groups 12089.445 6 2014.907491 3.541 .002 
 Within groups 209994.300 369 569.090243   
 Total 222083.745 375    
       
Note: df = degrees of freedom; F = F statistic; Sig. = Significance 
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Table 6. Summary of independent sample t-tests of mathematics anxiety mean score 
differences for variables gender, classification, courses, college of major, and school status.  
 

 N Mean SD t Cohen’s d 
       
Gender Male  141 72.41 24.51 -5.495*** 0.58 
 Female  

 
243 86.02 22.73   

Classification Freshman  219 80.03 23.89 -0.889  
 Non-Freshman 

 
162 82.27 24.99   

Courses Developmental Math  167 86.02 24.02 3.594*** 0.37 
 Non-Developmental Math   

 
217 77.18 23.82   

College of major STEM Colleges 86 74.58 24.60 -2.785** 0.34 
 Non-STEM Colleges 

 
291 82.86 24.11   

School Status  Full-Time Student  317 80.38 24.43 -1.288  
 Part-Time Student 

 
66 84.61 23.23   

Note: N = sample size; SD = standard deviation 
*p<.05, **p<.01, ***p<.001.  

     



	  

64	  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Table 7. Summary of ANOVAs for mathematics anxiety mean score differences for 
variable employment status.  
 

 Sum of squares df Mean square F Sig. 
       
Employment Status Between groups 2923.153 2 1461.576576 2.521 .082 
 Within groups 220299.447 380 579.735388   
 Total 223222.601 382    
       
Note: df = degrees of freedom; F = F statistic; Sig. = Significance 
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Table 8. Summary of independent sample t-tests of mathematics anxiety mean score 
differences for variables employment status, grandparents’ education, parents’ education, 
and siblings’ education.  

 
 N Mean SD t Cohen’s d 

      
Employment  Employed  196 83.83 25.10 2.051* 0.22 
Status Non-Employed  

 
187 78.36 22.90   

Grandparent’s  Yes  49 82.38 24.09 -0.201  
Education No  

 
279 81.61 24.90   

Parent’s  Yes  192 78.95 23.97 1.708* 0.18 
Education No  

 
184 83.18 24.08   

Sibling’s  
Education 

Yes  191 80.42 23.82 0.530  
No  
 

189 81.75 24.97   

Note: N = sample size; SD = standard deviation 
*p<.05, **p<.01, ***p<.001.  
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Table 9. Results of sequential regression for Research Question 3  
 

  Model 1  Model 2 Model 3 Model 4 
Variable B SE B β B SE B β B SE B β B SE B β 
Intercept 138.7 10.65  138.3 18.46  138.6 10.39  139.1 10.38 

 
 

Math 
Skills 
 

-2.850 .503 -.318 
*** 

-2.860 .50 -.319 
*** 

-2.833 .488 -.310 
*** 

-2.769 .484 -.309 
*** 

Goals 
and 
Attitude 
 

-.979 .431 -.159 
* 

-.980 .430 -.159 
* 

-.951 .415 -.155 
* 

-.694 .333 -.113 
* 

Time 
Mgmt. 
Skills 
 

.682 .714 .064 .673 .711 .064 .715 .692 .068    

Note 
Taking 
Skills 
 

.149 .493 .019 .121 .467 .016       

Reading 
Skills 
 

-.910 .499 -.100          

R2 
 

 .142   .142   .142   .139  

F for 
change in 
R2 

 
 

.142 
*** 

  .000 
*** 

  .000 
*** 

  -.003 
*** 

 

Note: B = unstandardized regression coefficient; SE B = Standard error of the coefficient; β = standardized coefficient 
*p<.05, **p<.01, ***p<.001.  
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Table 10. Results of sequential regression for Research Question 4  
 

  Model 1  Model 2 
Variable B SE B β B SE B β 
 
Intercept 

 
48.282 

 

 
6.497 

  
47.010 

 
6.406 

 
 

Math Skills 
 

1.860 .405 .274 
*** 

1.705 .382 .251 
*** 

Time Mgmt. Skills 
 

2.119 .527 .268 
*** 

2.011 .519 .254 
*** 

Reading Skills 
 

-.902 .401 -.131 
* 

-.993 .393 -.145 
* 

Study 
Environment 
 

-.522 .346 -.106 -.617 .341 -.119 

Test Taking / 
Preparation Skills 
 

-.522 .453 -.075    

R2 
 

 .123   .120  

F for change in R2  
 

.123  
*** 

  -.003 
*** 

 

 

Note: B = unstandardized regression coefficient; SE B = Standard error of the coefficient; β = standardized coefficient*p<.05, **p<.01, 
***p<.001. 

