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Abstract: Recently, environmentally friendly and sustainable materials are being developed, search-
ing for biocompatible and efficient materials which could be incorporated into diverse industries
and fields. Natural esters are investigated and have emerged as eco-friendly high-performance
alternatives to mineral fluids. This research shows the evaluations on thermal transport and tribo-
logical properties of halloysite nanotubular structures (HNS) reinforcing natural ester lubricant at
various filler fractions (0.01, 0.05, and 0.10 wt.%). Nanolubricant tribotestings were evaluated under
two configurations, block-on-ring, and 4-balls, to obtain the coefficient of friction (COF) and wear
scar diameter (WSD), respectively. Results indicated improvements, even at merely 0.01 wt.% HNS
concentration, where COF and WSD were reduced by ~66% and 8%, respectively, when compared to
pure natural ester. The maximum significant improvement was observed for the 0.05 wt.% concen-
tration, which resulted in a reduction of 87% in COF and 37% in WSD. Thermal conductivity was
analyzed under a temperature scan from room temperature up to 70 ◦C (343 K). Results indicate that
thermal conductivity is improved as the HNS concentration and testing temperature are increased.
Results revealed improvements for the nanolubricants in the range of 8–16% at 50 ◦C (323 K) and
reached a maximum of 30% at 70 ◦C (343 K). Therefore, this research suggests that natural ester/HNS
lubricants might be used in industrial applications as green lubricants.

Keywords: natural ester; halloysite; energy; wear; thermal conductivity

1. Introduction

For more than a century, the primary source of energy has been fossil fuels. Petroleum-
based fluids are used as lubricants and coolants in electronic or electrical equipment,
machinery, transportation fields, and power transmission systems, among others [1–5].
Research and industrial focus are on critical challenges to reduce pollution and mitigate
global warming and climate change, among others [6]. Due to their poor biodegradabil-
ity, eco-toxicity, and extremely likely carcinogenic characteristics, these materials exhibit
environmental concerns [7,8].

Among the diverse drawbacks to be resolved about these materials are how to properly
dispose of them and how to hinder products from impacting negatively on both health and
the environment [9–11]. Additionally, due to the forthcoming scarcity of petroleum reserves
and the rise in lubricant disposal costs, among other factors, the importance of incorporating
and applying renewable energies has grown significantly [12–14]. Consequently, interest in
natural lubricants has increased recently.

Technology is moving forward very fast with high efficiency, miniaturization, and
novel equipment requirements and developments. The increasing demand for higher-
performance of conventional fluids and lubricants has been crucial for diverse industrial
manufacturing processes. Energy applications such as power transmission systems, trans-
portation vehicles, and battery subsystems require materials which would be lighter but
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with much higher mechanical properties, which require higher processing loadings, need a
hefty lubrication regime due to higher wear and friction among base substrates and tooling.

Recently, several investigations have been performed by scientists and industry to
find sustainable and eco-friendly alternatives [15–19]. The usage of these materials has
been emerging and is more common in certain environmentally-sensitive fields [1–4,20–22].
Natural esters serve as an alternative solution against petroleum-based lubricants due to
their non-toxic attributes and specific characteristics as renewable and eco-friendly. Further-
more, these fluids have been proven to diminish hydrocarbon and CO2 emission levels [23],
which is why their application in diverse systems and subsystems has recently increased
in the industry [24]. Natural esters also possess excellent lubricity [25,26], high thermal
conductivity [27,28], compatibility with additives, relatively low production costs [29],
biodegradability, and high fire and flash points [30,31], comparable to mineral lubricants
and fluids [26,32–34]. In general, these materials are defined as fatty acids, which contain an
extended aliphatic chain in addition to the ester function, which determines the mechanical
and chemical characteristics of the lubricants [35]. Unsaturated can display less viscous
performance but are more susceptible to oxidation [35,36], leading to an increase in viscosity
and degradation, therefore affecting the tribological, thermal, and other characteristics of
the lubricant [37].

