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Abstract

We study the classical scheduling problem on parallel machines where the precedence graph

has the bounded depth h. Our goal is to minimize the maximum completion time. We focus

on developing approximation algorithms that use only sublinear space or sublinear time. We

develop the first one-pass streaming approximation schemes using sublinear space when all jobs’

processing times differ no more than a constant factor c and the number of machines m is at

most 2nǫ

3hc
. This is so far the best approximation we can have in terms of m, since no polynomial

time approximation better than 4

3
exists when m = n

3
unless P=NP. The algorithms are then

extended to the more general problem where the largest αn jobs have no more than c factor

difference. We also develop the first sublinear time algorithms for both problems. For the more

general problem, when m ≤ αnǫ

20c2·h
, our algorithm is a randomized (1+ ǫ)-approximation scheme

that runs in sublinear time. This work not only provides an algorithmic solution to the studied

problem under big data environment, but also gives a methodological framework for designing

sublinear approximation algorithms for other scheduling problems.

1

http://arxiv.org/abs/2302.00133v1


1. Introduction

Big data and cloud computing play a huge role nowadays in our digital society. Each day a large

amount of data is generated and collected by a variety of programs and applications. These large

sets of data, which are referred as “big data”, are hard to peruse or query on a regular computer.

On the other hand, cloud computing provides a platform for processing big data efficiently on the

“cloud” where the “cloud” is usually a set of high-powered servers from one of many providers. The

“cloud” can view and query large data sets much more quickly than a standard computer could.

Big data and cloud computing together provide the solutions for the companies with big data

but limited resources, a dilemma encountered by many companies in manufacturing and service

industries.

Two decades ago, researchers in the area of statistics, graph theory, etc. started to investigate

the sublinear approximation algorithms that uses only sublinear space or sublinear time, namely

sublinear space algorithms or sublinear time algorithms. With more and more data being generated

and stored away in the data center, and higher and higher dimension of computation being required

and performed remotely on the “cloud” in various applications, sublinear algorithms become a new

paradigm in computing to solve the problems under big data and cloud computing. Unlike the

traditional data model where all the data can be stored and retrieved locally and one can hope to

get the exact answers, the goal of sublinear space and sublinear time algorithms in general, is to

obtain reasonably good approximate answers without storing or scanning the entire input.

Sublinear space algorithms are also called streaming algorithms, which process the input where

some or all of the data is not available for random access in the local computers but rather arrives

as a sequence of items and can be examined in only a few passes (typically just one). Early

research on streaming algorithms dealt with simple statistics of the input data streams, such as

the median [21], the number of distinct elements [11], or frequency moments [2]. Recently, many

effective streaming algorithms have been designed for a range of problems in statistics, optimization,

and graph algorithms (see surveys by Muthukrishnan [22] and McGregor [19]).

Sublinear time algorithms target at giving good approximations after inspecting only a very

small portion of the input. Usually, this is achieved by using randomization. Sublinear time

algorithms have been derived for many computational problems, for example, checking polygon
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intersections [4], approximating the average degree in a graph [10, 14], estimating the cost of a

minimum spanning tree [5, 8, 7], finding geometric separators [12], and property testing [13, 15],

etc. Developing sublinear time algorithms not only speeds up problem solving process, but also

reveals some interesting properties of computation, especially the power of randomization.

This paper aims at designing both types of sublinear approximation algorithms for the classical

parallel machine scheduling problem subject to precedence constraints. We hope that our algo-

rithms not only provide algorithmic solutions for this specific problem under big data and cloud

computing environment, but also provide a framework and insight for solving other scheduling prob-

lems under big data and cloud computing environment which are encountered by many companies

in the manufacturing and service industries.

Formally our problem is to schedule n jobs on m identical parallel machines where there are

precedence constraints between jobs. The jobs are all available for processing at time 0 and labeled

as 1, 2, · · · , n. Each job j, 1 ≤ j ≤ n, has a processing time pj. The jobs have precedence

constraints, ≺, such that i ≺ j represents that job j cannot start until job i finishes. The jobs

and their precedence constraints can be described by a directed acyclic graph (DAG), G = (V,E),

where V is a set of vertices representing the jobs and E is a set of directed arcs representing

the precedence constraints among the jobs. We assume that there are no transitive edges in G.

If there is a directed arc 〈i, j〉 in E, then we have the precedence constraint i ≺ j, and we say

that job i is the immediate predecessor of job j and j is the immediate successor of job i. We

consider non-preemptive schedules, i.e. a job cannot be interrupted once it is started. Given a

schedule S, let Cj be the completion time of job j in S, then the makespan of the schedule S is

Cmax = max1≤j≤nCj. The goal is to find the minimum makespan. Using the three field notation,

the problem can be denoted as P | prec | Cmax when the number of machines m is arbitrary, and

be denoted as Pm | prec | Cmax when m is fixed.

A lot of research has been done on this classical scheduling problem. For arbitrary precedence,

when m = 2 and jobs have unit processing time, i.e., P2 | prec, pj = 1 | Cmax, Coffman and Graham

[6] gave an optimal polynomial time algorithm in 1972. In 1978, Lenstra and Kan [17] showed when

jobs have unit processing time, the problem with arbitrary precedence constraints and arbitrary

m, P | prec, pj = 1 | Cmax, is strongly NP-hard. When the jobs’ processing times are either 1 or 2,

Lenstra and Kan [17] and Ullman [25] independently showed that the problem P2 | prec, pj = 1, 2 |
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Cmax is strongly NP hard. However, the complexity of the problem P3 | prec, pj = 1 | Cmax remains

open. Graham [16] showed that list scheduling is a (2 − 1
m )-approximation for the problem with

arbitrary m and arbitrary job processing times, i.e., P | prec | Cmax. In 2011, Svensson [24] showed

that assuming a new, possibly stronger, version of the unique games conjecture (introduced by

Bansal and Khot [3]), it is NP-hard to approximate the scheduling problem, P | prec, pj = 1 | Cmax,

within any factor strictly less than 2. This result improves the inapproximibility of 4/3 by Lenstra

and Rinnooy Kan [17].

Due to the importance and the hardness of the problem, a lot of research focused on various types

of precedence constraints. One type of precedence constraints studied in literature is precedence

graphs with bounded height where the height is the number of vertices on the longest path. In

1978, Lenstra and Kan [17] showed that for arbitrary number of machines m, the problem is NP-

hard even if the precedence constrained graph has bounded height and the jobs have unit processing

time. In 1984, Doleva and Warmuth [9] developed an optimal algorithm for this problem when m is

fixed and the running time of the algorithm is nh(m−1)+1. In 2006, Aho and Mäkinen [1] considered

a special case where both the height of the graph and the maximum degree are bounded, and jobs

have unit processing time. They showed that for large n, the optimal schedule has makespan ⌈n/m⌉

and can be scheduled using modified critical path rule. This result is in fact a special case of the

one studied by Dolev and Warmuth [9]. For more related results, one can refer to the survey by

Prot and Bellenguez-Morineaua [23] on how the structure of precedence constraints may change

the complexity of the scheduling problems.

In this paper, we focus on the problem where the precedence graph has bounded depth h. The

depth of a job j, denoted as dpj, is the number of jobs on the longest directed path ending at j in

G. It is easy to see that the maximum depth of the jobs in G is equal to the height of the graph

G. Given a precedence graph, one can easily compute the depth dpj of each job j. In addition,

we assume that the processing times of the jobs are constrained. We first consider the case that

the processing times of the jobs vary from one to another within a factor c, i.e. pmax ≤ c · pmin

where pmax = max1≤j≤n{pj}, pmin = min1≤j≤n{pj}, and c is a constant integer. Using the three-

field notation, we denote this problem as P | prec, dpj ≤ h, pmax ≤ c · pmin | Cmax. We then

consider the more general case where the largest αn jobs have no more than c factor difference

for some constant where 0 < α ≤ 1. For a given set of n jobs, let [j] be the j-th smallest job.
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Then p[1] is the smallest job, and p[n] is the largest job. We denote this more generalized problem

as P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax. Our goal is to develop sublinear approximation

algorithms, that is, approximation algorithms using only sublinear time or sublinear space, for these

two versions of precedence constrained scheduling problems.

1.1. New Contributions

In this work, we develop two types of sublinear approximation algorithms for the classical parallel

machine scheduling problems where the precedence graph has bounded depth h and the processing

times of jobs are constrained. Specifically, our contributions are listed as follows:

i. We develop two streaming approximation schemes for the problem P | prec, dpj ≤ h, pmax ≤

c · pmin | Cmax depending on whether c, h, and each job’s depth are known or not. The

algorithms are then extended to solve the more general problem where the largest αn jobs

have no more than c factor difference for some constant α, 0 < α ≤ 1, P | prec, dpj ≤ h, p[n] ≤

c · p[(1−α)n)] | Cmax.

ii. We develop the first randomized approximation schemes that uses only sublinear time for both

problems. In particular, for the more general problem, P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] |

Cmax, when m ≤ αnǫ
20c2·h

, our algorithm is a randomized (1 + ǫ)-approximation scheme that

runs in time O( c
4h2m2

α3ǫ6
log2( cnǫ ) log(

h
ǫ log(

cn
ǫ ))).

iii. Our approximation results greatly complement the in-approximability results of the studied

problems. Whenm = n
3 , even if h = 3 and c = 1, the problems cannot be approximated within

a factor of 4
3 in polynomial time unless P=NP (see Section 2 for reference). Surprisingly, our

results show that when m is a little bit smaller, i.e., upper bounded by n times a factor that

depends on ǫ, h and α, then the problems admit polynomial time approximation schemes.

For example, if m ≤ n
15 , h = 3 and c = 1, then there is a polynomial time 1.3-approximation

for P | prec, dpj ≤ h, pmax ≤ c · pmin | Cmax.

iv. We provide a methodological framework for designing sublinear approximation algorithms

that can be used for solving other scheduling problems. The framework starts with generating

the “sketch of input”, which is a summarized description of the input jobs, then computes an
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approximate value of the optimal criterion, and finally generates the “sketch of schedule”, a

succinct description of a schedule that achieves the approximate value.

We introduce the concept of “sketch of schedule” for the applications where not only an

approximate value, but also a schedule associated with the approximate value is needed. As

illustrated in the paper, we can use the “sketch of schedule” to easily generate a real schedule

when the complete jobs information is read.

The paper is organized as follows. In Section 2, we give the complexity of the studied scheduling

problems. In Section 3, we present the streaming algorithms for our problems. In Section 4, we

design the randomized sublinear time algorithms for our problems. Finally, we draw the concluding

remarks in Section 5.

2. Complexity

From the introduction, we know that if the jobs have unit processing time, then Pm | prec, dpj ≤

h, pj = 1 | Cmax is solvable in O(nh(m−1)+1) time which is polynomial if m is constant (see [9] for

reference); however, the problem with arbitrary m, P | prec, dpj ≤ h, pj = 1 | Cmax, is NP-hard in

the strong sense even if h = 3 (see [17] for reference). In this section, we first show that if we allow

jobs to have different processing times, then even for fixed m, the problem becomes NP-hard.

