
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations - UTB/UTPA

5-2011

Partition a 3-colorable graph into a small bipartite subgraph and a Partition a 3-colorable graph into a small bipartite subgraph and a

large independent set large independent set

Qing Wang
University of Texas-Pan American

Follow this and additional works at: https://scholarworks.utrgv.edu/leg_etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wang, Qing, "Partition a 3-colorable graph into a small bipartite subgraph and a large independent set"
(2011). Theses and Dissertations - UTB/UTPA. 95.
https://scholarworks.utrgv.edu/leg_etd/95

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations - UTB/UTPA by an authorized administrator of ScholarWorks @ UTRGV. For
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/leg_etd
https://scholarworks.utrgv.edu/leg_etd?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/leg_etd/95?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

PARTITION A 3-COLORABLE GRAPH INTO A SMALL BIPARTITE SUBGRAPH

AND A LARGE INDEPENDENT SET

A Thesis

by

QING WANG

Submitted to the Graduate School of the

University of Texas-Pan American

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2011

Major Subject: Computer Science

PARTITION A 3-COLORABLE GRAPH INTO A SMALL BIPARTITE SUBGRAPH

AND A LARGE INDEPENDENT SET

A Thesis

by

QING WANG

COMMITTEE MEMBERS

Dr. Yang Liu

Chair of Committee

Dr. Zhixiang Chen

Committee Member

Dr. Bin Fu

Committee Member

Dr. Robert Schweller

Committee Member

May 2011

Copyright 2011 Qing Wang

All Rights Reserved

iii

ABSTRACT

Wang, Qing, Partition A 3-Colorable Graph Into A Small Bipartite Subgraph And A Large

Independent Set. Master of Science (MS), May, 2011, 35 pp., 4 tables, 8 figures, references, 15

titles.

 Exact algorithms have made a little progress for the 3-coloring problem: improved from

 to since 1976. The best exact algorithm for the 3-coloring problem is by

Beigel and Eppstein, and its analysis is very complicated. We study the parameterized 3-coloring

problem: partitioning a 3-colorable graph into a bipartite subgraph and an independent set.

Taking the size of the bipartite subgraph as the parameter k, we propose the first parameter

algorithm of complexity . Our algorithm can solve the 3-coloring problem faster

than the best exact algorithm for graphs with k ≤ 0.527n where n is the graph size. Our study of

the parameterized 3-coloring problem brings new insight on studies of the 3-coloring problem.

Experiments show that the parameterized algorithm is faster than the exact algorithm for graphs

of small parameter k. Moreover, the running time of parameterized algorithm is not much related

to edge density, while the running time of exact algorithm increases dramatically as edge density

increases.

iv

DEDICATION

 The completion of my graduate studies would not have been possible without the love and

support of my family. My mother, Hongping Du, my father, Jianmin Wang, my grandmother,

Fengying Wang, my grandfather, Kejian Wang, wholeheartedly inspired, motivated and

supported me by all means to accomplish this degree. Thank you for your love and patience.

v

ACKNOWLEDGMENTS

 I will always be grateful to Dr. Yang Liu, chair of my thesis committee, for all his

mentoring and advice. From research design, and data processing, to manuscript editing, he

encouraged me to complete this process through his infinite patience and guidance. My thanks

go to my thesis committee members: Dr. Zhixiang Chen, Dr. Bin Fu and Dr. Robert Schweller.

Their advice, input, and comments on my thesis helped to ensure the quality of my intellectual

work.

vi

TABLE OF CONTENTS

Page

ABSTRACT ... iii

DEDICATION ... iv

ACKNOWLEDGMENTS .. v

TABLE OF CONTENTS ... vi

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER I. INTRODUCTION .. 1

Problem Description .. 1

Previous work .. 2

CHAPTER II. FIXED-PARAMETER ALGORITHM IN 3 COLORING PROBLEM 4

Fixed-parameter tractable algorithm ... 4

P-Coloring ... 6

Bipartite – independent partition ... 7

Candidate Set ... 7

Upper bound analysis .. 7

Union of Disjoint Paths/Cycles ... 9

vii

Main Algorithm ... 17

The time complexity of algorithm Param-3-Coloring () 22

CHAPTER III. IMPLEMENTATION STUDY ... 26

Measures for comparing Algorithm .. 26

Experimental Study of Algorithm ... 26

CHAPTER IV. FUTURE WORK .. 32

REFERENCES ... 33

BIOGRAPHICAL SKETCH .. 35

viii

LIST OF TABLES

 Page

Table 1: History of Exact Algorithms for 3-coloring ... 3

Table 2: Average running time(sec) of two algorithms with different edge densities 30

Table 3: Ratio of Exact Algorithm for Different Densities .. 30

Table 4: Ratio of Parameterized Algorithm for Different Densities ... 31

ix

LIST OF FIGURES

Page

Figure 1: Example 3-coloring instance and translation into a (3, 2)-CSP instance. 3

Figure 2: (1,3) Search Tree ... 8

Figure 3: Coordinate graphs of .. 9

Figure 4: Algorithm 1 ... 13

Figure 5: The main algorithm ... 18

Figure 6: Outline of the overall algorithm in 3-Coloring in Time 27

Figure 7: The test graphs generator .. 28

Figure 8: Experimental results on graphs average running time of two algorithms 29

1

CHAPTER I

INTRODUCTION

 In graph theory, graph coloring is a special case of graph labeling, it is an assignment of

labels traditionally called “colors” to elements of a graph subject to certain constraints. In its

simplest form, it is a way of coloring the vertices of a graph such that no two

adjacent vertices share the same color; this is called a vertex coloring. Similarly, an edge

coloring assigns a color to each edge so that no two adjacent edges share the same color, and

a face coloring of a planar graph assigns a color to each face or region so that no two faces that

share a boundary have the same color.

Problem Description

 Graph coloring has been studied as an algorithmic problem since the early 1970s, the

chromatic number problem is one of Karp‟s 21 NP-complete problems from 1972, and at

approximately the same time various exponential-time algorithms were developed based on

backtracking and on the deletion-contraction recurrence of Zykov. One of the major applications

of graph coloring, register allocation in compilers was introduced in 1981[6].

