
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations - UTB/UTPA

8-2010

Distributed storage and queryng techniques for a semantic web of Distributed storage and queryng techniques for a semantic web of

scientific workflow provenance scientific workflow provenance

Jaime Alberto Navarro
University of Texas-Pan American

Follow this and additional works at: https://scholarworks.utrgv.edu/leg_etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Navarro, Jaime Alberto, "Distributed storage and queryng techniques for a semantic web of scientific
workflow provenance" (2010). Theses and Dissertations - UTB/UTPA. 162.
https://scholarworks.utrgv.edu/leg_etd/162

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations - UTB/UTPA by an authorized administrator of ScholarWorks @ UTRGV. For
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/leg_etd
https://scholarworks.utrgv.edu/leg_etd?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/leg_etd/162?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

DISTRIBUTED STORAGE AND QUERYING TECHNIQUES

FOR A SEMANTIC WEB OF SCIENTIFIC

WORKFLOW PROVENANCE

A Thesis

by

JAIME ALBERTO NAVARRO

Submitted to the Graduate School of the
University of Texas-Pan American

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2010

Major Subject: Computer Science

DISTRIBUTED STORAGE AND QUERYING TECHNIQUES

FOR A SEMANTIC WEB OF SCIENTIFIC

WORKFLOW PROVENANCE

A Thesis

by

JAIME ALBERTO NAVARRO

COMMITTEE MEMBERS

Dr. Artem Chebotko
Chair of Committee

Dr. Richard Fowler
Committee Member

Dr. Zhixiang Chen
Committee Member

Dr. John Abraham
Committee Member

August 2010

Copyright 2010 Jaime Alberto Navarro

All Rights Reserved

iii

ABSTRACT

Navarro, Jaime A., Distributed Storage and Querying Techniques for a Semantic Web of Scientific

Workflow Provenance. Master of Science (MS), August, 2010, 41 pp., 4 tables, 6 figures, 41

references, 13 titles and 1 appendix.

In scientific workflow environments, scientists depend on provenance, which records the history

of an experiment. Resource Description Framework is frequently used to represent provenance

based on vocabularies such as the Open Provenance Model. For complex scientific workflows

that generate large amounts of RDF triples, single-machine provenance management becomes

inadequate over time. In this thesis, we research how HBase capabilities can be leveraged for

distributed storage and querying of provenance data represented in RDF. We architect the

ProvBase system that incorporates an HBase/Hadoop backend, propose a storage schema to hold

provenance triples, and design querying algorithms to evaluate SPARQL queries in the system.

We conduct an experimental study to show the feasibility of our approach.

iv

DEDICATION

To my parents and sister

v

ACKNOWLEDGMENTS

I would like to thank my parents, Jaime Alfonso Navarro and Ervia Rosario Yerena, for

their support; they taught me that everything is possible with hard work and determination. I also

thank my wonderful sister, Lariza Anaiz Navarro, for all her advice and encouragement to

graduate with a Thesis, and all the special people who were there for me.

I would especially like to thank Dr. Artem Chebotko for his support and encouragement

during the process. I would also like to thank Tony Piazza for his invaluable help organizing and

configuring the experiments. Finally, I would like to thank the Computer Science Department for

all the support in making this thesis possible.

TABLE OF CONTENTS

ABSTRACT... iii	

DEDICATION... iv	

ACKNOWLEDGMENTS .. v	

TABLE OF CONTENTS.. v	

LIST OF TABLES... viii	

LIST OF FIGURES ... ix	

CHAPTER I. INTRODUCTION.. 1	

CHAPTER II. RELATED WORK ... 4	

CHAPTER III. SYSTEM ARCHITECTURE .. 6	

CHAPTER IV. STORAGE SCHEMA AND DATA INGEST.. 9	

CHAPTER V. QUERYING ALGORITHMS .. 12	

CHAPTER VI. PERFORMANCE STUDY ... 18	

Experimental Setup..18	

Datasets and Queries ...19	

Data Ingest Performance ...20	

Query Evaluation Performance ...21	

vi

Query Optimization Discussion...21	

CHAPTER VII. RESULTS AND DISCUSSION .. 24	

REFERENCES ... 25	

BIOGRAPHICAL SKETCH .. 41	

viii

LIST OF TABLES

Table 1: Datasets of Experiments ... 19	

Table 2: Test Queries .. 20	

Table 3: Data Ingest Performance... 21	

Table 4: Query Performances. .. 22	

ix

LIST OF FIGURES

Figure 1: The ProvBase Architecture. .. 8	

Figure 2: A Table Row Structure.. 9	

Figure 3: Provenance Storage Schema and Instance. ... 11	

Figure 4: Algorithm 1 Matching a Triple Pattern Over Triple ... 13	

Figure 5: Algorithm 2 Matching a Triple Pattern Over a Database.. 15	

Figure 6: Algorithm 3 Matching a Basic Graph Pattern Over a Database.................................... 17	

1

CHAPTER I

INTRODUCTION

Provenance has been identified as an important requirement for scientific workflows [1],

[2], [3]. Scientific workflow management systems (SWfMS) [4], [5], [6], [7], [8], [9], [10]

support design and execution of scientific workflows, as well as collection of provenance data to

enable scientific discovery reproducibility, result interpretation, and problem diagnosis in insilico

experiments. With scientific workflows emerging as a powerful paradigm for formalizing and

automating complex and data intensive scientific processes, the role of provenance data

management cannot be underestimated. E-scientists are now enabled to efficiently execute

scientific workflows numerous times with different settings, parameters, and inputs in their

continuous search for interesting results. In this scenario, large amounts of provenance data,

which records the history of all workflow executions, are produced. Moreover, recent efforts of

the community on provenance interoperability [11], [12] in different SWfMSs further suggest

that provenance data from various scientific projects can be integrated on a global scale into a

Semantic Web of Scientific Workflow Provenance to enable data analysis and provenance

applications that span over multiple projects and organizations. Hence, there is a growing need

for efficient database systems that can employ distributed storage and querying techniques to

cope with large-scale provenance data management.