Regardless of all the excellent attributes of natural esters, the application of stand-alone
material had hit their tribological and thermal transport limit. Advancements in science
and nanotechnology provide the potential to enhance the performance of fluids and lubri-
cants reinforced by nanostructures additives. Since the mid-1990s, the exploration of the
incorporation of myriad solid ultrafine particles within conventional fluids and lubricants
has been investigated [38]. These nanostructures possess superb characteristics compared
to base fluids and lubricants, and when they are homogenously dispersed or formulated
within conventional materials, there is a significant enhancement in their properties.

Lubricants play a paramount role in reducing the wear and friction of mechanical
pairs or contacts as well as in internal components and mechanisms of machinery and
devices. The most significant enhancements and advantages of applying nanoparticles
as reinforcement are the reduction of coefficient of friction (COF) and wear. Therefore,
reducing machining cutting forces and power consumption [39]. One more key feature is
the improvement of surface roughness or finishing of processed components and products,
having a significant impact on quality and secondary processing. An additional benefit for
tools and components of machinery by applying nanoreinforced fluids and lubricants is
that they also work as thermal dissipators of the heat generated by material interactions or
mechanisms working in contact [40–43].

For instance, Rapoport et al. results demonstrated that WS2 nanostructures reduced
the COF of paraffin lubricant by 30% [44]. Kumar et al. [45] investigated natural oil blends
(sunflower oil:rice bran oil) reinforced with CuO nanostructures as an additive, and it
was observed that at 0.04 vol.% of nanoparticles resulted in the greatest improvements
of 6% and 10% in WSD and COF, respectively when compared to conventional material.
Omrani et al. [46] studied vegetable oil with the addition of nano-graphene by sliding
contact, observing improvements in COF of ~84%. Karthikeyan et al. [47] performed
pin-on-disk evaluations for olive- and castor-oil-based nanolubricants reinforced with
0.7 wt.% of molybdenum disulfide (MoS2). A wear reduction of 21% and 37% for these
vegetable nanolubricants, respectively. Potential uses for nanomaterials in the automotive
industry with natural-based lubricants from bio-lubricants and nanostructures as additives
were found by Yadav et al. [48]. Important wear scar and COF reductions in vegetable
nanolubricants were also observed by Lim et al. [49], Gupta et al. [50], and Taha et al. [51]

The importance of thermal management as heat transport in industrial and energy
segments is a key topic to work on with the aid of nanofluids. Since base fluids and lu-
bricants have very limited thermal conductivity, researchers endeavor to strengthen this
characteristic by incorporating diverse types, morphologies, and concentrations of nanos-
tructures into conventional materials and have shown good enhancements. Nevertheless, a
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crucial aspect that must be addressed to preserve their thermophysical characteristics after
production for an extended period is the stabilization of nanofluids and nanolubricants.

Jacob et al. [52] investigated the thermal conductivity of a natural ester (soybean
lubricant) by adding Al2O3 nanostructures. They observed an enhancement of 6.3% and
10.3% at 0.04 wt.% and 0.1 wt% filler fraction, respectively. Karthikeyan et al. [47] studied
MoS2 nanostructure effects on vegetable lubricants (olive and castor oils). Both exhibited
an improvement of 28% and 21%, respectively, at 0.7 wt% filler fraction. Farade et al. [53]
developed cottonseed nanofluids with graphene oxide (GO) nanosheets at diverse con-
centrations varying from 0.01 wt.% to 0.05 wt.%. Thermal conductivity was improved at
each level of filler fraction, and the value increased up to 36.4% at 0.05 wt.%. In another
research on 2D nanostructures, Taha et al. [28] evaluated hexagonal boron nitride (h-BN),
MoS2, and their combination in a natural ester media. In their study, the improvement was
increased with the nanostructure’s filler fraction. The greatest improvement was at 323 K.
It was shown that the incorporation of 2D nanomaterials enhanced the thermal transport
performance in the 20% to 32% range. Similarly, Khan et al. [54] reported positive effects on
the thermal transport behavior of TiO2 and GO nanostructures within natural and synthetic
ester lubricants.

