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ABSTRACT

Franke, Craig M., Distributed Semantic Web Data Management in HBase and MySQL Cluster. 

Master of Science (MS), May, 2011, 36 pp., 3 tables, 11 figures, references, 34 titles.

Various computing and data resources on the Web are being enhanced with machine-

interpretable semantic descriptions to facilitate better search, discovery and integration. This 

interconnected metadata constitutes the Semantic Web. Efficient management of Semantic Web 

data, expressed using the W3C's Resource Description Framework (RDF), is crucial for 

supporting new data-intensive, semantics-enabled applications. In this work, we study and 

compare two approaches to distributed RDF data management based on emerging cloud 

computing technologies and traditional relational database clustering technologies. In particular, 

we design distributed RDF data storage and querying schemes for HBase and MySQL Cluster 

and conduct an empirical comparison of these approaches on a cluster of commodity machines 

using datasets and queries from the Third Provenance Challenge and Lehigh University 

Benchmark. Our study reveals interesting patterns in query evaluation, shows that our algorithms 

are promising, and suggests that cloud computing has a great potential for scalable Semantic 

Web data management.
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CHAPTER I

INTRODUCTION

The World Wide Web Consortium (W3C) has recommended and standardized a number 

of principles, languages, frameworks and best practices to interconnect various metadata into a 

next-generation web – the Semantic Web [1], [2].  The W3C’s metadata acquisition languages 

include Resource Description Framework (RDF) [3], [4], RDF in attributes (RDFa) [5], RDF 

Schema (RDFS) [6], and Web Ontology Language (OWL) [7].  Government, academia, and 

industry actively embrace these technologies for capturing and sharing metadata on the Semantic 

Web.  Just to name a few examples, oeGOV is making and publishing OWL ontologies for e-

Government, U.S. census data is being published in RDF, bioinformaticians maintain the 

Universal Protein Resource (UniProt) in RDF, geoscientists publish worldwide geographical 

RDF database GeoNames, the largest electronics retailer in the U.S., BestBuy, publishes its full 

catalog in RDF, the largest social networking provider in the U.S., Facebook, embeds metadata 

in its webpages using RDFa, and the services computing community enhances existing Web 

services with semantic annotations using vocabularies, such as Semantic Markup for Web 

Services (OWL-S), Web Service Semantics (WSDL-S), and Semantic Web Services Ontology 

(SWSO).

The RDF data model is a directed, labelled graph that can also be serialized and viewed 

as a set of triples.  A running example in this paper includes 10 triples that describe the authors 

using the Lehigh University Benchmark (LUBM) vocabulary [8] as shown in Figure 1.  Each 
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triple consists of a subject, predicate, and object and defines a relationship between a subject and 

an object. In the figure, <> and “” denote resource identifiers and literals of some data type, 

respectively.  For example, the first three triples state that a resource with identifier C is a 

Student, has name Craig and is a member of IEEE.  This sample dataset can be queried using 

SPARQL [9] – a standard query language for RDF. SPARQL uses triple patterns and graph 

patterns that are matched over RDF data.  For example, query Q14 from LUBM contains one 

triple pattern ?X <type> <UndergraduateStudent> that returns all undergraduate student 

identifiers as bindings of variable ?X.  More details on SPARQL features and semantics can be 

found in [9], [10].

<C> <type> <Student>
<C> <name> "Craig"
<C> <memberOf> <IEEE>
<S> <type> <Student>
<S> <name> "Sam"
<S> <memberOf> <ACM>
<A> <type> <Faculty>
<A> <name> "Artem"
<A> <memberOf> <IEEE>
<A> <memberOf> <ACM>

Figure 1: Sample RDF triples.

With the rapid growth of the Semantic Web and widespread use of RDF as the primary 

language for metadata, efficient management of RDF data will become crucial for supporting 

new semantics-enabled applications in various domains.  Many researchers have proposed using 

relational databases to store and query large RDF datasets.  Such systems, called relational RDF 

databases or relational RDF stores [11], are now frequently in production.  More recently, 

distributed technologies that are often used in cloud computing, such as Hadoop [12] and Hbase 

[13], are being explored for distributed and scalable RDF data management [14], [15].
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To our best knowledge, this work provides the first performance comparison of the two worlds 

using our design and algorithmic solutions for storing and querying RDF data in HBase and 

MySQL Cluster.

The main contributions of our work are: (i) a novel database schema design for storing 

RDF data in HBase, (ii) efficient algorithms for SPARQL triple and basic graph pattern matching 

in HBase according to our schema, (iii) efficient SPARQL-to-SQL translation algorithm that 

results in flat SQL queries over our schema in MySQL Cluster, and (iv) empirical comparison of 

the proposed HBase and MySQL Cluster approaches for efficient and scalable storing and 

querying of Semantic Web data.  Our work reveals interesting patterns in query evaluation, 

shows that our algorithms are promising, and suggests that cloud computing has a great potential 

for scalable Semantic Web data management.