 Inspired by Google’s Bigtable [13] that successfully caches most data on the Web, in this

paper, we examine how this powerful technology can be adapted to store and query scientific

2

workflow provenance data represented using Resource Description Framework (RDF). For this

purpose, we choose to use HBase [14], an open-source implementation of Bigtable that is

designed for massive scalability, which is particularly important for storage of large provenance

datasets. HBase is not a relational database and does not support a high-level query language like

SQL, but it provides an API for performing data updates and executing queries. HBase builds on

top of Hadoop [15], a Java framework that supports intensive data communication among

computers in a cluster. Hadoop has the capability to connect and coordinate thousands of nodes

inside a cluster. It takes into account the geography of clusters, the location of the information

and its proximity to other clusters, the continuity and the duplicity of data, and determines how

to distribute data to obtain the best performance. Hadoop applications, such as HBase, utilize

these capabilities without the need to interact with a file system spread among many nodes in a

cluster. The communities of both Hadoop and HBase are growing and active. This means we can

be rather confident that continued development and support will be available.

 There are a number of questions that we need to answer when using HBase for

provenance data management. What database schema is suitable for storing RDF triples to

efficiently support triple pattern matching? How can SPARQL queries be evaluated in the

database as HBase’s API only supports simple retrieval by a table row key? This thesis reports

our first attempt to address these issues. We architect the ProvBase system that incorporates an

HBase/Hadoop backend for distributed storage and querying of provenance data. The main

contributions of our work include a three-table storage schema that can be instantiated in HBase

to hold provenance triples and querying algorithms that evaluate SPARQL queries in HBase

using its native API. Using the Third Provenance Challenge queries, we conduct an experimental

study to show the feasibility of ProvBase. The organization of this thesis is as follows. Related

3

work is discussed in Chapter II. The architecture of ProvBase is described in Chapter III. Our

storage schema and data ingest are introduced in Chapter IV. Querying algorithms are presented

in Chapter V. Finally, our performance study and concluding remarks are reported in Chapters

VI and VII, respectively.

4

CHAPTER II

RELATED WORK

The scientific workflow community has developed a number of solutions for provenance

data collection and management. We briefly summarize some of them in the following. VIEW

[4] has an OWL vocabulary for provenance collection and develops a relational RDF store,

called RDFProv [16], to store and query provenance using semantic web and relational

technologies. Kepler [6] uses a provenance framework, called Collection-Oriented Modeling and

Design (COMAD) [17], [18], that stores provenance data in an XML file and, recently, in a

relational database [19], [20]. Taverna [5], [21], [22], [23] features a provenance ontology and

employs semantic web technologies for provenance collection and representation. VisTrails [7],

[24], [25] and Karma [26], [27], [28] use XML and relational database technologies to represent,

store, and query workflow provenance. Trident [29], [30] and PreServ/PASOA [31], [32] are not

tied to any particular provenance storage model, but rather define interfaces and adaptors to

enable different storage systems, such as a file system, relational database, XML database and so

forth. Finally, Swift [10], [33] implements a Virtual Data System (VDS) consisting of a set of

relations to manage provenance information in a relational database. While all of these systems

use proprietary mechanisms for modeling, collecting, and storing provenance, some also add

support for the Open Provenance Model (OPM) [12], an emerging community-driven standard

that facilitates provenance interoperability [11].

5

In terms of RDF data management, the projects most related to our work are Heart [34]

and SPIDER [35]. These recently started projects use Hadoop [15] and HBase [14] to manage

large RDF datasets; at the time of writing this thesis, there was not much information released to

the public about these systems. Some other related research works on distributed RDF querying

include [36], [37], [38], [39], [40]. In [36], a schema to store RDF data in the Hadoop file system

and querying algorithms to evaluate SPARQL basic graph patterns are proposed. While [36] and

this work address similar data management problems, the two approaches are different in their

use of Hadoop and HBase, respectively. RDFCube [37] and RDFPeers [38] focus on RDF query

processing in peer-to-peer environments. [39] and [40] study mediation techniques for federated

querying of distributed RDF sources.

6

CHAPTER III

SYSTEM ARCHITECTURE

The ProvBase architecture is shown in Figure 1. It consists of four primary components:

(1) clients that collect and query provenance, (2) ProvBase servers that process all client

requests, (3) one active HBase master server that coordinates an HBase cluster, and (4) HBase

region servers that store provenance. Clients, which are typically represented by scientific

workflow management systems, collect provenance data to be stored in RDF format and execute

SPARQL queries to retrieve stored provenance data. Clients send requests to ProvBase servers

using a standard web services interface. One or more identical ProvBase servers deployed in a

cluster handle client requests for provenance insertion and querying. Each ProvBase server

implements algorithms for creation, population, and querying HBase tables. An HBase

installation consists of one active HBase master server that may have inactive replicas and one or

more HBase region servers that store provenance data. ProvBase servers communicate with both

master and region servers.

One of the most important responsibilities of the master server is the creation and

assignment of regions inside each region server. Each region assigned by the master server

corresponds to a subset of data that a region server can hold, such that data is distributed among

region servers in a cluster. This design allows massive scalability. The master server also

monitors the existence and reachability of region servers, balances their workload, and handles

7

schema administration. The master server intercepts the initial administrative request from

ProvBase servers, not to service the request, but to assist in identifying the correct region server

to satisfy the request. If the active master server is down and there are no master replicas to take

its duties, the entire HBase system goes offline. Unlike the master server, it is possible for some

region servers to be taken offline, because data that each region server holds is replicated across

other region servers.