Halloysite nanotubular structures (HNS) possess high modulus (140 GPa), allowing
a high loading resistance under extreme pressure conditions [55]. These nanostructures
are emerging as natural biocompatible minerals [56,57], readily available worldwide [58],
with low-cost (about USD 3000 per ton) [59,60], corrosion protection [61,62], non-toxic and
non-conductor resource as alternative “green” nanoreinforcement to improve tribological
and thermal transport properties of conventional fluids and lubricants. They have been
employed as mechanical reinforcing of polymer matrices and composites [63–65], improv-
ing tribological performance and other characteristics. Nevertheless, HNS has proven
beneficial in characteristics of diverse systems and media as reinforcement; scarcity of
research coupled with natural esters and lubricants has not been deeply explored.

For instance, for tribological studies, Ahmed et al. [66] studied the characteristics of
castor oil by incorporating HNS. They were able to observe maximum reductions of 21.3%
in wear scar diameter (WSD) and 28.2% in COF at 1 wt.% reinforcement. Qin et al. [67]
investigated the effects of halloysite employing a ball-on-disk tribometer. Interesting results
were shown where halloysite-containing lubricant exhibited good friction reduction of
34%, primarily attributed to a tribofilm formation of the nanostructures and also to the
halloysite rolling role in the contact surface of the specimens [68]. In a similar work on
pongamia lubricant, Suresha et al. [69] observed a wear and friction reduction of 10% and
14%, respectively, with the addition of 1.5 wt.% of HNS.

On the thermal aspect, Alberola et al. [70] evaluated the thermophysical behavior
of halloysite nanofluids, showing a thermal conductivity increase of 8% for the 5 vol.%
nanofluids at 80 ◦C. Similarly, Ba et al. [71] explored the effects on the thermal transport
performance of halloysite nanofluids, where an increase of 18% for 1.5 vol.% was observed
compared to the conventional fluid. In another investigation, Ba et al. [72] analyzed the
pool boiling heat transport behavior of nano halloysite / deionized water (DI) fluids. Their
findings revealed that increasing the reinforcement filler fraction leads to improved thermal
performance. At 0.05 vol.% nanofluid, a greater improvement of ~6% at moderate heat flux
(HF) was achieved, indicating that HNS is a promising material for applications that entail
heat transfer performance.

In this work, the tribological behavior of HNS reinforcing natural ester lubricant at
various filler fractions (by weight) is evaluated. Temperature-dependent measurements
over ranges up to 70 ◦C (343 K) were also analyzed.

2. Materials and Methods

Natural ester—Envirotemp® FR3™ (Cargill Industrial Specialties—Minneapolis, MN,
USA) (Table 1) served as base material to develop various nanolubricants reinforced with
hollow rod-shaped HNS (Sigma-Aldrich Co., St. Louis, MO, USA. CAS #: 1332-58-7)
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(Table 1) at various filler fractions: 0.01, 0.05, and 0.10 wt.%. Scanning electron microscopy
(Carl Zeiss, Sigma VP, NY, USA) was employed to examine the size and morphology of
HNS (Figure 1). From SEM images, it can be observed a tubular rod-type shape of the HNS.
The measured lengths of these nanostructures have a maximum of 589 nm and 120 nm as a
minimum. Average length was 302 nm with a standard deviation of 83 nm. The average
measured diameter was 61 nm ± 18 nm, where the minimum and maximum diameters
were 28 nm and 96 nm, respectively.

Table 1. Material characteristics.

Materials Properties and Characteristics

Conventional Lubricant Density (20 ◦C) Kinetic Viscosity (mm2/s)

Natural ester 0.92 g/cm3 190 @ 0 ◦C; 32–34 @ 40 ◦C;
7.7–8.3 @ 100 ◦C

Nanostructures Properties

Halloysite (HNS)

Chemical formula: H4Al2O9Si2. 2H2O
Specific gravity: 2.57 g/cm3

Molecular weight: 294.19 g/mol
Size–Length: 302 nm ± 83 nm; Diameter: 61 nm ± 18 nm
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Figure 1. HNS morphology at (a) 20 KX, and (b) 40 KX magnifications.