The organization of this work is as follows. Related work is discussed in Chapter 2.  Our 

design and algorithms for distributed RDF data storage and querying in HBase and MySQL 

Cluster are presented in Chapter 3 and 4, respectively.  The performance study of the two 

approaches using datasets and queries from the Third Provenance Challenge and Lehigh 

University Benchmark is reported in Chapter 5.  Finally, our concluding remarks are given in 

Chapter 6.
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CHAPTER II

RELATED WORK

Besides Hbase [13], which is an open-source implementation of Google’s Bigtable [16], 

there are multiple projects under the Apache umbrella that focus on distributed computing, 

including Hadoop, Cassandra, Hive, Pig, and CouchDB.  Hadoop implements a MapReduce 

software framework and a distributed file system.  Cassandra blends a fully distributed design 

with a column-oriented storage model and supports MapReduce as one of its features.  Hive 

deals with data warehousing on top of Hadoop and provides its own Hive QL query language. 

Pig is geared towards analyzing large datasets through use of its high-level Pig Latin language 

for expressing data analysis programs, which are then turned into MapReduce jobs.  CouchDB is 

a distributed, document-oriented, non-relational database that supports incremental MapReduce 

queries written in JavaScript.  Along the same lines, other projects in academia and industry 

include Cheetah [17], Hadoop++ [18], G-Store [19], HadoopDB [20], and a distributed B-tree 

storage scheme [21].

Several related works on distributed RDF data management are briefly discussed in the 

following.  Techniques for evaluating SPARQL basic graph patterns using MapReduce are 

presented in [14] and [22].  Efficient approaches to analytical query processing and distributed 

reasoning on RDF graphs in MapReduce-based systems are proposed in [23] and [24], 

respectively.  RDF query processing in peer-to-peer environments is studied in [25] and [26], and 

mediation techniques for federated querying of distributed RDF sources are reported in [27] and 
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[28].  Use of HBase for text indexing is described in [29].  While the SPIDER system [30] that 

uses HBase for RDF query processing and the HBase extension for Jena [31] are announced, no 

details are reported.  Finally, previous work [15] presents our initial findings on RDF data 

management in HBase. This work, when compared to [15] proposes a new, more effective HBase 

database schema design, more efficient algorithms for SPARQL triple and basic graph pattern 

matching, and an empirical comparison with a distributed relational RDF database.  Our 

experimental comparison with [15] (not reported in the thesis) showed several orders of 

magnitude speedup for some queries and substantial improvements in scalability.
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CHAPTER III

DISTRIBUTED RDF DATA STORAGE AND QUERYING IN HBASE

HBase stores data in tables that can be described as sparse multidimensional sorted maps 

and are structurally different from relations found in conventional relational databases.  An 

HBase table (hereafter “table” for short) stores data rows that are sorted based on the row keys. 

Each row has a unique row key and an arbitrary number of columns, such that columns in two 

distinct rows do not have to be the same.  A full column name (hereafter “column” for short) 

consists of a column family and a column qualifier (e.g., family:qualifier), where column 

families are usually specified at the time of table creation and their number does not change and 

column qualifiers are dynamically added or deleted as needed.  A column of a given row, which 

we denote as table cell, can store a list of timestamp-value pairs, where timestamps are unique in 

the cell scope and values may contain duplicates.  Rows in a table can be distributed over 

different machines in an HBase cluster and searched using two basic operations: (1) table scan 

and (2) retrieval of row data based on a given row key and, if available, columns and timestamps. 

Given that the table scan access path is inefficient for large datasets, the row key-based retrieval 

is the best feasible choice.

The sparse nature of tables makes them an attractive storage alternative for RDF data. 

RDF graphs are usually sparse as well: different resources are annotated with different properties 

and some annotations may not be stated explicitly due to inference.  To support efficient retrieval 

of RDF data from tables in HBase, the basic querying constructs of SPARQL, such as triple 
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patterns, should be considered.  At the very minimum, the database should support retrieval of 

RDF triples based on values of their subjects, predicates, objects, and their arbitrary 

combination.

Tsp

s p:type p:name p:memberOf ...
 <C> {<Student>} {"Craig"} {<IEEE>} ...
 <S> {<Student>} {"Sam"} {<ACM>} ...
 <A> {<Faculty>} {"Artem"} {<IEEE>,<ACM>} ...

Top

o p:type p:name p:memberOf ...
 <Student> {<C>,<S>} ...
 <Faculty> {<A>} ...
 "Craig" {<C>} ...
 "Sam" {<S>} ...
 "Artem" {<A>} ...
 <IEEE> {<C>,<A>} ...
 <ACM> {<S>,<A>} ...

Figure 2: Storage schema and sample instance in HBase.

We propose to use a database schema with two tables to store RDF triples as shown in 

Figure 2.  Table Tsp stores triple subjects as row keys, triple predicates as column names and 

triple objects as cell values.  Table Top stores triple objects as row keys, triple predicates as 

column names and triple subjects as cell values.  Figure 2 shows a two-dimensional graphical 

representation of these tables with our sample RDF triples (see Figure 1) stored. In the figure, s 

and o denote row keys rather than columns; type, name, and memberOf are column qualifiers that 

belong to the same column family p; { } denote sets of cell values with timestamps omitted. 

More precisely, the structure of the rows can be shown using JavaScript Object Notation (JSON) 

as shown in Figure 3.
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//the first row of  Tsp

<C>: {
 p: {
   type:      { t1: <Student> },
   name:      { t2: "Craig" },
   memberOf:  { t3: <IEEE> }
 }
}

//the first row of  Top

<Student>: {
 p: {
   type:      { t4: <C>, 
                t5: <S> }
 }
}

Figure 3: Structure of Rows in Javascript Object Notation.