Region servers handle all insertion (write) and querying (read) requests from ProvBase

servers. When a write request is sent to a region server, the request is written in a region log and

subsequently in an HBase table, distributed file system and, at the lowest level, Hadoop data

nodes. In addition, cache may maintain a copy of data. When a read request is submitted, cache

is checked first and if requested triples are not found, an HBase table is searched. A response to

the read request is sent directly from a region server to a ProvBase server, which further

evaluates SPARQL operators over received triples according to a client query and sends the final

result to the client.

Additional details about the internal structure of HBase master and region servers are

available in [14]. In the following sections, our focus is on a ProvBase server design, including a

storage schema that it creates in HBase, data ingest and querying algorithms.

8

Figure 1: The ProvBase Architecture.

9

CHAPTER IV

STORAGE SCHEMA AND DATA INGEST

HBase stores data in tables that are structurally different from relations used in traditional

relational databases. An HBase table (hereafter “table” for short) has columns and rows. While

conceptually a table is a single entity, physically its columns are stored in separate data structures

and its rows can be further partitioned horizontally into regions and distributed over region

servers. Each row has a row key and a cell set as schematically shown in Figure 2. A row key

uniquely identifies a row and can be used for efficient retrieval of a row cell set. Each cell

contains a data value and a time stamp; the latter can provide an additional benefit to provenance

data to record time when a provenance triple is stored. This structure allows having several

values in different cells for the same column and row key.

Figure 2: A Table Row Structure.

10

To store provenance data represented by a set of RDF triples, we propose using three

tables with one column in each. The schemas and instances of these tables are depicted in Figure

3 (time stamps are omitted for brevity). Given the following sample triples

<D> <generatedArtifact> <A> .

<D> <generatedByProcess> <P> .

<C> <usedByProcess> <P> .

table Ts stores their subjects as row keys, and predicates and objects as values in column po,

where a delimiter “j” denotes the boundary between terms. As shown in the figure, these triples

are stored in two rows of table Ts, where the first row contains two cells in column po. Similarly,

tables Tp and To store triple predicates and objects, respectively, as row keys and the other terms

as column values.

This storage schema is intended for efficient matching of SPARQL triple patterns. For

example, if a triple pattern contains a URI in the subject position, table Ts can be used to

efficiently retrieve all predicates and objects stored in a row with this URI key. If a subject

pattern is a variable, but a predicate or object pattern is not, then Tp or To can be used for

retrieval. In case of a triple pattern with all variables, any table can be used to retrieve all

provenance data in the system. An additional optimization can be used to improve time and

space efficiency. For long URIs and literals that are to be stored as row keys, their hash values

can be computed and stored instead. When triples need to be retrieved based on a long

URI/literal key, a hash value is computed and used for retrieval. This optimization can be used

on two arbitrary tables of the three proposed ones, since one table should store all original triple

terms to support a retrieval of all stored data. Depending on a particular dataset, two tables can

be optimized using this approach with To being a strong candidate since literals at object

11

positions can include sentences and paragraphs of text. Moreover, using this optimization, it

becomes feasible to use additional tables which combine two (or even three) triple terms into a

row key to enable even faster matching of triple patterns with one variable or no variables at all.

A ProvBase server creates the three tables in the Hbase database during the system setup.

Data insertion is initiated by a client when it sends a set of triples or a URL of an RDF

document to a ProvBase server. At that point, triples are converted to rows and fed to HBase,

which further distributes them among region servers. An algorithm for data ingest is not

complicated, such that three rows are created for each supplied triple and inserted into the

corresponding tables. An implementation of the described optimization strategy that hashes

URIs and literals whose lengths exceed a given threshold is also straightforward.

Figure 3: Provenance Storage Schema and Instance.

12

CHAPTER V

QUERYING ALGORITHMS

In this section, we propose three algorithms that allow us to evaluate SPARQL queries

over our HBase storage schema for provenance data. HBase supports simple querying

mechanisms, such as retrieving all rows from a table and retrieving all values in some column for

a row with a known key. Retrieved rows and values can be further processed via the returned

iterators. Evaluation of more complex querying constructs, such as SPARQL triple patterns and

basic graph patterns, which are needed to express provenance queries, requires additional

research

Our first function, matchTP-T, allows matching of a triple pattern over a triple and is

outlined in Algorithm1. It is a general-purpose function that depends on neither our storage

schema nor HBase. matchTP-T takes a triple pattern tp and a triple t and returns true if they

match or false otherwise.

To check that tp matches t, several conditions must be satisfied: (1) a variable can match

anything, (2) a URI or literal must match itself, and (3) a variable that occurs more than once

must match the same term for all occurrences.

Function matchTP-DB as outlined in Algorithm 2 is used to match a triple pattern tp in an

HBase database DB according to our storage schema.

13

Figure 4: Algorithm 1 Matching a Triple Pattern Over Triple

 The output of this function is a relation R that holds a set of all matching triples in the

database. To match tp in DB, matchTP-DB may have several options. If tp’s subject pattern is

not a variable, the function can efficiently access all values in column po of table Ts for the row

with key tp.sp via an iterator i. A triple t = (tp.sp, p, o), where predicate p and object o are

obtained by splitting a value in column po, is then matched with tp using function matchTP-T. If

the match is successful, the triple is added to relation R. When tp’s subject pattern is a variable,

matching using a row key in Ts is not possible. Hence, the function implements a similar strategy

to match tp over tables To and Tp. It should be noted that Tp is the least recommended of these

three options, since heuristically the corresponding iterator for this table may contain a

substantially larger set of triples than the iterators for Ts and To. To summarize, retrieving triples

based on a row key from Tp usually yields the highest selectivity. The final and most expensive

case is when a triple pattern contains only variables. The result of matching this triple pattern

14

yields all triples in Ts, To, or Tp. This case is handled in the last loop of the algorithm. matchTP-

DB obtains a scanner over all rows in Ts and, for each row, an iterator over all values in column

po. Triples are reconstructed from a row key and a column value and added to relation R without

calling matchTP-T. While strategies for retrieving all triples from To and Tp are similar (not

shown in the algorithm), it is a good idea to randomly choose one of these three strategies to

balance a workload.

