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ABSTRACT

Gao, Guangyue, Duffing-van der Pol Type Oscillator. Master of Science (MS), July, 2010, 42 pp.,

references, 21 titles.

The nonlinear Duffing-van der Pol oscillator system is studied by means of the Lie symmetry re-

duction method and the Preller-Singer method. With the particular case of coefficients, this system

has physical relevance as a simple model in certain flow-induced structural vibration problems.

Under certain parametric conditions, we are concerned with the first integrals of the Duffing-van

der Pol oscillator system. After making a series of variable transformations, we apply the Preller-

Singer method and the Lie symmetry reduction method to obtain the first integrals of the simplified

equations without complicated calculations.
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CHAPTER I

INTRODUCTION

Following the book of P.E. Hydon [11], I will give the brief introduction of Lie symmetry.

1.1 Symmetries of Planar Objects

In order to understand symmetries of differential equations, firstly we can consider the symme-

tries of planar objects. Roughly speaking, a symmetry of a geometrical object is a transformation

whose action leaves the object apparently unchanged. For instance, consider the result of rotat-

ing an equilateral triangle anticlockwise about its centre. After a rotation of 2π/3, the triangle

looks the same as it did before the rotation, so this transformation is a symmetry. Rotations of

4π/3 and 2π are also symmetries of the equilateral triangle. In fact, rotating by 2π is equivalent

to doing nothing, because each point is mapped to itself. The transformation mapping each point

to itself is a symmetry of any geometrical object: it is called the trivial symmetry. In summary, a

transformation is a symmetry if it satisfies the following:

(S1) The transformation preserves the structure,

(S2) The transformation is a diffeomorphism,

(S3) The transformation maps the object to itself.

Henceforth, we restrict attention to transformation satisfying (S1) and (S2). Such transformations

are symmetries if they also satisfy (S3), which is called the symmetry condition.
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1.2 Symmetry Condition

For simplicity, we shall consider only ODEs of the form

y(n) = ω(x,y,y′, · · ·,y(n−1)), y(k) ≡ dky
dxk . (1)

It is assumed that ω is (locally) a smooth function of all of its arguments. We begin by stating the

symmetry condition and examining some of its consequences. A symmetry of equation (1) is a

diffeomorphism that maps the set of solutions of the ODE to itself. Any diffeomorphism,

Γ : (x,y) 7→ (x̂, ŷ),

maps smooth planar curves to smooth planar curves. This action of Γ on the plane induces an

action on the derivatives y(k), which is the mapping

Γ : (x,y,y′, · · ·,y(n)) 7→
(

x̂, ŷ, ŷ′, · · ·, ŷ(n)
)

,

where

y(k) =
dkŷ
dx̂k , k = 1, · · ·,n.

This mapping is called the nth prolongation of Γ. The functions ŷ(k) are calculated recursively

(using the chain rule) as follows:

ŷ(k) =
dŷ(k−1)

dx̂
=

Dxŷk−1

Dxx̂
, ŷ(0) ≡ ŷ. (2)

Here Dx is the total derivative with respect to x:

Dx = ∂x + y′∂y + y′′∂y′ + · · ·.

2



The symmetry condition for the ODE (1) is

ŷ(n) = ω(x̂, ŷ, ŷ′, · · ·, ŷ(n−1)), when equation (1) holds, (3)

where the functions ŷ(k) are given by (2).

For almost all OEDs, the symmetry condition (3) is nonlinear. Lie symmetries are obtained by

linearizing (3) about ε = 0. No such linearization is possible for discrete symmetries, which makes

them hard to find. However, It is usually easy to find out whether or not a given diffeomorphism is

a symmetry of a particular ODE. The trivial symmetry corresponding to ε = 0 leaves every point

unchanged. Therefore, for ε sufficiently close to zero, the prolonged Lie symmetries are of the

form

x̂ = x+ εξ +O(ε2),

ŷ = y+ εη +O(ε2), (4)

ŷ(k) = y(k) + εη(k) +O(ε2), k ≥ 1.

We substitute (4) into the symmetry condition (3); the O(ε) terms yield the linearized symmetry

condition:

η(n) = ξ ωx +ηωy +η(1)ωy′ + · · ·+η(n−1)ωy(n−1) when equation (1) holds. (5)

The functions η(k) are calculated recursively from (2), as follows. For k = 1, we obtain

ŷ(1) =
Dxŷ
Dxx̂

=
y′+ εDxη +O(ε2)
1+ εDxξ +O(ε2)

= y′+ ε(Dxη− y′Dxξ )+O(ε2).

3



Therefore, from (4), we have

η(1) = Dxη− y′Dxξ . (6)

Similarly, we get

ŷ(k) =
y(k) + εDxη(k−1) +O(ε2)

1+ εDxξ +O(ε2)
,

and hence we have

η(k)(x,y,y′, · · ·,y(k)) = Dxη(k−1)− y(k)Dxξ . (7)

The function ξ , η and η(k) can all be written in terms of the characteristic, Q = η−y′ξ , as follows:

ξ =−Qy′,

η = Q− y′Qy′

η(k) = Dk
xQ− y(k+1)Qy′, k ≥ 1.

In order to find the symmetry group G admitted by a differential equation with infinitesimal

operator

X = ξ ∂x +η∂y.

We introduce the prolonged infinitesimal generator

X (n) = ξ ∂x +η∂y +η(1)∂y′ + · · ·+η(n)∂y(n).

We can use the prolonged infinitesimal generator to write the linearized symmetry condition (5) in

a compact form:

X (n)
(

y(n)−ω(x,y,y′, · · ·,y(n−1))
)

= 0 when equation (1) holds.
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1.3 The Determining Equations for Lie Point Symmetries

Every symmetry that we have met so far is a diffeomorphism of the form

(x̂, ŷ) = (x̂(x,y), ŷ(x,y)) .