 Given an undirected graph , coloring each vertex with one of three colors

so that no two vertices connected by an edge are colored with the same color is known as

http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Graph_labeling
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Karp%E2%80%99s_21_NP-complete_problems
http://en.wikipedia.org/wiki/Graph_coloring#CITEREFZykov1949

2

the Graph 3-Coloring Problem. Several variations exist, like finding the least number of colors

that is needed to color the graph, or finding the largest subgraph in that can be colored with the

given number of colors. All of these problems are known to be NP-complete, so it is unlikely

that a polynomial time algorithm exists that solves any of these problems.

Previous work

 The best algorithm for the problem is of time complexity , and requires

exponential space [3]. When polynomial space complexity is desired, the best algorithm

for this problem has time complexity [3]. The 3-coloring problem is a special case

of the chromatic number problem. In the 3-coloring problem, we are asked to determine whether

the chromatic number of graphs is 3 or not. Table 1 shows the history of exact algorithms for the

3-coloring problem. Meanwhile, approximation solutions with colors can be found in

polynomial time for graphs of chromatic number 3 [4]. For 3-coloring, we know of several

relevant references. Lawler is primarily concerned with the general chromatic number [9], but he

also gives the following very simple algorithm for 3-coloring: for each maximal independent set,

test whether the complement is bipartite. The maximal independent sets can be listed with

polynomial delay, and there are at most such sets, so this algorithm takes time .

Schiermeyer gives a complicated algorithm for solving 3-colorability in time [15],

based on the following idea: if there is one vertex of degree then the graph is 3-

colorable iff is bipartite, and the problem is easily solved. Otherwise, Schiermeyer

performs certain reductions involving maximal independent sets that attempt to increase the

degree of while partitioning the problem into subproblems, at least one of which will remain

solvable. Beigel and Eppstein gives a faster algorithms are known for 3-colorability and 4-

3

colorability, which can be decided in time O() [13], they consider worst case time

bounds for several NP-complete problems, based on a constraint satisfaction (CSP) formulation

of these problems: -CSP instances consist of a set of variables, each with up to a possible

values, and constraints disallowing certain b-tuples of variable values; a problem is solved by

assigning values to all variables satisfying all constraints, or by showing that no such assignment

exist. 3-SAT is equivalent to -CSP while 3-coloring and various related problems are

special cases of -CSP; there is also a natural duality transformation from -CSP

to -CSP.

Figure 1: Example 3-coloring instance and translation into a (3, 2)-CSP instance.

Authors Complexity Year

Lawler 1976 [11]

Schiermeyer 1994 [15]

Beigel and Eppstein 1995 [1]

Beigel and Eppstein 2005 [2]

Table 1: History of Exact Algorithms for 3-coloring

4

CHAPTER II

FIXED-PARAMETER ALGORITHM IN 3 COLORING PROBLEM

 Classic complexity theory indicates that a large number of natural combinatorial problems

are inherently hard to solve algorithmically.

 The 3-coloring problem can be viewed from another perspective: partitioning the vertices of

a graph into three disjoint independent sets, if such a partition exists. This perspective leads to

our study of parameterized complexity of the 3-coloring problem when we take the total number

of vertices in two independent sets as a parameter.

 Parameterized 3-coloring is that given a graph , can the vertices of be partitioned into a

bipartite subgraph of at most vertices and an independent set? Find such a partition if it exists,

or report „NO‟ otherwise.

Fixed-parameter tractable algorithm

 Parameterized complexity and algorithms have developed rapidly during the last three

decades. Since the fundamental work of Downey and Fellows, parameterized complexity theory

introduced numerous innovative ideas in algorithmic design and offered insightful results in

almost all disciplines of theoretical computer science.

 According to the common belief that P ≠ NP, NP-complete, or otherwise NP-hard, problems

require time that is exponential in input size. Therefore, if the input size is large, it is unfeasible

5

to find solutions to those problems. In real world, applications of NP-complete may have some

small parameters which can be used to find solutions efficiently. Some problems with certain

parameter fixed can be solved by algorithms that are exponential only in the size of the fixed

parameter tractable algorithm. A parameterized problem that allows for such a fixed-parameter

tractable algorithm is said to be a fixed-parameter tractable problem and belongs to the class FPT.

It seems a good supplement of the theory of NP-completeness. The problem in FPT can be

solved efficiently for small values of the fixed parameters. For example, the vertex cover

problem is in FPT. This problem is that given a graph , to find k number of vertices in such

that every edge of is incident to at least one of those vertices. It is a NP-complete problem

which has been applied in many areas such as network optimization and bioinformatics.

 An exhaustive search algorithm can solve the problem in time . Vertex cover is

therefore a fixed-parameter tractable problem, and there may only need a vertex cover of a few

vertices in some applications. These parameters can be used to define parameterized problems,

the case in the -vertex cover problem, where the input consists of a graph and a positive

integer k as a parameter, and asks whether G has a vertex cover with at most vertices. The

input to a parameterized problem is defined as a pair , where n is the size of the input and

 is the parameter. Often, parameterized algorithms find solutions to problem instances in

polynomial time in terms of the size of the input. The problem is said to be fixed-parameter

tractable (FPT) if there exists an algorithm that correctly decides whether an input is a yes-

instance, or not, in time (or), where α is a constant, and is an arbitrary

function independent of n. If a parameterized problem is fixed parameter tractable, it is said to be

in the class FPT. For those applications of small vertex cover (i.e. k is small), we can solve the

problem efficiently. After many researches, many fixed parameterized algorithm for this problem

6

have been developed. A well known algorithm for this problem has a running time

 in [9].

 However, some problems are not believed to be in FPT. An example is deciding whether an

n-vertex graph contains an independent set of cardinality k or not. The complement of a

maximum independent set is the set of vertices not belonging to the independent set, forms a

minimum vertex cover, which is a fixed-parameter tractable problem. There is an algorithm

which can solve the independent set of cardinality k with an upper bound of in [13].

