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ABSTRACT 

 

 

Wang, Qing, Partition A 3-Colorable Graph Into A Small Bipartite Subgraph And A Large 

Independent Set. Master of Science (MS), May, 2011, 35 pp., 4 tables, 8 figures, references, 15 

titles. 

        Exact algorithms have made a little progress for the 3-coloring problem: improved from 

          to           since 1976. The best exact algorithm for the 3-coloring problem is by 

Beigel and Eppstein, and its analysis is very complicated. We study the parameterized 3-coloring 

problem: partitioning a 3-colorable graph into a bipartite subgraph and an independent set. 

Taking the size of the bipartite subgraph as the parameter k, we propose the first parameter 

algorithm of complexity                . Our algorithm can solve the 3-coloring problem faster 

than the best exact algorithm for graphs with k ≤ 0.527n where n is the graph size. Our study of 

the parameterized 3-coloring problem brings new insight on studies of the 3-coloring problem. 

Experiments show that the parameterized algorithm is faster than the exact algorithm for graphs 

of small parameter k. Moreover, the running time of parameterized algorithm is not much related 

to edge density, while the running time of exact algorithm increases dramatically as edge density 

increases.
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CHAPTER I 

 

 

INTRODUCTION 

 

 

        In graph theory, graph coloring is a special case of graph labeling, it is an assignment of 

labels traditionally called “colors” to elements of a graph subject to certain constraints. In its 

simplest form, it is a way of coloring the vertices of a graph such that no two 

adjacent vertices share the same color; this is called a vertex coloring. Similarly, an edge 

coloring assigns a color to each edge so that no two adjacent edges share the same color, and 

a face coloring of a planar graph assigns a color to each face or region so that no two faces that 

share a boundary have the same color. 

         

Problem Description 

 

        Graph coloring has been studied as an algorithmic problem since the early 1970s, the 

chromatic number problem is one of Karp‟s 21 NP-complete problems from 1972, and at 

approximately the same time various exponential-time algorithms were developed based on 

backtracking and on the deletion-contraction recurrence of Zykov. One of the major applications 

of graph coloring, register allocation in compilers was introduced in 1981[6]. 

        Given an undirected graph          , coloring each vertex     with one of three colors 

so that no two vertices connected by an edge      are colored with the same color is known as 

http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Graph_labeling
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Karp%E2%80%99s_21_NP-complete_problems
http://en.wikipedia.org/wiki/Graph_coloring#CITEREFZykov1949
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the Graph 3-Coloring Problem. Several variations exist, like finding the least number of colors 

that is needed to color the graph, or finding the largest subgraph in   that can be colored with the 

given number of colors. All of these problems are known to be NP-complete, so it is unlikely 

that a polynomial time algorithm exists that solves any of these problems.  

 

Previous work 

 

        The best algorithm for the problem is of time complexity           , and requires 

exponential space        [3]. When polynomial space complexity is desired, the best algorithm 

for this problem has time complexity            [3]. The 3-coloring problem is a special case 

of the chromatic number problem. In the 3-coloring problem, we are asked to determine whether 

the chromatic number of graphs is 3 or not. Table 1 shows the history of exact algorithms for the 

3-coloring problem. Meanwhile, approximation solutions with          colors can be found in 

polynomial time for graphs of chromatic number 3 [4]. For 3-coloring, we know of several 

relevant references. Lawler is primarily concerned with the general chromatic number [9], but he 

also gives the following very simple algorithm for 3-coloring: for each maximal independent set, 

test whether the complement is bipartite. The maximal independent sets can be listed with 

polynomial delay, and there are at most     such sets, so this algorithm takes time           . 

Schiermeyer gives a complicated algorithm for solving 3-colorability in time           [15], 

based on the following idea: if there is one vertex   of degree       then the graph is 3-

colorable iff       is bipartite, and the problem is easily solved. Otherwise, Schiermeyer 

performs certain reductions involving maximal independent sets that attempt to increase the 

degree of   while partitioning the problem into subproblems, at least one of which will remain 

solvable. Beigel and Eppstein gives a faster algorithms are known for 3-colorability and 4-
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colorability, which can be decided in time O(       ) [13], they consider worst case time 

bounds for several NP-complete problems, based on a constraint satisfaction (CSP) formulation 

of these problems:       -CSP instances consist of a set of variables, each with up to a possible 

values, and constraints disallowing certain b-tuples of variable values; a problem is solved by 

assigning values to all variables satisfying all constraints, or by showing that no such assignment 

exist. 3-SAT is equivalent to      -CSP while 3-coloring and various related problems are 

special cases of      -CSP; there is also a natural duality transformation from      -CSP 

to      -CSP. 

 

Figure 1: Example 3-coloring instance and translation into a (3, 2)-CSP instance. 

 

Authors Complexity Year 

Lawler         1976 [11] 

Schiermeyer        1994 [15] 

Beigel and Eppstein         1995 [1] 

Beigel and Eppstein         2005 [2] 

 

Table 1: History of Exact Algorithms for 3-coloring 
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CHAPTER II 

 

 

FIXED-PARAMETER ALGORITHM IN 3 COLORING PROBLEM 

 

 

        Classic complexity theory indicates that a large number of natural combinatorial problems 

are inherently hard to solve algorithmically.  

        The 3-coloring problem can be viewed from another perspective: partitioning the vertices of 

a graph into three disjoint independent sets, if such a partition exists. This perspective leads to 

our study of parameterized complexity of the 3-coloring problem when we take the total number 

of vertices in two independent sets as a parameter. 