Our final function matchBGP-DB is outlined in Algorithm 3. It matches a SPARQL basic

graph pattern bgp that consists of a set of triple patterns tp1, tp2, ..., tpn over an HBase database

and returns a relation with a set of tuples representing matched graphs. The idea behind

matchBGP-DB is as follows. The algorithm first sorts triple patterns in the non-descending order

of their selectivities, such that triple patterns that yield smaller results appear first in the list. This

can potentially save some computation if matching triples do not fit into main memory. A simple

approach to decide on a triple pattern selectivity is to use these heuristics: (1) if a triple pattern

contains only variables, it has the highest selectivity, (2) if a triple pattern contains a non-

variable only at the predicate pattern position, it has moderate selectivity, and (3) if a triple

pattern has a non-variable at the subject and/or object pattern positions, it has a low selectivity. A

formal and more advanced approach to triple pattern selectivity estimation is described in [41].

Next, each triple pattern is evaluated using the matchTP-DB function returning a relation with

matching triples. These relations are joined according to their corresponding triple pattern order

using a nested-loops-like join strategy.

15

Figure 5: Algorithm 2 Matching a Triple Pattern Over a Database.

16

An attempt is made to concatenate each triple from the first relation with every triple from the

second relation based on a condition that the triples must agree on the values (bindings) of shared

variables. Next, an attempt is made to join each concatenated tuple with triples from the next

relation and so forth. Only those tuples that result from the concatenation of triples from every

available relation are added to the final relation R. Function matchTP-DB does not materialize

intermediate join results to reduce memory consumption, but rather processes all relations

concurrently. Tuples that do not concatenate with triples in subsequent joins are quickly

eliminated.

Other SPARQL features, such as projection (SELECT), filtering (FILTER), and

alternative graph patterns (UNION), can be incorporated in the presented algorithmic framework

in a straightforward fashion. Projection, which eliminates unwanted variables, is performed

during triple pattern matching as long as to-be eliminated variables do not occur in other triple

patterns of a query; in the latter case, such variables are projected out after a join phase.

Similarly, filtering, which includes logical connectives (¬, ∧, ∨), inequality and equality

operators (<, ≤, ≥, >), unary predicates (bound, isIRI), and other constructs, is performed during

triple pattern matching if a filter expression only uses variables from one triple pattern or during

basic graph pattern matching if the expression references variables from multiple triple patterns.

A union of basic graph patterns corresponds to a union of relations that resulted from graph

pattern matching. If relations are not union-compatible, their schemas must be extended

accordingly before a union is computed [42]. Finally, dealing with optional graph patterns can

be much more complicated due to non-trivial nesting and sequential occurrence of OPTIONAL

constructs in a SPARQL query. Since the Third Provenance Challenge queries do not show the

need for this construct, we leave out optional graph patterns for future work.

17

Figure 6: Algorithm 3 Matching a Basic Graph Pattern Over a Database

18

CHAPTER VI

PERFORMANCE STUDY

We implemented our algorithms in Java and conducted performance experiments with

ProvBase. ProvBase was used to load provenance datasets of varying sizes and execute test

queries defined by the Third Provenance Challenge.

Experimental Setup

We used five identically configured Gateway E3600 computers for running our

experiments. Each machine had a 1.8 GHz Pentium 4 processor, 1 GB RAM, 20 GB IDE hard

drive and a gigabit Ethernet adapter. These machines were directly connected to a D-Link DGS-

2208 gigabit switch and configured with static, non-routable IP addresses. These machines were

all running version 5.0.3 of the Debian operating system, version 1.6.0 of the OpenJDK, version

0.20.1 of Hadoop and version 0.20.3 of HBase.

The Hbase/Hadoop installations on each machine were configured to use the fully

distributed mode. The hard drives on each machine had at least 16 GB of free space. One of the

machines was configured as the HBase master server and the other four machines were

configured as HBase region servers. The ProvBase server code was executed on the same

machine as the HBase master server.

19

Table 1: Datasets of Experiments

Datasets and Queries

The Third Provenance Challenge [11] employed the Load Workflow that was a variation

of a workflow used in the Pan-STARRS project [43]. Via simulation, we generated a number of

provenance documents for multiple runs of this workflow. Provenance data was represented

using Tupelo’s OWL vocabulary available from the Open Provenance Model website [12]. Each

workflow execution generated approximately 700 RDF triples.

In our experiments, each dataset was characterized by the number of its constituent triples

(say n), the number of involved workflow runs (n/700), and space that it occupied on a disk as

shown in Table 1. In addition, we selected three provenance challenge questions and expressed

them as SPARQL queries. Our queries are presented in Table 2 where rdfs, opm, and p refer to

namespaces http://www.w3.org/2000/01/rdf-schema#, http://www.ipaw.info/2007/opm#, and

http://www.cs.panam.edu/provenance/, respectively. The queries have varying complexity: Q1 is

the simplest query with one triple pattern, Q2 has three triple patterns, and Q3 is the most

complex with six triple patterns.

The FILTER clause of each query only references one variable from the preceding triple

pattern and checks whether a value of this variable contains a certain literal.

20

Table 2: Test Queries

Data Ingest Performance

Data ingest performance for each dataset is reported in Table 3. The data loading

performance revealed linear scalability for given dataset sizes. The average triple per second

throughput (154tps) and time (4.6s) required to load provenance data from a single workflow run

proved to be good for long-running, data and computationally intensive workflows.