This type of diffeomorphism is called a point transformation; any point transformation that is also

a symmetry is called a point symmetry. For now, we restrict attention to point symmetries.

To find the Lie point symmetries of an ODE (1), we must first calculate η(k),k = 1, · · ·,n. The

functions ξ and η depend upon x and y only. and therefore (6) and (7) give the following results.

η(1) = ηx +(ηy−ξx)y′−ξyy′2; (8)

η(2) = ηxx +(2ηxy−ξxx)y′+(ηyy−2ξxy)y′2−ξyyy′3

+{ηy−2ξx−3ξyy′}y′′; (9)

η(3) = ηxxx +(3ηxxy−ξxxx)y′+3(ηxyy−ξxxy)y′2 +(ηyyy−3ξxyy)y′3

−ξyyyy′4 +3{ηxy−ξxx +(ηyy−3ξxy)y′−2ξyyy′2}y′′

−3ξyy′′2 +{ηy−3ξx−4ξyy′}y′′.

The number of terms in η(k) increases exponentially with k, so computer algebra is recommended

for the study of high-order ODEs.

So now we restrict our attention on second-order ODEs

y′′ = ω(x,y,y′).

The linearized symmetry condition is obtained by substituting (8) and (9) into (5) and then replac-

5



ing y′′ by ω(x,y,y′). This gives

ηxx +(2ηxy−ξxx)y′+(ηyy−2ξxy)y′2−ξyyy′3 +{ηy−2ξx−3ξyy′}ω

= ξ ωx +ηωy +{ηx +(ηy−ξx)y′−ξyy′2}ωy′. (10)

Although equation (10) looks complicated, in some cases it can be solved without much trouble.

Both ξ and η are independent of y′, and therefore (10) can be decomposed into a system of PDEs,

which are the determining equations for the Lie point symmetries.

6



CHAPTER II

DUFFING-VAN DER POL TYPE OSCILLATOR

2.1 Introduction

In this paper, we consider a general nonlinear oscillator system of the form

ÿ+(δ +βym)ẏ−µy+αym+1 = 0, (11)

where an over-dot represents differentiation with respect to the independent variable x, and all

coefficients δ , β , µ and α are real. It is referred as to the Duffing–van der Pol–type oscillator.

since the choices α = 0 and m = 2 lead equation (11) to the van der Pol oscillator

ÿ+(δ +βy2)ẏ−µy = 0, (12)

which was originally discovered by the Dutch electrical engineer van der Pol in electrical circuits

[19, 20]. The choices β = 0 and m = 2 lead equation (11) to the damped Duffing equation [6, 10]

ÿ+δ ẏ−µy+αy3 = 0. (13)

When β = 0 and m = 1, equation (11) becomes the damped Helmholtz oscillator [1, 17]

ÿ+δ ẏ−µy+αy2 = 0. (14)

It is well known that there are a great number of theoretical works to deal with equations (12)–(14)
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[10, 13], and applications of these three equations and the related equations can be seen in quite a

few scientific areas [9].

In the present paper, we wish to show that under certain parametric conditions some first inte-

grals of oscillator system (11) can be established.

2.2 Determining Equation System

Firstly, we consider the oscillator equation as following form:

ÿ =−(δ +βym)ẏ+ µy−αym+1 = F(x,y,y′). (15)

To investigate the integrability of this equation, the Lie theory of differential equations will be

used [11]. However, it should be noted that the integrability of a differential equation can also be

analyzed by means of Divisor theorem method [8]. The Lie theory is used in this work because

this approach, except giving information about when the equation is integrable, allows the problem

to be reduced to canonical variables which makes the integration of the equation in a more general

and easier way [1].

It can be seen in [11] that in order to find the symmetry group G admitted by a differential

equation with infinitesimal operator

X = η(x,y)
∂
∂y

+ξ (x,y)
∂
∂x

,

it is needed to find an infinitesimal operator X1 such that

X1(ÿ+(δ +βym)ẏ−µy+αym+1) = 0. (16)

8



The operator X1 is

X1 = ξ (x,y)
∂
∂x

+η(x,y)
∂
∂y

+A(x,y, ẏ)
∂
∂ ẏ

+B(x,y, ẏ, ÿ)
∂
∂ ÿ

,

where A(x,y, ẏ) and B(x,y, ẏ, ÿ) are defined as follows [1]:

A(x,y, ẏ) = ηx + ẏ(ηy−ξx)− ẏ2ξy,

B(x,y, ẏ, ÿ) = ηxx + ẏ(2ηxy−ξxx)+ ẏ2(ηyy−2ξxy)−

ẏ3ξyy + ÿ(ηy−2ξx−3ẏξy).

All ξ (x,y) and η(x,y) that verify equation (16) generate infinitesimal operators X as in equation

(16) which comprise the symmetries of the differential equation. Also, it is known that one sym-

metry can be used to reduce by one the order of a differential equation. Thus, Duffing-van der

Pol oscillator will be integrated only if ξ (x,y) and η(x,y) are such that they generate two linearly

independent infinitesimal operators [1].

Following the procedure to determine the symmetries of a differential equation mentioned in

the former section, equation (16) reads

ηxx +(2ηxy−ξxx)y′x +(ηyy−2ξxy)(y′x)
2−ξyy(y′x)

3 =

(2ξx−ηy +3ξyy′x)F +ξ Fx +ηFy +[ηx +(ηy−ξx)y′x−ξy(y′x)
2]Fy′x . (17)

Although equation (17) looks complicated, it is commonly easy to solve. Both ξ and η are inde-

pendent of y′ and therefore equation (17) can be decomposed into a system of PDEs, which are the

determining equations for the Lie point symmetries. The procedure will be illustrated as follows:

As ξ and η are independent of y′, the linearized symmetry condition splits into the following

9



system of determining equations:

[y′]0 : ηxx = (µη−δηx)+(2µξx−µηy)y−

((m+1)αη +βηx)ym +(ηy−2ξx)αym+1, (18)