Table 1 depicts the general properties and characteristics of the natural ester, nanos-
tructures, and specimens for the tribological tests.

Nanolubricants Preparation

Homogeneous nanolubricants were prepared by a two-step methodology dispersing
HNS within the natural ester lubricant. For each set of nanolubricants 42 mL glass con-
tainers were prepared at 0.01, 0.05, and 0.10 wt.%. Water bath ultrasonication (Branson
ultrasonic homogenizer model 5510—Danbury, CT, USA, 40 kHz) was used for extensive
time (8 h). According to the following methodology, a constant temperature (24 ◦C) was
kept in the sonicator water bath to prevent the nanostructures from clumping together,
causing fast sedimentation. All glass vials specimens were kept on a shelf for about
15 days without significant particle sedimentation (Supplementary Materials). Preliminary
sonication of each sample for 15 min was performed before the experimental testing.

3. Experimental Details
3.1. Tribological Evaluations

For tribological measurements, COF and WSD were analyzed with a tribotester in a
four-ball configuration based on the ASTM D 4172 methodology. This tribosystem employs
three fixed steel balls on a cylindrical container (fluid cup) and one more on top of them
(Figure 2), applying a load P = 40 kgf (392 N). A temperature of 75 ◦C was employed for the
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evaluated nanolubricants; the upper ball rotates at a specific rotational speed n = 1200 rpm
during 1200 s. An AISI 52100 steel is used for the ball’s material (60 HRC and 12.7 mm in
diameter). This tribotester configuration is widely applied to determine the wear properties
of lubricating fluids and oils in sliding metal-metal applications. The anti-wear performance
of nanolubricants was tested with the block-on-ring configuration at room temperature
(24 ◦C), 3000 N load, 200 rpms, and time of 1200 s. The evaluated nanolubricants were
deposited in a fluid pool, allowing constant lubrication while the test ring was rotating. For
these evaluations, the blocks used were AISI 1018 steel with 79 HRB hardness, and the rings
were AISI D2 tool steel with 61 HRC hardness. To obtain statistically significant results,
four replicas were measured for each set of nanolubricants. Worn scars of steel components
were analyzed by a 3D surface profiler microscope measurement system (Keyence Corp
Precision, Itasca, IL, USA) and a TescanVega 3SB Scanning Electron Microscope (SEM).
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Figure 2. Schematic of tribotesting four-balls setup.

3.2. Thermal Conductivity Evaluations

Thermal conductivity evaluations of HNS nanolubricants were evaluated with a TEM-
POS thermal analyzer device and KS-3 sensor probe (METER GROUP, Inc., Pullman, WA,
USA) following the transient hot-wire (THW) methodology. A temperature-dependence
scan up to 70 ◦C (343 K) was performed. Before thermal measurements, 20 min ultra-
sonication was applied to the samples. Above room temperature evaluations, before
measurements, each set of specimens was maintained at least 12 min in thermal equilib-
rium. This procedure promotes the preparation of stable homogeneous nanolubricants,
which are then evaluated. The obtained thermal conductivity values were compared with
the conventional natural ester (k0). The effective thermal conductivity of the nanolubricants
is keff. For each set of specimens, at least six measurements were obtained, reporting the
average values with error bars as standard deviation.

4. Results and Discussion
4.1. Tribological Performance

The tribological behavior of natural ester lubricant was analyzed with reinforcement
of HNS. Figure 3 depicts COF curves recorded during block-on-ring evaluations being
consistent with the testing conditions for all the samples. The tribotests were performed
under lubrication with natural ester and HNS nanolubricants. It was observed that the
addition of diverse filler fractions of HNS resulted in a profound effect of friction reduction
during the tribological evaluations.