In the first row of Tsp, <C> is a row key, p is a column family, type, name, and memberOf 

are column qualifiers, t1, t2, and t3 are timestamps, and the rest are values.  The structure of the 

first row of  Top can be interpreted in a similar way but it should be noted that, while the 

graphical representation in Figure 2 shows blank values for some table cells, the row contains no 

information about such values or the respective columns.  This illustrates the sparse storage 

nature of HBase tables and shows that no space is wasted.

The proposed schema requires that RDF data is stored twice - replication that contributes 

to the robustness of the system. Tables Tsp and Top can be used to efficiently retrieve triples with 

known subjects and objects, respectively. Retrieval of triples based on a predicate value requires 

a scan of one of the tables, which may not be efficient. To try to remedy this problem, we could 

have created a table, i.e., Tps or Tpo, with predicates as row keys and subjects or objects as 

columns.  However, such a solution can only provide marginal improvements, since the number 

of predicates in an ontology is usually fixed and relatively small, which implies that this new 

table can contain only a small number of large rows (one per distinct predicate) and retrieval of 
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any individual row is still expensive.

For HBase to be able to evaluate SPARQL queries, we design three functions that deal 

with triple patterns and basic graph patterns.

Our first function, matchTP-T, allows matching of a triple pattern over a triple and is 

outlined in Figure 4.  It is a general-purpose function that depends on neither our storage schema 

nor HBase; it also appeared in [15].  matchTP-T takes a triple pattern tp and a triple t and returns 

true if they match or false otherwise. To check that tp matches t, several conditions must be 

satisfied: (1) a variable can match anything, (2) a URI or literal must match itself, and (3) a 

variable that occurs more than once must match the same term for all occurrences.

Algorithm matchTP-T: Matching a triple pattern over a triple
1: function matchTP-T
2: input: triple pattern tp = (sp, pp, op), triple t = (s, p, o)
3: output: true or false
4: if (tp.sp is a variable  ∨ tp.sp = t.s)  (∧ tp.pp is a variable  ∨ tp.pp = 

t.p)  (∧ tp.op is a variable  ∨ tp.op = t.o) then
5: if tp.sp = tp.pp  ∧ t.s ≠ t.p then
6: return false
7: end if
8: if tp.sp = tp.op  ∧ t.s ≠ t.o then
9: return false

10: end if
11: if tp.pp = tp.op ∧t.p ≠ t.o then
12: return false
13: end if
14: return true
15: end if

16: return false
17: end function

Figure 4: Algorithm matchTP-T.

Function matchTP-DB as outlined in Figure 5 is used to match a triple pattern tp in an 

HBase database DB according to our storage schema with two tables.  The output of this function 

is a bag (multi-set) B that holds all matching triples in the database.  
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Algorithm matchTP-DB: Matching a triple pattern over a database
1: function matchTP-DB
2: input: triple pattern tp = (sp, pp, op), database DB = {Tsp, Top}
3: output: bag of triples B(sp,pp,op) = {t|t is in DB  ∧ t matches tp}
4: B = ø
5: if tp.sp is not a variable then
6: if tp.pp is not a variable then
7: Retrieve triples into bag B from Tsp where row key s = tp.sp 

using column tp.pp
8: else
9: Retrieve triples into bag B from Tsp where row key s = tp.sp 

using all columns
10: end if
11: Remove any triple t  ∈ B from B if matchTP-T(tp, t) = false
12: return B
13: end if

14: if tp.op is not a variable then
15: if tp.pp is not a variable then
16: Retrieve triples into bag B from Top where row key o = tp.op 

using column tp.pp
17: else
18: Retrieve triples into bag B from Top where row key o = tp.op 

using all columns
19: end if
20: Remove any triple t  ∈ B from B if matchTP-T(tp, t) = false
21: return B
22: end if

23: if tp.pp is not a variable then
24: Retrieve triples into bag B from Tsp (or Top) using column tp.pp
25: else
26: Retrieve triples into bag B from Tsp (or Top) using all columns
27: end if
28: Remove any triple t  ∈ B from B if matchTP-T(tp, t) = false
29: return B
30: end function

Figure 5: Algorithm matchTP-DB.

The algorithm deals with three disjoint cases. First, if tp’s subject pattern is not a variable, the 

function retrieves matching triples from table Tsp, such that a row with key tp.sp is accessed.  If 

tp.pp is not a variable, only values in the column with qualifier tp.pp are retrieved for this row; 
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otherwise, all columns must be retrieved.  Triples are reconstructed from row keys, column 

qualifiers, and cell values and are placed into B.  Since tp.op may not be a variable or it may be a 

variable that occurs twice in the triple pattern, matchTP-T is applied on all the triples to 

eliminate non-matching ones.  After this filtering, triples in B are returned.  Second, if tp’s object 

pattern is not a variable, the function retrieves matching triples from table Top using a similar 

strategy.  Finally, when both tp.sp and tp.op are variables, one of the tables must be scanned to 

retrieve all rows.  If tp.pp is not a variable, non-matching columns are discarded; otherwise, 

values in all columns are used.

Our last function matchBGP-DB is outlined in Figure 7.  It matches a SPARQL basic 

graph pattern bgp that consists of a set of triple patterns tp1, tp2, ..., tpn  over an HBase database 

and returns a relation with a bag B of graphs constituted by matching triples.  The algorithm 

starts by ordering triple patterns in bgp using two criteria: (1) triple patterns that yield a smaller 

result should be evaluated first to decrease a number of iterations and (2) triple patterns that have 

a shared variable with preceding triple patterns should be given a preference over triple patterns 

with no shared variables to avoid unnecessary Cartesian products.  As an example, consider 

Figure 6, which is a query from LUBM [8] and its reordered version.  
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// original query Q7 from LUBM
tp1: ? X <type> <Student> .
tp2: ? Y <type> <Course> .
tp3: <http://...Professor0> <teacherOf> ? Y .
tp4: ? X <takesCourse> ? Y .