[y′]1 : 2ηxy−ξxx =−δξx +3µξyy−mβηym−1−βξxym−3αξyym+1, (19)

[y′]2 : ηyy−2ξxy =−2δξy−2βξyym, (20)

[y′]3 : ξyy = 0. (21)

From the condition in equation (21), it is obvious that

ξ = a(x)y+b(x). (22)

and this result in equation (20) implies that

η = a′(x)y2−δa(x)y2− 2βa(x)
(m+1)(m+2)

ym+2 + c(x)y+d(x),m 6=−1,m 6=−2, (23)

where a(x),b(x),c(x),d(x) are arbitrary functions. If both results are used in equation (18), this is a

polynomial of 2m+2 degree in [y] which is zero if and only if the following equations are verified:

[y2m+2] : β 2a′−αβa = 0,

[ym+2] :
2β µa
m+2

+
2βδa′

(m+1)(m+2)
+

2βa′′

(m+1)(m+2)
−α(m+1)a′+α(m−1)aδ −βa′′+βδa′ = 0,

[ym+1] : αcm+ c′β +2αb′ = 0,

[ym] : (m+1)αd +d′β = 0, (24)

[y2] : a′′′−a′µ−δ 2a′−δaµ = 0,

10



[y1] : c′′+δc′−2b′µ = 0,

[y0] : d′′−dµ +δd′ = 0.

If both results are used in equation (19), this is a polynomial of 2m + 1 degree in [y] which is

zero if and only if the following equations are verified:

[y2m+1] :
2maβ 2

(m+1)(m+2)
= 0,

[ym+1] :−(m+1)a′β +maδβ −3αa =− 4β
m+1

a′,

[ym] :−cmβ −βb′ = 0, (25)

[ym−1] :−mdβ = 0,

[y1] : 3a′′−3δa′−3aµ = 0,

[y0] : 2c′−b′′ =−δb′.

Here we restrict α 6= 0, β 6= 0. These two determining equation systems imply that a(x) = 0 and

d(x) = 0. Then The determining system about b(x) and c(x) are obtained as follows:

cm+b′ = 0, (26)

c′β +αb′ = 0, (27)

2c′−b′′+δb′ = 0, (28)

c′′+δc′−2b′µ = 0. (29)

From equations (26) and (27), b(x) and c(x) are obtained as follows:

b =
−c0

α
βe

αm
β x +b0, (30)

c = c0e
αm
β x

, (31)

11



where b0 and c0 are arbitrary constants. Here there are only two options to verify all conditions:

The first one is when c0 ≡ 0. In this case b0 can be arbitrary constant, and this means that:

ξ = 1, η = 0.

Hence, only one infinitesimal operator is obtained, namely χ1 = ∂x.

The second option in order to get two symmetries is assuming c0 6= 0. Substituting equations (31)

and (30) into equation (28), we obtain one condition:

m =
δβ
α
−2. (32)

then, substituting equations (31) and (30) into equation (29), we obtain another condition:

α2m
β 2 =−αδ

β
−2µ. (33)

After combining equations (32) and (33), parametric condition is obtained as follows:

δ =
α
β
− µβ

α
. (34)

Because b0 and c0 are arbitrary constants, for our convenience, we may assume b0 = 0 and c0 = 1.

Then we have:

b =− 1
α

βe
αm
β x

, c = e
αm
β x

,

which is equivalent to

ξ =− 1
α

βe
αm
β x

, η = e
αm
β xy.

After combining the first choice, thus two infinitesimal generators are found, namely

χ1 = ∂x, χ2 =− 1
α

βe
αm
β x∂x+ e

αm
β xy∂y.

12



Every infinitesimal generator is of the form:

χ = c1χ1 + c2χ2,

where χ1 is a homothety operator and χ2 is a translation operator.

In conclusion, only when it is verified that δ = α
β − µβ

α , the oscillator is completely integrable.

Otherwise, the oscillator is only partially integrable and there is no way to write down the solution

in terms of known functions.

2.3 Reduction to Canonical Variables

We know that if an ordinary differential equation admits an infinitesimal generator, then there

exists a pair of variables:

t = f (x,y), u = g(x,y),

called canonical variables, with f and g(g 6= 0) being arbitrary particular solutions of the first-order

linear partial differential equations [7]

ξ (x,y)
∂ f
∂x

+η(x,y)
∂ f
∂y

= χ, (35)

ξ (x,y)
∂g
∂x

+η(x,y)
∂g
∂y

= 0, (36)

where χ is a nonzero constant and can be chosen arbitrarily. Suppose that the general solution of

the characteristic equation
dx

ξ (x,y)
=

dy
η(x,y)

,

has the form U(x,y) = C, where C is arbitrary, then the general solutions of (35) and (36) can be

13



expressed by

f (x,y) = χ
∫ dx

ξ ∗(x,U)
+Φ1(U), (37)

g(x,y) = Φ2(U),U = U(x,y), (38)

where Φ1(U) and Φ2(U) are the arbitrary functions, ξ ∗ (x,U(x,y))≡ ξ (x,y), and U in the integral

is regarded as a parameter later. Choosing χ = m in (35) and using (37) and (38), we obtain a

particular solution:

f (x,y) = e−
αm
β x

, g(x,y) = ye
α
β x

. (39)

Since t = f (x,y) and u = g(x,y), formula (39) is equivalent to the parametric form:

x =− β
αm

ln t, y = ut
1
m . (40)

By this nonlinear transformation, we have:

∂y
∂x

=
∂y
∂ t

∂ t
∂x

,

= −αm
β

u′tt
m+1

m − α
β

ut
1
m , (41)

∂ 2y
∂x2 =

∂y′t
∂ t

∂ t
∂x

,

=
α2m2

β 2 u′′t t
2m+1

m +
α2m(m+2)

β 2 t
m+1

m u′t +
α2

β 2 t
1
m u. (42)