So far no algorithm with a running time of the form is known.

 Unlike classical complexity theory, which focuses on whether a problem is hard or not,

parameterized complexity theory, introduced by Downey and Fellows, accepts that a problem is

hard and asks the question “What makes the problem computationally difficult?”. Downey and

Fellows claim parameters arise naturally in many computational problems.

 Fixed-parameter tractable algorithms (FPT-algorithms) are helpful in solving real world

problems that are in general NP-Hard, but where most instances of interest have small parameter

values. This is the case for many practical problems such as multiple sequence alignment in

computational biochemistry, known to be equivalent to the vertex cover problem, which has an

FPT-algorithm with running time O(n +).

 Next we introduce two important concepts: P-coloring and Bipartite-independent partition,

which will be used in discussions of our algorithm.

P-Coloring

 Let be a simple graph without multiple edges between a pair of vertices. A

 of graph is an coloring of vertices with colors such that each vertex is colored

7

with exactly one color, and no two adjacent vertices are colored with the same color. A graph

is if there is a of . Let and be vertex subsets in graph such

that , be a of , and

 be a of . Then

 is to if
 and

 .

Bipartite – independent partition

 Let and be two disjoint vertex subsets in graph . A partition [] is a

 if the induced subgraph by is and the

induced subgraph by is an independent set. If , then a bipartite-independent

partition [] is a complete bipartite-independent partition. A bipartite-independent

partition [,] extends another bipartite-independent partition [,] if ,

 . Given a bipartite-independent partition [,] , [,] k-extends [,] if

 + k.

Candidate Set

 Let be a simple path induced by vertices , , , i.e., = for

 . The candidate set of P is , , , if p is even, or , , , if p is odd.

Let be a simple cycle induced by vertices , , , i.e., = for

 . The candidate set of cycle C is , , , if p is even, or , , , { if

p is odd.

Upper bound analysis

 Let be the maximum number of leaves of the search tree if the parameter is at most

k let = 1 for .

8

 There is a standard technique for bounding such functions asymptotically. We assume that

 is a solution of this equation. We prove by induction:

 k-1 k-3

 Leaves

Figure 2: (1,3) Search Tree

 We need to find the roots of the characteristic equation

 . = 1.4656 is the

solution. Now we check if the is the best solution for this equation:

When the increase, the decrease.

We try , see if it‟s good solution or not:

9

Because

So,
 is an upper bound of the equation, but it is not as tight as possible.

We try , see if it‟s good solution or not:

 0

 -1

Figure 3: Coordinate graphs of

Because

So, at this point, we don‟t know
 is an upper bound of the equation or not.

Union of Disjoint Paths/Cycles

 Let [,] be a bipartite-independent partition of graph G. This section will show two

properties for the case when subgraph induced by is a union of disjoint paths and

cycles.

10

 Let , , be the candidate sets of those paths/cycles. In this subsection, we assume

that any vertex has no neighbors in . The first property is that at least

 vertices from the disjoint paths/cycles should be put into any complete bipartite-

independent partition which k-extends [,].

Lemma 1. Let

 be a complete bipartite-independent partition. If

 k-

extends , then
 contains at least vertices from the paths/cycles

corresponding to candidate set , i.e.,

Proof. We number the paths/cycles corresponding to the candidate set by the index of the

candidate set. We first prove that for each path/cycle ,
 must contain at least vertices

from path/cycle . There are two cases: is from either a path or a cycle.

 If is from a path , let path be which is induced by vertices , , , .

By definition of candidate sets, =

 if p is even, =

 if p is odd. For both cases,

 . Moreover, there are at least

 disjoint edges in path : . Then each of those disjoint edges can have

at most one vertex in
 , since

 is a complete bipartite-independent partition

and
 must be an independent set by the definition of bipartite-independent partition.

Therefore,
 contains at least one vertex from each of those

 disjoint edges. It follows that

 contains at least

 = vertices from path.

 If is from a cycle , let cycle be which is induced by vertices , , ,

 . When p is even, we have that =

 , In the cycle there are

disjoint edges: . By the same arguments above for path ,
 contains at

11

least one vertex from each of those disjoint edges, and thus contains at least

 = vertices

from cycle . Next we show that when p is odd,
 also contain at least vertices from

cycle .

 When p is odd, by definition we have that =

 for

cycle . In this cycle of p vertices (p is odd), there are

 disjoint edges: . By

the same arguments for path i,
 contains at least one vertex from each of those

 disjoint

edges. If
 contains both vertices of one of those

 disjoint edges,

 contains at least

 +

1 = vertices from cycle i. Otherwise,
 contains exactly one vertex from each of those

 disjoint edges, and then

 contains exactly one vertex from each of those disjoint

edges. We have two cases:

 Case 1:
 contains . Since both

 and
 contains exactly one vertex from

each of those

 disjoint edges,

 must contains . It follows that
 must contain

since
 is an independent set, and then

 must contains . Repeat this, we will

have that
 contains , , , and

 contains , , , . Since (1) is

in
 , (2)

 is an independent set, and (3) there is an edge in the cycle,

must contains . Therefore,
 contains

 +1 =

= vertices:

 .

 Case 2:
 does not contains . Then

 contains . Since
 is an

independent set and there is an edge in cycle i,
 must contains . Besides ,

contains

 vertices from those

 disjoint edges (), by our assumption that

12

 contains exactly one vertex from each of those disjoint edge. Therefore,

 contains at least

 +1 =

= vertices from cycle i.

 We have shown that
 contains at least vertices from path/cycle i. It follows that

contains at least

 vertices from , since G[] is a union of disjoint

paths/cycles. Note that and are disjoint and are from . It follows

that

 . Moreover, because [

] k-extends [,], we have

that
 . Therefore,

 , i.e.,

 .

This completes our proof.

 The second property is that when a complete 2-coloring (,) of is given, we can

determine in polynomial time whether there is a complete bipartite-independent partition [
 ,

] which k-extends [,] and

 has a complete 2-coloring compatible to (,). If

such a complete bipartite-independent partition exists, we construct a complete 2-coloring (
 ,

) of

 compatible to (,).