// reordered basic graph pattern
tp3: <http://...Professor0> <teacherOf> ? Y .
tp2: ? Y <type> <Course> .
tp4: ? X <takesCourse> ? Y .
tp1: ? X <type> <Student> .

Figure 6: Original and reordered query 7 from LUBM

The order in the original query does not satisfy the desired criteria:  tp1 yields a large result set 

with all students across all universities in a dataset; tp2 has no shared variables with tp1 and a 

memory-expensive Cartesian product must be computed between tp1’s and tp2’s results.  The 

reordered query can save both memory and network transfer time: not only is tp3, the triple 

pattern with the smallest result, placed at the first position, but the Cartesian product is also 

eliminated. 

Next, the algorithm evaluates the first triple pattern in ordered bgp using matchTP-DB. If 

the result in B is empty, the algorithm returns an empty result without evaluating subsequent 

triple patterns. Otherwise, matchBGP-DB iterates over other triple patterns computing either 

joins on shared variables or Cartesian products if no shared variables exist. Each join resembles 

the index-nested-loops join strategy known in relational databases. Instead of directly evaluating 

triple pattern tpi using matchTP-DB, shared variables are first substituted with their bindings 

found in B and the resulting triple patterns tp'  in set TP are evaluated using matchTP-DB. If tp' 

yields a non-empty result, triples in B' are concatenated with the corresponding triples in B; 

otherwise, previous solutions from B whose variable bindings were used in variable substitution 

to obtain tp' are removed as the join condition has failed. 
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Algorithm matchBGP-DB: Matching a basic graph pattern over a 
database

1: function matchBGP-DB
2: input: basic graph pattern bgp = {tp1, tp2, …, tpn-1, tpn} and 

n ≥ 1, database DB = {Tsp, Top}
3: output: bag of tuples B(tp1.sp,tp1.pp,tp1.op,tp2.sp,...) = {g|g is a graph in DB 

 ∧ g matches bgp}
4: B = ø
5: Order triple patterns in bgp, such that triple patterns that yield a 

smaller result and triple patterns that have a shared vairable with 
preceding triple patterns should be evaluated first.

6: Let ordered bgp = (tp1, tp2, …, tpn)
7: B = matchTP-DB(tp1, DB)
8: if B = ø then return B end if
9: for each tpi in (tp2, … tpn) do

10: if tpi has shared variables with tpi-1, … tp1 then
11: Let TP be a set of triple patterns obtained by substituting 

shared variables with their respective bindings from B
12: for each tp' in TP do
13: B' = matchTP-DB(tp', DB)
14: if B' ≠ ø then
15: Add triples in B' to B by concatenating each triple t' 

 ∈ B' with every tuple t  ∈ B if t's bindings were used 
in variable substitution to obtain tp'

16: else
17: Remove any tuple t from B if t's bindings were used 

in variable substitution to obtain tp'
18: if B = ø then return B end if
19: end if
20: end for
21: else
22: B' = matchTP-DB(tpi, DB)
23: Compute Cartesian product of B and B', i.e B = B × B'
24: end if
25: end for
26: return B
27: end function

Figure 7: Algorithm matchBGP-DB.

Other SPARQL constructs, such as projection (SELECT), filtering (FILTER), alternative 

graph patterns (UNION), and optional graph patterns (OPTIONAL) can be incorporated in the 

presented algorithmic framework, but is out of this work's scope.
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CHAPTER IV

DISTRIBUTED RDF DATA STORAGE AND QUERYING IN MYSQL CLUSTER

Relational RDF databases use several approaches to database schema generation that 

include schema-oblivious, schema-aware, data-driven, and hybrid strategies [10].  These 

approaches feature various database relations, such as property, class, class-subject, class-object, 

and clustered property tables.  In this work, we use a schema-oblivious approach that employs a 

generic schema with a single table T(s,p,o), where columns s, p, and o store triple subjects, 

predicates, and objects, respectively.  Figure 8 shows table T with our sample RDF triples (see 

Figure 1) stored.

Our rationale for choosing this schema is threefold.  First, it can support ontology 

evolution with no schema modifications.  The schema proposed for HBase is also very flexible 

as only column qualifiers may dynamically change and such changes are performed on the row 

level.  Second, most mentioned tables employed by relational RDF databases can be viewed as a 

result of horizontal partitioning of table T.  However, partitioning is already performed by 

MySQL Cluster automatically.  Finally, this schema allows lossless storage and is easy to 

implement.  In particular, it greatly simplifies SPARQL-to-SQL translation that is required to 

query stored RDF data.
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T
s p o
 <C> <type> <Student>
 <C> <name> "Craig"
 <C> <memberOf> <IEEE>
 <S> <type> <Student>
 <S> <name> "Sam"
 <S> <memberOf> <ACM>
 <A> <type> <Faculty>
 <A> <name> "Artem"
 <A> <memberOf> <IEEE>
 <A> <memberOf> <ACM>

Figure 8: Storage schema and sample instance in MySQL Cluster.