21

Query Evaluation Performance

Test query performance for each dataset is reported in Table 4. The system showed good

querying scalability with respect to the dataset size, i.e., the database growth by a factor of 10,

resulted in the query response time growth by a factor of 2 – 3 on average. As the number of

triple patterns in a query increased, the time to evaluate the query also increased. Q1 and Q3

were the fastest and slowest queries in our experiment, respectively.

Data Ingest Performance

Table 3: Data Ingest Performance

Query Optimization Discussion

As we discussed previously, triple pattern evaluation is usually much slower over table Tp

than over table Ts or table To, because there likely exist more triples with the same predicate

rather than with the same subject or object. For example, in our provenance datasets, provenance

of each workflow run contained almost 30 triples with predicate opm:generatedArtifact, which

22

were all stored in a single row of Tp. For the largest dataset with 100,000 workflow runs, the

number of such triples approached 3 million.

On the other hand, the same dataset contained only one triple with object p:tableID that

was stored into To. Therefore, the first triple pattern of Q2, (?table, opm:generatedArtifact,

p:tableID), was much more efficient when matched over table To. However, how could we match

Q2’s second triple pattern, (?table, opm:generatedByProcess, ?process), using Ts or To when

only the predicate was known? To answer this question, we looked at this triple pattern in the

context of the first triple pattern.

Table 4: Query Performances.

The latter matched one triple and thus had one binding for variable ?table, say binding

p:table1. Since variable ?table should have had the same binding for every occurrence in Q2, we

were able to replace the evaluation of (?table, opm:generatedByProcess, ?process) over Tp with

the evaluation of (p:table1, opm:generatedByProcess, ?process) over Ts to obtain equivalent

results. The same technique was used to optimize Q2’s third triple pattern, such that we were

able to match it over Ts. We optimized Q3 in the same fashion to completely eliminate the need

23

to access Tp. As a result, optimized queries Q2 and Q3 showed nearly constant performance of

around 0.032s and 0.054s, respectively, on every provenance dataset. The performance did not

decrease with the growth of the dataset size, because only one workflow run produced a table

and detection with given identifiers and therefore HBase was able to efficiently retrieve

matching triples using its multi-level index structures.

24

CHAPTER VII

RESULTS AND DISCUSSION

The performance study showed promising results. We observed that ProvBase, deployed

on a five-node cluster, was able to efficiently store and query provenance of up to 100,000

executions of a real life scientific workflow.

The additional optimization applied to queries Q2 and Q3 improved the query response

times for the largest dataset by two and three orders of magnitude, respectively. We studied the

problem of how scientific workflow provenance data represented in RDF can be stored and

queried in a distributed environment. We proposed a storage schema for HBase that is tuned for

efficient triple pattern matching and designed querying algorithms that execute SPARQL queries

over an HBase provenance database. We implemented our algorithms in the ProvBase system

and successfully evaluated their performance using the Third Provenance Challenge queries.

ProvBase, deployed on a five-node cluster, showed promising results and was able to efficiently

store and query provenance of up to 100, 000 executions of a real-life scientific workflow.Future

work directions include adding support for optional graph pattern evaluation, distributing

workload among ProvBase servers, and conducting performance studies on larger clusters with

more powerful nodes. We also plan to further explore and conduct comprehensive evaluation of

the discussed querying optimizations, including row key hashing, encoding multiple triple

pattern terms or even basic graph patterns as row keys, and intelligent substitution of subsequent

triple pattern terms in a query with already matched data.

25

REFERENCES

[1] Y. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance in e-science,” SIGMOD

Record, vol. 34, no. 3, pp. 31–36, 2005.

[2] S. B. Davidson, S. C. Boulakia, A. Eyal, B. Ludäscher, T. M. McPhillips, S. Bowers, M. K.

Anand, and J. Freire, “Provenance in scientific workflow systems,” IEEE Data Engineering

Bulletin, vol. 30, no. 4, pp. 44–50, 2007.

[3] S. B. Davidson and J. Freire, “Provenance and scientific workflows: challenges and

opportunities,” in Proc. of the ACM SIGMOD International Conference on Management of

Data, 2008, pp. 1345–1350.

[4] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi, and J. Hua, “A reference

architecture for scientific workflow management systems and the VIEW SOA solution,” IEEE

Transactions on Services Computing, vol. 2, no. 1, pp. 79– 92, 2009.

[5] T. M. Oinn, R. M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover, C. A. Goble,

A. Goderis, D. Hull, D. Marvin, P. Li, P. W. Lord, M. R. Pocock, M. Senger, R. Stevens, A.

Wipat, and C. Wroe, “Taverna: lessons in creating a workflow environment for the life

sciences,” Concurrency and Computation: Practice and Experience, vol. 18, no. 10, pp. 1067–

1100, 2006.

[6] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. B. Jones, E. A. Lee, J. Tao,

and Y. Zhao, “Scientific workflow management and the Kepler system,” Concurrency and

Computation: Practice and Experience, vol. 18, no. 10, pp. 1039–1065, 2006.

26

[7] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo, “Managing

the evolution of dataflows with VisTrails,” in Proc. of the International Conference on Data

Engineering Workshops, 2006, p. 71.

[8] J. Kim, E. Deelman, Y. Gil, G. Mehta, and V. Ratnakar, “Provenance trails in the

Wings/Pegasus system,” Concurrency and Computation: Practice and Experience, vol. 20, no.

5, pp. 587–597, 2008.

[9] Y. Simmhan, R. Barga, C. van Ingen, E. Lazowska, and A. Szalay, “Building the Trident

scientific workflow workbench for data management in the cloud,” Proc. of the International

Conference on Advanced Engineering Computing and Applications in Sciences, pp. 41–50, 2009.