        Parameterized 3-coloring is that given a graph  , can the vertices of   be partitioned into a 

bipartite subgraph of at most   vertices and an independent set? Find such a partition if it exists, 

or report „NO‟ otherwise. 

 

Fixed-parameter tractable algorithm 

 

 

        Parameterized complexity and algorithms have developed rapidly during the last three 

decades. Since the fundamental work of Downey and Fellows, parameterized complexity theory 

introduced numerous innovative ideas in algorithmic design and offered insightful results in 

almost all disciplines of theoretical computer science. 

        According to the common belief that P ≠ NP, NP-complete, or otherwise NP-hard, problems 

require time that is exponential in input size. Therefore, if the input size is large, it is unfeasible 
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to find solutions to those problems. In real world, applications of NP-complete may have some 

small parameters which can be used to find solutions efficiently. Some problems with certain 

parameter fixed can be solved by algorithms that are exponential only in the size of the fixed 

parameter tractable algorithm. A parameterized problem that allows for such a fixed-parameter 

tractable algorithm is said to be a fixed-parameter tractable problem and belongs to the class FPT. 

It seems a good supplement of the theory of NP-completeness. The problem in FPT can be 

solved efficiently for small values of the fixed parameters. For example, the vertex cover 

problem is in FPT. This problem is that given a graph  , to find k number of vertices in   such 

that every edge of   is incident to at least one of those vertices. It is a NP-complete problem 

which has been applied in many areas such as network optimization and bioinformatics. 

        An exhaustive search algorithm can solve the problem in time           . Vertex cover is 

therefore a fixed-parameter tractable problem, and there may only need a vertex cover of a few 

vertices in some applications. These parameters can be used to define parameterized problems, 

the case in the  -vertex cover problem, where the input consists of a graph   and a positive 

integer k as a parameter, and asks whether G has a vertex cover with at most   vertices. The 

input to a parameterized problem   is defined as a pair      , where n is the size of the input and 

  is the parameter. Often, parameterized algorithms find solutions to problem instances in 

polynomial time in terms of the size of the input. The problem   is said to be fixed-parameter 

tractable (FPT) if there exists an algorithm that correctly decides whether an input       is a yes-

instance, or not, in time       (or        ), where α is a constant, and   is an arbitrary 

function independent of n. If a parameterized problem is fixed parameter tractable, it is said to be 

in the class FPT. For those applications of small vertex cover (i.e. k is small), we can solve the 

problem efficiently. After many researches, many fixed parameterized algorithm for this problem 
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have been developed. A well known algorithm for this problem has a running time          

    in [9]. 

        However, some problems are not believed to be in FPT. An example is deciding whether an 

n-vertex graph contains an independent set of cardinality k or not. The complement of a 

maximum independent set is the set of vertices not belonging to the independent set, forms a 

minimum vertex cover, which is a fixed-parameter tractable problem. There is an algorithm 

which can solve the independent set of cardinality k with an upper bound of            in [13]. 

So far no algorithm with a running time of the form           is known. 

        Unlike classical complexity theory, which focuses on whether a problem is hard or not, 

parameterized complexity theory, introduced by Downey and Fellows, accepts that a problem is 

hard and asks the question “What makes the problem computationally difficult?”. Downey and 

Fellows claim parameters arise naturally in many computational problems.  

        Fixed-parameter tractable algorithms (FPT-algorithms) are helpful in solving real world 

problems that are in general NP-Hard, but where most instances of interest have small parameter 

values. This is the case for many practical problems such as multiple sequence alignment in 

computational biochemistry, known to be equivalent to the vertex cover problem, which has an 

FPT-algorithm with running time O( n +         ).  

        Next we introduce two important concepts: P-coloring and Bipartite-independent partition, 

which will be used in discussions of our algorithm. 

 

P-Coloring 

 

        Let          be a simple graph without multiple edges between a pair of vertices. A 

              of graph   is an coloring of vertices with   colors such that each vertex is colored 
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with exactly one color, and no two adjacent vertices are colored with the same color. A graph   

is                if   there is a               of  . Let    and    be vertex subsets in graph   such 

that       ,         be a               of   , and    
    

   be a               of   . Then 

   
    

    is            to          if      
  and      

  . 

 

Bipartite – independent partition 

 

        Let    and    be two disjoint vertex subsets in graph  . A partition [       ] is a 

                                    if the induced subgraph by    is                and the 

induced subgraph by    is an independent set. If           , then a bipartite-independent 

partition [           ] is a complete bipartite-independent partition. A bipartite-independent 

partition [    ,    ] extends another bipartite-independent partition [   ,   ] if         , 

        . Given a bipartite-independent partition [   ,   ] ,  [    ,    ] k-extends [   ,   ] if 

           + k. 

Candidate Set 

 

        Let         be a simple path induced by vertices   ,  ,    , i.e.,    =    for     

   . The candidate set of P is     ,    ,   ,      if p is even, or     ,    ,   ,       if p is odd. 

Let           be a simple cycle induced by vertices   ,  ,    , i.e.,    =    for       

 .  The candidate set of cycle C is     ,    ,   ,      if p is even, or     ,    ,   ,         {    if 

p is odd. 

Upper bound analysis 

 

        Let      be the maximum number of leaves of the search tree if the parameter is at most 

k let      = 1 for     . 
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        There is a standard technique for bounding such functions asymptotically. We assume that 

   is a solution of this equation. We prove by induction: 

  
     

      
    

   
     

       

 

                           

                                                       k-1                               k-3 

 

 

 

 

 

 

 

                                                                                                                                       Leaves 

Figure 2: (1,3) Search Tree 

        We need to find the roots of the characteristic equation    
     

     .    = 1.4656 is the 

solution. Now we check if the    is the best solution for this equation:   

               

                   

When the   increase, the      decrease.  