Theorem 1. The problem Pm | prec, dpj ≤ h, pmax ≤ c · pmin | Cmax is NP-hard.

Proof: We will reduce even-odd partition problem to a restricted even-odd partition problem,

and then reduce the restricted even-odd partition problem to P2 | pmax ≤ c · pmin | Cmax, which

implies that Pm | prec, dpj ≤ h, pmax ≤ c · pmin | Cmax is NP-hard.

Even-odd partition: there is a set of 2n integers B = {bi, 1 ≤ i ≤ 2n} such that bi < bi+1

for all 1 ≤ i < 2n, is there a partition of B into B1 and B2 such that B1 and hence B2 contains

exactly one of {b2i−1, b2i} for each 1 ≤ i ≤ n, and
∑

bi∈B1
bi =

∑

bi∈B2
bi?

Restricted even-odd partition: Given a set of 2n integers D = {di, 1 ≤ i ≤ 2n} such that

di < di+1 for all 1 ≤ i < 2n, and d2n ≤ cd1 for some constant c > 1, is there a partition of D into

D1 and D2 such that D1 and hence D2 contains exactly one of {d2i−1, d2i} for each 1 ≤ i ≤ n, and

∑

di∈D1
di =

∑

di∈D2
di?
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Given an arbitrary instance B = {bi, 1 ≤ i ≤ 2n} of the even-odd partition problem, we can

reduce it to an instance of the restricted even-odd partition problem D = {di, 1 ≤ i ≤ 2n} as

follows. Without loss of generality, we can assume that b2n > c · b1. Let Y be the integer such

that Y ≥ b2n−cb1
c−1 , i.e. b2n ≤ c · b1 + (c − 1)Y . For each 1 ≤ i ≤ 2n, let di = bi + Y . It is easy

to see that d2n = b2n + Y ≤ cb1 + c · Y = c · d1. It is trivial to show that there is a solution to

instance B if and only if there is a solution for instance D. Thus the restricted even-odd partition

is also NP-hard. The restricted even-odd partition can be easily reduced to the scheduling problem

P2 | pmax ≤ c · pmin | Cmax, which implies that Pm | prec, dpj ≤ h, pmax ≤ c · pmin | Cmax is

NP-hard.

The next theorem is showing the in-approximability of our problems. In the strong NP-hardness

proof of P | prec, pj = 1 | Cmax in [17], the scheduling instance created from the instance of

clique problem has a precedence graph of height 3, and there is a schedule of the n = 3m jobs

with makespan of 3 if and only if there is a solution to the clique instance. This implies if an

approximation algorithm can generate a schedule with approximation ratio less than 4/3, it must

be optimal, which is impossible unless P=NP.

Theorem 2. Given any ǫ > 0, unless P=NP, there is no polynomial time (4/3− ǫ)-approximation

algorithm for P | prec, dpj ≤ h, pj = 1 | Cmax even if h = 3.

Despite the in-approximability result from Theorem 2, in the next two sections, we will develop

approximation schemes that use only sublinear space or sublinear time for our studied problems

when m is upper bounded by n times a factor.

3. Streaming Algorithms using Sublinear Space

At the conceptual level, our streaming algorithms have the following two stages:

Stage 1: Generate and store a sketch of the input while reading the input stream.

Stage 2: Compute an approximation of the optimal value based on the sketch of the input.

Roughly speaking, the sketch of the input is a summary of the input jobs which requires only

sublinear space. Instead of storing the accurate processing times of the jobs, we map each job’s
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processing time into the range of [(1 + δ)u, (1 + δ)u+1) where δ is a parameter. Thus we only

need to store the number of jobs that are mapped in each range for each depth. We then use the

rounded processing time for each job to obtain the approximation of the optimal makespan. A

formal definition of the sketch for our problems is given below.

Definition 3. For a given parameter δ, and an instance of the problem P | prec, dpj ≤ h, pmax ≤

c · pmin | Cmax or P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax, the sketch of the input with

respect to δ, denoted as SKJδ = {(d, u, nd,u)}, consists of a set of tuples, (d, u, nd,u), where nd,u is

the number of jobs with the depth d and the processing time in the range of [(1 + δ)u, (1 + δ)u+1).

The size of the sketch, which is the number of tuples (d, u, ud,u), may be different for different

problems and different types of stream input. In some cases, for example, we disregard the jobs

with small processing time.

In the following subsection, we will first present our streaming algorithms for the problem

P | prec, dpj ≤ h, pmax ≤ c · pmin | Cmax. For the stream input, we consider both the case where c,

h and dpj , 1 ≤ j ≤ n, are given and the case where these information is not directly given. We will

then adapt our algorithms to the more general problem P | prec, dpj ≤ h, p[n] ≤ c ·p[(1−α)n)] | Cmax.

3.1. Streaming Approximation Schemes for P | prec, dpj ≤ h, pmax ≤ c · pmin | Cmax

3.1.1. The parameters c, h, and dpj are known

We study the problem under data stream model assuming c, h, and dpj are known. The jobs

are given via stream and each job j is described by a pair (pj , dpj), where pj and dpj are job j’s

processing time and depth, respectively. Without loss of generality, we can assume pj ∈ [1, c] in

this case. The algorithm is simple: scan the jobs from the stream and generate the sketch of the

input, SKJδ = {(d, u, nd,u)}, where nd,u is the number of jobs with the depth d and the processing

time in the range of [(1 + δ)u, (1 + δ)u+1); for each d, 1 ≤ d ≤ h, compute the length of the time

interval where all the jobs with the depth d can be feasibly scheduled, and then return the total

length of these intervals. The complete algorithm is given in Streaming-Algorithm1.

Theorem 4. For any ǫ, when m ≤ 2nǫ
3·h·c , Streaming-Algorithm1 is a one-pass streaming approxi-

mation scheme for P | prec, dpj ≤ h, pmax ≤ c · pmin | Cmax that uses O(h log c
ǫ ) space, O(1) update

7



Algorithm Streaming-Algorithm1

Input: Parameters ǫ, m, c and h
Stream input: (pj , dpj), 1 ≤ j ≤ n.

Output: An approximate value of the optimal makespan

1: let δ = ǫ
3 , k =

⌊

log1+δ c
⌋

2: read the input stream and generate the sketch of the input SKJδ:

3: initialize the input sketch: SKJδ = {(d, u, nd,u) : 1 ≤ d ≤ h, 0 ≤ u ≤ k, nd,u = 0}
4: for each job j with (pj , dpj) in the stream input do
5: update nd,u = nd,u + 1 where d = dpj and u =

⌊

log1+δ pj
⌋

6: end for
7: compute the approximate makespan

8: let rpk = c
9: for each u, 0 ≤ u < k

10: let rpu = (1 + δ)u+1

11: for each d, 1 ≤ d ≤ h do
12: let Ad =

1
m

∑k
u=0(nd,u · rpu)

13: end for
14: A =

∑h
d=1(⌊Ad⌋+ c)

15: return A

time for each job in the stream, and O(h log c
ǫ ) time to return the approximate makespan.

Proof: First we consider the complexity. The space complexity is dominated by the sketch for

which we can use a two dimensional array of size h · k = O(h log c
ǫ ). It is easy to see that the update

time for each job is O(1). Finally, it takes O(h · k) = O(h log c
ǫ ) time to compute and return the

approximate value A.

Now we consider the approximation ratio of the algorithm. Let I be the input instance, and let

I ′ be the instance corresponding to the sketch SKJδ which consists of nd,u jobs that have processing

time rpu for each d, u. Alternatively, we can also view I ′ being obtained from I by rounding up the

processing time of each job. Let C∗
max and C ′

max be the optimal makespan for the instance I and I ′,

respectively. It is easy to see that C∗
max ≤ C ′

max ≤ (1+ δ)C∗
max. In the following, we prove that the

returned value from Streaming-Algorithm1, A, satisfies the inequality, C∗
max ≤ A ≤ (1 + ǫ)C∗

max.

First, we show that A is an upper bound of C ′
max. Consider a schedule S for the jobs of instance

I ′ which schedules the jobs as follows: the jobs at each depth d are scheduled using list scheduling

rule (i.e. schedule the jobs one by one in the given order to the machine that is available at the

earliest time), and jobs with depth d + 1 can start only after all jobs with depth d complete. It

is easy to see that in S the jobs at a depth d are scheduled into an interval of length at most
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⌊ 1
m

∑k
u=0(nd,u · rpu)⌋+ c = ⌊Ad⌋+ c. Therefore, the makespan of the feasible schedule S is at most

∑h
d=1(⌊Ad⌋ + c) = A, which implies that A ≥ C ′

max, where C ′
max is the optimal makespan for the

instance I ′.

On the other hand, it is obvious that
∑h

d=1Ad =
∑h

d=1(
1
m

∑k
u=0(nd,u · rpu)) is a lower bound

of C ′
max, and C∗

max ≤ C ′
max ≤ (1 + δ)C∗

max. Thus,

A =

h
∑

d=1

(⌊Ad⌋+ c) ≤

(

h
∑

d=1

Ad

)

+ h · c ≤ C ′
max + h · c ≤ (1 + δ)C∗

max + h · c.

Since C∗
max ≥ n

m , when m ≤ 2nǫ
3·h·c , we have h · c ≤ 2ǫ

3
n
m ≤ 2ǫ

3 C
∗
max. Therefore,

A ≤ (1 + δ)C∗
max + 2ǫ

3 C
∗
max = (1 + ǫ

3)C
∗
max +

2ǫ
3 C

∗
max ≤ (1 + ǫ)C∗

max.

In summary, we have C∗
max ≤ C ′

max < A ≤ (1 + ǫ)C∗
max, and this completes the proof.

Recall the inapproximability result of the problem P | prec, dpj ≤ h, pj = 1 | Cmax from

Theorem 2, which tells us no approximation better than 4
3 is possible in polynomial time even

if the height is bounded and all jobs have unit processing time unless P=NP. Our result from

Theorem 4 surprisingly shows that if m is bounded by a fraction of n then we can get a (1 + ǫ)-

approximation even if the processing times are slightly different. For example, if m ≤ n
15 , h = 3

and c = 1, then we can get a 1.3-approximation.

Theorem 4 also shows that Stream-Algorithm1 only takes constant time to read and process

each job in the stream input, and then constant time and constant space to return an approximation

of the makespan if the parameters are known. In some cases, however, we may not know the exact

value of c, but we are given an estimate ĉ of the parameter c. In these cases, we can still apply

Stream-Algorithm1 by using ĉ. As long as ĉ
c is a constant, we still have a (1 + ǫ)-approximation

with the same space and time complexity.