The initial measured COF for evaluated lubricants was in the vicinity of 0.085. After
the first minutes of testing, the HNS nanolubricants showed a significant decrease in COF.
Lower COF represents less energy loss caused by contact pairs friction. At merely 0.01 wt.%
concentration, it was observed a COF value of 0.075, with maximum improvement for
0.05 wt.% of 0.029. As can be observed, after the complete run of experiments, the HNS
nanolubricants showed superb behavior, reaching the greatest improvement of 87% at
0.05 wt.%, compared to pure lubricant.
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Figure 4 shows the average COF values for nanolubricants. COF was reduced from
0.042 for the natural ester to 0.015 with 0.01 wt.% HNS. The best improvement was observed
at 0.05 wt.% concentration, where COF is 0.006. It is also shown an increase in these proper-
ties at higher filler fractions because, at higher concentrations and increasing temperature,
nanostructures tend to agglomerate, decreasing the lubrication performance [73,74]. The
lower improvement was shown at 0.10 wt.% filler fraction; this can be attributed to a higher
concentration of nanostructure agglomeration. Nanostructures deposit in the surface de-
pressions; hence, as smaller the size of the nanostructures, the more likely to creep into
those gaps, minimizing contact and friction is mend to reduce the roughness and also to
withstand higher loads [39]. Previous research of sunflower and soybean nanolubricants
with SiO2 displayed a reduction in the COF of 10% and 26% in comparison. [34].
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Figure 5 depicts SEM of the scars of worn steel balls for conventional natural ester
and HNS nanolubricants at various filler fractions. The average diameters of the three
bottom steel balls were used to calculate the WSD, as shown in Table 2. When HNS
were incorporated into natural ester, 188 µm scar diameter was measured, showing a
decrease of 8.29%, with the highest reduction of 37.56% (128 µm) at 0.05 wt.%. The highest
concentration, 0.10 wt.% of HNS, showed a reduction of 28.29%. This minor decrease in
the lubrication properties for higher nanostructure filler fraction could be attributed to the
tendency of agglomeration of nanostructures, as was also observed in the COF evaluations.
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In accordance with Wu et al. [75], the experimental temperature has a direct impact on the
lubricating mechanisms; higher evaluation temperatures result in a decrease in viscosity,
which could affect the formation of the lubricant tribofilm between contact surfaces.
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Table 2. WSD of HNS nanolubricants by ASTM D5183.

Lubricant WSD (µm)
(Reduction %)

Natural ester 205
@ 0.01 wt.% HNS 188 (8.29%)
@ 0.05 wt.% HNS 128 (37.56%)
@ 0.10 wt.% HNS 147 (28.29%)

For anti-wear conditions, tribological mechanisms for HNS play a paramount role in
the lubricant characteristics and properties. It must be mentioned that the characteristics
and performance of the lubricant are significantly influenced by these nanostructures. The
size and morphology of HNS have considerable effects on the properties and characteristics
of conventional lubricants, such as have been observed with other rod-type structures such
as single/multi-wall carbon nanotubes (CNTs). These peculiar structures act by rolling
and sliding under transversal sliding forces action, playing a bearing-like function among
contact components and pairs in friction, changing the sliding friction into rolling friction
and enhancing the anti-wear characteristics of the material. According to Zhang et al. [76],
friction reduction is not promoted by the action of the nanorods themselves working as
molecular bearings. Instead, a vortex structure is developed during the friction process,
causing the rolling friction behavior. In this case, HNS has a load-bearing mechanism
that promotes the reduction of wear and lowers COF [77,78]. Additionally, the smoothing
and mending effects of nanostructures after being deposited on contact areas (COF reduc-
tion [39]) and the rolling-sliding effect by rod-type nanostructures (decreasing WSD [79,80])
could affect the tribological performance.