We try       , see if    it‟s good solution or not: 
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Because         

      
       

        
    

So,   
  is an upper bound of the equation, but it is not as tight as possible.  

We try       , see if    it‟s good solution or not: 

      
       

        
  

 

 

          

 

 

 

                      0                          

                                                                 -1 

                                                             

 

Figure 3: Coordinate graphs of                

Because         

      
       

       
    

So, at this point, we don‟t know   
  is an upper bound of the equation or not. 

 

Union of Disjoint Paths/Cycles 

 

        Let [   ,   ] be a bipartite-independent partition of graph G. This section will show two 

properties for the case when subgraph induced by          is a union of disjoint paths and 

cycles. 
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        Let     ,  ,     be the candidate sets of those paths/cycles. In this subsection, we assume 

that any vertex             has no neighbors in    . The first property is that at least 

      
 
    vertices from the disjoint paths/cycles should be put into any complete bipartite-

independent partition which k-extends [   ,   ]. 

 

Lemma 1. Let    
       

   be a complete bipartite-independent partition. If    
       

   k-

extends         , then     
  contains at least       vertices from the paths/cycles 

corresponding to candidate set     , i.e.,         
 
     

Proof. We number the paths/cycles corresponding to the candidate set     by the index   of the 

candidate set. We first prove that for each path/cycle   ,   
  must contain at least       vertices 

from path/cycle  . There are two cases:     is from either a path or a cycle. 

        If     is from a path  , let path   be         which is induced by vertices    ,    ,  ,    . 

By definition of candidate sets,       =                    
 

 
  if p is even,       = 

                     
 

 
  if p is odd. For both cases,        

 

 
  . Moreover, there are at least 

 
 

 
  disjoint edges in path  :                     . Then each of those disjoint edges can have 

at most one vertex in    
  , since    

       
   is a complete bipartite-independent partition 

and     
  must be an independent set by the definition of bipartite-independent partition. 

Therefore,   
  contains at least one vertex from each of those  

 

 
  disjoint edges. It follows that 

  
  contains at least  

 

 
  =       vertices from path. 

        If     is from a cycle  , let cycle   be           which is induced by vertices    ,    ,  , 

   . When p is even, we have that       =                    
 

 
 , In the cycle   there are 

 

 
 

disjoint edges:                     . By the same arguments above for path  ,   
  contains at 
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least one vertex from each of those disjoint edges, and thus contains at least 
 

 
 =       vertices 

from cycle  . Next we show that when p is odd,   
  also contain at least       vertices from 

cycle  . 

       When p is odd, by definition we have that       =                              
   

 
 for 

cycle  . In this cycle of p vertices (p is odd), there are 
   

 
 disjoint edges:                . By 

the same arguments for path i,   
  contains at least one vertex from each of those 

   

 
 disjoint 

edges. If   
  contains both vertices of one of those 

   

 
 disjoint edges,   

  contains at least 
   

 
 + 

1 =       vertices from cycle i. Otherwise,   
  contains exactly one vertex from each of those 

   

 
 disjoint edges, and then     

  contains exactly one vertex from each of those disjoint 

edges. We have two cases: 

        Case 1:   
  contains     . Since both   

  and     
  contains exactly one vertex from 

each of those 
   

 
 disjoint edges,     

  must contains   . It follows that   
   must contain    

since     
   is an independent set, and then     

  must contains     . Repeat this, we will 

have that   
  contains    ,    ,  ,      and     

  contains    ,    ,  ,     . Since (1)      is 

in      
  , (2)     

  is an independent set, and (3) there is an edge        in the cycle,   
   

must contains     . Therefore,   
    contains 

   

 
 +1 = 

   

 
=       vertices:                       

     . 

        Case 2:   
  does not contains    . Then     

  contains    . Since     
  is an 

independent set and there is an edge       in cycle i,   
  must contains    . Besides    ,   

  

contains 
   

 
 vertices from those 

   

 
 disjoint edges (               ), by our assumption that 
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  contains exactly one vertex from each of those disjoint edge. Therefore,   

  contains at least 

   

 
 +1 = 

   

 
=       vertices from cycle i. 

        We have shown that   
  contains at least       vertices from path/cycle i. It follows that   

  

contains at least       
 
    vertices from        , since G[       ] is a union of disjoint 

paths/cycles. Note that    and         are disjoint and     are from        . It follows 

that    
              

 
    . Moreover, because [  

      
  ] k-extends [   ,    ], we have 

that    
          . Therefore,           

              
 
    , i.e.,         

 
   . 

This completes our proof. 

        The second property is that when a complete 2-coloring (   ,    ) of    is given, we can 

determine in polynomial time whether there is a complete bipartite-independent partition [  
  , 

    
  ] which k-extends [   ,   ] and   

  has a complete 2-coloring compatible to (   ,    ). If 

such a complete bipartite-independent partition exists, we construct a complete 2-coloring (  
  , 

  
  ) of   

  compatible to (   ,    ). 

 

Lemma 2. Let (   ,    ) be a complete 2-coloring of   . We can find a complete bipartite-

independent partition [  
  ,     

 ] k-extending [   ,    ] such that   
  has a complete 2-

coloring compatible to C if there exists such one, or report ‘NO’ otherwise. This can be done in 

polynomial time. 