Lemma 2. Let (,) be a complete 2-coloring of . We can find a complete bipartite-

independent partition [
 ,

] k-extending [,] such that
 has a complete 2-

coloring compatible to C if there exists such one, or report ‘NO’ otherwise. This can be done in

polynomial time.

Proof. Figure 4 gives the algorithm to find the desired bipartite-independent partition if such one

exists, or return „NO‟ otherwise. It is obvious that the algorithm can terminate in polynomial

time, since each step takes polynomial time.

13

Algorithm-1(G, k, [,], (,))

INPUT: a graph G, a parameter k, a bipartite-independent partition [,], and a complete

2-coloring (,) of .

OUTPUT: either a complete bipartite-independent partition [,] which k-extends

[,] such that has a complete 2-coloring compatible to (,), or „NO‟ otherwise.

1. if there is an edge xy where x, y such that both x and y have a neighbor in

and another neighbor in

 return „NO‟;

2. foreach x which has neighbors in both and , let Y be

neighbors of x, Y be vertices which have neighbors in , Y be vertices which have

neighbors in

 put x into and Y into , into , into , and
3. if

 return „NO‟;

4. if there is a cycle i of odd number vertices such that for each edge xy in the cycle, both x

and y have neighbors in ()

 returns „NO‟;

5. foreach path/cycle i

 for a cycle of p vertices where p is odd, W.L.O.G, assume that is an edge

where and have no neighbors in the same color set (either or);

 put the candidate set for the path/cycle i into and other vertices of

path/cycle i into ;

return [,];

Figure 4: Algorithm 1

 When a vertex w has a neighbor in and a neighbor in , then w must be in ,

since + w has no 2-colorings compatible to (,). Then for Step 1, both x and y must be in

 , which is also impossible since should be an independent set. Therefore, „NO‟ is

returned correctly at Step 1.

 In Step 2, vertex x should be in since x has neighbors in both and . Then

neighbors Y of x should be in for any complete bipartite-independent partition [,]

which k-extends [,]. Thus it is safe to put x into and Y into . Moreover, in any

complete 2-coloring (
 ,

) of compatible to (,), since vertices of have

14

neighbors in . Similarly, . Finally, we need to reduce k to , since now we

need to find a complete bipartite-independent partitions ()-extending [,] after Step

2. This concludes that Step 2 is correct. By our assumption that G[] is a union of

paths/cycles. When , there are no complete bipartite-independent

partitions k-extending [,] by lemma 1. Therefore, Step 3 returns „NO‟ correctly.

 For a cycle i of p vertices where p is odd,

. Let W be those vertices of cycle i

which are also in where [,] is a complete bipartite-independent partition k-

extending [,]. Then by lemma 1,

. This implies that at least two vertices

x and y of W should be an edge xy of cycle i. However, when the condition of Step 4 is true, both

x and y have neighbors in the same color set: either in or . It contradicts that

 is 2-colorable. Therefore, when the condition of Step 4 is true, no complete bipartite-

independent partitions k-extending [,] exists, and thus „NO‟ is returned correctly.

 To simplify discussions on the correctness of Step 5, let [
 ,

] denotes the [,]

returned at Step 5, and [,] refers to the partition after Step 4. Then
 = +

 and
 .

 By definition of , in Step 5 is an independent set. Recall our assumption on

 as input: any vertex in has no neighbor in (the assumption is made

right before this subsection). Note that this assumption is still valid before Step 5. So
 = +

 is still an independent set, since . Moreover,

 after Step 3. It follows that
 = + .

Therefore, we can conclude that [
 ,

] is a complete bipartite-independent

partition k-extending [,] such that
 has a complete 2-coloring compatible to (,)

15

and thus Step 5 is correct, once we show that
 has a complete 2-coloring (

 ,
) compatible

to (,).

 To prove that, we first prove the following claim:

 Claim: any vertex y such that y is not in + , y has at most one neighbor in .

 Note that before Step 2 all vertices of are in + , since (,) is a complete 2-

coloring of before Step 2. So y must be put into during Step 2, which implies that a

neighbor x of y is put into during Step 2. Recall that [] is a union

of disjoint paths/cycles before Step 2. It follows that y can have at most two neighbors in

 before Step 2. Moreover, y has no neighbors in before Step 2. Otherwise, y

should be in either or after Step 2. Since (1) y has no neighbors in before Step 2, (2) y

have at most two neighbors in before Step 2, and (3) one neighbor x

of y is put into during Step 2, it follows that y has at most one neighbor in after Step 2,

which conclude the proof of the Claim.

 Now we continue our proof of that
 has a complete 2-coloring (

 ,
) compatible to (,

). Note that
 = + according to Step 5. Moreover, may contains

vertices other than those in (+) after Step 2. Let be those vertices in − (+)

which have neighbors in , and Z be those vertices in − (+) − in

Step 5. It is obvious that any vertex x + Z has no neighbors in + .

Otherwise, x can be put into + . By our definitions, it is also obvious that = (+)+

 +Z, and thus
 = (+)+ + + Z.

 To show that
 = (+) + + + Z has a complete 2-

coloring compatible to (,), we first show that (+) + has a 2-

coloring (
 ,

) compatible to (,). Initially
 = and

 = . Note that after Step 2,

16

any vertex x has at neighbors in at most one of and . Otherwise, it should be

processed in Step 2. Let x be a vertex of , then x has neighbours in at most one of
 = and

 = , since is a subset of . We put x into

 if it has a neighbor in , or

into
 otherwise. Note that path/cycle i is an independent set, and then it is safe to put x into

 when x has no neighbors in . Therefore, these operations find a 2-coloring (

 ,
) of (

+) + which is compatible to (,).

 Next We show that (+) + + has a complete 2-

coloring (
 ,

) compatible to (
 ,

) of vertices
 +

 = (+) + .

Initially
 =

 and
 =

 . Recall that all vertices in have no neighbors in + .