To execute SPARQL queries over our database schema in MySQL Cluster, we present a 

SPARQL-to-SQL query translation algorithm for basic graph patterns.  The algorithm is based on 

previous work [10] on semantics-preserving SPARQL-to-SQL translation, but it is optimized to 

generate flat SQL queries.  Query flattening (vs. nesting) removes a concern of triple pattern 

reordering in basic graph patterns since a relational query optimizer is capable of selecting a 

“good” join execution order automatically.

The BGPtoFlatSQL function is outlined in Figure 9.  It translates a SPARQL basic graph 

pattern bgp that consists of a set of triple patterns tp1, tp2, ..., tpn into an equivalent flat SQL 

query that can be executed over a MySQL Cluster database with our schema.  BGPtoFlatSQL 

constructs from, where, and select clauses of an SQL query as follows.  For each triple pattern in 

bgp, a unique table alias is assigned and table T with this alias is appended to the from clause. 

The algorithm then computes an inverted index on all variables in bgp, such that each distinct 

variable is associated with attributes in the respective tables from the from clause. The where 

clause is first constructed to ensure that any non-variables in bgp are restricted to their values 

(e.g., literals or identifiers). 
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Algorithm BGPtoFlatSQL: Translation of SPARQL basic graph 
patterns to flat SQL queries

1: function BGPtoFlatSQL
2: input: basic graph pattern bgp = {tp1, tp2, …, tpn-1, tpn} and 

n ≥ 1, database DB = {T }
3: output: flat SQL query
4: Assign a unique alias ai to each triple pattern tpi  ∈ bgp
5: select = “”; from = “”; where = “”
6: // Construct the SQL From clause:
7: for each tpi  ∈ bgp do
8: from += “T $ai, ”
9: end for

10: // Construct an inverted index (hash) h on variables in bgp:
11: for each tpi  bgp∈  do
12: for each variable ?v found in tpi do
13: Let p be “s”, “p”, or “o” if ?v is at the subject, predicate, or 

object position, respectively, in tpi

14: h(?v) = h(?v)  {“∪ $ai..$p”}
15: end for
16: end for
17: // Construct the SQL Where clause:
18: for each tpi  ∈ bgp do
19: for each instace or literal l found in tpi  do
20: Let p be “s”, “p”, or “o” if l is at the subject, predicate, or 

object position, respectively, in tpi

21: where += “$ai..$p= '$l' And ”
22: end for
23: end for
24: for each distinct variable ?v found in bgp and |h(?v)| > 1 do
25: Let x  ∈ h(?v)
26: for each y  ∈ h(?v) and y ≠ x do
27: where += “$x = $y And”
28: end for
29: end for
30: // Construct the SQL Select clause:
31: for each distinct variable ?v found in bgp do
32: Let x  ∈ h(?v)
33: Let m is the name of variable ?v
34: Select += “$x As $m, ”
35: end for
36: return “Select $select From $from Where $where”

37: end function

Figure 9: Algorithm BGPtoFlatSQL.
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The inverted index is then used to append join conditions into the where clause, such that all 

attributes that correspond to the same variable must be equal.  Finally, the select clause is 

generated to include attributes that correspond to every distinct variable in bgp, with attributes 

being renamed as variable names.  Figure 10 illustrates the result of a translation performed with 

BGPtoFlatSQL:

//input SPARQL query Q7 from LUBM
tp1: ?X <type> <Student> .
tp2: ?Y <type> <Course> .
tp3: <http://...Professor0> <teacherOf> ?Y .
tp4: ?X <takesCourse> ?Y .

//output equivalent SQL query
Select tp1.s As X,tp2.s As Y
From T tp1, T tp2, T tp3, T tp4

Where tp1.p = ’<type>’ And
      tp1.o = ’<Student>’ And
      tp2.p = ’<type>’ And
      tp2.o = ’<Course>’ And
      tp3.s = ’<http://...Professor0>’ And
      tp3.p = ’<teacherOf>’ And
      tp4.p = ’<takesCourse>’ And
      tp1.s = tp4.s And tp2.s = tp3.o And
      tp2.s = tp4.o

Figure 10: Translation of SPARQL to SQL with BGPtoFlatSQL

Translation of other SPARQL constructs into SQL is out of this work's scope; details can 

be found in [10].
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CHAPTER V

PERFORMANCE STUDY

This chapter reports our empirical comparison of the proposed approaches to distributed 

Semantic Web data storage and querying in HBase and MySQL Cluster.

Experimental Setup

Hardware

Our experiments used nine commodity machines with identical hardware. Each machine 

had a late-model 3.0 GHz 64-bit Pentium 4 processor, 2 GB DDR2-533 RAM, 80 GB 7200 rpm 

Serial ATA hard drive and two (on-board and add-on) Ethernet adapters.  The machines were 

networked together via their add-on gigabit Ethernet adapters connected to a Dell PowerConnect 

2724 gigabit Ethernet switch and configured with static, non-routable IP addresses.  The machine 

functioning as the master in the cluster utilized its on-board Ethernet adapter to function as a 

network gateway for accessing the cluster via SSH.  The hard drives on each machine had one 

partition of 64 GB dedicated to running the experiments.  The machines were all running 64-bit 

Debian Linux 5.0.7 and Oracle JDK 6.  Experiment code was executed on the master machine 

for both HBase and MySQL Cluster.