Proof. Figure 4 gives the algorithm to find the desired bipartite-independent partition if such one 

exists, or return „NO‟ otherwise. It is obvious that the algorithm can terminate in polynomial 

time, since each step takes polynomial time. 
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Algorithm-1(G, k, [   ,   ], (   ,    )) 

INPUT: a graph G, a parameter k, a bipartite-independent partition [   ,    ], and a complete 

2-coloring (   ,   ) of    . 

OUTPUT: either a complete bipartite-independent partition [    ,       ] which k-extends 

[   ,    ] such that     has a complete 2-coloring compatible to (   ,    ), or „NO‟ otherwise. 

 

1. if there is an edge xy where x, y           such that both x and y have a neighbor in      

and another neighbor in    

             return „NO‟; 

2. foreach x           which has neighbors in both    and    , let Y           be 

neighbors of x,      Y be vertices which have neighbors in    ,      Y be vertices which have 

neighbors in    

             put x into    and Y into    ,    into    ,    into    , and              
3. if                          

             return „NO‟; 

4. if there is a cycle i of odd number vertices such that for each edge xy in the cycle, both x 

and y have neighbors in     (   ) 

             returns „NO‟; 

5. foreach path/cycle i 

             for a cycle of p vertices where p is odd, W.L.O.G, assume that        is an edge 

where      and     have no neighbors in the same color set (either    or    ); 

             put the candidate set     for the path/cycle i into    and other vertices    of 

path/cycle i into    ; 

return [   ,    ]; 

 

 

Figure 4: Algorithm 1 

        When a vertex w has a neighbor in    and a neighbor in    , then w must be in       , 

since    + w has no 2-colorings compatible to (   ,    ). Then for Step 1, both x and y must be in 

     , which is also impossible since       should be an independent set. Therefore, „NO‟ is 

returned correctly at Step 1. 

        In Step 2, vertex x should be in       since x has neighbors in both    and    . Then 

neighbors Y of x should be in      for any complete bipartite-independent partition [    ,      ] 

which k-extends [   ,    ]. Thus it is safe to put x into    and Y into    . Moreover, in any 

complete 2-coloring (  
 ,   

  ) of     compatible to (   ,    ),        since vertices of    have 
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neighbors in    . Similarly,          . Finally, we need to reduce k to         , since now we 

need to find a complete bipartite-independent partitions (        )-extending [   ,    ] after Step 

2. This concludes that Step 2 is correct. By our assumption that G[       ] is a union of 

paths/cycles. When                         , there are no complete bipartite-independent 

partitions k-extending [   ,    ] by lemma 1. Therefore, Step 3 returns „NO‟ correctly. 

        For a cycle i of p vertices where p is odd,        
   

 
. Let W be those vertices of cycle i 

which are also in     where [    ,      ] is a complete bipartite-independent partition k-

extending [   ,    ]. Then by lemma 1,           
   

 
. This implies that at least two vertices 

x and y of W should be an edge xy of cycle i. However, when the condition of Step 4 is true, both 

x and y have neighbors in the same color set: either in    or    . It contradicts that          

    is 2-colorable. Therefore, when the condition of Step 4 is true, no complete bipartite-

independent partitions k-extending [   ,   ] exists, and thus „NO‟ is returned correctly. 

        To simplify discussions on the correctness of Step 5, let [  
  ,   

  ] denotes the [   ,   ] 

returned at Step 5, and [    ,   ] refers to the partition after Step 4. Then   
  =    + 

                    and   
                              . 

        By definition of      ,    in Step 5 is an independent set. Recall our assumption on 

        as input: any vertex in         has no neighbor in    (the assumption is made 

right before this subsection). Note that this assumption is still valid before Step 5. So    
  =    + 

                   is still an independent set, since             . Moreover,    

                      after Step 3. It follows that    
   =     +                             . 

Therefore, we can conclude that [   
  ,   

        ] is a complete bipartite-independent 

partition k-extending [   ,    ] such that   
   has a complete 2-coloring compatible to (   ,    ) 
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and thus Step 5 is correct, once we show that   
  has a complete 2-coloring (  

 ,   
  ) compatible 

to (   ,    ). 

        To prove that, we first prove the following claim: 

        Claim: any vertex y      such that y is not in    +    , y has at most one neighbor in      . 

        Note that before Step 2 all vertices of    are in    +    , since (   ,   ) is a complete 2-

coloring of    before Step 2. So y must be put into    during Step 2, which implies that a 

neighbor x           of y is put into    during Step 2. Recall that  [       ] is a union 

of disjoint paths/cycles before Step 2. It follows that y can have at most two neighbors in 

        before Step 2. Moreover, y has no neighbors in    before Step 2. Otherwise, y 

should be in either    or    after Step 2. Since (1) y has no neighbors in    before Step 2, (2) y 

have at most two neighbors in         before Step 2, and (3) one neighbor x           

of y is put into    during Step 2, it follows that y has at most one neighbor in      after Step 2, 

which conclude the proof of the Claim. 

        Now we continue our proof of that   
  has a complete 2-coloring (  

 ,   
  ) compatible to (   , 

   ). Note that   
  =    +                     according to Step 5. Moreover,    may contains 

vertices other than those in (   +   ) after Step 2. Let    be those vertices in    − (   +    ) 

which have neighbors in     , and Z be those vertices in    − (   +    )  −                    in 

Step 5. It is obvious that any vertex x                      + Z has no neighbors in    +    . 

Otherwise, x can be put into    +    . By our definitions, it is also obvious that    = (   +   )+ 

                   +Z, and thus   
  = (   +    )+                   +                     + Z. 