3.1.2. The parameters c, h, and dpj, are unknown

In this subsection, we consider the case that the parameters c (or the estimate ĉ) and h are not

known, furthermore, the depth of the jobs are not given directly as in the previous section. Instead,

the stream input consists of all the jobs (j, pj) in arbitrary order followed by all the arcs 〈i, j〉 of
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the precedence graph in topological order.

In this case, we need to compute and update both the depth of each job and the sketch of the

input dynamically as we read the input. We use a B-tree to maintain the sketch tuples of the input

(d, u, nd,u) where (d, u) is the key. We define a linear order to compare two tuples (d1, u1, nd1,u1
)

and (d2, u2, nd2,u2
), we say (d1, u1, nd1,u1

) < (d2, u2, nd2,u2
) if 1) u1 < u2, or 2) u1 = u2 and d1 < d2.

Additionally we use an array B to store the jobs’ information: for each job j with the processing

time pj, we maintain a pair (dpj , uj), where dpj represents its current depth, and uj =
⌊

log1+δ pj
⌋

.

When each job (j, pj) arrives in the stream input, we update job j’s entry in the array B

such that dpj = 1 and uj =
⌊

log1+δ pj
⌋

, then create and insert a node (1, uj , n1,uj
) into the tree.

Simultaneously we update the smallest processing time pmin and the largest processing time pmax.

After all the jobs are read in, we can get the final pmin and pmax and compute c = ⌈pmax/pmin⌉.

When each arc 〈i, j〉, which indicates job i is the direct predecessor of job j, arrives in the

stream input, we access job i’s and j’s entries in the array to obtain their keys (di, ui) and (dj , uj),

and compute dpj = max (dj , di + 1). If dpj > dj , we will update the node (dj , uj , ndj ,uj
) by setting

ndj ,uj
= ndj ,uj

−1 or delete this node if ndj ,uj
becomes 0; and then update the node (dpj , uj , ndpj ,uj

)

by setting ndpj ,uj
= ndpjuj

+1 or insert a new node if the node with the key (dpj , uj) does not exist

in the tree. The job j’s entry in the array B is also updated with (dpj , uj). After all the arcs are

read in, we can get the sketch of the stream input and the largest depth h. The complete algorithm

is given in Streaming-Algorithm2.

Theorem 5. If parameters c and h are not known, both the jobs and the precedence graph in

topological order are input via the stream, for any ǫ, when m ≤ 2nǫ
3·h·c , Streaming-Algorithm2 is a

one-pass streaming approximation scheme for P | prec, dpj ≤ h, pmax ≤ c · pmin | Cmax that uses

O(n) space, takes O(log(hǫ log c)) update time for processing each job and each arc in the stream,

and O(h log c
ǫ ) time to return the approximate makespan.

Proof: The main difference of Streaming-Algorithm2 and Streaming-Algorithm1 is the imple-

mentation. The analysis for approximation ratio is similar to Theorem 4. We will use the same

notations as in the proof of Theorem 4. So C∗
max is the optimal makespan of the input instance,

C ′
max is the optimal makespan for the instance I ′ corresponding to the sketch SKJδ. We can

construct a schedule S for I ′ whose makespan is at most
∑h

d=1(⌊Ad⌋ + pmax) = A, which implies

10



Algorithm Streaming-Algorithm2

Input: Parameters ǫ, m
Stream input: the set of jobs in arbitrary order, (j, pj), 1 ≤ j ≤ n, followed by
the set of arcs of the precedence graph in topological order Output: An approximate value

of the optimal makespan

1: create an empty B-tree T and an array B of size n
2: initialize pmin = ∞, pmax = 1, h = 1
3: let δ = ǫ

3
4: read the input stream and generate the sketch of the input SKJδ:

5: for each job j with (pj , dpj) in the stream input do
6: let u =

⌊

log1+δ pj
⌋

7: B[j] = (1, u)
8: if there is a node (1, u, n1,u) in the tree T then
9: update this node by setting n1,u = n1,u + 1

10: else
11: create and insert a node (1, u, 1) into T
12: end if
13: if pmin > pj, pmin = pj
14: if pmax < pj , pmax = pj
15: end for
16: for each arc 〈i, j〉, in the stream input do
17: let (di, ui) = B[i] and (dj , uj) = B[j]
18: if di + 1 > dj then
19: dpj = di + 1
20: B[j] = (dpj, uj)
21: update the node (dj , uj , ndj ,uj

) in T as below

22: ndj ,uj
= ndj ,uj

− 1
23: if ndj ,uj

= 0, delete this node

24: if the node with the key (dpj , uj) does not exist in the tree then
25: insert a new node (dpj , uj, 1)
26: else
27: update the node (dpj , uj , ndpj ,uj

) in T by setting ndpj ,uj
= ndpj ,uj

+ 1
28: end if
29: end if
30: if h < dpj , set h = dpj
31: end for
32: traverse all the nodes (d, u, nd,u) in T
33: let SKJδ = {(d, u, nd,u)}

34: compute the approximate makespan

35: let u− =
⌊

log1+δ pmin

⌋

and u+ =
⌊

log1+δ pmax

⌋

36: let rpu+
= pmax

37: for each u− ≤ u < u+

38: let rpu = (1 + δ)u+1

39: for each d
40: let Ad = 1

m

∑u+

u=u−

(nd,u · rpu)

41: let A =
∑h

d=1(⌊Ad⌋+ pmax)

42: return A

11



that A ≥ C ′
max.

It is obvious that C ′
max ≥

∑h
d=1 Ad. Thus,

A =

h
∑

d=1

(⌊Ad⌋+ pmax) ≤

(

h
∑

d=1

Ad

)

+ h · pmax ≤ C ′
max + h · pmax ≤ (1 + δ)C∗

max + h · pmax.

Since pmax ≤ c · pmin and C∗
max ≥ n·pmin

m , we have h · pmax ≤ h · c · pmin ≤ h · c · m
nC

∗
max. when

m ≤ 2nǫ
3·h·c , we get h · pmax ≤ 2ǫ

3 C
∗
max. Therefore,

A ≤ (1 + δ)C∗
max + 2ǫ

3 C
∗
max = (1 + ǫ

3)C
∗
max +

2ǫ
3 C

∗
max = (1 + ǫ)C∗

max.

In summary, we have C∗
max ≤ C ′

max ≤ A ≤ (1 + ǫ)C∗
max

Now we analyze the complexity of Streaming-Algorithm2, the number of nodes in B-tree T is

at most O(h log1+δ⌈
pmax

pmin
⌉) = O(h log1+δ c) = O(hǫ log c). So when each job or arc is read from

the stream input, the corresponding update time for search, insertion or update operation on the

B-tree is always O(log(h log1+δ c)) = O(log(hǫ log c)). After the input is read in, it takes additional

O(hǫ log c) time to traverse B-tree and compute the approximation of the optimal value. The stream

input size is O(n+ e), where n is the number of jobs and e is the number of arcs of the precedence

graph. Streaming-Algorithm2, uses only O(n) space to store the array B and the tree T , which is

sublinear considering the number of arcs usually has e = O(n1+β), 0 < β ≤ 1 in a dense graph.

3.2. Streaming Approximation Algorithms for P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] |

Cmax

In this section, we consider the more general case where the largest αn jobs have no more than c

factor difference for some constant 0 < α ≤ 1. Apparently, the problem P | prec, dpj ≤ h, pmax ≤

c · pmin | Cmax is the special case where α = 1. Following the same procedure of our streaming

algorithms, we need to compute the sketch of the input SKJδ = {(d, u, nd,u)}. However, different

from the case α = 1, i.e., the problem P | prec, dpj ≤ h, pmax ≤ c · pmin | Cmax, for which

there are only constant number O(h log c
ǫ ) of entries in the sketch of the input, for the problem

P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax, if we consider all jobs in the sketch there may be a

12



very large number of entries in the sketch of the input since pmax may be very large compared with

pmin. We will show in the following that when we generate the sketch of the input we can ignore

those small jobs whose processing time is less than pmax

n2 and still get a good approximation of the

optimal makespan using only sublinear space.

3.2.1. The parameters c, h, and dpj, are known

We study the streaming algorithm for P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax when the

parameters c, h, and dpj for all 1 ≤ j ≤ n are known. As mentioned above, the jobs with processing

time less than pmax

n2 will not be included in the sketch SKJδ. Specifically, SKJδ = {(d, u, nd,u) :

u− ≤ u ≤ u+, 1 ≤ d ≤ h}, where u− = ⌊log1+δ
pmax

n2 ⌋, and u+ = ⌊log1+δ pmax⌋. Without loss of

generality, we assume pmax is not known until all input is read. So pmax in our algorithm represents

the current maximum processing time of the jobs that we have read so far. We use a B-tree to store

all the considered tuples, (d, u, nd,u). When a job j with (pj, dpj) arrives, if pj <
pmax

n2 , we skip this

job and continue to read the next job. Otherwise, let d = dpj and u = ⌊log1+δ pj⌋, and we update

B-tree as follows: if (d, u, nd,u) exists in the tree, update this node with (d, u, nd,u + 1); otherwise,

insert a new node (d, u, 1). To limit the number of nodes in the tree, whenever a new node is

inserted, we check the node with the smallest u, (d′, u′, nd′,u′), if u′ < ⌊log1+δ
pmax

n2 ⌋, we delete the

smallest node. The final sketch of the input SKJδ includes only the tuples (d, u, nd,u) from the

B-tree such that u− ≤ u ≤ u+. We present our algorithm formally in Streaming-Algorithm3.

Theorem 6. When m ≤ 2nαǫ
3(h+1)·c , Streaming-Algorithm3 is a streaming approximation scheme for

the problem P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)], | Cmax that uses O(hǫ log n) space, takes O(log h
ǫ +

log log n) update time for each job in the stream, and O(hǫ log n) time to return an approximate

value that is at most (1 + ǫ) times the optimal makespan.

Proof: We first analyze the approximation ratio. Let I be the given instance. Let I ′ be the

instance obtained from I by rounding up all the jobs with the processing times greater than or

equal to pmax

n2 , i.e. for each job j in I, if pj ≥
pmax

n2 , we round it up to rpu where u = ⌊log1+δ pj⌋;

otherwise, we keep it same as before. Let C∗
max and C ′

max be the optimal makespan for I and

I ′ respectively. Let I ′′ be the instance corresponding to the sketch SKJδ. Apparently I ′′ can

be obtained from I ′ by removing the small jobs whose processing time is less than pmax

n2 . Let

13



Algorithm Streaming-Algorithm3

Input: Parameters ǫ, m, n, α, c and h
Stream input: (pj , dpj) for all jobs 1 ≤ j ≤ n.