4.2. Thermal Performance

The Brownian motion of nanostructures within a fluid or lubricant is mostly governed
by the nanofluid thermal transport properties (thermal conductivity). Shafi et al. [81]
described how the Brownian motion of nanostructures enhances the thermal transport
behavior of a fluid or lubricant; first, nanostructures collide and create a solid- -solid con-
duction mode of heat transfer (percolation channel formation). Then, thermal conductivity
is enhanced by a convective heat transfer mode.

Figure 6 depicts the temperature-scanning evaluations for the thermal conductivity of
HNS nanolubricants at various concentrations. The natural ester did not exhibit significant
affectation in thermal conductivity (only a 2.4% increase) as the temperature was raised up
to 70 ◦C (343 K), compared to room temperature. Moreover, the nanolubricant’s thermal
performance was observed to be gradually enhanced with the HNS concentration increase.
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Furthermore, as the filler fraction of nanofluids is increased and the testing temperature is
also elevated, the thermal conductivity improves, indicating the contribution of the thermal
transport characteristics. For instance, it can be observed that at room temperature, a slight
increase in thermal conductivity is shown for nanolubricants, achieving a maximum of 4%
at 0.10 wt.%. Elevating the test temperature to 50 ◦C (323 K) showed enhancements of 8, 11,
and 16% for 0.01, 0.05, and 0.10 wt.%, respectively, compared to conventional natural ester.
The maximum evaluated temperature of 70 ◦C (343 K) showed a maximum enhancement
of 30% at 0.10 wt.%. It is important to mention that as the testing temperature is elevated,
there is more deviation from the data obtained. This is mainly due to the properties of the
lubricant and its interaction with the nanostructures.
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According to Guo et al. [82], it is suggested that due to the small quantity of concentra-
tion of nanostructures, the improvement in thermal conductivity is triggered by molecular
interactions between the natural ester and the HNS. Additionally, the percolation mecha-
nism, as well as the liquid layering interface at the nanostructures—lubricant also promotes
this enhancement [51,83,84]. The lubricant molecules interacting with the nanotubular
particles are prone to form a systematic layered structure around the nanostructures, which
is associated with improved lubricant thermal transport [81].

5. Conclusions

The lubrication and thermal transport performance of natural ester lubricant reinforced
with HNS were broadly addressed in this research. In general, HNS nanolubricants resulted
in a significant decrease in COF and WSD. Even at merely 0.01 wt.% concentration of HNS,
results showed a ~66% and 8% reduction, respectively, when compared to natural ester.
The maximum enhancement was shown for the 0.05 wt.% filler fraction, resulting in a
reduction of 87% in COF and 37% in WSD. Results indicate that at higher HNS concentration
(0.10 wt.%), a minor impact was observed, which could be attributed to the tendency of
agglomeration of nanostructures. The morphology and size of HNS promote the anti-
wear behavior of the nanolubricants, as load bearing and rolling-sliding mechanism of the
nanostructures, as well as the contribution from the smoothing and mending effects in the
contact areas, reduce WSD and COF.

Nanolubricants have a good effect on thermal conductivity as well. A temperature
scanning evaluation was performed. At room temperature, reinforcing HNS has a slight
impact on thermal conductivity, but as the temperature is elevated, the effect is more
significant. For instance, at 50 ◦C (323 K), thermal conductivity measurements resulted in
enhancements of 8%, 11%, and 16% for 0.01, 0.05, and 0.10 wt.%, respectively, compared
to conventional natural ester. Achieving the greatest improvement of 30% with 0.01 wt.%
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HNS concentration at 70 ◦C (343 K). This behavior, additionally from the Brownian motion
effect on the natural ester, is attributed to the percolation mechanism as well as the liquid
layering interface contributing to the enhancement in thermal transport characteristics.

A key driver is increasing environmental awareness of novel scientific and technolog-
ical developments. HNS has been demonstrated to be a good eco-friendly alternative to
petroleum-based fluids, mainly in sensitive industrial fields where these materials have the
potential to succeed.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/lubricants11020065/s1. Figure S1. Observation of nanostructure’s
sedimentation after 15 days on the shelf.
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