        To show that   
  = (   +    ) +                   +                    + Z has a complete 2-

coloring compatible to (   ,    ), we first show that (   +   ) +                     has a 2-

coloring (  
 ,   

   ) compatible to (   ,    ). Initially   
  =    and   

    =    . Note that after Step 2, 



16 

 

any vertex x           has at neighbors in at most one of    and    . Otherwise, it should be 

processed in Step 2. Let x be a vertex of    , then x has neighbours in at most one of   
  =    and 

  
    =   , since     is a subset of         . We put x into   

  if it has a neighbor in    , or 

into   
  otherwise. Note that path/cycle i     is an independent set, and then it is safe to put x into 

  
  when x has no neighbors in    . Therefore, these operations find a 2-coloring (  

 ,   
   ) of (   

+   ) +                     which is compatible to (   ,    ). 

        Next We show that (   +   ) +                     +                    has a complete 2- 

coloring (  
 ,   

  ) compatible to (  
 ,   

 ) of vertices   
  +   

  = (   +   ) +                     . 

Initially   
  =   

  and   
  =   

  . Recall that all vertices in         have no neighbors in    +    . 

Then by our Claim, each vertex y       has exactly one neighbor in     , and then no neighbors 

in    +    before Step 5. Since each vertex of     is in   
  or   

  by our processing above, vertex 

y       can be put into   
  (  

 ) if its unique neighbor in     is in   
  (  

  ). Therefore, all vertices 

in (    +   ) +                     +                    has a complete 2-coloring which is 

compatible to the (  
 ,   

 ). 

        Finally, we show that   
  = (   +   ) +                     +                    + Z has a 

complete 2-coloring (   
 ,   

  ) compatible to (   
 ,   

 ) of those vertices in (    +   ) + 

                    +                    =   
  − Z. Initially   

  =   
  and   

  =   
  . Recall that vertices 

of Z have no neighbors in (   +   ) +                     by definition, and have no neighbors in 

                   since by definition    has only neighbors in     . It follows that Z has no 

neighbors in   
  −Z. That is, any vertex z   Z can have neighbors only in Z or     

    
 . 

Recall again that Z has no neighbors in    +   . Then by our Claim, any vertex z   Z has at most 

one neighbor in      , thus has at most one neighbors in Z and no neighbors in (   +   ) + 
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                    +                   , since z can have neighbors only in Z +   
  . This implies that 

the graph induced by Z is a set of disconnected edges and isolated vertices, thus Z is 2-colorable. 

Let (  
  ,   

   ) be a complete 2-coloring of Z. Then (  
  =   

  +   
   ,   

  =   
  +   

   ) is a complete 

2-coloring (  
  ,   

    ) of   
  which is compatible to (  

 ,   
 ). By transitivity, (  

 ,   
 ) is 

compatible to (   ,   ). This completes our proof that Step 5 is correct, and then concludes our 

proof of this lemma. 

Main Algorithm 

 

        First, we present our main algorithm in Figure 5. Next we show the algorithm is correct. 

Lemma 3. Algorithm Param-3-Coloring(               ) either finds a complete bipartite-

independent partition [    ,      ] which k-extends [   ,   ] if such a bipartite-independent 

partition exists, or reports „NO‟ otherwise. 

Proof. Step 1 deals with the cases when the solution can be easily determined. First, if      , 

there is no bipartite-independent partition which  -extends          . Thus „NO‟ is returned 

correctly. After this,    . If [       ] is a bipartite-independent partition, then [       ]  

is a complete bipartite- independent partition  -extending            since    , and thus [   , 

     ] is returned correctly. After this, [        ] is not a complete bipartite-independent 

partition. Since [       ] is the only complete bipartite-independent partition which could 

possibly 0-extend           , any complete bipartite-independent extending            must  -

extend            for some      . Therefore, „NO‟ should be returned when k = 0. In conclusion, 

step 1 correctly finds the solution. 

        After step 1,       and    
  must contain at least a vertex from         for any 

complete bipartite-independent partition  -extending          . So         is not empty. If a 

vertex              has a neighbor in   , then for any complete bipartite-independent 
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Algorithm Param-3-Coloring(G, k,           ) 
Input: a graph G, a parameter k, and a bipartite-independent partition           . 
Output: either a complete bipartite-independent partition [    ,      ] which k-extends 

          , or „NO‟ otherwise. 

 

1. if k < 0 return „NO‟; 

    if [   ,     ] is a bipartite-independent partition 

              return [   ,     ]; 

    if k = 0 return „NO‟; 

2. if x          has a neighbor in    

    if    + x is 2-colorable return Param-3-coloring(G, k − 1,    + x,    ); 

              return „NO‟; 

3. if x          in    has two neighbours y, z in    where yz is an edge in G, or has no 

neighbors 

in         

              return Param-3-coloring(G, k,    ,    + x); 

4. if there is a vertex x          which has three neighbors in          

        Let N (x) be the neighbors of x in         ; 

4.1   if    + x is 2-colorable 

             [    ,      ]  =Param-3-coloring(G, k − 1,    + x,     ); 

              if [    ,      ]! =„NO‟ 

                    return [    ,      ]; 

4.2   if    + N (x) is 2-colorable 

             return Param-3-coloring(G, k − |N (x)|,    + N (x),    + x); 

4.3 return „NO‟; 

Let    ,   ,     be the candidate sets of paths/cycles induced by vertices in         ; 

5. if       
 
    > k 

       return „NO‟; 