Output: An approximate value of the optimal makespan

1: let δ = ǫ
3

2: create an empty B-tree T
3: initialize pmax = 1
4: read the input stream and generate the sketch of the input SKJδ:

5: for each job j with (j, pj) in the stream input do
6: if pj <

pmax

n2 then
7: skip this job and continue the next job
8: else
9: if pmax < pj, pmax = pj

10: let d = dpj , u =
⌊

log1+δ pj
⌋

, and update B-tree as follows:
11: if node (d, u, nd,u) exists in the tree then
12: update the node with nd,u = nd,u + 1
13: else
14: insert a new node (d, u, 1)
15: let (d′, u′, nd′,u′) be the node with the smallest u
16: if u′ < log1+δ

pmax

n2 , delete (d′, u′, nd′,u′) from the tree
17: end if
18: end if
19: end for
20: let u− =

⌊

log1+δ
pmax

n2

⌋

, u+ =
⌊

log1+δ pmax

⌋

21: traverse T and generate the sketch using only the nodes with u− ≤ u ≤ u+
22: SKJδ = {(d, u, nd,u) : 1 ≤ d ≤ h, u− ≤ u ≤ u+}

23: compute the approximate makespan

24: let rpu+
= pmax

25: for each u− ≤ u < u+

26: let rpu = (1 + δ)u+1

27: for each d
28: let Ad =

1
m

∑u+

u=u−

(nd,u · rpu)

29: let A = (
∑h

d=1(⌊Ad⌋+ pmax)) + ⌈pmax

n ⌉

30: return A
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C ′′
max be the optimal makespan for I ′′. Then we have C ′′

max ≥
∑h

d=1Ad. It is easy to see that

C ′′
max ≤ C ′

max ≤ (1 + δ)C∗
max, and C∗

max ≤ C ′
max ≤ C ′′

max + n · pmax

n2 = C ′′
max +

pmax

n .

As before, we can construct a schedule S for I ′′ using list scheduling rule to schedule the jobs

depth by depth starting with d = 1. To get a schedule for all jobs in I ′ based on S, for each depth

d, we can simply insert into S all the small jobs of this depth onto the first machine after all big

jobs of depth d finish and before the first big job of d + 1 starts. Let the new schedule be S′.

Apparently the makespan of S′ is at least C∗
max and at most A =

∑h
d=1(⌊Ad⌋ + pmax) + ⌈pmax

n ⌉.

Thus, we have A ≥ C∗
max and

A =

(

h
∑

d=1

(⌊Ad⌋+ pmax)

)

+ ⌈pmax

n ⌉ ≤ C ′′
max + h · pmax + ⌈pmax

n ⌉. (1)

Since the largest αn jobs have no more than c factor difference, each of the largest αn jobs has

processing time at least pmax

c . Thus, we have

C∗
max ≥ α · n · pmax

c · 1
m = αn

c·mpmax,

which implies pmax ≤ c·m
α·nC

∗
max. If we plug this into inequality (1), we get

A ≤ C ′′
max + h · pmax + ⌈pmax

n ⌉

≤ C ′′
max + (h+ 1) · pmax

≤ C ′′
max + (h+ 1) · c·m

α·nC
∗
max

≤ (1 + δ)C∗
max + (h+1)·c·m

αn C∗
max

≤ (1 + δ + (h+1)·c·m
αn )C∗

max

≤ (1 + ǫ
3 +

(h+1)·c·m
αn )C∗

max.

If m ≤ 2nαǫ
3(h+1)·c , we have A ≤ (1 + ǫ

3 + 2ǫ
3 )C

∗
max = (1 + ǫ)C∗

max.

Now we consider the complexity. The space complexity is dominated by the B-tree. As the

way it is implemented, each time a node is inserted into the tree, if there is a node (d, u, nd,u)

such that u < log1+δ
pmax

n2 , the smallest such node will be deleted from the tree. In this way, the

number of nodes in the tree is at most h · log1+δ n
2 = O(hǫ log n). For each job in the stream input,
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a constant number of tree operations are needed, and thus the update time for processing each job

is O(log(hǫ log n) = O(log(hǫ ) + log log n) time. After reading all the jobs, the computation of the

approximation is bounded by the size of the sketch which is O(hǫ log n).

3.2.2. The parameters c, h, and dpj are unknown

We consider the problem P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax when the parameters c, h,

and dpj are not known. In this case, the stream input would include the jobs followed by the arcs.

As in Streaming-Algorithm 2, we use a B-tree to store the sketch information, and an array to

store the jobs’ information. Both the array and the tree are updated when we read the jobs and

arcs from the stream input. The streaming algorithm will be similar to Streaming-Algorithm2 but

with some nodes for small processing times excluded as in Streaming-Algorithm3. Using similar

arguments as in the proof of Theorem 5 and 6, we can get the following theorem.

Theorem 7. If parameters c and h are not known, the jobs, and the precedence graph in topological

order are input via the stream, for any ǫ, when m ≤ 2nαǫ
3(h+1)·c , there is a streaming approximation

scheme for the problem P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax that uses O(n) space, takes

O(log h
ǫ + log log n) update time for each job in the stream, and O(hǫ log n) time to return the

approximate value.

3.3. The Sketch of the Schedule

All the streaming algorithms we have presented so far return an approximate value of the optimal

makespan. This may be sufficient for some scheduling and planning applications. However, in many

other applications, it would be desirable to have a schedule whose makespan is the approximate

value. In the traditional data model, a schedule explicitly or implicitly specifies for each job on

which machine and in what time interval it is scheduled. This means we need at least Ω(n) time

complexity and space complexity to describe a schedule. For the big data model, we introduce

the concept of sketch of a schedule which is a condensed description of a schedule using only

sublinear space. In the following, we first give a formal definition for the sketch of a schedule,

then we show that our previous algorithms can compute simultaneously not only an approximate

value, but also the sketch of a schedule, and finally we show how the sketch can be used to
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generate a real schedule that achieves the approximate value when the jobs are scanned in the

second pass.

Definition 8. For the problems P | prec, dpj ≤ h, pmax ≤ c · pmax | Cmax and P | prec, dpj ≤

h, p[n] ≤ c · p[(1−α)n)] | Cmax, the sketch of a schedule describes a feasible schedule and consists

of a set of time instants td, 1 ≤ d ≤ h, such that all the jobs of depth d can be scheduled during

the interval [td−1, td) for 1 ≤ d ≤ h where t0 = 0. Mathematically we denote the sketch of a

schedule as SKS = {td : 1 ≤ d ≤ h}.

For the problem P | prec, dpj ≤ h, pmax ≤ c · pmin | Cmax, by the proof of Theorem 4 we know

all the jobs of depth d can be feasibly scheduled during an interval of length ⌊Ad⌋+c, which implies

that SKS = {td : 1 ≤ d ≤ h} where td =
∑d

k=1(⌊Ad⌋ + c) for all 1 ≤ d ≤ h, is the sketch of a

schedule that can be computed by Streaming-Algorithm1.

Lemma 9. For the problem P | prec, dpj ≤ h, pmax ≤ c · pmin | Cmax, Streaming-Algorithm1 can

compute a sketch of a schedule SKS = {td : 1 ≤ d ≤ h} where td =
∑d

k=1(⌊Ad⌋ + c) for all

1 ≤ d ≤ h.

Based on the sketch of the schedule, if we scan all the jobs in the second time, we can generate

a feasible schedule using the Algorithm SketchToSchedule.

By lemma 9 and the Algorithm SketchToSchedule, we have the following theorem.

Theorem 10. For P | prec, dpj ≤ h, pmin ≤ c · pmax | Cmax, given any 0 < ǫ < 1, when m ≤ 2nǫ
3·h·c ,

Streaming-Algorithm1 can compute a sketch of the schedule SKS which can be applied to Algorithm

SketchToSchedule to generate a feasible schedule with the makespan at most (1+ǫ) times the optimal

makespan.

Proof: Since the total length of the jobs at depth d after rounding is m · Ad, and the largest

processing time is c, it is easy to see that Algorithm SketchToSchedule generates a feasible schedule

of these jobs during the interval [td−1, td], where td = td−1 + ⌊Ad⌋ + c. The final schedule of all n

jobs has the makespan at most th =
∑h

d=1 ⌊Ad⌋+ c, which is at most by (1 + ǫ)C∗
max by the proof

of Theorem 4.

Similarly, Streaming-Algorithm2 can compute a sketch of a schedule SKS = {td : 1 ≤ d ≤ h}

where td =
∑d

k=1(⌊Ad⌋+ pmax) for all 1 ≤ d ≤ h, and we have the following theorem.
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Algorithm SketchToSchedule

Input: SKS = {td : 1 ≤ d ≤ h}
Stream input: (pj , dpj) for all jobs 1 ≤ j ≤ n.

Output: a feasible schedule S of all the jobs

1: for each d, 1 ≤ d ≤ h do
2: let curMd and curTd be the machine and time where next job with depth d will be scheduled.
3: curMd = 1; curTd = td−1

4: end for
5: read the job stream input and generate the schedule:

6: for each job (pj , dpj) do
7: let d = dpj
8: if curTd + pj ≤ td then
9: schedule job j at time curTd on machine curMd

10: set curTd = curTd + pj
11: else
12: schedule job j at time td−1 on machine curMd + 1
13: set curMd = curMd + 1 and curTd = td−1 + pj
14: end if
15: end for

Theorem 11. For P | prec, dpj ≤ h, pmin ≤ c · pmax | Cmax, given any 0 < ǫ < 1, when m ≤ 2nǫ
3·h·c

Streaming-Algorithm2 can compute a sketch of a schedule SKS which can be applied to Algorithm

SketchToSchedule to generate a feasible schedule with the makespan at most (1+ǫ) times the optimal

makespan.

For the problem P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax, Streaming-Algorithm3 gives

an approximate value of the optimal makespan. However, the small jobs from depth d are not

considered when we calculate Ad, so the sketch of the schedule is slightly different from previous

problem. We will show that in this case, the sketch of a schedule is given by SKS = {td : td =

td−1 + (⌊Ad⌋+ pmax + ⌈pmax

n ⌉), 1 ≤ d ≤ h}, t0 = 0.

Theorem 12. For the problem P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax, given any 0 < ǫ < 1,

when m ≤ 2nαǫ
3(h+1)·c , Streaming-Algorithm3 can compute a sketch of the schedule SKS = {td : td =

td−1+(⌊Ad⌋+pmax+ ⌈pmax

n ⌉), 1 ≤ d ≤ h}, t0 = 0, and based on SKS, Algorithm SketchToSchedule

can generate a feasible schedule with the makespan at most (1 + ǫ) times the optimal makespan.

Proof: From the proof of Theorem 6, we know that the interval with the length ⌊Ad⌋+pmax can

feasibly fit in all the jobs of depth d and with the process time at least pmax

n2 . If we add additional

length of ⌈n· pmax

n2 ⌉ = ⌈pmax

n ⌉ to the interval, we can guarantee that both the large jobs and the small
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jobs of depth d can be fit in. Hence, SKS = {td : td = td−1 + (⌊Ad⌋+ pmax + ⌈pmax

n ⌉), 1 ≤ d ≤ h},

t0 = 0, describes a feasible schedule such that all the jobs of depth d can be scheduled during the

interval [td−1, td]. Based on the sketch SKS, we can use Algorithm SketchToSchedule to generate

a feasible schedule with the makespan at most

th =

h
∑

d=1

(⌊Ad⌋+ pmax + ⌈pmax

n ⌉) ≤

(

h
∑

d=1

⌊Ad⌋

)

+ (h+ 1)pmax.