Hbase

Hadoop 0.20.2, with a modified core library, and HBase 0.90 were used.  The installation 

on each machine was configured to use the fully-distributed mode.  The master machine ran the 
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Hadoop namenode and HBase master server.  The other eight machines ran the Hadoop datanode 

and HBase region server/zookeeper.  The Hadoop and HBase configuration of each machine 

began with the minimal amount of configuration information to construct the cluster while 

accepting all other configuration values as default.  Minor changes to the default configuration 

beyond this for stability included setting each block of data to replicate two times and increasing 

the HBase max heap size to 1.2 GB.

MySQL Cluster

MySQL Cluster 7.1.9a was used.  The cluster used a modified configuration based on the 

MySQL Cluster Quick Start Guide with increased memory available for use by NDB data nodes. 

The master machine ran the NDB management server and MySQL server components while the 

other eight machines ran as NDB data nodes.  The machines were split into four node groups 

consisting of two replicas per node group, with each machine representing a replica.  Experiment 

code utilized JDBC driver 5.1.14 for MySQL.

Our implementation

Our algorithms were implemented in Java and the experiments were conducted using 

Bash shell scripts to execute the Java class files and store the results in an automated and 

repeatable manner.  These shell scripts were responsible for loading datasets of varying sizes and 

executing queries multiple times.  Both HBase and MySQL Cluster experiments utilized near-

identical shell scripts.

Datasets and Queries

The experiments used datasets from the Third Provenance Challenge (PC3) [32] and 

Lehigh University Benchmark (LUBM) [8].  PC3 employed the Load Workflow that was a 

variation of a workflow used in the Pan-STARRS project.  Via simulation, a number of scientific 
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workflow provenance documents for multiple workflow runs was generated and represented 

using Tupelo’s OWL vocabulary available from the Open Provenance Model website [33].  Each 

workflow execution generated approximately 700 RDF triples.  Table 1 indicates the 

characteristics of each PC3 dataset.

 Dataset # of workflow # of RDF Disk space
runs triples

 D1 1 700 86 KB
 D2 10 7,000 860 KB
 D3 100 70,000 8.7 MB
 D4 1,000 700,000 88 MB
 D5 10,000 7,000,000 895 MB
 D6 100,000 70,000,000 9 GB

Table 1: PC3 Dataset Characteristics.

The three PC3 SPARQL queries utilized for the experiments can be found in previous work [15]. 

LUBM is a popular benchmark for RDF databases that includes the OWL university ontology, 

RDF data generator, and 14 test queries.  Table 2 indicates the characteristics of each generated 

LUBM dataset.  

 Dataset # of # of RDF Disk space
universities triples

 L1 1 38,600 4.4 MB
 L2 5 563,000 68 MB
 L3 10 1,211,000 146 MB
 L4 30 3,908,000 477 MB
 L5 50 6,593,000 807 MB
 L6 70 9,308,000 1.1 GB
 L7 90 11,964,000 1.5 GB
 L8 110 14,649,000 1.8 GB
 L9 200 26,635,000 3.3 GB
 L10 400 53,301,000 6.6 GB
 L11 600 80,043,000 9.9 GB

 Table 2: LUBM Dataset Characteristics.
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The LUBM queries expressed in a KIF-like language can be found at the LUBM website [34]; 

for the purpose of our experiments, they were rewritten in SPARQL.  Since our experiments 

tested query performance and not reasoning ability, each generated LUBM dataset was 

augmented with additional triples needed to produce the sample query results supplied by 

LUBM.

Data Ingest Performance

Multiple data loading methods were evaluated under both HBase and MySQL Cluster, 

including statement-by-statement, batch, and bulk load methods.  Figure 11 only reports the best 

performers for each system.  In particular, batch data loading in the chunks of 1,000 triples at a 

time was used in HBase and bulk loading was used in MySQL Cluster.  Bulk loading is a new 

feature to HBase 0.90; it involved somewhat complicated formatting of the data, placement of 

the data in HDFS, and use of the map-reduce framework to convert the plain text data into the 

HBase binary data format.  As a result, our simpler batch loading alternative implemented in 

Java showed better performance.  Bulk loading in MySQL Cluster relied on the LOAD DATA 

INFILE statement that loaded large data files converted from the N-Triple format to the format 

preferred by MySQL.

The load times of PC3 and LUBM datasets are reported in Figure 11 with detailed data in 

the appendix.  For the given data and index memory configuration, MySQL Cluster was able to 

load datasets up to D5 and L8. HBase successfully loaded all the datasets.  MySQL Cluster 

initially demonstrated a significant advantage over HBase, however this performance advantage 

decreased with dataset size growth. For example, MySQL Cluster was 3 times faster than HBase 

on L1 and only 1.5 times faster on L8.  It is possible that, with larger datasets, the advantage 

would be further reduced if not eliminated.
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 Figure 11: Data ingest and query performance and scalability.
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It also should be noted that HBase stored twice as many triples with tables and as MySQL 

Cluster with only one table T.  Overall, the data ingest performance showed to be efficient and 

revealed linear scalability for each system.

Query Evaluation Performance

HBase and MySQL Cluster query performance and scalability on PC3 and LUBM 

datasets are reported in Figure 11 with detailed data in the appendix.  The PC3 benchmark used 

three queries with varying complexity: Q1 was the simplest query with one triple pattern, Q2 had 

three triple patterns, and Q3 was the most complex one consisting of six triple patterns.  The 

basic graph patterns in all three queries returned a small result. Both HBase and MySQL Cluster 

showed very efficient and comparable response times, with the former being slightly faster.  At 

D6, HBase took a slight upward turn in times that had previously remained nearly flat, which 

signifies that the graphs have a small slope (while the dataset size increased by a factor of 10, the 

response times increased by a factor of only around 2 to 4); similar behavior was also observed 

for some LUBM queries.