[10] Y. Zhao, M. Hategan, B. Clifford, I. T. Foster, G. von Laszewski, V. Nefedova, I. Raicu, T.

Stef-Praun, and M. Wilde, “Swift: Fast, reliable, loosely coupled parallel computation,” in Proc.

of the International Workshop on Scientific Workflows, 2007, pp. 199–206.

[11] Third Provenance Challenge, http://twiki.ipaw.info/bin/view/

Challenge/ThirdProvenanceChallenge.

[12] Open Provenance Model, http://openprovenance.org.

[13] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A.

Fikes, and R. E. Gruber, “Bigtable: A distributed storage system for structured data,” ACM

Transactions on Computer Systems, vol. 26, no. 2, 2008.

[14] Apache HBase, http://hadoop.apache.org/hbase/.

[15] Apache Hadoop, http://hadoop.apache.org.

[16] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi, “Storing and querying scientific

workflow provenance metadata using an RDBMS,” in Proc. of the IEEE International

Conference on e-Science, 2007, pp. 611–618.

27

[17] S. Bowers, T. M. McPhillips, S. Riddle, M. K. Anand, and B. Ludäscher, “Kepler/pPOD:

Scientific workflow and provenance support for assembling the tree of life,” in Proc. of the

International Provenance and Annotation Workshop, 2008, pp. 70–77.

[18] S. Bowers, T. M. McPhillips, M. Wu, and B. Ludäscher, “Project histories: Managing data

provenance across collection-oriented scientific workflow runs,” in Proc. of the International

Workshop on Data Integration in the Life Sciences, 2007, pp. 122–138.

[19] M. K. Anand, S. Bowers, T. M. McPhillips, and B. Ludäscher, “Efficient provenance

storage over nested data collections,” in Proc. of the International Conference on Extending

Database Technology, 2009, pp. 958–969.

[20] ——, “Exploring scientific workflow provenance using hybrid queries over nested data and

lineage graphs,” in Proc. of the International Conference on Scientific and Statistical Database

Management, 2009, pp. 237–254.

[21] A. D. Preece, P. Missier, S. M. Embury, B. Jin, and R. M. Greenwood, “An ontology-based

approach to handling information quality in e-science,” Concurrency and Computation: Practice

and Experience, vol. 20, no. 3, pp. 253–264, 2008.

[22] P. Missier, K. Belhajjame, J. Zhao, M. Roos, and C. A. Goble, “Data lineage model for

Taverna workflows with lightweight annotation requirements,” in Proc. of the International

Provenance and Annotation Workshop, 2008, pp. 17–30.

[23] J. Zhao, C. A. Goble, R. Stevens, and D. Turi, “Mining Taverna’s semantic web of

provenance,” Concurrency and Computation: Practice and Experience, vol. 20, no. 5, pp. 463–

472, 2008.

28

[24] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger, and H. T. Vo, “Managing

rapidly-evolving scientific workflows,” in Proc. of the International Provenance and Annotation

Workshop, 2006, pp. 10–18.

[25] C. T. Silva, J. Freire, and S. P. Callahan, “Provenance for visualizations: Reproducibility

and beyond,” Computing in Science and Engineering, vol. 9, no. 5, pp. 82–89, 2007.

[26] Y. L. Simmhan, B. Plale, and D. Gannon, “A framework for collecting provenance in data-

centric scientific workflows,” in Proc. of the International Conference on Web Services, 2006,

pp. 427–436.

[27] ——, “Karma2: Provenance management for data-driven workflows,” International Journal

of Web Services Research, vol. 5, no. 2, pp. 1–22, 2008.

[28] B. Cao, B. Plale, G. H. Subramanian, E. Robertson, and Y. L. Simmhan, “Provenance

information model of karma version 3,” in Proc. of the International Workshop on Scientific

Workflows, 2009, pp. 348–351.

[29] M. D. Valerio, S. S. Satya, R. S. Barga, and J. J. Jared, “Capturing workflow event data for

monitoring, performance analysis, and management of scientific workflows,” in Proc. of the

IEEE International Conference on e-Science, 2008, pp. 626–633.

[30] Y. L. Simmhan, R. Barga, and C. van Ingen, “Automatic provenance recording for scientific

data using Trident,” in American Geophysical Union (AGU) Fall Meeting, 2008.

[31] L. Moreau, P. T. Groth, S. Miles, J. V´azquez-Salceda, J. Ibbotson, S. Jiang, S. Munroe, O.

F. Rana, A. Schreiber, V. Tan, and L. Z. Varga, “The provenance of electronic data,”

Communications of the ACM, vol. 51, no. 4, pp. 52–58, 2008.

[32] P. T. Groth and L. Moreau, “Recording process documentation for provenance,” IEEE

Transactions on Parallel and Distributed Systems, vol. 20, no. 9, pp. 1246–1259, 2009.

29

[33] Z. Hou, M. Wilde, M. Hategan, X. Zhou, I. T. Foster, and B. Clifford, “Experiences of on-

demand execution for large scale parameter sweep applications on OSG by Swift,” in Proc. of

the International Conference on High Performance Computing and Communications, 2009, pp.

527–532.

[34] Heart, http://heart.korea.ac.kr.

[35] H. Choi, J. Son, Y. Cho, M. K. Sung, and Y. D. Chung, “SPIDER: a system for scalable,

parallel / distributed evaluation of large-scale RDF data,” in Proc. of the ACM Conference on

Information and Knowledge Management, 2009, pp. 2087– 2088.

[36] M. F. Husain, P. Doshi, L. Khan, and B. M. Thuraisingham, “Storage and retrieval of large

RDF graph using Hadoop and MapReduce,” in Proc. of the International Conference on Cloud

Computing, 2009, pp. 680–686.