Substituting equations (41) and (42) into equation (15), we obtain

t2m+1(
α2m2

β 2 u′′−αmu′um)+ tm+1(
α2m(m+2)

β 2 u′− δαm
β

u′−αum+1 +um+1)

+t(
α2

β 2 u− αδu
β

−µu) = 0. (43)

Here we restrict α = 1. Under the parametric condition (34), equation (43) changes into au-

14



tonomous equation:
m
β 2 u′′tt = u′tu

m, (44)

which is easily integrated :

u′t =
β 2

m(m+1)
um+1 + I. (45)

Now we do the reverse transformation:

∂u
∂ t

=
∂u
∂x

∂x
∂ t

= −β
m

y′e
m+1

β x− 1
m

ye
m+1

β x
. (46)

Substituting equations (46) into (45), we obtain the first integral of equation (15):

(
y′+

1
β

y+
β

m+1
ym+1

)
e

m+1
β x = I. (47)
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CHAPTER III

SPECIAL CASES

Following the previous procedure, we can apply this method into some special cases of Duffing-

van der Pol type oscillator.

3.1 Duffing Type Oscillator

Assume α 6= 0 and β ≡ 0, the equation (11) changes into the following form:

ÿ+δ ẏ−µy+αym+1 = 0. (48)

Here we restrict m 6= 0 and m 6= 1. By the previous result, the system about b(x) and c(x) is obtained

as follows:

cm+2b′ = 0, (49)

2c′−b′′+δb′ = 0, (50)

c′′+δc′−2b′µ = 0. (51)

From equations (49) and (50), we can assume b(x) and c(x) are obtained as follows:

b =
−c0(m+4)

2δ
e

δm
m+4 x +b0, (52)

c = c0e
δm

m+4 x, (53)

where b0 and c0 are arbitrary constants. Here there are also two options to verify all conditions:
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The first one is when c0 ≡ 0. This means that:

ξ = 1, η = 0.

Hence, one infinitesimal operator is obtained, namely χ1 = ∂x.

The second option in order to get two symmetries is assuming c0 6= 0. Substituting equations (53)

and (52) into equation (51), we obtain the parametric condition:

µ =− 2m+4
(m+4)2 δ 2. (54)

For our convenience, we choose b0 = 0 and c0 = 1. Then we have:

b =
−(m+4)

2δ
e

δm
m+4 x, c = e

δm
m+4 x.

Combining a(x) = 0,d(x) = 0, consequently we obtain:

ξ =
−(m+4)

2δ
e

δm
m+4 x, η = e

δm
m+4 xy.

Therefore infinitesimal generators are found, namely

χ =
−(m+4)

2δ
e

δm
m+4 x∂x+ e

δm
m+4 xy∂y.

In conclusion, only when it is verified that µ =− 2m+4
(m+4)2 δ 2, the oscillator is completely integrable.

Following the previous procedure, choosing χ = m
2 in (35) and using (37) and (38), we obtain

a particular solution:

f (x,y) = e−
δm

m+4 x, g(x,y) = ye
2δ

m+4 x. (55)

Since t = f (x,y) and u = g(x,y), formula (55) is equivalent to the parametric form:
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x =−m+4
δm

ln t, y = ut
2
m .

By this nonlinear transformation, we have:

∂y
∂x

=
∂y
∂ t

∂ t
∂x

,

= − δm
m+4

u′tt
m+2

m − 2δ
m+4

ut
2
m , (56)

∂ 2y
∂x2 =

∂y′t
∂ t

∂ t
∂x

,

=
δ 2m2

(m+4)2 u′′t t
2(m+1)

m +
δ 2m

(m+4)
t

2+m
m u′t +

4δ 2

(m+4)2 t
2
m u. (57)

Substituting equations (56) and (57) into equation (15), we obtain

(
4δ 2

(m+4)2 u− 2δ 2

m+4
u−µu

)
t

2
m +

(
m(m+2)
(m+4)2 δ 2u′t +

2m
(m+4)2 δ 2u′t −

mδ 2

m+4
u′t

)
t

m+2
m +

((
mδ

m+4

)2

u′′t +αum+1

)
t

2m+2
m = 0. (58)

Under the parametric condition (54), equation (58) change into:

m2δ 2

(m+4)2 u′′tt =−αum+1,

which is easily integrated:

(u′t)
2 =−2(m+4)2

m2δ 2
α

m+2
um+2 + I. (59)
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Now we do the reverse transformation:

∂u
∂ t

=
∂u
∂x

∂x
∂ t

,

=
(
−m+4

δm
y′− 2y

m

)
e

(m+2)
m+4 δx. (60)

Substituting equations (60) into (59), we obtain the first integral of equation (48):

(
(m+4)2

(δm)2 (y′)2 +
4

m2 y2 +
4(m+4)

m2δ
yy′+

2α(m+4)2

m2δ 2(m+2)
ym+2

)
e

2δ (m+2)
m+4 x = I, (61)

under the condition

µ =− 2m+4
(m+4)2 δ 2.

Base on this result, now we consider one famous special case of it.

Case: Duffing Equation

The choices β = 0 and m = 2 lead equation (11) to the damped Duffing equation [6, 10]

ÿ+δ ẏ−µy+αy3 = 0. (62)

Substituting m = 2 into equation (61), we obtain the first integral of equation (62):

(
9

δ 2 (y′)2 + y2 +
6
δ

yy′+
9α
2δ 2 y4

)
e

4
3 δx = I, (63)

under the condition µ =−2
9δ 2.
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3.2 Helmholtz Oscillator

In this section we assume β ≡ 0 and m ≡ 1 in equation (11), we can obtain the Holmholtz

oscillator,

ÿ+δ ẏ−µy+αy2 = 0, (64)

which is a simple nonlinear oscillator with quadratic nonlinearity [1]. Under the condition β ≡ 0

and m≡ 1 , from the equations (22) and (23), it is obvious that

ξ = a(x)y+b(x), (65)

and

η = a′(x)y2−δa(x)y2 + c(x)y+d(x),m 6=−1,m 6=−2, (66)

where a(x),b(x),c(x),d(x) are arbitrary functions. If both results are used in equation (18) This is

a polynomial of 3 degree in [y] which is zero if and only if the following equations are verified:

[y3] :−2αa′+αaδ = 0,

[y2] : αc+2αb′ = 0,

[y1] : 2αd + c′′+δc′−2b′µ = 0,

[y0] : d′′−dµ +δd′ = 0.