The LUBM benchmark used 14 queries whose complexities are shown in Table 3. 

LUBM query evaluation results for HBase and MySQL Cluster revealed several interesting 

patterns, denoted as A, B, C, D, and E in Table 3.

 Query complexity LUBM queries and 
(# of triple patterns) their evaluation patterns 
 1 Q6(C), Q14(B)
 2 Q1(A), Q3(A), Q5(C),

Q10(D), Q11(A), Q13(D)
 3 N/A
 4 Q7(A), Q12(E)
 5 Q4(C), Q8(C)
 6 Q2(B), Q9(D)

Table 3: LUBM Query Complexity and Evaluation Patterns.
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Pattern A (Q1, Q3, Q7, and Q11) is characterized by the rapidly increasing query execution time 

for MySQL Cluster and nearly constant response time for HBase as the dataset size increased. 

Pattern B (Q2 and Q14) is characterized by rapid performance degradation in both systems. 

While Q2 had six triple patterns, Q14 had only one triple pattern that retrieved all undergraduate 

students across all universities in the database.  Both queries yielded large results, such that 

results for L9, L10, and L11 could not fit into main memory on the HBase master server.  In the 

case of Q14, which involved no joins, it is evident that the major factor in query performance is 

data transfer time and it is hardly possible to achieve better performance on the given hardware. 

Patterns C (Q4, Q5, Q6, and Q8) and D (Q9, Q10, and Q13) include queries whose performance 

showed limited or no growth in execution times with an increase in the data size in both systems. 

Pattern C queries were approximately 2 to 3 times faster on MySQL Cluster and pattern D 

queries were anywhere from 3 to 47 times faster on Hbase.  Pattern E stands out on its own with 

a single representative query – Q12.  For smaller datasets, Q12 was much faster on MySQL 

Cluster, however its performance quickly decreased on larger datasets, much like in pattern A. 

HBase, on the other hand, demonstrated a gradual increase in execution time: close to the 100 

university mark, HBase performance exceeded MySQL Cluster performance.

The comparison of the query evaluation patterns and query complexity in LUBM (see 

Table 3) does not reveal any strong correlation between the two characteristics.  The query 

complexity is not the sole indicator of query performance under HBase and MySQL Cluster: the 

size of intermediate and final results can have a significant impact.

24



Overall, in our experiments, the HBase approach showed better performance and 

scalability than the MySQL Cluster approach.  Neglecting Q2 and Q14 of LUBM, which are 

expensive due to returning large results, the evaluation of two queries over the largest LUBM 

dataset in HBase took over 1s: Q8 (10s) and Q9 (1.5s).  In contrast, six LUBM queries took over 

1s in MySQL Cluster under similar circumstances.  Finally, Q1, Q3, Q7, and Q11 of LUBM 

scaled significantly worse in MySQL Cluster. 

Summary

Our performance study revealed interesting patterns in query evaluation, showed that our 

algorithms are efficient, and suggested that cloud computing has a great potential for scalable 

Semantic Web data management.  Given that the experiments were performed with large datasets 

on commodity machines, both HBase and MySQL Cluster approaches showed to be quite 

efficient and promising.  The proposed approaches were up to the task of efficiently storing and 

querying large RDF datasets.  Overall, the experimental results were in favor of the HBase 

approach: not only were larger datasets able to load, but query performance and scalability were 

shown to be superior in many cases.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this work, we studied the problem of distributed Semantic Web data management using 

state of the art cloud and relational database technologies represented by HBase and MySQL 

Cluster. We designed a novel database schema for HBase to efficiently store RDF data and 

proposed scalable querying algorithms to evaluate SPARQL queries in HBase. We chose a 

generic RDF database schema for MySQL Cluster and presented a SPARQL-to-SQL translation 

algorithm that generates flat SQL queries for SPARQL basic graph patterns. Finally, we 

conducted an experimental comparison of the two proposed approaches on a cluster of 

commodity machines using datasets and queries of the Third Provenance Challenge and Lehigh 

University Benchmark. Our study concluded that, while both approaches were up to the task of 

efficiently storing and querying large RDF datasets, the HBase solution was capable of dealing 

with larger RDF datasets and showed superior query performance and scalability. We believe that 

cloud computing has a great potential for scalable Semantic Web data management.