[37] A. Matono, S. M. Pahlevi, and I. Kojima, “RDFCube: A P2P-based three-dimensional index

for structural joins on distributed triple stores,” in Proc. of the Databases, Information Systems,

and Peer-to-Peer Computing, International Workshops, 2006, pp. 323–330.

[38] M. Cai, M. R. Frank, B. Yan, and R. M. MacGregor, “A subscribable peer-to-peer RDF

repository for distributed metadata management,” Journal of Web Semantics, vol. 2, no. 2, pp.

109–130, 2004.

[39] B. Quilitz and U. Leser, “Querying distributed RDF data sources with SPARQL,” in Proc.

of the European Semantic Web Conference, 2008, pp. 524–538.

[40] H. Stuckenschmidt, R. Vdovjak, J. Broekstra, and G.- J. Houben, “Towards distributed

processing of RDF path queries,” International Journal of Web Engineering and Technology,

vol. 2, no. 2/3, pp. 207–230, 2005.

30

[41] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds, “SPARQL basic graph

pattern optimization using selectivity estimation,” in Proc. of the International Conference on

World Wide Web, 2008, pp. 595–604.

[42] A. Chebotko, S. Lu, and F. Fotouhi, “Semantics preserving SPARQL-to-SQL translation,”

Data & Knowledge Engineering, vol. 68, no. 10, pp. 973–1000, 2009.

[43] Y. Simmhan, R. S. Barga, C. van Ingen, M. A. Nieto- Santisteban, L. Dobos, N. Li, M.

Shipway, A. S. Szalay, S. Werner, and J. Heasley, “GrayWulf: Scalable software architecture for

data intensive computing,” in Proc. of the Hawaii International Conference on System Sciences,

2009, pp. 1–10.

APPENDIX A

32

APPENDIX A

PROVBASE INSTALLATION MANUAL

In order to complete the installation it is assumed the following elements are present:

4 or more computers with similar hardware characteristics (hardware optional)

Linux Debian Distribution Release X.X.X

A network installation/Configuration that connects all nodes

Internet Access of at least one node to download the latest versions of files (not necessary)

System Installation

To install ProvBase, it is necessary to obtain the latest versions of JAVA, HADOOP and

HBASE. The following steps explain in detail how to acquire and properly install the required

programs.

First, in order to install Java, the application installer “apt-get” provided by Debian will be used.

In the command prompt, the following command must be typed:

apt-get update

This will update the repositories of the OS installer. The next command:

apt-get install sun-java6-jdk

Will install Java in the System; JAVA/BIN needs to be installed in the current path. The

aforementioned can be verified by typing:

 echo $PATH

33

It is important to work with the latest version of Hadoop and HBase. For this purpose, links are

provided for both of these programs. The links might change in the future; therefore, it is

convenient to revise each project website, and make sure to download the latest version of them.

This manual is using Hadoop Release xxx, and HBase release xxx.

Download Hadoop:

 wget http://mirror.cloudera.com/apache/hadoop/core/hadoop-0.X.X/hadoop-0.X.X.tar.gz

Download HBase:

 wget http://people.apache.org/~stack/hbase-0.X.X-stable/hbase-0.X.X.tar.gz

After the program files are downloaded, a folder called ProvBase should be created inside the

root folder and the downloaded files placed inside it. The contents of these files need to be

extracted into individual folders named according to the project. The final folder structure should

look like this: /ProvBase/hbase/ /ProvBase/hadoop/

The next step is to copy the source of ProvBase to a folder named src inside the ProvBase folder

as follows, /ProvBase/src/

One must make sure to include all the Java files and scripts.

34

SSH Configuration

The following steps should only be done for the main node. Later in this manual, it will be

explained how to copy this configuration to the rest of the nodes in the cluster. This installation

assumes the main node is the future “Master Server” (review the ProvBase configurations

scheme for further explanation).

In order to run HBase and Hadoop it is necessary to install and configure SSH servers and

clients. This will also help us to expedite the whole installation.

It should be verified that the SSH client/server is installed in the system; this can be done by

typing:

ssh–version

If the installation was done correctly, one can continue to the next step. However, if the system

can’t find the program, by typing:

apt-get ssh

One can make sure all the nodes in the cluster have SSH installed.

The next step is to allow the master node (the current node) to access the other nodes; this step is

necessary in order to make multiple and concurrent installations, and will later permit the

communication between the nodes.

To accomplish this, the code below will create a public/private key and save it in a file name:

authorized_keys.

ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa

cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

35

It is necessary to copy this file to each node in the cluster to gain access without being requested

for the password every time. The file must be saved in the folder ./ssh/authorized_keys of each

node.

Once the file is in all the nodes, the connection to every node should be verified. This can be

done with the following command, where $node is the ip address or the name of the node. ssh

$node

Note that the username in each node needs to be the same for all the nodes.

Cluster Configuration

The following section describes how to transfer the files to all the nodes.

To begin, it is necessary to create a file named servers and add the ip addresses or name of each

node of the cluster one per line, for instance:

192.1.2.1

192.1.2.2

192.1.2.3

The following script will generate the correct environment in each node. The script will copy the

source code from the main node and transfer it over to the rest of nodes. (The script assumes the

compressed files downloaded from HBase and Hadoop project are named: hbase.tar.gz and

hadoop.tar.gz)

36

for host in `cat servers` do echo $host

ssh $host 'apt-get update; apt-get upgrade; apt-get install sun-java6-jdk;

mkdir –p /ProvBase'

scp /ProvBase/hadoop.tar.gz /provbae/hbase.tar.gz $host:~

ssh $host 'mkdir -p /ProvBase/pkgs; cd /ProvBase/pkgs; tar xzf ~/hadoop.tar.gz; tar xzf ~/hbase.tar.gz; ln

-s /ProvBase/pkgs/hadoop /ProvBase/hadoop; ln –s /ProvBase/pkgs/hbase /ProvBase/hbase'

done

The script will then connect to each node and update the repository, install Java and create the

folder ProvBase. Then, it will copy the tar files from hadoop and hbase to the node. Finally, it

will expand each project file and save their contents in their respective folders, exactly as it is in

the main node.