6. if      

6.1  for each enumeration of          ,  ,          such that [    +   
 
    ,    +       

 
   

  )]   is a bipartite-independent partition 

             Let T   (            
 
   ) be vertices having neighbors in    +          

 
    

             if [     = SB +    
 
    + T,       ] is a complete bipartite-independent partition and 

              

                       return [    ,      ]; 

6.2      return „NO‟; 

7. for each 2-coloring C of    

         if there is a complete bipartite-independent partition [    ,      ] which k-extends 

           such that there is a 2-coloring of     compatible to C 

          return [    ,      ]; 

8. return „NO‟; 

 

Figure 5: The main algorithm 
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partition [  
  ,     

  ]  -extending           ,   must be in   
  and not in     

  , since     
  

should be an independent set and         
  . If       is 2-colorable, [     ,   ] is a 

bipartite-independent partition, and we only need to look for a complete bipartite-independent set 

       -extending [      ,   ]. Otherwise, „NO‟ should be returned. Hence step 2 is correct.                   

        After step 2, any vertex            has no neighbors in   , and then [   ,     ] is a 

bipartite-independent partition. If   has two neighbors     in    such that    is an edge, then for 

any complete bipartite-independent partition [  
  ,     

  ]  -extending           ,   must be in 

    
  , since   

  should be 2-colorable. Thus we only need to search for a complete bipartite-

independent set  -extending [   ,      ]. For this case, step 3 is correct. Now we consider the 

case when   has no neighbors in        . Note that any complete bipartite-independent 

partition  -extending [   ,      ] also  -extends           . On the other hand, given a complete 

bipartite-independent partition    
       

     -extending            where      
 , [  

    , 

    
   ] is also a complete bipartite-independent partition  -extending           , since   has 

no neighbors in        . Therefore, there is a complete bipartite-independent partition  -

extending            if and only if there is one  -extending [   ,      ]. We conclude that Step 3 

is still correct for this case. 

        For any complete bipartite-independent partition    
       

    k-extending          , x is in 

either   
  or     

 . If   is in   
   for a partition    

       
   , then      is 2-colorable, and 

step 4.1 should correctly find one which      -extends [    ,   ]. If Step 4.1 does not return 

anything, then for any complete bipartite-independent partition    
       

   ,   should be in 

    
 , and thus       should be in     . This is possible only when       an independent set, 

and     +       is is 2-colorable. Note that       is indeed an independent set, since   has no 

neighbors in    after Step 3. Therefore, when     +        is 2-colorable, Step 4.2 correctly 
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returns a complete bipartite-independent partition    
       

    which              -extends 

[    +      ,      ] and also  -extends            if there exists one, or returns „NO‟ if it does 

not find any one. When     +       is not 2-colorable, „NO‟ is returned correctly at Step 4.3, 

since by our arguments above, there is no complete bipartite-independent partition k-extending 

          . 

        After Step 4, any vertex            has at most two neighbors in       , no 

neighbors in   , and no two neighbors in    which are neighbors of each other. Now        

     is a union of disjoint paths/cycles. According to lemma 1, for any complete bipartite-

independent partition    
       

     -extending          , we have that           
 
   . Step 5 

returns „NO‟ correctly for the case           
 
   . 

        To prove that Step 6 is correct, we first show that there is a complete bipartite-independent 

partition k-extending            if and only if Step 6.1 finds one. First, the partition    
     

  
   returned by Step 6.1 is a complete bipartite-independent partition k-extending           , 

since it is a complete bipartite-independent partition, |  
  |   |     | + k,          

  , and      

    
  . On the other hand, if there is a complete bipartite-independent partition    

       
   k-

extending           , Step 6.1 can find a complete bipartite-independent partition   
       

    for 

some          where        . Let   
  =   

      for         . Then     −   
  is in 

    
 . So    

       
    extends [     +    

  
     ,    +         

  
 
   ] which is of course a 

bipartite-independent partition. By our notation, T are those vertices having neighbors in    + 

        
   

   . So T must be in   
 , and then     +    

  
   + T     

  . It follows that    
     

  
    [     +    

    
     ,    +         

   
   ]. Note that vertices in   

  − (     +    
    

   ) 

can only be from   =                  
 
     . Let       

        +    
    

    . Note 

that   
  −     =     +    

    
   . We complete our proof that Step 6.1 can find a complete 
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bipartite-independent partition k-extending           , once we show that [  
     ,     

     ] 

is a complete bipartite-partition k-extending           . 

        It is easy to see that |  
     |   |  

  |   |    | + k,        
               

       ,     

    
     ,           

     , and   
       is 2-colorable,. So we only need to show that 

    
      is an independent set. Since 

             
 
        , and 

  
         

    
       . 

We have that 

    
                 

   
      . 

Now we only need to show that            
   

       is an independent set. 

        By definition of T and   , we have that       . Since T are vertices of          

    
 
    which have neighbors in            

   
   , all vertices in    have no neighbors in 

           
   

   . It follows that all vertices of     have no neighbors in          
 
   

  
  , since          by definition. Moreover, by definitions of candidate sets and    ,      

             
 
    is an independent set. Finally,            

   
         

  is an 

independent set, since    
       

    is a complete bipartite-independent partition. Now we 

conclude that                   
   

     is indeed an independent set, which also complete 

our proof on Step 6.1. 

        If for all possible          , step 6.1 can not return a complete bipartite-independent 

partition, then there is no complete bipartite-independent partition k-extending           . 

Therefore, Step 6.2 returns „NO‟ correctly. In conclusion, Step 6 is correct. 