.  
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Table 11. List of variables used for Research Question 5 with their corresponding new 
coding  
 
Variable Old Coding New Coding 
Gender 1=Males 

2=Females  
0=Females 
1=Males 
 

Classification 
 

1=Freshman 
2=Non-Freshman 

0=Freshman 
1=Non-Freshman 
 

Course 
 

1= Elementary Algebra 
2= Intermediate Algebra 
3= College Algebra 
4= Elementary Statistics 
 

0=Developmental 
 (Elementary Algebra, Intermediate Algebra) 
1=Non-Developmental  
(College Algebra, Elementary Statistics) 

College 
 

1=College of Arts and Humanities 
2=College of Social and Behavioral Sciences 
3=College of Business 
4=College of Education 
5=College of Science and Mathematics 
6=College of Engineering 
7=College of Health and Human Services 
 

0=Non-STEM 
(College of Arts and Humanities, College of 
Social and Behavioral Sciences, College of 
Business, College of Education, College of Health 
and Human Services) 
1=STEM 
(College of Science and Mathematics, College of 
Engineering) 
 

Grandparents’ 
Education 

0=I do not know 
1=No 
2=Yes 

0=No 
1=Yes 
 
 

Parents’ 
Education 

0=I do not know 
1=No 
2=Yes 
 

0=No 
1=Yes 

Siblings’ 
Education 
 

0=I do not know 
1=No 
2=Yes 
 

0=No 
1=Yes 

Employment 
Status 

1=Full-Time 
2=Part-Time 
3=No Employment 

0=Employed 
1=No Employment 

School Status 1=Full-Time 
2=Part-Time 
 

0=Part-Time 
1=Full-Time 
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Table 12. Rotated component matrix of the factorial analysis for study habits items 
 

Items 
 

Factor 1 
(Academic Self-Discipline) 

 

Factor 2 
(Reading and Writing Skills) 

 

Factor 3 
(Mathematics and Test Taking Skills) 

 
SHQ18 .654 .251 .020 
SHQ17 .633 .090 .089 
SHQ7 .583 .134 .053 
SHQ22 .583 .333 .148 
SHQ8 .582 -.068 .144 
SHQ30 .517 .333 .058 
SHQ19 .516 -.028 .280 
SHQ3 .494 .167 .205 
SHQ14 .467 .038 .337 
SHQ4 .457 .114 .215 
SHQ43 .450 .381 .091 
SHQ31 .446 .359 .117 
SHQ21 .445 .163 .283 
SHQ5 .442 .092 .222 
SHQ9 .441 -.025 .015 
SHQ11 .429 .249 .078 
SHQ23 .411 .288 .041 
SHQ24 .366 .327 .029 
SHQ20 .352 -.055 .258 
SHQ13 .349 .156 .321 
SHQ29 .345 .263 -.013 
SHQ45 .340 .302 .214 
SHQ6 .324 .048 .051 
SHQ28 .323 .226 .138 
SHQ2 .314 .115 .014 
SHQ10 .313 .031 .024 
SHQ1 .245 .161 .166 
SHQ38 .235 .224 .115 
SHQ33 .220 .177 .159 
SHQ51 .156 .590 .067 
SHQ50 .076 .586 .059 
SHQ47 .179 .561 -.016 
SHQ48 -.086 .560 .077 
SHQ46 -.022 .559 .142 
SHQ42 .195 .529 .341 
SHQ44 .158 .522 .304 
SHQ41 .299 .516 .048 
SHQ49 .090 .474 -.004 
SHQ40 .294 .470 .329 
SHQ27 .313 .385 .210 
SHQ26 .273 .379 .151 
SHQ25 .343 .366 .110 
SHQ37 .184 .301 .235 
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SHQ56 .022 .131 .732 
SHQ57 .022 .208 .674 
SHQ52 .124 .104 .628 
SHQ39 .180 .253 .561 
SHQ16 -.036 -.095 .530 
SHQ34 .195 .302 .522 
SHQ12 .198 .082 .512 
SHQ53 .277 .059 .484 
SHQ35 -.019 .437 .459 
SHQ54 .302 .071 .450 
SHQ36 -.013 .288 .434 
SHQ15 -.225 .051 -.420 
SHQ55 .049 .053 .309 
SHQ32 .159 .139 .182 

Note: SHQ: Study Habits Question. Extraction Method: Principal Component Analysis. Rotation Method: Quartimax. 
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Table 13. Rotated component matrix of the factorial analysis for mathematics anxiety 
items  

 
   

Items Factor 1 
(Mathematics Test Anxiety) 

 

Factor 2 
(Numerical Anxiety) 