Then by our Claim, each vertex y has exactly one neighbor in , and then no neighbors

in + before Step 5. Since each vertex of is in
 or

 by our processing above, vertex

y can be put into
 (

) if its unique neighbor in is in
 (

). Therefore, all vertices

in (+) + + has a complete 2-coloring which is

compatible to the (
 ,

).

 Finally, we show that
 = (+) + + + Z has a

complete 2-coloring (
 ,

) compatible to (
 ,

) of those vertices in (+) +

 + =
 − Z. Initially

 =
 and

 =
 . Recall that vertices

of Z have no neighbors in (+) + by definition, and have no neighbors in

 since by definition has only neighbors in . It follows that Z has no

neighbors in
 −Z. That is, any vertex z Z can have neighbors only in Z or

 .

Recall again that Z has no neighbors in + . Then by our Claim, any vertex z Z has at most

one neighbor in , thus has at most one neighbors in Z and no neighbors in (+) +

17

 + , since z can have neighbors only in Z +
 . This implies that

the graph induced by Z is a set of disconnected edges and isolated vertices, thus Z is 2-colorable.

Let (
 ,

) be a complete 2-coloring of Z. Then (
 =

 +
 ,

 =
 +

) is a complete

2-coloring (
 ,

) of
 which is compatible to (

 ,
). By transitivity, (

 ,
) is

compatible to (,). This completes our proof that Step 5 is correct, and then concludes our

proof of this lemma.

Main Algorithm

 First, we present our main algorithm in Figure 5. Next we show the algorithm is correct.

Lemma 3. Algorithm Param-3-Coloring() either finds a complete bipartite-

independent partition [,] which k-extends [,] if such a bipartite-independent

partition exists, or reports „NO‟ otherwise.

Proof. Step 1 deals with the cases when the solution can be easily determined. First, if ,

there is no bipartite-independent partition which -extends . Thus „NO‟ is returned

correctly. After this, . If [] is a bipartite-independent partition, then []

is a complete bipartite- independent partition -extending since , and thus [,

] is returned correctly. After this, [] is not a complete bipartite-independent

partition. Since [] is the only complete bipartite-independent partition which could

possibly 0-extend , any complete bipartite-independent extending must -

extend for some . Therefore, „NO‟ should be returned when k = 0. In conclusion,

step 1 correctly finds the solution.

 After step 1, and
 must contain at least a vertex from for any

complete bipartite-independent partition -extending . So is not empty. If a

vertex has a neighbor in , then for any complete bipartite-independent

18

Algorithm Param-3-Coloring(G, k,)
Input: a graph G, a parameter k, and a bipartite-independent partition .
Output: either a complete bipartite-independent partition [,] which k-extends

 , or „NO‟ otherwise.

1. if k < 0 return „NO‟;

 if [,] is a bipartite-independent partition

 return [,];

 if k = 0 return „NO‟;

2. if x has a neighbor in

 if + x is 2-colorable return Param-3-coloring(G, k − 1, + x,);

 return „NO‟;

3. if x in has two neighbours y, z in where yz is an edge in G, or has no

neighbors

in

 return Param-3-coloring(G, k, , + x);

4. if there is a vertex x which has three neighbors in

 Let N (x) be the neighbors of x in ;

4.1 if + x is 2-colorable

 [,] =Param-3-coloring(G, k − 1, + x,);

 if [,]! =„NO‟

 return [,];

4.2 if + N (x) is 2-colorable

 return Param-3-coloring(G, k − |N (x)|, + N (x), + x);

4.3 return „NO‟;

Let , , be the candidate sets of paths/cycles induced by vertices in ;

5. if

 > k

 return „NO‟;

6. if

6.1 for each enumeration of , , such that [+

 , +

)] is a bipartite-independent partition

 Let T (

) be vertices having neighbors in +

 if [= SB +

 + T,] is a complete bipartite-independent partition and

 return [,];

6.2 return „NO‟;

7. for each 2-coloring C of

 if there is a complete bipartite-independent partition [,] which k-extends

 such that there is a 2-coloring of compatible to C

 return [,];

8. return „NO‟;

Figure 5: The main algorithm

19

partition [
 ,

] -extending , must be in
 and not in

 , since

should be an independent set and
 . If is 2-colorable, [,] is a

bipartite-independent partition, and we only need to look for a complete bipartite-independent set

 -extending [,]. Otherwise, „NO‟ should be returned. Hence step 2 is correct.

 After step 2, any vertex has no neighbors in , and then [,] is a

bipartite-independent partition. If has two neighbors in such that is an edge, then for

any complete bipartite-independent partition [
 ,

] -extending , must be in

 , since

 should be 2-colorable. Thus we only need to search for a complete bipartite-

independent set -extending [,]. For this case, step 3 is correct. Now we consider the

case when has no neighbors in . Note that any complete bipartite-independent

partition -extending [,] also -extends . On the other hand, given a complete

bipartite-independent partition

 -extending where
 , [

 ,

] is also a complete bipartite-independent partition -extending , since has

no neighbors in . Therefore, there is a complete bipartite-independent partition -

extending if and only if there is one -extending [,]. We conclude that Step 3

is still correct for this case.

 For any complete bipartite-independent partition

 k-extending , x is in

either
 or

 . If is in
 for a partition

 , then is 2-colorable, and

step 4.1 should correctly find one which -extends [,]. If Step 4.1 does not return

anything, then for any complete bipartite-independent partition

 , should be in

 , and thus should be in . This is possible only when an independent set,

and + is is 2-colorable. Note that is indeed an independent set, since has no

neighbors in after Step 3. Therefore, when + is 2-colorable, Step 4.2 correctly

20

returns a complete bipartite-independent partition

 which -extends

[+ ,] and also -extends if there exists one, or returns „NO‟ if it does

not find any one. When + is not 2-colorable, „NO‟ is returned correctly at Step 4.3,

since by our arguments above, there is no complete bipartite-independent partition k-extending

 .

 After Step 4, any vertex has at most two neighbors in , no

neighbors in , and no two neighbors in which are neighbors of each other. Now

 is a union of disjoint paths/cycles. According to lemma 1, for any complete bipartite-

independent partition

 -extending , we have that

 . Step 5

returns „NO‟ correctly for the case

 .