If both results are used in equation (19) This is a polynomial of 2 degree in [y] which is zero if and

only if the following equations are verified:

[y2] :−3αa = 0,

[y1] : 3a′′−3δa′−3aµ = 0,

[y0] : 2c′−b′′ =−δb′.

20



These two determining systems imply that a(x) = 0, Then we obtain a system about b(x) and c(x)

c+2b′ = 0, (67)

2c′−b′′+δb′ = 0, (68)

2αd + c′′+δc′−2b′µ = 0 (69)

d′′+dµ +δd′ = 0. (70)

The equations (67) and (68) imply that

c = c0e
δ
5 x,

b =− 5
2δ

c0e
δ
5 x +b0,

where b0 and c0 are constant. When this result is used in equation (69), it is obtained that

d =− 1
2α

(
6
25

δ 2 + µ
)

c

and finally, this result in equation(70) means that

− 1
2α

c
(

6
25

δ 2 + µ
)(

6
25

δ 2−µ
)

= 0 (71)

If c0 ≡ 0, in this case b0 can be arbitrary constant, and this means that:

ξ = 1, η = 0.

Hence, only one infinitesimal operator is obtained, namely χ1 = ∂x.

If we assume c0 6= 0 we can deduce two different first integrals for the Helmholtz oscillator

immediately:

21



Case 1. when µ = 6
25r2, because b0 and c0 are arbitrary constants, for our convenience. assume

b0 = 0 and c0 = 1 we have:

b =
−5
2δ

e
δ
5 x, c = e

δ
5 x, d =

−6
25α

δ 2e
δ
5 x.

Then, we obtain

ξ =
−5
2δ

e
δ
5 x, η = e

δ
5 x

(
y− 6δ 2

25α

)
.

Therefore two infinitesimal generators are found, namely

χ1 = ∂x, χ2 =
−5
2δ

e
δ
5 x∂x+ e

δ
5 x

(
y− 6δ 2

25α

)
∂y.

In conclusion, when it is verified that µ = 6
25r2, the oscillator is completely integrable.

Following the previous procedure, choosing χ = 1
2 in (35) and using (37) and (38), we obtain a

particular solution:

f (x,y) = e−
δ
5 x, g(x,y) = e

2δ
5 x

(
y− 6δ 2

25α

)
. (72)

Since t = f (x,y) and u = g(x,y), formula (72) is equivalent to the parametric form:

x =− 5
δ

ln t, y = ut2 +
6δ 2

25α
.

By this nonlinear transformation, we have:

∂y
∂x

=
∂y
∂ t

∂ t
∂x

,

= −δ
5

u′tt
3− 2δ

5
ut2, (73)
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∂ 2y
∂x2 =

∂y′t
∂ t

∂ t
∂x

,

=
δ 2

25
u′′t t4 +

δ 2

5
u′tt

3 +
4δ 2

25
ut2. (74)

Substituting equations (73) and (74) into equation (15), we obtain

(
6δ 2

25
u′′+αu2

)
t4 +

(
6δ 2

25
u−µu

)
t2 +

36δ 4

625α
µ = 0, (75)

Under the parametric condition µ = 6δ 2

25 , equation (75) changes into:

δ 2

25
u′′tt =−αu2,

which is easily integrated:

(u′t)
2 =−50α

3δ 2 u3 + I. (76)

Now we do the reverse transformation:

∂u
∂ t

=
∂u
∂x

∂x
∂ t

,

=
(
− 5

δ
y′−2y+

12δ 2

25α

)
e

3δ
5 x. (77)

Substituting equations (77) into (76), we obtain the first integral of equation (64):

(
24δ 2

25α
y−8y2 +

50α
3δ 2 y3 +

20
δ

yy′− 24δ
5α

y′+
25
δ 2 (y′)2

)
e

6δ
5 x = I, (78)

under the condition

µ =
6
25

δ 2.

Case 2. If we choose µ =−6
5δ 2. Base on the same procedure, we can obtain the first integral
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of equation (48): (
25
δ 2 (y′)2 +4y2 +

20
δ

yy′+
50α
3δ 2 y3

)
e

6
5 δx = I, (79)

under the condition

µ =− 6
25

δ 2.

In the paper [8] and [1], they obtained the similar solutions.

3.3 van der Pol Oscillator

Assume α ≡ 0, β 6= 0, the equation (11) change into the following form

ÿ+(δ +βy2)ẏ−µy = 0. (80)

It is referred as to the van der Pol oscillator, we also obtain the determining system about b(x) and

c(x) as

c′β = 0,

cm+b′ = 0,

2c′−b′′+δb′ = 0,

c′′+δc′−2b′µ = 0.

Observing this system, we only have:

b = b0, c = 0.

This means only one infinitesimal operator is obtained, namely X = ∂x, and as a consequence the

differential equation is partially integrable.
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CHAPTER IV

PRELLE–SINGER METHOD FOR SOLVING SECOND-ORDER ODES

In this chapter, in order to present our results in a straightforward way, we start our attention by

briefly reviewing the Prelle–Singer procedure for solving second-order ODEs developed by Duarte

et al. [5] and Chandrasekar et al. [3].