System Configuration

Checking that Hadoop and HBase environment paths are correctly configured with the system

paths is a must. It is also important to include in the Hadoop configuration the HBase path and

vice versa.

export JAVA_HOME= usr/lib/java

export HADOOP_CLASSPATH=/ProvBase/hbase/hbase

0.X.X.jar:/ProvBase/hbase/hbase-0.X.X-test.jar::/ProvBase/hadoop/hadoop-0.X.X.jar:/conf

export HBASE_CLASSPATH=/ProvBase/hadoop/conf

export HBASE_MANAGES_ZK=true

37

Hadoop Configuration

The configuration of Hadoop, involves modifying several files, most of them XML settings.

In the folder Hadoop there is a subfolder named conf that contains a file named “core-site.xml”.

One needs to erase its content and copy the code below:

The next file that needs to be updated is mapred-site.xml. It can be found in the same conf folder.

Its content must be erased and substituted with the following code:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
 <property>
 <name>hadoop.tmp.dir</name>
 <value>/provbase/hadoop</value>
 </property>
 <property>
 <name>fs.default.name</name>
 <value>hdfs://node1.local:50001</value>
 </property>
 <property>
 <name>tasktracker.http.threads</name>
 <value>80</value>
 </property>
</configuration>

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration>

 <property>
 <name>mapred.job.tracker</name> <value>nod1.local:50002</value>
 </property>

 <property>
 <name>mapred.tasktracker.map.tasks.maximum</name> <value>4</value>
 </property>

 <property>
 <name>mapred.tasktracker.reduce.tasks.maximum</name> <value>4</value>
 </property>

 <property>
 <name>mapred.output.compress</name> <value>true</value>
 </property>

 <property>
 <name>mapred.output.compression.type</name> <value>BLOCK</value>
 </property>

</configuration>

38

The last file to modify is hdfs-site.xml. The only attribute that is required to modify is the

dfs.replication. Set the same number of nodes in the cluster.

Inside of the folder conf create two files named, Masters and Slaves. In the Master file, add the

master node IP or the qualified domain (node1.local)

In Slaves, add the list of ip address for each node, one per line.

The last step consist in copying over the all the configuration files to the rest of the nodes. This

can be accomplished by running the script below. It will copy over the new configurations files

to each node and format each namenode space, including the master node.

for host in `cat slaves` do

 echo $host

 scp slaves masters hdfs-site.xml hadoop-env.sh core-site.xml ${host}:/ProvBase/hadoop/conf

 ssh $host '/mnt/hadoop/bin/hadoop namenode -format'

done

/ProvBase/hadoop/bin/hadoop namenode –format

HBase Configuration

The HBase configuration consists in modify a single file inside named name hbase-site.xml that

can be found inside the folder conf that is located in the hbase folder. /hbase/conf/

There are several configurations that can be used for HBase depending in the cluster structure

and geography. For a simple ProvBase cluster, it is recommended to use the following code:

<property>
 <name>dfs.replication</name>
 <value>3</value>
</property>

39

Installing ProvBase

ProvBase comes with a small Installation script that will compile all the necessary files and save

them in a folder name bin. This script can be found in the folder SRC where in the previous steps

the ProvBase code was copied, with the name install.sh /ProvBase/src

To execute the script, type:

./install.sh

Starting ProvBase

To start ProvBase, it is necessary to run a script named startsystem that is located in the folder

bin inside the ProvBase project.

The script will start Hadoop and HBase. Hadoop will start all the other nodes and HBase will

start HBase Database services in the rest of the nodes, according its configuration.

<?xml version="1.0"?> <?xml-stylesheet type="text/xsl"
href="configuration.xsl"?>
<configuration>
<property>
 <name>hbase.master</name>
 <value>node1.loca:60000</value>
</property>
<property>
 <name>hbase.rootdir</name>
 <value>hdfs://node1.local:50001/hbase</value>
</property>
<property>
 <name>hbase.cluster.distributed</name>
 <value>true</value>
</property>
</configuration>

40

When the start process is complete, execute the Java program client.class. This will initialize a

small client when the connection is finished and if everything else is correct, the screen will

prompt a message of “Welcome to ProvBase” and a menu of options.

41

BIOGRAPHICAL SKETCH

Jaime Alberto Navarro Yerena was born in Mexico City, Mexico. He attended high school at the

Instituto Tecnológico y de Estudios Superiores de Monterrey Campus Hidalgo and graduated in

May of 2002.

In August of 2002, Jaime moved to Queretaro, Mexico and started his bachelor’s degree in

Computer Engineering at the Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Queretaro. In August of 2004, he transferred to the University of Texas-Pan American

where he obtained his bachelor’s in Computer Science with a minor in Applied Mathematics. In

August of 2007, he started his Master’s Degree in Computer Science while he was working as a

teacher’s assistant in the Department of Computer Science at the University of Texas-Pan

American.

In January 2008, Jaime postponed his master’s degree in order to work full-time as a

Programmer Analyst at the Department of Internet Services, University of Texas-Pan American.

In 2009, Jaime returned to his studies in order to complete his master’s; during this time he

began working with Dr. Artem Chebotko on distributed RDF data management technologies.

	Distributed storage and queryng techniques for a semantic web of scientific workflow provenance
	Recommended Citation

	Microsoft Word - thesis.docx