 
MAQ4 .857 .050 
MAQ3 .854 .067 
MAQ12 .812 .245 
MAQ5 .808 .048 
MAQ1 .794 .136 
MAQ9 .787 .122 
MAQ2 .753 .151 
MAQ8 .721 .167 
MAQ11 .709 .312 
MAQ14 .691 .261 
MAQ10 .679 .270 
MAQ7 .676 .121 
MAQ15 .637 .360 
MAQ6 .596 .216 
MAQ13 .518 .382 
MAQ29 .123 .820 
MAQ30 .172 .796 
MAQ21 .170 .785 
MAQ17 .071 .782 
MAQ28 .302 .750 
MAQ18 -.021 .745 
MAQ27 .108 .745 
MAQ19 .180 .736 
MAQ23 .198 .724 
MAQ20 .165 .720 
MAQ26 .213 .683 
MAQ25 .239 .636 
MAQ24 .251 .633 
MAQ16 .407 .561 
MAQ22 .466 .537 

Note: MAQ: Mathematics Anxiety Question. Extraction Method: Principal Component Analysis. Rotation Method: Quartimax. 
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Table 14. Summary of independent sample t-tests of final exam  grade differences for 
binary variables gender, classification, courses, college of major, grandparents’ education, 
parents’ education, siblings’ education, school status, and employment status.  
 

 N Mean SD t Cohen’s d 
 
Gender 

 
Male  

 
223 

 
61.47 

 
22.38 

 
-1.453 

 

 Female 129 57.80 23.52   
       
Classification Freshman  204 63.87 22.26 3.584*** 0.39 
 Non-Freshman 

 
145 55.17 22.50   

Courses Developmental Math  158 70.54 21.12 8.458*** 0.88 
 Non-Developmental Math   

 
194 51.64 20.61   

College of major STEM Colleges 88 58.85 22.47 .647  
 Non-STEM Colleges 

 
256 60.68 23.00   

Grandparent’s  No 250 57.89 22.63 -1.500  
Education Yes 47 63.23 21.28   
       
Parents’ education No 163 60.98 23.30 .793  
 Yes 180 59.02 22.60   
       
Siblings’ education No 174 59.39 22.50 -.501  
 Yes 173 60.61 60.61   
       
School Status  Part-Time Student 57 53.16 24.43 -2.565* 0.36 
 Full-Time Student 

 
294 61.57 22.29   

Employment Status Employed 174 56.77 23.11 -2.748** 0.29 
 Not Employed 178 63.40 22.15   
       
Note: N = sample size; SD = standard deviation 
*p<.05, **p<.01, ***p<.001.  
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Table 16. Logistic regression model for Research Question 5  
 

Variables  B SE Wald Odds 
Ratio 

95% CI for Odds Ratio 

Lower Upper 
Academic Self-
Discipline 

.090 .026 11.812 1.094** 1.040 1.152 

Reading and Writing 
Skills 

-.137 .042 10.366 .872** .803 .948 

Employment Status 
(Ref: Non-Employed) 

-.830 .344 5.834 .436* .222 .855 

School Status 
(Ref: Full-Time 
Student) 

-.540 .379 2.028 .583 .277 1.225 

Mathematics and Test 
Taking Skills 

.047 .046 1.051 1.048 .958 1.147 

Test Anxiety -.014 .012 1.234 .986 .963 1.011 

Intercept -1.725 1.657     

NOTE. *p < .05, B=unstandardized regression coefficient; SE = Standard error of the coefficient; CI = Confidence Interval 
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Figure 3. Partial regression plots for all pairs of variables 95% confidence intervals.   



	  

77	  

 

  

 

 
Figure 3. (Continued) Partial regression plots for all pairs of variables 95% confidence 
intervals.   
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Figure 4. Scatterplot of studentized residuals against unstandardized predicted values 
within two standard deviations away from the mean.    
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Figure 5. Histogram for normality of standerized residuals.    
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Figure 6. Partial regression plots for all pairs of variables with 95% confidence intervals.   
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Figure 6. (Continued) Partial regression plots for all pairs of variables with 95% confidence 
intervals.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  

82	  

 

 
 
Figure 7. Scatterplot of studentized residuals against unstandardized predicted values within 
two standard deviations away from the mean.    
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Figure 8. Histogram for normality of standardized residuals.    
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Figure 9. Partial regression plots for all pairs of variables with 95% confidence intervals.   
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Figure 10. Scatterplot of studentized residuals against unstandardized predicted values 
within two standard deviations away from the mean.    
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Figure 11. Histogram for normality of standardized residuals.    
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Figure 12. Histogram showing non-normality of variable course grade  
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