Consider the second-order ODE of the rational form

d2y
dx2 = φ(x, y, y′) =

P(x, y, y′)
Q(x, y, y′)

, P, Q ∈ C[x, y, y′]. (81)

where y′ denotes differentiation with respect to x, P and Q are polynomials in x, y and y′ with

coefficients in the complex field. Suppose that equation (15) admits a first integral I(x, y, y′) = C,

with C constant on the solutions, so we have the total differential

dI = Ixdx+ Iydy+ Iy′dy′ = 0, (82)

where the subscript denotes partial differentiation with respect to the corresponding variable. On

the solution, since y′dx = dy and equation (81) is equivalent to P
Qdx = dy′, adding a null term

S(x, y, y′)y′dx−S(x, y, y′)dy to both side yields

(
P
Q

+Sy′
)

dx−Sdy−dy′ = 0. (83)

From (82) and (83), one can see that on the solutions, the corresponding coefficients of (82) and

(83) should be proportional. There exists a proper integrating factor R(x, y, y′) for expression (83),

25



such that on the solutions

dI = R(φ +Sy′)dx−SRdy−Rdy′ = 0. (84)

Comparing the corresponding terms in (82) and (84), we have

Ix = R(φ +Sy′),

Iy =−SR, (85)

Iy′ =−R,

and the compatibility conditions Ixy = Iyx, Ixy′ = Iy′x and Iyy′ = Iy′y. Using these three compatibility

conditions respectively, we obtain three equivalent equations as follows:

D[S] =−φy +Sφy′ +S2,

D[R] =−R(S +φy′), (86)

Ry = Ry′S +Sy′R,

where D is an differential operator

D =
∂
∂x

+ y′
∂
∂y

+φ
∂

∂y′
.

For the given expression of φ , one can solve the first equation of (86) for S. Substituting S into

the second equation of (86) one can get an explicit form for R by solving it. Once a compatible

solution R and S satisfying the extra constraint (the third equation of (86)) is derived, integrating
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(85), from (82) one may obtain a first integral of motion as follows

I(x, y, y′) =
∫

R(φ +Sy′)dx−
∫

[RS +
∂
∂y

∫
R(φ +Sy′)dx]dy−

∫
{R+ (87)

∂
∂y′

(
∫

R(φ +Sy′)dx−
∫

[RS +
∂
∂y

∫
R(φ +Sy′)dx]dy}dy′.

4.1 Nonlinear Transformations

In this subsection, in order to avoid doing complicated computations, we will make a series of

nonlinear transformations to equation (11). For our convenience, we assume α = 1 in equation

(11) (this can be easily obtained by re-scaling parameters of equation (11). Namely, we consider

the oscillator equation:

ÿ+(δ +βym)ẏ−µy+ yn = 0. (88)

Firstly, we make the natural logarithm transformation:

x =− 1
δ

lnτ, (89)

that is
∂τ
∂x

=−δe−xδ =−δτ .

After substituting the following two derivatives into equation (88):

∂y
∂x

=
∂y
∂τ
∗ ∂τ

∂x
=−δτ

∂y
∂τ

,

∂ 2y
∂ξ 2 = δ 2τ

∂y
∂τ

+δ 2τ2 ∂ 2y
∂τ2 ,
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then it becomes

δ 2τ2 ∂ 2y
∂τ2 −βδτym ∂y

∂τ
−µy+ yn = 0. (90)

Further, we take the variable transformation as:

q = τκ , y = τ−
1
2 (κ−1)H(q), (91)

A direction calculation gives

∂u
∂τ

=−1
2
(κ−1)q−

κ+1
2κ H(q)+κq

κ−1
2κ

∂H
∂q

,

∂ 2u
∂τ2 =

1
4
(κ2−1)q−

κ+3
2κ H(q)+κ2q

3(κ−1)
2κ

∂ 2H
∂q2 .

After substituting the above equalities into equation (90), we obtain

∂ 2H
∂q2 =

β
δκ

q
m−κ(m+2)

2κ Hm ∂H
∂q

− 1
δ 2κ2 q

−(3+n)κ+n−1
2κ Hn− 1

2
(κ−1)β

δκ2 Hm+1q
m−κ(m+4)

2κ , (92)

where an over-dot represents differentiation with respect to the independent variable q, and

κ2 =
4µ
δ 2 +1. (93)

4.2 Force-Free Duffing-van der Pol Oscillator

We know that the choices m = 2 and n = 3 lead equation (11) to the standard form of the

Duffing-van der Pol oscillator equation, whose autonomous version (force-free) is:

ÿ+(δ +βy2)ẏ−µy+ y3 = 0. (94)
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Equation (23) arises in a model describing the propagation of voltage pulses along a neuronal axon

and has recently received much attention from many authors. A vast amount of literature exists on

this equation; for details and applications, see [12, 14] and references therein.

From equation (93), we can see that if take n = 3 and m = 2, then equation (93) can be reduced

to a simple form
∂ 2H
∂q2 = AqpH2 ∂H

∂q
+Bqp−1H3, (95)

where

p =
1
κ
−2, A =

β
δκ

,

B =− 1
δ 2κ2 −

(κ−1)β
2δκ2 .

Choosing φ(q, H, H ′) = AqpH2 ∂H
∂q +Bqp−1H3 and following the procedure in Section 2, we obtain

three determining equations:

Sq + ḢSH +φSḢ =−2AqpHḢ +(ASqp−3Bqp−1)H2 +S2, (96)

Rq +RHḢ +φRḢ =−RS−RAqpH2, (97)

RH = RḢS +SḢR. (98)

In general, it is not easy to solve system (86) and get exact solutions (S, R) in the explicit forms.

But in our case of (96)-(98) we may seek an ansatz for S and R of the form:

S =
a(q,H)+b(q,H)Ḣ
c(q,H)+d(q,H)Ḣ

, R = e(q,H)+ f (q,H)Ḣ, (99)

where a, b, c, d and e, f are functions of q, H to be determined. Substituting S into equation (96),
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we get the equation system:

[Ḣ]0 :−3Bc2H2qp−1 +AacqpH2 +a2 = aqc−acq +bcBH3qp−1−adBH3qp−1,

[Ḣ]1 :−2Ac2qpH−6BcdH2qp−1 +2AadqpH2 +2ab

= aqd +bqc−adq−bcq +aHc−acH ,

[Ḣ]2 :−4AcdqpH−3Bd2H2qp−1 +AbdqpH2 +b2

= bqd−bdq +aHd +bHc−adH −bcH ,

[Ḣ]3 :−2Ad2qpH = bHd−bdH .