 To prove that Step 6 is correct, we first show that there is a complete bipartite-independent

partition k-extending if and only if Step 6.1 finds one. First, the partition

 returned by Step 6.1 is a complete bipartite-independent partition k-extending ,

since it is a complete bipartite-independent partition, |
 | | | + k,

 , and

 . On the other hand, if there is a complete bipartite-independent partition

 k-

extending , Step 6.1 can find a complete bipartite-independent partition

 for

some where . Let
 =

 for . Then −
 is in

 . So

 extends [+

 , +

] which is of course a

bipartite-independent partition. By our notation, T are those vertices having neighbors in +

 . So T must be in
 , and then +

 + T

 . It follows that

 [+

 , +

]. Note that vertices in

 − (+

)

can only be from =

 . Let

 +

 . Note

that
 − = +

 . We complete our proof that Step 6.1 can find a complete

21

bipartite-independent partition k-extending , once we show that [
 ,

]

is a complete bipartite-partition k-extending .

 It is easy to see that |
 | |

 | | | + k,

 ,

 ,

 , and
 is 2-colorable,. So we only need to show that

 is an independent set. Since

 , and

 .

We have that

 .

Now we only need to show that

 is an independent set.

 By definition of T and , we have that . Since T are vertices of

 which have neighbors in

 , all vertices in have no neighbors in

 . It follows that all vertices of have no neighbors in

 , since by definition. Moreover, by definitions of candidate sets and ,

 is an independent set. Finally,

 is an

independent set, since

 is a complete bipartite-independent partition. Now we

conclude that

 is indeed an independent set, which also complete

our proof on Step 6.1.

 If for all possible , step 6.1 can not return a complete bipartite-independent

partition, then there is no complete bipartite-independent partition k-extending .

Therefore, Step 6.2 returns „NO‟ correctly. In conclusion, Step 6 is correct.

 The partition

 returned at step 7 is correct, since it is a complete bipartite-

independent partition k-extending . On the other hand, when there is a complete

22

bipartite-independent partition

 k-extending , there is a 2-coloring of

 . Let C be the 2-coloring restricted to vertices of . By lemma 2, Step 7 should be able to

find a complete bipartite-independent partition k-extending . This concludes the

correctness of step 7.

 By the arguments above, Step 7 finds a complete bipartite-independent partition k-

extending if and only there exists such one. Therefore, „NO‟ should be returned, if Step

7 cannot find any complete bipartite-independent partition k-extending for each

possible 2-coloring of . So step 8 is correct. This completes the correctness proof of our main

algorithm.

The time complexity of algorithm Param-3-Coloring ()

Lemma 4 Algorithm Param-3-Coloring () terminates in time

 .

Proof. We use bounded-search tree analysis. A branch-and-bound procedure requires two tools.

The first one is a splitting procedure that, given a set S of candidates, returns two or more smaller

sets whose union covers S. Note that the minimum of over S is ,

where each is the minimum of within . This step is called branching, since its recursive

application defines a tree structure whose nodes are the subsets of S. Another tool is a procedure

that computes upper and lower bounds for the minimum value of within a given subset S.

This step is called bounding. Note that each step may directly return, or decrease the number of

vertices in , or decrease k. Algorithm Param-3-Coloring () terminates

after at most | | + k recursive calls. Each step except Step 6.1 and 7 can be done in

polynomial time. However, we can regard Step 6.1 as a branch for

 combination of

http://en.wikipedia.org/wiki/Tree_structure

23

subsets of , and Step 7 as a branch for 2-coloring of . For each combination of subset

of , Step 6.1 can be done in polynomial time. For each 2-coloring of , Step 7 can be done

in polynomial time by lemma 2. Now we conclude that algorithm Param-3-Coloring

() will terminates after at most | | + k recursive calls, and each step

takes polynomial time.

 Next we prove that

 is the upper bound on the number of branches by

mathematical induction. Only Step4, 6 and 7 have branches.

 For Step 4, any complete bipartite-independent partition

 k-extending ,

x is in either
 or

 . If is in
 for a partition

 , then is 2-colorable,

and step 4.1 should correctly find one which -extends [,]. If Step 4.1 does not

return anything, then for any complete bipartite-independent partition

 , should be

in
 , and thus should be in . We have recursive equation:

 For Step 6, any complete bipartite-independent partition

 -extending ,

we have that

 . We have recursive equation:

 For Step 7, we have recursive equation by lemma 2:

 When , the algorithm returns directly at step 1. So we have . We

only need to show that the upper bound is correct when . The upper bound is correct for

Step 4, since

The upper bound is correct for Step 4, since

24

Because , so < 0, we have

The upper bound is correct for Step 6 and 7, since

To make sure

 , first get

 Since there are at most

 branches, each of which can be done in

 time where is a constant independent of , algorithm Param-3-Coloring ()

terminates in time

 Now we are ready to apply our algorithm to solve the parameterized 3-coloring problem.

Theorem 1. Param-3-Coloring solves the parameterized 3-coloring problem

correctly in time .

Proof. By lemma 3, Param-3-Coloring either finds a complete bipartite-

independent partition [

] which -extends if such a bipartite-independent

partition exists, or reports „NO‟ otherwise. In a partition like [

], we have that

contains at most k vertices and is 2-colorable, and that
 contains the remaining vertices

25

and is an independent set. So the algorithm solves the parameterized 3-coloring problem

correctly.

 By lemma 4, Param-3-Coloring terminates in time

 . This concludes our proof.

26

CHAPTER III

IMPLEMENTATION STUDY

 There are two algorithms for the 3-coloring problem we implemented. The first algorithm is

a fixed parameterized algorithm proposed by us. The second one is the algorithm proposed by

Beigel and Eppstein in [13].

Measures for comparing Algorithm

 Comparing Algorithm: 3-Coloring in Time . The algorithm is based on a

constraint satisfaction (CSP) formulation of these problems. 3-SAT is equivalent to (2, 3)-CSP

while the other problems above are special cases of (3, 2)-CSP; there is also a natural duality

transformation from (a, b)-CSP to (b, a)-CSP. We give a fast algorithm for (3, 2)-CSP and use it

to improve the time bounds for solving the other problems listed above. The techniques involve a

mixture of Davis-Putnam-style backtracking with more sophisticated matching and network flow

based ideas.