From the proof of Theorem 6, we know th ≤ C ′′
max + (h+ 1)pmax ≤ (1 + ǫ)C∗

max.

In summary, if we can read the input in two passes, based on the sketch of the schedule produced

by all our streaming algorithms, the Algorithm SketchToSchedule can generate a feasible schedule

with the makespan at most (1 + ǫ) times the optimal value.

Theorem 13. For the problems P | prec, dpj ≤ h, p[min] ≤ c · pmax | Cmax, and P | prec, dpj ≤

h, p[n] ≤ c · p[(1−α)n)] | Cmax, when m ≤ 2nǫ
3·h·c and m ≤ 2nαǫ

3(h+1)·c , respectively, there exist streaming

approximation schemes that can return an approximate value and a sketch of a schedule in one

pass, and output a schedule for each job in constant time in the second pass.

4. Randomized Sublinear Time Algorithm

In the previous section, we studied the streaming algorithms, which scan all the input data, generate

a sketch of the input data, and use it to compute an approximate value of the optimal makespan

and a sketch of a schedule that describes a feasible schedule with the approximated makespan. In

this section, we study a different computing paradigm, sublinear time algorithms which are also

inspired by the boost of multitude of data in manufacturing and service industry. For sublinear time

algorithms, our goal is to compute an approximate value of the optimal solution by considering only

a fraction of the input data. As most sublinear time algorithms, our algorithms are randomized.

Like streaming algorithms, our sublinear time algorithms also use the sketch of the input to compute

the approximate value and the sketch of the schedule. The concept of the sketch of the input and

the sketch of the schedule are similar to the ones that we defined in the streaming algorithms.

However, since we do not read all input, the sketches are not accurate. We call them estimated

sketch of the input, and estimated sketch of the schedule.
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The estimated sketch of the input is an estimated summary of the n input jobs that

is computed based on the sketch of n′ sample jobs. The sample size n′ is determined by the

approximation ratio ǫ, and other parameters. We will show that with appropriate sample size, the

estimated sketch of the input can give a good approximation of the accurate sketch of the input

with high probability, and thus can give a good approximation of the optimal makespan. Formally,

the estimated sketch of the input is defined as follows:

Definition 14. For a given parameter δ, and an instance of the problem P | prec, dpj ≤ h, pmax ≤

c ·pmin | Cmax or P | prec, dpj ≤ h, p[n] ≤ c ·p[(1−α)n)] | Cmax, the estimated sketch of the input

with respect to δ, is denoted as ŜKJδ = {(d, u, êd,u)} where êd,u is the estimated number of jobs

with the depth d and the processing time in the range of [(1 + δ)u, (1 + δ)u+1).

Similarly, the estimated sketch of a schedule is a concise description of a schedule. Based

on the estimated sketch of the schedule, with high probability, we can generate a feasible schedule

with the makespan of at most (1+ǫ) times the optimal makespan. Formally the estimated sketch

of a schedule is defined as follows:

Definition 15. For the problems P | prec, dpj ≤ h, pmax ≤ c · pmax | Cmax and P | prec, dpj ≤

h, p[n] ≤ c·p[(1−α)n)] | Cmax, the estimated sketch of a schedule describes a schedule and consists

of a set of time instants td, 1 ≤ d ≤ h, such that all the jobs of depth d are scheduled during the

interval [td−1, td) for 1 ≤ d ≤ h where t0 = 0. Mathematically we denote the estimated sketch

of a schedule as ŜKS = {td : 1 ≤ d ≤ h}.

At the conceptual level, our sublinear time algorithms have the following three steps:

Step 1: Compute the sample size n′ that is sublinear in n but is sufficient for computing an

estimated sketch of the input jobs that is close to the accurate sketch for the original input

data.

Step 2: Sample n′ jobs uniformly at random from the input, find the sketch of the

sampled jobs, SKJ ′
δ = {(d, u, n′

d,u)}, and calculate the estimated sketch of all n jobs,

ŜKJδ = {(d, u, êd,u)}.

Step 3: Based on the estimated sketch of the input, compute an approximation of the optimal

value and an estimate sketch of a schedule.
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In the following, we first develop a sublinear time algorithm for P | prec, dpj ≤ h, pmax ≤ c·pmin |

Cmax and then adapt it to solve the general problem P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax.

4.1. Sublinear Time Algorithm for P | prec, dpj ≤ h, pmax ≤ c · pmin | Cmax

As before, each job j is represented by a pair (pj , dpj). Without loss of generality, we assume that

1 ≤ pj ≤ c for all 1 ≤ j ≤ n. Our algorithm mainly consists of the three steps as described above:

(1) compute the sample size n′; (2) sample n′ jobs uniformly at random, find the sketch of the

sampled jobs, SKJ ′
δ = {(d, u, n′

d,u)}, where n′
d,u is the number of sampled jobs with the depth d

and the processing time in the range of [(1 + δ)u, (1 + δ)u+1), and calculate the estimated sketch

of the input for n jobs, ŜKJδ = {(d, u, êd,u)} such that êd,u = n
n′n′

d,u, and êd,u ≥ 2τ(n, h, c), where

τ(n, h, c) is determined by some parameters; (3) compute an approximation of the optimal value.

The algorithm is formally described in Randomized-Algorithm1.

Now we give the performance analysis for the above algorithm. The time complexity is domi-

nated by the sampling operation. Thus we have the following lemma.

Lemma 16. The running time of the algorithm is O( c
2h2 log2 c

ǫ6
log(hǫ log c) ·m

2).

Proof: The algorithm takes n′ random samples and the processing time for each sampled job

is O(1). So the running time of the algorithm is O(n′) = O( 1
β2 · ln 2

γ ) = O( c
2h2k2m2

ǫ4
log(hk)) =

O( c
2h2 log2 c

ǫ6 log(hǫ log c) ·m
2).

From now on we focus on the accuracy analysis for our algorithm. Since in our analysis we use

the bounds that Ma [18] has obtained based on the well-known Chernoff bounds (see [20]), and the

union bound from probability theory, we list them in the following for reference.

Lemma 17 (Lemma 3 in Ma [18]). Let X1, . . . ,Xn be n independent random 0-1 variables and

X =
∑n

i=1Xi.

i. If Xi takes 1 with probability at most p for i = 1, . . . , n, then for any β > 0, Pr(X >

pn+ βn) < e−
1
3nβ

2

.

ii. If Xi takes 1 with probability at least p for i = 1, . . . , n, then for any β > 0, Pr(X < pn−βn) <

e−
1
2nβ

2

.
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Algorithm Randomized-Algorithm1

Input: Parameters: m, c, h, ǫ
Jobs: (pj , dpj), 1 ≤ j ≤ n, 1 ≤ dpj ≤ h

Output: An approximation of the optimal makespan

1: compute the sample size n′

2: let δ = ǫ
20 , and k =

⌊

log1+δ c
⌋

3: let p = 5δ
2c·h·k·m , and β = δp

4: let n′ = 3
β2 · ln 2

γ , where γ = 1
10hk

5: sample n′ jobs uniformly at random, and compute the sketch of the sampled jobs SKJ ′
δ =

{(d, u, n′
d,u)}

6: compute the estimated sketch of all jobs ŜKJδ

7: let τ(n, h, c) = n · p

8: ŜKJδ = ∅
9: for each (d, u, n′

d,u) ∈ SKJ ′
δ do

10: let êd,u = n ·
n′

d,u

n′

11: if êd,u > 2τ(n, h, c)

12: ŜKJδ = ŜKJδ ∪ {(d, u, êd,u)}
13: end for
14: compute the estimated makespan

15: let rpk = c
16: for each u, 0 ≤ u < k

17: let rpu = (1 + δ)u+1

18: for each d, 1 ≤ d ≤ h do
19: let Âd =

1
m

∑k
u=0(êd,u · rpu) , where (d, u, êd,u) ∈ ŜKJδ

20: end for
21: let Â =

∑h
d=1

(

⌊Âd⌋+ c
)

22: return Â
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Fact 18 (Union bound). Let E1, E2, . . . , Em be m events that may not be independent, we have

the inequality

Pr(E1 ∪ E2 . . . ∪Em) ≤ Pr(E1) + Pr(E2) + . . . + Pr(Em).

We will use Lemma 17 and Fact 18 to show that êd,u, computed by Randomized-Algorithm1,

is a good estimate of the exact number of jobs with the depth d and processing time in the range

of [(1 + δ)u, (1 + δ)u+1), nd,u. Specifically, we have that with high probability: (1) if nd,u is at

least τ(n, h, c), then our estimate, êd,u, is in the range of [(1 − δ)nd,u, (1 + δ)nd,u]; and (2) if

nd,u < τ(n, h, c), our estimated number of jobs, êd,u, is no more than 2τ(n, h, c).

Lemma 19. For any d, u, let êd,u be the value computed by Randomized-Algorithm1, then we have:

(i) If nd,u ≥ τ(n, h, c), Pr((1 − δ)nd,u ≤ êd,u ≤ (1 + δ)nd,u) ≥ 1− γ; and

(ii) If nd,u < τ(n, h, c), Pr(êd,u ≤ 2τ(n, h, c)) ≥ 1− γ.

Proof: Let Xi denote the indicator random variable for the event that the i-th sample job has

depth d, and the processing time is in [(1 + δ)u, (1 + δ)u+1). Then n′
d,u =

∑n′

i=1 Xi. Since n′ jobs

are sampled uniformly at random from n jobs, we have Pr(Xi = 1) =
nd,u

n . For convenience, we let

p0 =
nd,u

n . By line 7 of our algorithm, p = τ(n,h,c)
n .

We first prove (i): if nd,u ≥ τ(n, h, c), Pr((1 − δ)nd,u ≤ êd,u ≤ (1 + δ)nd,u) ≥ 1 − γ. It is

sufficient to show that Pr(êd,u ≤ (1 − δ)nd,u) ≤
γ
2 and Pr(êd,u ≥ (1 + δ)nd,u) ≤

γ
2 . By line 10 of

the algorithm, êd,u = n ·
n′

d,u

n′ , thus we have

Pr(êd,u ≤ (1− δ)nd,u) = Pr(n ·
n′

d,u

n′ ≤ (1− δ)nd,u)

= Pr(n′
d,u ≤ (1− δ)

nd,u

n · n′)

= Pr(n′
d,u ≤ (1− δ)p0n

′)

= Pr(n′
d,u ≤ (p0 − δp0)n

′)

If nd,u ≥ τ(n, h, c), then Pr(Xi = 1) = p0 =
nd,u

n ≥ τ(n,h,c)
n = p. Using this fact, and applying

Lemma 17 for the variable n′
d,u, n

′
d,u =

∑n′

i=1 Xi, we get

Pr(n′
d,u ≤ (p0 − δp0)n

′) ≤ e−
1
2n

′(δp0)2 ≤ e−
1
2n

′(δp)2 ≤ e−
1
2n

′β2

≤ γ
2 ,
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which means that Pr(êd,u ≤ (1− δ)nd,u) ≤
γ
2 . Similarly, we have

Pr(êd,u ≥ (1 + δ)nd,u) = Pr(n′
d,u ≥ (p0 + δp0)n

′)

≤ e−
1
3n

′(δp0)2

≤ e−
1
3n

′(δp)2

≤ e−
1
3n

′β2

≤ γ
2 .