Substituting S and R into equation (97), we obtain another equation system:

[Ḣ]0 : eqc+Bc f H3qp−1 =−ae−AceqpH2,

[Ḣ]1 : fqc+ eHc+2A f cqpH2 + eqd +B f dH3qp−1

=−be−AdeqpH2−a f ,

[Ḣ]2 : fHc+ fqd + eHd +2A f dqpH2 =−b f ,

[Ḣ]3 : fHd = 0.

Under the parametric condition

δ =
3
β
− µβ

3
, (100)

we solve the above two nonlinear systems for a nontrivial solution with the aid of Maple, and the

corresponding forms of S and R reads:

S =−1
q
− β

δκ
q

1−2κ
κ H2, R = elnq, (101)

which also satisfies equation (98).
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Substituting the solution set (101) into formula (87), we can obtain the first integral of equation

(94) immediately:

(
1
2

κδ +
1
2

δ − 3
β

)
q

1−κ
2κ H−κδq

κ+1
2κ Ḣ +

β
3

q
3−3κ

2κ H3 = I1e
3lnq
κβδ . (102)

Using the inverse transformations (89) and (91), and changing to the original variables, we ob-

tain that under the parametric condition (100), the Duffing-van der Pol equation (94) has the first

integral of the form [
ẏ+

(
δ − 3

β

)
y+

β
3

y3
]

e
3ξ
β = I1. (103)

It is remarkable that in ([3], pp.2467), ([4], pp.4528) and ([18], pp.1936), authors studied the

first integral of the oscillator equation (94) by the Lie symmetry method etc. and claimed that the

nontrivial first integral exists only for the parametric choice

δ =
4
β

, µ =− 3
β 2 . (104)

However, in view of our condition (100) and formula (103), it shows that our parametric constraint

(100) is weaker than the corresponding ones described in the literature [3, 4, 18], and the first inte-

gral presented in [3, 4, 18] is just a particular case of (103).

4.3 Duffing-van der Pol-Type Oscillator

In this subsection, we extend the technique used in the preceding subsection to a more general

oscillator equation in the case of n = m+1, that is

ÿ+(δ +βym)ẏ−µy+ ym+1 = 0, (105)

where an over-dot still denotes differentiation with respect to x. Note that the choice n = m + 1
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leads equation (93) to a simple form

∂ 2H
∂q2 =

β
δκ

qpHm ∂H
∂q

+
(
− 1

δ 2κ2 −
(κ−1)β

2δκ2

)
Hm+1qp−1, (106)

where

p =
m−κ(m+2)

2κ
.

For the notational convenience, we denote that

A =
β

δκ
, B =− 1

δ 2κ2 −
(κ−1)β

2δκ2 ,

then equation (106) becomes

Ḧ = AqpHmḢ +BHm+1qp−1. (107)

Choosing φ(q, H, H ′) = AqpHm ∂H
∂q + Bqp−1Hm+1 and following the procedure in Section 2,

we obtain three determining equations:

Sq + ḢSH +φSḢ =−mAqpHm−1Ḣ +(ASqp− (m+1)Bqp−1)Hm +S2, (108)

Rq +RHḢ +φRḢ =−RS−RAqpHm, (109)

RH = RḢS +SḢR. (110)

Here we use the same ansatz for S and R as given in (29). Substituting S into equation (108), we
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get the equation system:

[Ḣ]0 :−(m+1)Bc2Hmqp−1 +AacqpHm +a2 (111)

= aqc−acq +bcBHm+1qp−1−adBHm+1qp−1,

[Ḣ]1 :−mAc2qpHm−1−2(m+1)BcdHmqp−1 +AadqpHm +AqpHmbc+2ab

= aqd +bqc−adq−bcq +aHc−acH +bcAqpHm−adAqpHm,

[Ḣ]2 :−2mAcdqpHm−1− (m+1)Bd2Hmqp−1 +AbdqpHm +b2 (112)

= bqd−bdq +aHd +bHc−adH −bcH ,

[Ḣ]3 :−mAd2qpHm−1 = bHd−bdH .

Substituting S and R into equation (109), we obtain another equation system:

[Ḣ]0 : eqc+Bc f Hm+1qp−1 =−ae−AceqpHm,

[Ḣ]1 : fqc+ eHc+2A f cqpHm + eqd +B f dHm+1qp−1

=−be−AdeqpHm−a f ,

[Ḣ]2 : fHc+ fqd + eHd +2A f dqpHm =−b f , (113)

[Ḣ]3 : fHd = 0.

We solve the above two nonlinear systems (112) and (113) for a nontrivial solution with the aid of

Maple, and find that under the parametric conditions

m =
(1−κ)βδ

2
−1, κ2 =

4µ
δ 2 +1, (114)

the three determining equations (108)–(110) have the solution of the form

S =−1
q
− β

δκ
q

m(1−κ)
2κ −1Hm, R = elnq. (115)
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After substitution of the solution set (115) into formula (87), we derive the first integral of equation

(107) as follows

κδH−κδqḢ +
2

δ (1−κ)
q

m(1−κ)
2κ Hm+1 = I,

where I is an arbitrary integration constant. By virtue of the inverse transformations (89) and (91),

and changing to the original variables, we obtain that under the parametric condition (114), the

Duffing-van der Pol–type equation (105) has the first integral of the form

[
ẏ+

δ (κ +1)
2

y+
2

δ (1−κ)
ym+1

]
e

1
2 δ (1−κ)x = I (116)

It is remarkable that the first integral of the Duffing-van der Pol oscillator equation (94) obtained

in Section 3.2 is just a particular case of formula (116). In the recently published Handbooks of

ODEs such as [2, 15, 21], there are quite a few first integrals (conservation laws) collected for

ordinary differential equations of the type y′′ = c1xl1ym1(y′)k1 + c1xl2ym2(y′)k2 , but our formulas of

first integrals of equation (105) or (106) described herein are not presented there.