        The partition    
       

    returned at step 7 is correct, since it is a complete bipartite-

independent partition k-extending           . On the other hand, when there is a complete 
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bipartite-independent partition    
       

    k-extending           , there is a 2-coloring    of 

  
  . Let C be the 2-coloring    restricted to vertices of   . By lemma 2, Step 7 should be able to 

find a complete bipartite-independent partition k-extending           . This concludes the 

correctness of step 7. 

        By the arguments above, Step 7 finds a complete bipartite-independent partition k-

extending            if and only there exists such one. Therefore, „NO‟ should be returned, if Step 

7 cannot find any complete bipartite-independent partition k-extending            for each 

possible 2-coloring of   . So step 8 is correct. This completes the correctness proof of our main 

algorithm. 

 

The time complexity of algorithm Param-3-Coloring (              ) 

 

Lemma 4 Algorithm Param-3-Coloring (              ) terminates in time 

         
      

                  . 

Proof. We use bounded-search tree analysis. A branch-and-bound procedure requires two tools. 

The first one is a splitting procedure that, given a set S of candidates, returns two or more smaller 

sets         whose union covers S. Note that the minimum of      over S is             , 

where each    is the minimum of      within   . This step is called branching, since its recursive 

application defines a tree structure whose nodes are the subsets of S. Another tool is a procedure 

that computes upper and lower bounds for the minimum value of      within a given subset S. 

This step is called bounding. Note that each step may directly return, or decrease the number of 

vertices in          , or decrease k. Algorithm Param-3-Coloring (              ) terminates 

after at most |          | + k recursive calls. Each step except Step 6.1 and 7 can be done in 

polynomial time. However, we can regard Step 6.1 as a branch for      
 
    combination of 

http://en.wikipedia.org/wiki/Tree_structure


23 

 

subsets of    , and Step 7 as a branch for        2-coloring of    . For each combination of subset 

of     , Step 6.1 can be done in polynomial time. For each 2-coloring of     , Step 7 can be done 

in polynomial time by lemma 2. Now we conclude that algorithm Param-3-Coloring 

(              ) will terminates after at most |           | + k recursive calls, and each step 

takes polynomial time.         

        Next we prove that              
      

  is the upper bound on the number of branches by 

mathematical induction. Only Step4, 6 and 7 have branches.  

        For Step 4, any complete bipartite-independent partition    
       

    k-extending          , 

x is in either   
  or     

 . If   is in   
   for a partition    

       
   , then      is 2-colorable, 

and step 4.1 should correctly find one which      -extends [    ,   ]. If Step 4.1 does not 

return anything, then for any complete bipartite-independent partition    
       

   ,   should be 

in     
 , and thus       should be in    . We have recursive equation: 

                                                                  

        For Step 6, any complete bipartite-independent partition    
       

     -extending          , 

we have that           
 
   . We have recursive equation: 

                        
 
       

        For Step 7, we have recursive equation by lemma 2: 

                        

        When    , the algorithm returns directly at step 1. So we have               . We 

only need to show that the upper bound is correct when    . The upper bound is correct for 

Step 4, since 

The upper bound is correct for Step 4, since 
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Because            , so          < 0, we have                

                                             
      

     

                                                                
      

  

                                                                        

                                                           
      

                        
      

   

                                                         
      

  

The upper bound is correct for Step 6 and 7, since 

                        
 
                      

      
  

To make sure                   
      

 , first get                
      

  

                                      
        

            

        Since there are at most              
      

  branches, each of which can be done in 

      time where   is a constant independent of  , algorithm Param-3-Coloring (              ) 

terminates in time              
      

        

        Now we are ready to apply our algorithm to solve the parameterized 3-coloring problem. 

Theorem 1. Param-3-Coloring               solves the parameterized 3-coloring problem 

correctly in time               . 

Proof. By lemma 3, Param-3-Coloring               either finds a complete bipartite-

independent partition [   
       

 ] which  -extends        if such a bipartite-independent 

partition exists, or reports „NO‟ otherwise. In a partition like [  
       

 ], we have that   
  

contains at most k vertices and is 2-colorable, and that      
  contains the remaining vertices 
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and is an independent set. So the algorithm solves the parameterized 3-coloring problem 

correctly. 

        By lemma 4, Param-3-Coloring             terminates in time              
 

        

              . This concludes our proof. 
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CHAPTER III 

 

 

IMPLEMENTATION STUDY 

 

        There are two algorithms for the 3-coloring problem we implemented. The first algorithm is 

a fixed parameterized algorithm proposed by us. The second one is the algorithm proposed by 

Beigel and Eppstein in [13]. 

 

Measures for comparing Algorithm 

 

        Comparing Algorithm: 3-Coloring in Time           . The algorithm is based on a 

constraint satisfaction (CSP) formulation of these problems. 3-SAT is equivalent to (2, 3)-CSP 

while the other problems above are special cases of (3, 2)-CSP; there is also a natural duality 

transformation from (a, b)-CSP to (b, a)-CSP. We give a fast algorithm for (3, 2)-CSP and use it 

to improve the time bounds for solving the other problems listed above. The techniques involve a 

mixture of Davis-Putnam-style backtracking with more sophisticated matching and network flow 

based ideas. 

 

Experimental Study of Algorithm 

 

We generate test graphs for both algorithms. The text graphs are 3-colorable graphs, each test 

graph of n vertices has a complete bipartite-independent partition           such that k = |    | = 

 
 

 
 . For twelve cases from n=40 to n=90, 100 graphs are generated at each case; n=95, 60 graphs 
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1. If the input graph G contains any vertex v with degree less than two, recursively color G \ {v} 

and assign v a color different from its neighbors . 