Experimental Study of Algorithm

We generate test graphs for both algorithms. The text graphs are 3-colorable graphs, each test

graph of n vertices has a complete bipartite-independent partition such that k = | | =

 . For twelve cases from n=40 to n=90, 100 graphs are generated at each case; n=95, 60 graphs

27

1. If the input graph G contains any vertex v with degree less than two, recursively color G \ {v}

and assign v a color different from its neighbors .

2. If the input graph contains a cycle or large tree of degree-three vertices, split the problem into

smaller instances, recursively attempt to color each smaller instance, and return the first

successful coloring found by these recursive calls.

3. Find a maximal bushy forest F in G.

4. Find a maximal set T of K1,3 subgraphs in G \ F .

5. While it is possible to increase the size of T by removing one K1,3 subgraph and using the

vertices in G \ (F T) to form two more K1,3 subgraphs, do so.

6. Use the network flow algorithm to assign the vertices of G \ (F N (F) T) to trees in T ,

forming a forest H of height-two trees.

7. Recursively search through all consistent combinations of colors for the bushy forest roots and

internal nodes, and for selected vertices in H. For each coloring of these vertices, form a (3, 2)-

CSP instance describing the possible colorings of the uncolored vertices, and use our CSP

algorithm to attempt to solve this instance. If one of the CSP instances is solvable, return the

resulting coloring. If no CSP instance is solvable, return a flag value indicating that no coloring

exists.

Figure 6: Outline of the overall algorithm in 3-Coloring in Time

are generated at that case; a total of 1160 generated graphs. These graphs are applied to the exact

algorithm by Beigel and Eppstein and our parameterized algorithm, called Eppstein algorithm

and parameterized algorithm. We also control the edge densities of test graphs, i.e., the ratio of

the number of edges over the number of vertices. In this section, we discuss experimental

28

performance of these two algorithms. Both algorithms are implemented in C++ on PC with

2GHz of Inter Core2 Duo CPU and 4GB of RAM.

Procedure graph-generator(n)

Begin

 Set up n vertices in three sets and make the sum of the first two sets equal to the third one;

 For e:=1 to 2n do

 Choose randomly two vertices x, y from two different sets and check edge(x,y) exist or not

 If not add an edge(x,y);

 End for;

End.

Figure 7: The test graphs generator

Comparison of Eppstein Algorithm and Parameterized Algorithm

 Figure.8 gives results for running time for Eppstein algorithm and parameterized algorithm,

when

, where “average” shows the variation in average running time for

each n as a function of the average number of vertices for each n. From the experimental results,

the running time is similar. When n 65 the Eppstein algorithm is faster than parameterized

algorithm, and when n the parameterized algorithm is faster than Eppstein algorithm, but

both running time clearly exhibit exponential growth.

Effects of Edge Densities

 Table 2 summarizes results, where E.A represents Eppstein algorithm; P.A represents

parameterized algorithm; N.V represents number of vertices; E.D represents Edge Densities.

Table 2 shows that the running time of both algorithms in different densities. In Eppstein

algorithm: It shows that as the density becomes bigger, the running time increase dramatically; in

parameterized algorithm: It shows that as the density becomes bigger, the running time is quite

29

 Figure 8: Experimental results on graphs average running time of two algorithms

stable for different densities.

 Experiments confirmed that parameterized algorithm is more stably and invariably by

increasing edge densities. Table 2 introduces when edge densities increase, the running time of

parameterized algorithm increase much slower than Eppstein algorithm for graphs of the same

number of vertices. The parameterized algorithm is much better to deal with the large edge

density when k=n/2.

 Table 3 shows the running time ratios of the exact algorithm for graphs of different

densities. It shows as the density becomes bigger, the running time increase dramatically: it

increase 13 times as density change from 2 to 7 for graphs of 95 vertices. On the contrary, the

modified parameterized algorithm is quite stable for different densities. The running time of the

-1

0

1

2

3

4

40 45 50 55 60 65 70 75 80 85 90 95

R
u

n
n

in
g

 T
im

e
 (

s
e
c
)

No. of verteics

Eppstein algorithm

parameterized algorithm

1E

1E

1E

1E

1E

1E

30

modified parameterized algorithm increase only around 2 times as density changes from 2 to 7

for graphs of 95 vertices, see Table 4

 Algorithms E.A P.A E.A P.A E.A P.A E.A P.A E.A P.A E.A P.A

N.V E.D 1:2 1:3 1:4 1:5 1:6 1:7

40 0.134 0.173 0.152 0.152 0.343 0.143 0.422 0.156 0.624 0.136 0.642 0.123

45 0.247 0.379 0.285 0.316 0.543 0.286 0.643 0.299 1.742 0.269 2.429 0.312

50 0.596 0.739 0.785 0.684 1.245 0.549 2.216 0.764 3.581 0.632 5.513 0.514

55 0.967 1.368 1.147 1.075 1.542 0.749 5.653 1.417 9.752 1.135 12.64 1.031

60 4.693 4.739 5.532 4.678 7.783 4.564 14.86 4.363 25.37 3.975 37.95 3.521

65 7.531 7.752 11.45 7.643 12.54 6.482 39.78 5.895 41.36 6.831 67.22 6.126

70 23.16 21.14 41.46 23.46 67.77 20.78 109.5 28.6 128.6 25.75 153.2 23.2

75 49.24 42.59 63.32 41.43 143.8 42.76 235.5 41.87 255 43.74 275.4 39.28

80 297.2 281.7 316.3 225.7 475.7 254.3 598.4 315.6 712.5 309.5 841.5 293.5

85 614.4 601.4 794.2 442.4 678.5 386.7 864.7 354.7 1092 339.4 1294 319.3

90 1624 1512 2723 1564 3218 1531 5228 1490 6129 1238 8214 1125

95 6215 5635 7636 5387 9126 4217 9865 4035 10218 4029 12645 3915

Table 2: Average running time(sec) of two algorithms with different edge densities