Next, we show (ii): if nd,u < τ(n, h, c), Pr(êd,u ≤ 2τ(n, h, c)) ≥ 1− γ. As for (i), we prove that

Pr(êd,u > 2τ(n, h, c)) ≤ γ. By line 7 of the algorithm, τ(n, h, c) = n · p, and êd,u = n ·
n′

d,u

n′ .

Pr(êd,u > 2τ(n, h, c)) = Pr(êd,u > 2np) = Pr(n′
d,u > 2n′p) ≤ Pr(n′

d,u > (p+ δp)n′).

If nd,u < τ(n, h, c), then Pr(Xi = 1) =
nd,u

n ≤ τ(n,h,c)
n = p. Using this fact, and applying Lemma 17

for the variable n′
d,u, n

′
d,u =

∑n′

i=1Xi, we get

Pr(n′
d,u > (p+ δp)n′) ≤ e−β2 n

′

3 ≤ γ
2 ,

which implies that Pr(êd,u > 2τ(n, h, c)) ≤ γ
2 < γ. This completes the proof.

Lemma 19 tells us that the estimated sketch of input ŜKJδ approximates the exact sketch of

input SKJδ very well. Based on this, we will show that the estimated makespan, Â, computed

from the estimated sketch, is a good approximation of the optimal makespan. For the ease of our

analysis and proof later, we summarize all the symbols we use in the following:

• I: the input instance for the algorithm

• SKJδ = {(d, u, nd,u)}: the exact sketch of all jobs in I where nd,u is the number of jobs in I

with the depth d and the processing time in the range of [(1+δ)u, (1+δ)u+1) for all 1 ≤ d ≤ h

and 1 ≤ u ≤ k

• Iround: the instance corresponding to the sketch SKJδ with the rounded processing times

for all the jobs, that is, for each (d, u, nd,u) ∈ SKJδ, there are nd,u jobs at depth d whose
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processing times are rpu

• Ibig: the instance obtained from the instance Iround by removing the jobs corresponding to

(d, u, nd,u) where nd,u < 3τ(n, h, c) for all 1 ≤ d ≤ h and 1 ≤ u ≤ k

• ŜKJδ = {(d, u, êd,u)}: the estimated sketch for the jobs in I, which is computed by

Randomized-Algorithm1, and where êd,u is the estimated value for nd,u. Note that only

the tuples with êd,u > 2τ(n, h, c) are included in ŜKJδ.

• Î: the instance corresponding to the estimated sketch ŜKJδ = {(d, u, êd,u)}, that is, for each

(d, u, êd,u) ∈ ŜKJδ, there are êd,u jobs at depth d whose processing times are rpu

• (d, u)-group of an instance: the group of all the jobs in the instance with depth d and pro-

cessing time rpu

We first compare the optimal makespan of instance Î and that of instance Ibig.

Lemma 20. Let C∗
max(Ibig) and C∗

max(Î) be the optimal makespan for instances Ibig and Î respec-

tively, with probability of at least 9
10 , we have

(1− δ)(C∗
max(Ibig)− h · c) < C∗

max(Î) ≤ (1 + δ)C∗
max(Ibig) +

15δn
m + h · c. (2)

Proof: From our definition of Ibig and Î, we know that for any (d, u)-group included in Ibig, we

must have nd,u ≥ 3τ(n, h, c) and for any (d, u)-group included in Î, we must have êd,u > 2τ(n, h, c).

We first show that with high probability the instance Î contains all jobs from instance Ibig. Consider

an arbitrary (d, u)-group from Ibig, we must have nd,u ≥ 3τ(n, h, c), since δ = ǫ
20 < 1

20 , we have

(1− δ)nd,u ≥ 2τ(n, h, c). By Lemma 19, with the probability of at least 1−γ, we have 2τ(n, h, c) <

(1 − δ)nd,u ≤ êd,u ≤ (1 + δ)nd,u. That means, with the probability of at least 1 − γ, we have that

any (d, u)-group in Ibig is also included in Î. In other words, the probability that a (d, u)-group

is in Ibig but not in Î is less than γ. Since there are at most h · k (d, u)-groups, by Fact 18, the

probability that some (d, u)-groups are in Ibig but not in Î is at most γ · h · k = 1
10 . Therefore,

considering all (d, u)-groups in Ibig, we have that with probability at least 9
10 , all (d, u)-groups that

are included in Ibig are also included in Î.
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A lower bound of C∗
max(Î) can be obtained by considering only those (d, u)-groups that are

in Ibig. To schedule the jobs in these groups from Î, one need an interval of length at least

∑

d
1
m

∑

u(êd,u · rpu) ≥
∑

d
1
m

∑

u((1 − δ)nd,u · rpu). So we have

C∗
max(Î) ≥

h
∑

d=1

(

1

m

k
∑

u=0

((1− δ)nd,u · rpu)

)

. (3)

For all the jobs from Ibig, we have:

C∗
max(Ibig) ≥

h
∑

d=1

(

1
m

k
∑

u=0

(nd,u · rpu)

)

, (4)

and

C∗
max(Ibig) ≤

h
∑

d=1

(

1
m

k
∑

u=0

(nd,u · rpu) + c

)

=
h
∑

d=1

(

1
m

k
∑

u=0

(nd,u · rpu)

)

+ h · c. (5)

By inequalities (3) and (5) we have

C∗
max(Î) ≥ (1− δ)(C∗

max(Ibig)− h · c). (6)

Next, we consider the upper bound of C∗
max(Î). We split the jobs in Î into two parts: those

(d, u)-groups that are in both Ibig and Î , and those (d, u)-groups that are in Î but not in Ibig. For

the jobs in Î from the former, we need an interval of length at most
∑

d(
1
m (
∑

u(êd,u · rpu)) + c) ≤
∑

d(
1
m (
∑

u((1 + δ)nd,u · rpu)) + c) to schedule them; for the jobs from the latter (d, u)-groups, we

note that each such group must correspond to a group in instance I where nd,u < 3τ(n, h, c) and

there are at most h · k such groups. By Lemma 19, with the probability of at least 1− γ, we have

at most êd,u ≤ 6τ(n, h, c) jobs in Î for each (d, u)-group in the latter type. Thus we can schedule

these jobs in an interval of at most 6τ(n, h, c) · h · k · c. Combining both types of groups and by

inequality (4), we have

C∗
max(Î) ≤

h
∑

d=1

(

1
m

(

k
∑

u=0

((1 + δ)nd,u · rpu)

)

+ c

)

+ 6τ(n, h, c) · h · k · c

≤ (1 + δ)C∗
max(Ibig) + h · c+ 6τ(n, h, c) · h · k · c.
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By line 7 of the algorithm, τ(n, h, c) = n · p = 5δn
2c·h·k·m , we have

C∗
max(Î) ≤ (1 + δ)C∗

max(Ibig) +
15δn
m + h · c. (7)

Therefore, from (6) and (7), we get

(1− δ)(C∗
max(Ibig)− h · c) ≤ C∗

max(Î) ≤ (1 + δ)C∗
max(Ibig) +

15δn
m + h · c.

The next lemma compares the optimal makespan of instance Iround and that of instance I and

Ibig.

Lemma 21. Let C∗
max(I) and C∗

max(Iround) be the optimal makespan for instances I and Iround

respectively, we have the following inequalities:

C∗
max(I) ≤ C∗

max(Iround) ≤ (1 + δ)C∗
max(I). (8)

C∗
max(Iround)−

8δn
m ≤ C∗

max(Ibig) ≤ C∗
max(Iround). (9)

Proof: By our notation, I is the original instance of n jobs where a job j has processing time pj

and depth dpj , and Iround is the instance from I after rounding up the jobs’ processing time such

that if (1 + δ)u ≤ pj ≤ (1 + δ)u+1, then the rounded processing time is rpu ≤ (1 + δ)pj . It is easy

to see that we have

C∗
max(I) ≤ C∗

max(Iround) < (1 + δ)C∗
max(I).

The instance Ibig can be obtained from the instance Iround by removing those (d, u)-group jobs where

nd,u < 3τ(n, h, c). The total number of the jobs removed is at most 3τ(n, h, c) · h · k, and each of

these jobs have processing time at most c. Therefore, we have C∗
max(Iround)−3τ(n, h, c) · h · k · c ≤

C∗
max(Ibig) ≤ C∗

max(Iround). Since τ(n, h, c) = 5δn
2c·h·k·m , we get

C∗
max(Iround)−

8δn
m ≤ C∗

max(Ibig) ≤ C∗
max(Iround).
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Combining all the lemmas we proved in this section, we can prove that the Randomized-

Algorithm1 is an approximation scheme.

Theorem 22. If m ≤ nǫ
20h·c , Randomized-Algorithm1 is a randomized (1+ǫ)-approximation scheme

for P | prec, dpj ≤ h, pmax ≤ c · pmin | Cmax that runs in O( c
2h2 log2 c

ǫ6
log(hǫ log c) ·m

2) time.

Proof: The running time follows from Lemma 16. We focus on the approximation ratio. By our

notation, Î is the instance corresponding to the estimated sketch ŜKJδ = {(d, u, êd,u)} where êd,u

is the estimated value for nd,u. Only the tuples with êd,u > 2τ(n, h, c) are included in ŜKJδ. By

Randomized-Algorithm1, Âd = 1
m

∑k
u=0(êd,u · rpu) and Â =

∑h
d=1(⌊Âd⌋ + c). Following the same

proof as in Theorem 4, we can get

C∗
max(Î) ≤ Â ≤ C∗

max(Î) + h · c.

By inequality (2), we get, with probability at least 9
10

Â ≤ C∗
max(Î) + h · c ≤ (1 + δ)C∗

max(Ibig) +
15δn
m + 2h · c.