4.4 Solutions in the Parametric Form

In this subsection, by virtue of the first integral (116), we may choose a proper value for I2 and con-

sider three particular cases where exact solutions of the oscillator equation (105) can be expressed

in the parametric forms.

Case 1: assume that m 6=−1 and κ 6=−1, and

m =− 2κ
κ +1

,

β
δκ

=
1

δ 2κ2 +
(κ−1)β

2δκ2 , (117)
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where

κ2 =
4µ
δ 2 +1.

In this case, equation (106) takes the form:

Ḧ = Aq−m−2HmḢ−AHm+1q−m−3. (118)

From the first integral (116), taking I2 = 0, we know that the solution of equation (118) can be

expressed in the parametric form [15]:

q = aCm
1

(∫ dt
1± tm+1 +C2

)−1

,

H = bCm+1
1 t

(∫ dt
1± tm+1 +C2

)−1

, (119)

where C1 and C2 are arbitrary constants, a and b are also arbitrary but satisfy

β
δκ

=∓(m+1)am+1b−m. (120)

Applying the inverse transformation of (91) to formula (119), namely

τ = q
1
κ , H = yτ

1
2 (κ−1),

we have

τ = a
1
κ C

m
κ
1

(∫ dt
1± tm+1 +C2

)−1
κ

,

y = τ−
1
2 (κ−1)bCm+1

1 t
(∫ dt

1± tm+1 +C2

)−1

. (121)

Further, applying the inverse transformation of (89) to formula (121), under the given parametric

35



condition (117), we obtain the solution for equation (105) in the parametric form as follows:

x =
− ln

(
a

1
κ C

m
κ
1

(∫ dt
1±tm+1 +C2

)−1
κ

)

δ
,

y = e
1
2 δ (κ−1)ξ bCm+1

1 t
(∫ dt

1± tm+1 +C2

)−1

,

where a and b are arbitrary constants, and satisfy condition (120).

Case 2: assume that

m =−2, κ =−2, βδ =−2. (122)

So equation (106) takes the form:

Ḧ = Aq
1
2 H−2Ḣ−AH−1q−

1
2 , (123)

where A =− β
2δ .

Using the first integral (116) again, we know that the solution of equation (123) can be ex-

pressed in the parametric form:

q = aC4
1F−2,

H = bC3
1t−1EF−2, (124)

where a and b are also arbitrary but satisfy

β
2δ

= a
−3
2 b2, (125)
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and

E =
√

t(t +1)− ln(
√

t +
√

t +1)+C2, F = E

√
t +1

t
− t. (126)

Applying the inverse transformation of (91) to formula (124), namely

τ = q−
1
2 , H = yτ−

3
2 ,

we have

τ = a−
1
2C−2

1 F,

y = τ
3
2 bC3

1t−1EF−2. (127)

Further, applying the inverse transformation of (89) to formula (127), under the given parametric

condition (122), we obtain the solution for equation (105) in the parametric form as follows:

x =
ln

(
aC4

1F−2)

2δ
,

y = e−
3
2 δξ bC3

1t−1EF−2,

where a and b are arbitrary constants, and satisfy condition (125).

Case 3: assume that

m =−3, κ =−3, βδ =−1. (128)

In this case, equation (106) takes the form:

Ḧ = AqH−3Ḣ−AH−2, (129)

where A =− β
3δ .
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We know that the solution of equation (129) can be expressed in the parametric form:

q = aC3
1F−1

√
t +1

t
,

H = bC2
1F−1, (130)

where F is the same as that in (126), C1 and C2 are arbitrary constants, a and b are also arbitrary

but satisfy
β
3δ

= 2a−2b3. (131)

Applying the inverse transformation of (91) to formula (130), namely

τ = q−
1
3 , H = yτ−2,

we have

τ = a−
1
3C−1

1 F
1
3

(
t +1

t

)− 1
6

,

y = τ2bC2
1F−1. (132)

Further, applying the inverse transformation of (89) to formula (132), under the given parametric

condition (128), we obtain the solution for equation (105) in the parametric form as follows:

x =
ln

(
aC3

1F−1
√

t+1
t

)

3δ
,

y = e−2δξ bC2
1F−1,

where a and b are arbitrary constants, and satisfy condition (131).
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4.5 Conclusion

Finding first integrals (conservation laws) and exact solutions for various nonlinear differential

equations has been an interesting subject in mathematical and physical communities. Since 1983,

Prelle and Singer presented a deductive method for solving first–order ODEs that presents a solu-

tion in terms of elementary functions if such a solution exists. This technique has attracted many

researchers from diverse groups and has been extended to autonomous systems of ODEs of higher

dimensions for finding the first integrals and exact solutions under certain assumptions. From il-

lustrative examples in these works, the obtained first integrals of autonomous systems are usually

of rational or quasi-rational forms and searching for solution sets (S, R) usually involves compli-

cated calculations. However, the generalization of this procedure to autonomous/nonautonomous

systems of higher dimensions to find elementary first integrals in an effective manner is still an

interesting and important subject.

In this chapter, we showed that under certain parametric conditions, some new first integrals of

the Duffing–van der Pol–type oscillator equation (11) could be established. To reach our goal, we

first made a series of nonlinear transformations to simplify equation (11) to a simple form, then by

means of the Preller–Singer method we derived the first integral of the resultant equation. Through

the inverse transformations we obtain the first integrals of the original oscillator equations. Finally,

using the established first integral, we obtain exact solutions of equation (11) in the parametric

forms.
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