In the future, we will focus on architectural aspects of an RDF database management 

system in the cloud, search for optimizations in schema design, explore additional SPARQL 

features, and research inference support in distributed environments.
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AGGREGATE RESULTS FOR PC3 AND LUBM
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PC3 Aggregate Results

Load Times (ms) D1 D2 D3 D4 D5 D6
HBase 416 2,245 7,292 59,495 672,144 7,380,597
MySQL Cluster 20 530 2,820 30,250 349,390 ---

Q1 (ms) D1 D2 D3 D4 D5 D6
HBase 4 5 4 5 5 10
MySQL Cluster 9 9 9 9 9 ---

Q2 (ms) D1 D2 D3 D4 D5 D6
HBase 4 5 4 9 9 27
MySQL Cluster 10 10 10 10 10 ---

Q3 (ms) D1 D2 D3 D4 D5 D6
HBase 11 11 11 12 14 47
MySQL Cluster 11 11 11 11 11 ---
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LUBM Aggregate Results

Load Times (ms) L1 L2 L3 L4 L5 L6
HBase 4,746 53,301 111,185 388,971 655,092 930,209
MySQL Cluster 1,540 24,970 55,610 196,110 341,580 492,960

Q1 (ms) L1 L2 L3 L4 L5 L6
HBase 12 11 13 11 11 14
MySQL Cluster 39 1,680 3,628 12,001 21,060 29,342

Q2 (ms) L1 L2 L3 L4 L5 L6
HBase 12 11 13 115,814 179,206 266,008
MySQL Cluster 129 9,574 21,985 91,881 180,557 290,882

Q3 (ms) L1 L2 L3 L4 L5 L6
HBase 12 13 13 13 15 16
MySQL Cluster 83 5,330 11,746 39,766 69,290 98,824

Q4 (ms) L1 L2 L3 L4 L5 L6
HBase 137 141 141 148 121 147
MySQL Cluster 50 51 52 52 52 52

Q5 (ms) L1 L2 L3 L4 L5 L6
HBase 632 640 650 643 643 669
MySQL Cluster 133 132 133 133 133 133

Q6 (ms) L1 L2 L3 L4 L5 L6
HBase 467 469 488 475 463 455
MySQL Cluster 199 193 194 199 197 194

Q7 (ms) L1 L2 L3 L4 L5 L6
HBase 77 80 115 120 114 113
MySQL Cluster 62 734 1,556 5,051 8,574 12,048
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LUBM Aggregate Results

Q8 (ms) L1 L2 L3 L4 L5 L6
HBase 8,591 9,225 8,880 9,951 9,783 9,783
MySQL Cluster 4,220 4,311 4,340 4,454 4,555 4,628

Q9 (ms) L1 L2 L3 L4 L5 L6
HBase 1,050 1,106 1,079 1,128 1,117 1,115
MySQL Cluster 4,066 4,121 4,149 4,192 4,231 4,233

Q10 (ms) L1 L2 L3 L4 L5 L6
HBase 11 14 11 11 11 11
MySQL Cluster 1,264 1,278 1,268 1,283 1,284 1,296

Q11 (ms) L1 L2 L3 L4 L5 L6
HBase 222 235 226 235 250 218
MySQL Cluster 49 228 457 1,450 2,421 3,421

Q12 (ms) L1 L2 L3 L4 L5 L6
HBase 277 297 282 284 314 291
MySQL Cluster 31 43 58 123 188 248

Q13 (ms) L1 L2 L3 L4 L5 L6
HBase 6 6 6 8 8 18
MySQL Cluster 122 122 121 122 123 126

Q14 (ms) L1 L2 L3 L4 L5 L6
HBase 380 1,162 1,544 2,604 5,088 6,185
MySQL Cluster 162 541 949 4,241 8,060 12,433
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LUBM Aggregate Results

Load Times (ms) L7 L8 L9 L10 L11
HBase 1,182,541 1,472,860 2,805,965 5,883,081 9,748,935
MySQL Cluster 813,040 1,037,760 --- --- ---

Q1 (ms) L7 L8 L9 L10 L11
HBase 15 13 15 44 27
MySQL Cluster 38,258 47,212 --- --- ---

Q2 (ms) L7 L8 L9 L10 L11
HBase 379,266 484,783 --- --- ---
MySQL Cluster 420,029 567,855 --- --- ---

Q3 (ms) L7 L8 L9 L10 L11
HBase 16 16 17 31 28
MySQL Cluster 132,931 163,357 --- --- ---

Q4 (ms) L7 L8 L9 L10 L11
HBase 150 152 133 151 153
MySQL Cluster 52 53 --- --- ---

Q5 (ms) L7 L8 L9 L10 L11
HBase 676 669 666 670 645
MySQL Cluster 133 133 --- --- ---

Q6 (ms) L7 L8 L9 L10 L11
HBase 482 497 470 501 470
MySQL Cluster 196 197 --- --- ---

Q7 (ms) L7 L8 L9 L10 L11
HBase 81 108 106 124 123
MySQL Cluster 15,462 19,089 --- --- ---
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LUBM Aggregate Results

Q8 (ms) L7 L8 L9 L10 L11
HBase 9,795 9,855 9,563 9,801 10,099
MySQL Cluster 4,674 4,746 --- --- ---

Q9 (ms) L7 L8 L9 L10 L11
HBase 1,182 1,230 1,206 1,310 1,561
MySQL Cluster 4,236 4,222 --- --- ---

Q10 (ms) L7 L8 L9 L10 L11
HBase 13 15 14 26 27
MySQL Cluster 1,282 1,282 --- --- ---

Q11 (ms) L7 L8 L9 L10 L11
HBase 278 320 281 302 463
MySQL Cluster 4,403 5,422 --- --- ---

Q12 (ms) L7 L8 L9 L10 L11
HBase 341 406 384 474 702
MySQL Cluster 310 374 --- --- ---

Q13 (ms) L7 L8 L9 L10 L11
HBase 22 20 19 17 16
MySQL Cluster 123 123 --- --- ---

Q14 (ms) L7 L8 L9 L10 L11
HBase 9,939 16,362 --- --- ---
MySQL Cluster 22,263 26,456 --- --- ---
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