If m ≤ nǫ
20h·c , with δ = ǫ

20 , we get h · c ≤ δn
m . Thus, we get,

Â ≤ (1 + δ)C∗
max(Ibig) +

15δn
m + 2h · c

≤ (1 + δ)C∗
max(Ibig) +

17δn
m

≤ (1 + δ)C∗
max(Iround) +

17δn
m by(9)

≤ (1 + δ)2C∗
max(I) +

17δn
m by (8)

≤ (1 + 20δ)C∗
max(I) by C∗

max(I) ≥
n
m

≤ (1 + ǫ)C∗
max(I), by δ = ǫ

20

28



and

Â ≥ C∗
max(Î)

≥ (1− δ)(C∗
max(Ibig)− h · c) by (2)

≥ (1− δ)(C∗
max(Ibig)−

δn
m ) by h · c ≤ δn

m

≥ (1− δ)(C∗
max(Iround)−

9δn
m ) by(9)

≥ (1− δ)(C∗
max(I)−

9δn
m ) by(8)

≥ (1− δ)(1 − 9δ)C∗
max(I) by C∗

max(I) ≥
n
m

≥ (1− 10δ)C∗
max(I) by δ = ǫ

20

≥ (1− ǫ)C∗
max(I)

Based on the above theorem, when m = o(n1/2), Randomized-Algorithm is a sublinear time

approximation scheme.

Corollary 23. When m = o(n1/2), Randomized-Algorithm1 is a randomized (1+ǫ)-approximation

scheme for P | prec, dpj ≤ h, pmax ≤ c · pmin | Cmax that runs in sublinear time.

4.2. Sublinear Time Algorithm for P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax

In this section, we will generalize Randomized-Algorithm1 to solve the general problem P |

prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax. The idea is basically similar except some pre-processing

is needed because we do not know the processing time range of the top αn jobs. Specifically, our

sublinear algorithm first samples some jobs to determine the upper bound of the largest job, then

samples enough number of jobs to generate the estimated sketch of the input, and finally computes

the approximation of the optimal value based on the estimated sketch of the input. The details are

given in Randomized-Algorithm2.

Like the Randomized-Algorithm1, the time complexity of Randomized-Algorithm2 is dominated

by the sample size n′. However, n′ in this algorithm depends on n. Still, we will show in the lemma

below that the running time of the algorithm is sublinear when m = o(n1/2).
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Algorithm Randomized-Algorithm2

Input: Parameters m, c, h, ǫ, α
Jobs: (pj , dpj), 1 ≤ j ≤ n, 1 ≤ dpj ≤ h

Output: An approximation of the optimal makespan

1: determine the upper bound of the largest job:

2: let δ = ǫ
20 , k =

⌊

log1+δ
cn
δ

⌋

, and γ = 1
10hk

3: let n0 = 1 if α = 1, and n0 =
⌈

ln γ
ln(1−α)

⌉

if α < 1

4: sample n0 jobs uniformly at random
5: let w0 be the largest processing time among all the n0 sampled jobs

6: determine the sample size n′:

7: let p = 5αδ
2c2·h·k·m

, and β = δp
8: let n′ = 3

αβ2 · ln 2
γ

9: sample n′ jobs uniformly at random
10: remove those jobs whose processing time is at most δw0

n from the sampled jobs
11: compute the sketch of the remaining sample jobs SKJ ′

δ = {(d, u, n′
d,u)}

12: compute the estimated sketch of all jobs ŜKJδ

13: let τ(n, h, c) = n · p

14: ŜKJδ = ∅
15: for each (d, u, n′

d,u) ∈ SKJ ′
δ do

16: let êd,u = n ·
n′

d,u

n′

17: if êd,u > 2τ(n, h, c)

18: ŜKJδ = ŜKJδ ∪ {(d, u, êd,u)}
19: end for
20: compute the estimated makespan

21: let u− =
⌊

log1+δ
δw0

n

⌋

, u+ =
⌊

log1+δ cw0

⌋

22: let rpu+
= cw0

23: for each u− ≤ u < u+

24: let rpu = (1 + δ)u+1

25: for each d, 1 ≤ d ≤ h
26: let Âd =

1
m

∑u+

u=u−

(êd,u · rpu) , where (d, u, êd,u) ∈ ŜKJδ

27: Â =
∑h

d=1

(⌊

Âd

⌋

+ cw0

)

28: return Â
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Lemma 24. Randomized-Algorithm2 runs in time O( c
4h2

α3ǫ6
·m2 log2( cnǫ ) log(

h
ǫ log(

cn
ǫ ))).

Proof: The running time is dominated by the sampling of n0+n′ = O(n′) jobs. Thus its running

time is

O(n′) = O( 1
αβ2 · ln 2

γ )) = O( 1
αδ2

( c
2hkm
αδ )2 log hk) = O( c

4h2

α3ǫ6
·m2 log2( cnǫ ) log(

h
ǫ log(

cn
ǫ ))).

The next lemma shows that by sampling n0 jobs, we can get a good estimate of the largest

processing time p[n].

Lemma 25. With probability at least 1− γ, p[n] ≤ cw0.

Proof: Since we sample the jobs uniformly, the probability that a job from the top αn largest

jobs is selected is α. The probability that no job from top αn largest jobs is sampled is at most

(1 − α)n0 ≤ γ, which implies that with probability of at least 1 − γ, some jobs from the top αn

largest jobs are sampled, which means w0 ≥ p[1−α)n] and p[n] ≤ cw0.

The next lemma is similar to Lemma 19 which states that êd,u is a good estimate of the number

of corresponding jobs in the input instance, nd,u. The only difference is that here we focus on the

jobs whose processing time is at least δw0

n . The proof is the same and we omit here.

Lemma 26. For any d, u, let êd,u be the value computed by Randomized-Algorithm2, then we have:

(i) If nd,u ≥ τ(n, h, c), Pr((1 − δ)nd,u ≤ êd,u ≤ (1 + δ)nd,u) ≥ 1− γ, and

(ii) If nd,u < τ(n, h, c), Pr(êd,u ≤ 2τ(n, h, c)) ≥ 1− γ.

Like Theorem 22, we can prove that Randomized-Algorithm2 is an approximation scheme.

Theorem 27. For P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax, when m ≤ n·α·ǫ
20c2·h ,

Randomized-Algorithm2 is a randomized (1 + ǫ)-approximation scheme that runs in time O( c
4h2

α3ǫ6
·

m2 log2( cnǫ ) log(
h
ǫ log(

cn
ǫ ))).

Proof: The running time follows from Lemma 24. We consider the approximation ratio only.

The proof is similar to that of Theorem 22. For the input instance I, let Iround be the instance
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obtained from I by rounding up the processing times for the jobs with pj ≥
δw0

n . Let C∗
max(I) and

C∗
max(Iround) respectively be the optimal makespan for I and Iround. Then we still have the same

inequalities between C∗
max(Iround) and C∗

max(I):

C∗
max(I) ≤ C∗

max(Iround) ≤ (1 + δ)C∗
max(I) (10)

Let Ibig be the instance obtained from the instance Iround by removing not only the (d, u)-groups

with nd,u < 3τ(n, h, c) but also the groups of the jobs whose processing time is less than δw0

n . The

total processing time of the jobs with processing time less than δw0

n is at most n · δw0

n ≤ δw0 ≤

δC∗
max(Iround). The other jobs removed belong to the groups with nd,u < 3τ(n, h, c), and each of

these jobs has processing time at least δw0

n and at most cw0. There are at most h · k such groups

where k = log1+δ
cn
δ as defined in the algorithm. Thus the total processing time of these jobs is at

most

3τ(n, h, c) · h · k · cw0 = 3n · 5αδ
2c2·h·k·m

· h · k · cw0 ≤
8δ·α·nw0

cm .

Thus we have

C∗
max(Iround)− δC∗

max(Iround)−
8δ·α·nw0

cm ≤ C∗
max(Ibig) ≤ C∗

max(Iround) (11)

As before, let Î be the instance corresponding to the sketch ŜKJδ, which contains êd,u number

of jobs with the depth of d and the processing time rpu where êd,u > 2τ(n, h, c). Then the optimal

makespan of Î, C∗
max(Î), is at least Âd = 1

m

∑u+

u=u−

(êd,u · rpu). Between the Ibig and Î, we can use

similar argument for (6) and (7) to show that with probability at least 9
10 , we have

(1− δ)(C∗
max(Ibig)− h · cw0) < C∗

max(Î) (12)

and

C∗
max(Î) ≤ (1 + δ)C∗

max(Ibig) +
15δαnw0

cm + h · cw0 (13)
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The returned value Â =
∑h

d=1

(

⌊Âd⌋+ cw0

)

is at least C∗
max(Î) and

Â =

h
∑

d=1

(

⌊Âd⌋+ cw0

)

≤ C∗
max(Î) + h · cw0 ≤ (1 + δ)C∗

max(Ibig) +
15δαnw0

cm + 2h · cw0.

Assuming m ≤ n·α·ǫ
20c2·h = n·α·δ

c2·h , then h · cw0 ≤
δαn·w0

cm , and combining with the above inequalities, we

get

Â ≤ (1 + δ)C∗
max(Ibig) +

17δαnw0

cm

≤ (1 + δ)C∗
max(Iround) +

17δαnw0

cm by (11)

≤ (1 + δ)C∗
max(Iround) + 17δC∗

max(I) by C∗
max(I) ≥

αn·w0

cm

≤ (1 + δ)2C∗
max(I) + 17δC∗

max(I) by (10)

≤ (1 + 20δ)C∗
max(I)

≤ (1 + ǫ)C∗
max(I) by δ = ǫ

20

and

Â > C∗
max(Î)

> (1− δ)(C∗
max(Ibig)− h · cw0) by (12)

> (1− δ)((1 − δ)C∗
max(Iround)−

8δαnw0

cm − h · cw0) by (11)

> (1− δ)((1 − δ)C∗
max(Iround)−

9δαnw0

cm ) by h · cw0 ≤
δαn·w0

cm

> (1− δ)
(

(1− δ)C∗
max(I)−

9δαnw
cm

)

by (10)

> (1− δ) ((1− δ)C∗
max(I)− 9δC∗

max(I)) by C∗
max(I) ≥

αnw0

cm

≥ (1− δ)(1 − 10δ)C∗
max(I)

= (1− ǫ)C∗
max(I) by δ = ǫ

20

From Theorem 27, we can easily get the following corollaries.

Corollary 28. When m = o(n1/2), Randomized-Algorithm2 is a randomized (1+ǫ)-approximation
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scheme for P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax, that runs in sublinear time.

Corollary 29. For any α = n−φ where φ ∈ (0, 1/3), if m ≤ n·α·ǫ
20c2·h

, there is a randomized (1 + ǫ)-

approximation scheme for P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax and the algorithm runs in

sublinear time O( c
4h2

α3ǫ6 ·m2 log2( cnǫ ) log(
h
ǫ log(

cn
ǫ ))).

Clearly, the algorithm will also work if there is no precedence constraint, i.e. all jobs have the

same depth 1. This becomes the traditional load balancing problem.