Number of
Vertices

2 3 4 5 6 7

40 1 1.13 2.56 3.15 4.66 4.79

45 1 1.15 2.20 2.60 7.05 9.83

50 1 1.32 2.09 3.72 6.01 9.25

55 1 1.19 1.59 5.85 10.08 13.07

60 1 1.18 1.66 3.17 5.41 8.09

65 1 1.52 1.67 5.28 5.49 8.93

70 1 1.79 2.93 4.73 5.55 6.61

75 1 1.29 2.92 4.78 5.18 5.59

80 1 1.06 1.60 2.01 2.40 2.83

85 1 1.29 1.10 1.41 1.78 2.11

90 1 1.68 1.98 3.22 3.77 5.06

95 1 1.23 1.47 1.59 1.64 2.03

Table 3: Ratio of Exact Algorithm for Different Densities

31

 The experimental results show that our algorithm can help to improve efficiency on resolve

a 3-coloring problem when the input size n is large, edge density is large and the parameter k is

relative small. It is better than Eppstein‟s Algorithm for solving 3-coloring when k is less or

equal than n/2. Our theoretical analysis proves that, when parameter k is a small value, the

implemented with our method has higher speed.

Number of
Vertices

2 3 4 5 6 7

40 1 0.88 0.83 0.90 0.79 0.71

45 1 0.83 0.75 0.79 0.71 0.82

50 1 0.93 0.74 1.03 0.86 0.70

55 1 0.79 0.55 1.04 0.83 0.75

60 1 0.99 0.96 0.92 0.84 0.74

65 1 0.99 0.84 0.76 0.88 0.79

70 1 1.11 0.98 1.35 1.22 1.10

75 1 0.97 1.00 0.98 1.03 0.92

80 1 0.80 0.90 1.12 1.10 1.04

85 1 0.74 0.64 0.59 0.56 0.53

90 1 1.03 1.01 0.99 0.82 0.74

95 1 0.96 0.75 0.72 0.71 0.69

Table 4: Ratio of Parameterized Algorithm for Different Densities

32

CHAPTER IV

FUTURE WORK

 Given a graph G, if there exists a 3-coloring of G such that k 0.527n, our algorithm is

faster than the best algorithm to solve the 3-coloring problem. It is interesting to improve our

algorithm to beat the best algorithm for the 3-coloring problem. There are some questions. Can

we solve the case dealt by step 6 and 7 is polynomial time or better than / ? What kind

graphs have a large independent set such that the remaining graph is 2-colorable? We have

studied the parameterized 3-coloring problem on vertex coloring. How about the same idea on

edge coloring?

 Another direction is to consider different parameters. One possible candidate is the size of

an independent size. Can we find an independent set of size k such that the remaining graph is 2-

colorable? If we do not require the k vertices to be an independent set, there is an FPT algorithm

of time [14]. When we require the k vertices to be an independent set, is there any fpt

algorithm for this problem?

33

REFERENCES

[1] R. Beigel and D. Eppstein, 3-colring in time : a no-MIS algorithm, Proc. 36th

Symp. Foundations of Computer Science, pp. 444-453, 1995.

[2] R. Beigel and D. Eppstein, 3-coloring in time , Journal of Algorithms 54 (2):

168–204, 2005.

[3] A. Bjorklund, T. Husfeldt, and M. Koivisto, Set partitioning via inclusion- exclusion, SIAM J.

on Computing, 39(2):546-563, 2009.

[4] A. Blum and D. Karger, An - coloring algorithm for 3-colorable graphs, Information

Processing Letter, 61(1):49-53, 1997.

[5] J. M. Byskov, Enumerating maximal independent sets with applications to graph colouring,

Operations Research Letters, 32:547-556, 2004.

[6] G. J. Chaitin, Register allocation & spilling via graph coloring, Proc. of the 2nd SIGPLAN

symposium on Compiler construction, pp.98-105, 1982.

[7] D. Eppstein, Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction,

Proc. 12th Symp. on Discrete Algorithms, pp. 329-337, 2001.

[8] D. Eppstein, Small maximal independent sets and faster exact graph coloring, J. Graph

Algorithms and Applications, 7(2):131-140, 2003.

[9] M. Fellows, Blow-ups, win/win‟s, and crown rules: Some new directions in FPT, Lecture

Notes in Computer Science (WG‟03), pp.1-12, 2003.

http://en.wikipedia.org/w/index.php?title=Journal_of_Algorithms&action=edit&redlink=1

34

[10] S. Khanna, N. Linal, and S. Safra, On the hardness of approximating the chromatic number,

Proc. 2nd Isral Symp. on Theory and Computing Systems, pp. 256-260, 1993.

[11] Lawer, A note on the complexity of the chromatic problem, Information Processing Letter,

5(3):66-67, 1976

[12] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems,

Proc. 25th Symp. of Theory of Computing, pp. 286-293, 1993.

[13] C. H. Papadimitriou and M. Yannakakis, On the complexity of database queries, Journal of

Computer and System Sciences, 58: 407-427, 1999.

[14]. B. A. Reed, K. Smith, and A. Vetta, Finding odd cycle transversals, Operation Research

Letters, 32(4):299-301, 2004.

[15] I. Schiermeyer, Deciding 3-colourability in less than steps, Proc. 19th Int. Workshop

Graph-Theoretic Concepts in Computer Science, pp. 177-182, 1994.

35

BIOGRAPHICAL SKETCH

Qing Wang was born in P.R.China in Oct.1984 as the son of Jianmin Wang and Hongping

Du. He received his bachelor Degree in Computer Science of Chongqing University of Posts and

Telecommunications, Chongqing, P.R.China in 2008. He graduated from University of Texas-

Pan American with Master of Science in Computer Science in May, 2011. His research fields

include design and analysis of algorithms.

	Partition a 3-colorable graph into a small bipartite subgraph and a large independent set
	Recommended Citation

	tmp.1678208456.pdf.WbVnb