Corollary 30. For any α = n−φ where φ ∈ (0, 1/3), if m ≤ n·α·ǫ
20c2·h

, there is a randomized (1 + ǫ)-

approximation scheme for P | p[n] ≤ c · p[(1−α)n)] | Cmax and the algorithm runs in sublinear time

O( c4

α3ǫ6 ·m2 log2( cnǫ ) log(
1
ǫ log(

cn
ǫ ))).

4.3. The Estimated Sketch of the Schedule

In this subsection, we will show that as the streaming algorithms in Section 3, the two sublinear

time algorithms in this section can compute an estimated sketch of a schedule ŜKS = {td :

1 ≤ d ≤ h} which describes a schedule where all the jobs of depth d are scheduled during the

interval [td−1, td) for 1 ≤ d ≤ h where t0 = 0. And we will show that based on ŜKS, the Algorithm

SketchToSchedule in Section 3.3 can, with high probability, generate a feasible schedule with the

makespan at most (1 + 2ǫ) times the optimal makespan.

For the problem P | prec, dpj ≤ h, pmin ≤ c · pmax, | Cmax, we let the estimate sketch of a

schedule be ŜKS = {td : 1 ≤ d ≤ h} where td =
∑d

i=1(⌊
Âd

1−δ ⌋ + c + 3⌊τ(n, h, c)⌋ · k · c) for all

1 ≤ d ≤ h. We have the following theorem for the estimate sketch of a schedule:

Theorem 31. For P | prec, dpj ≤ h, pmin ≤ c · pmax | Cmax, given any 0 < ǫ < 1, when m ≤ nǫ
20h·c ,

Randomized-Algorithm1 can compute an estimated sketch of the schedule ŜKS, and based on the

sketch, with probability at least 9
10 , Algorithm SketchToSchedule can generate a feasible schedule

with the makespan at most (1 + 2ǫ) times the optimal makespan.

Proof: It is easy to see that Randomized-Algorithm1 can compute the estimate sketch of the

schedule ŜKS = {td : 1 ≤ d ≤ h}. Now we will show that with high probability all the jobs with

depth d can be feasibly scheduled during the interval [td−1, td) for 1 ≤ d ≤ h where t0 = 0. It
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suffices to prove that with high probability all the jobs from the input instance I with depth d can

be scheduled within an interval of length ⌊ Âd

1−δ ⌋+ c+ ⌊3τ(n, h, c)⌋ · k · c. Since the instance Iround is

obtained from I by rounding up the processing times, all we need to prove is that the jobs from the

instance Iround with depth d can be scheduled within an interval of length ⌊ Âd

1−δ ⌋+c+⌊3τ(n, h, c)⌋·k·c.

As the proof of Lemma 20, we split the jobs in Iround into two parts: those (d, u)-groups that are

in Ibig, and those (d, u)-groups that are not in Ibig. For the jobs from the former, with probability

at least 9
10 , all (d, u)-group in Ibig are also included in Î and for each (d, u)-group of this type, we

have nd,u ≥ 3τ(n, h, c) and nd,u ≤
êd,u
1−δ . Thus all these jobs at depth d can be feasibly scheduled

during the interval of length

⌊

1
m

k
∑

u=0

(nd,u · rpu)

⌋

+ c ≤

⌊

1
m

k
∑

u=0

(êd,u·rpu)
(1−δ)

⌋

+ c =
⌊

Âd

1−δ

⌋

+ c.

For the jobs from the latter (d, u)-groups, we have nd,u < 3τ(n, h, c), and thus they can be feasibly

scheduled on a single machine during an interval of length ⌊3τ(n, h, c)⌋ · k · c. Therefore, combining

both types of jobs, we have that with probability at least 9
10 all the jobs with depth d from Iround

can be scheduled within a time interval of length ⌊ Âd

1−δ ⌋+ c+ ⌊3τ(n, h, c)⌋ · c · k. Since the jobs in

Iround are rounded up from those in I, the jobs depth d from I can also be scheduled within the

same interval length.

Finally, it is easy to see that the Algorithm SketchToSchedule generates a feasible schedule of

all the jobs with depth d from I during the interval [td−1, td). The makespan of the final schedule

is at most

th =

h
∑

d=1

(⌊

Âd

1−δ

⌋

+ c+ ⌊3τ(n, h, c)⌋ · k · c
)

≤
h
∑

d=1

(

Âd

1−δ

)

+ h · c+ ⌊3τ(n, h, c)⌋ · h · k · c
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Note 3τ(n, h, c) · h · k · c ≤ 8δn
m , and h · c ≤ δn

m when m ≤ nǫ
20h·c . Thus,

th ≤
h
∑

d=1

(

Âd

1− δ

)

+ δn
m + 8δn

m

≤
1

1− δ

h
∑

d=1

(

Âd

)

+ 9δn
m

≤
1

1− δ

h
∑

d=1

(

Âd

)

+ 9δC∗
max(I) by C∗

max(I) ≥
n
m

≤
Â

1− δ
+ 9δC∗

max(I)

≤
(1 + 20δ)

1− δ
C∗
max(I) + 9δC∗

max(I) by Theorem 22

≤ (1 + 25δ)C∗
max(I) + 9δC∗

max(I) by δ = ǫ
20 < 1

20

≤ (1 + 2ǫ)C∗
max(I).

For P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax, we let the estimate sketch of a schedule be

ŜKS = {td : 1 ≤ d ≤ h} where td =
∑d

i=1(⌊
Âd

1−δ ⌋ + cw0 + ⌊3τ(n, h, c)⌋ · k · cw0 + ⌊δw0⌋) for all

1 ≤ d ≤ h. For this sketch of the schedule, we can get similar conclusion.

Theorem 32. For the problem P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax, given any 0 < ǫ < 1,

and m ≤ n·α·ǫ
20c2·h

, Randomized-Algorithm2 can generate an estimated sketch of the schedule ŜKS,

and with probability at least 9
10 , Algorithm SketchToSchedule can produce based on ŜKS a feasible

schedule with the makespan at most (1 + 2ǫ) times the optimal makespan.

Proof: It is easy to see that Randomized-Algorithm2 can generate the estimated sketch of a

schedule ŜKS. Now we will show that with high probability all the jobs with depth d can be

feasibly scheduled during the interval [td−1, td) for 1 ≤ d ≤ h where t0 = 0. As the proof of

Theorem 31, it suffices to prove that with high probability the jobs from the instance Iround with

depth d can be scheduled within an interval of length ⌊ Âd

1−δ ⌋+ cw0 + ⌊3τ(n, h, c)⌋ · k · cw0 + ⌊δw0⌋.

For this problem, the jobs in Iround can be split into three types: (1) (d, u)-groups that are in

Ibig, (2) (d, u)-groups corresponding to (d, u, nd,u) where nd,u < 3τ(n, h, c) for all 1 ≤ d ≤ h and

1 ≤ u ≤ k and the processing times of all jobs are greater than δw0

n , and (3) jobs whose processing
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times are no more than δw0

n . We will bound the interval length needed to schedule jobs from each

type. For type (1) jobs, as the proof in Theorem 27, with probability at least 9
10 , all (d, u)-group

in Ibig are also included in Î and for each (d, u)-group of this type, we have nd,u ≥ 3τ(n, h, c) and

nd,u ≤
êd,u
1−δ . Thus all these jobs at depth d can be feasibly scheduled during the interval of length

⌊

1
m

k
∑

u=0

(nd,u · rpu)

⌋

+ cw0 ≤

⌊

1
m

k
∑

u=0

(êd,u·rpu)
(1−δ)

⌋

+ cw0 =
⌊

Âd

1−δ

⌋

+ cw0.

For type (2) jobs, it is easy to see that all the jobs at depth d can be feasibly scheduled during an

interval of length ⌊3τ(n, h, c)⌋ · cw0 · k; For type (3) jobs, since the processing times are integer,

the processing time of each job must be at most ⌊ δw0

n ⌋. There are at most n such jobs at each

depth, thus they can be feasibly scheduled during an interval of length n⌊ δw0

n ⌋ = ⌊δw0⌋. Adding

all these together, with probability at least 9
10 all jobs at depth d from Iround can be scheduled into

an interval of length

⌊ Âd

1−δ⌋+ cw0 + ⌊3τ(n, h, c)⌋ · k · cw0 + ⌊δw0⌋.

Similar as before, we can use Algorithm SketchToSchedule to generate a feasible schedule with the

makespan at most

th =
h
∑

d=1

(⌊ Âd

1−δ ⌋+ cw0 + ⌊3τ(n, h, c)⌋ · k · cw0 + ⌊δw0⌋)

≤

(

h
∑

d=1

Âd

1−δ

)

+ h · (cw0 + 3τ(n, h, c) · k · cw0 + δw0)

≤

(

h
∑

d=1

Âd

1−δ

)

+ (1 + δ)h · cw0 + 3τ(n, h, c) · h · k · cw0

By line 13 of Randomized-Algorithm2, 3τ(n, h, c)·h·k ·cw0 ≤ 8δαn·w0

cm which implies h·cw0 ≤
δαn·w0

cm .

With m ≤ n·α·ǫ
20c2·h

, we get th ≤
(

∑h
d=1

Âd

1−δ

)

+ (1 + δ) δαn·w0

cm + 8δαn·w0

cm . Since C∗
max(I) ≥

αn·w0

cm , we

have th ≤
(

∑h
d=1

Âd

1−δ

)

+ 10δC∗
max(I) ≤

Â
1−δ + 10δC∗

max(I). By Theorem 22, and δ = ǫ
20 , we have

th ≤
(1 + 20δ)

1− δ
C∗
max(I) + 10δC∗

max(I) ≤ (1 + 2ǫ)C∗
max.

This completes the proof.
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5. Conclusions

In this work, we studied the parallel machine precedence constrained scheduling problems P |

prec, dpj ≤ h, pmax ≤ c · pmin | Cmax and P | prec, dpj ≤ h, p[n] ≤ c · p[(1−α)n)] | Cmax. We focused

on two types of computing paradigms, sublinear space algorithms and sublinear time algorithms,

which are inspired by the boost of multitude of data in manufacturing and service industry. It is

worth mentioning that in spite of the inapproximability result that there does not exist a poly-

nomial time approximation algorithm with approximation ratio better than 4
3 unless P=NP, our

algorithms imply that both problems admit approximation schemes if m satisfies certain condition.

Moreover, our algorithms for precedence constrained problems also imply the sublinear approxima-

tion algorithms for the popular load balancing problem where jobs are independent.

Our work not only provides an algorithmic solutions to the studied problem under big data

model, but also provide a methodological framework for designing sublinear approximation algo-

rithms that can be used for solving other scheduling problems. In particular, besides outputting

the approximate value of the optimal makespan, we introduced the concept of “the sketch of a

schedule” to cater the need of generating a concrete schedule which approximates the optimal

schedule. For our studied problems, it is also interesting to design sublinear approximation al-

gorithms for other various precedence constraints and other performance criteria including total

completion time, maximum tardiness, etc.

References
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