2. If the input graph contains a cycle or large tree of degree-three vertices, split the problem into 

smaller instances, recursively attempt to color each smaller instance, and return the first 

successful coloring found by these recursive calls. 

3. Find a maximal bushy forest F in G. 

4. Find a maximal set T of K1,3 subgraphs in G \ F . 

5. While it is possible to increase the size of T by removing one K1,3 subgraph and using the 

vertices in G \ (F   T ) to form two more K1,3 subgraphs, do so. 

6. Use the network flow algorithm to assign the vertices of G \ (F   N (F )   T ) to trees in T , 

forming a forest H of height-two trees. 

7. Recursively search through all consistent combinations of colors for the bushy forest roots and 

internal nodes, and for selected vertices in H. For each coloring of these vertices, form a (3, 2)-

CSP instance describing the possible colorings of the uncolored vertices, and use our CSP 

algorithm to attempt to solve this instance. If one of the CSP instances is solvable, return the 

resulting coloring. If no CSP instance is solvable, return a flag value indicating that no coloring 

exists. 

 

Figure 6: Outline of the overall algorithm in 3-Coloring in Time            

 

are generated at that case; a total of 1160 generated graphs. These graphs are applied to the exact 

algorithm by Beigel and Eppstein and our parameterized algorithm, called Eppstein algorithm 

and parameterized algorithm. We also control the edge densities of test graphs, i.e., the ratio of 

the number of edges over the number of vertices. In this section, we discuss experimental 
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performance of these two algorithms. Both algorithms are implemented in C++ on PC with 

2GHz of Inter Core2 Duo CPU and 4GB of RAM. 

Procedure graph-generator(n) 

Begin 

       Set up n vertices in three sets and make the sum of the first two sets equal to the third one; 

       For e:=1 to 2n do 

       Choose randomly two vertices x, y from two different sets and check edge(x,y) exist or not 

       If not add an edge(x,y); 

       End for; 

End. 

        

 

Figure 7: The test graphs generator 

 

Comparison of Eppstein Algorithm and Parameterized Algorithm 

 

        Figure.8 gives results for running time for Eppstein algorithm and parameterized algorithm, 

when 
                  

               
 

 

 
, where “average” shows the variation in average running time for 

each n as a function of the average number of vertices for each n. From the experimental results, 

the running time is similar. When n 65 the Eppstein algorithm is faster than parameterized 

algorithm, and when n    the parameterized algorithm is faster than Eppstein algorithm, but 

both running time clearly exhibit exponential growth. 

 

Effects of Edge Densities 

 

        Table 2 summarizes results, where E.A represents Eppstein algorithm; P.A represents 

parameterized algorithm; N.V represents number of vertices; E.D represents Edge Densities. 

Table 2 shows that the running time of both algorithms in different densities. In Eppstein 

algorithm: It shows that as the density becomes bigger, the running time increase dramatically; in 

parameterized algorithm: It shows that as the density becomes bigger, the running time is quite 
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   Figure 8: Experimental results on graphs average running time of two algorithms 

 

stable for different densities. 

        Experiments confirmed that parameterized algorithm is more stably and invariably by 

increasing edge densities. Table 2 introduces when edge densities increase, the running time of 

parameterized algorithm increase much slower than Eppstein algorithm for graphs of the same 

number of vertices. The parameterized algorithm is much better to deal with the large edge 

density when k=n/2.  

        Table 3 shows the running time ratios of the exact algorithm for graphs of different 

densities. It shows as the density becomes bigger, the running time increase dramatically: it 

increase 13 times as density change from 2 to 7 for graphs of 95 vertices. On the contrary, the 

modified parameterized algorithm is quite stable for different densities. The running time of the 
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modified parameterized algorithm increase only around 2 times as density changes from 2 to 7 

for graphs of 95 vertices, see Table 4 

 

 Algorithms E.A P.A E.A P.A E.A P.A E.A P.A E.A P.A E.A P.A 

N.V             E.D 1:2 1:3 1:4 1:5 1:6 1:7 

40 0.134 0.173 0.152 0.152 0.343 0.143 0.422 0.156 0.624 0.136 0.642 0.123 

45 0.247 0.379 0.285 0.316 0.543 0.286 0.643 0.299 1.742 0.269 2.429 0.312 

50 0.596 0.739 0.785 0.684 1.245 0.549 2.216 0.764 3.581 0.632 5.513 0.514 

55 0.967 1.368 1.147 1.075 1.542 0.749 5.653 1.417 9.752 1.135 12.64 1.031 

60 4.693 4.739 5.532 4.678 7.783 4.564 14.86 4.363 25.37 3.975 37.95 3.521 

65 7.531 7.752 11.45 7.643 12.54 6.482 39.78 5.895 41.36 6.831 67.22 6.126 

70 23.16 21.14 41.46 23.46 67.77 20.78 109.5 28.6 128.6 25.75 153.2 23.2 

75 49.24 42.59 63.32 41.43 143.8 42.76 235.5 41.87 255 43.74 275.4 39.28 

80 297.2 281.7 316.3 225.7 475.7 254.3 598.4 315.6 712.5 309.5 841.5 293.5 

85 614.4 601.4 794.2 442.4 678.5 386.7 864.7 354.7 1092 339.4 1294 319.3 

90 1624 1512 2723 1564 3218 1531 5228 1490 6129 1238 8214 1125 

95 6215 5635 7636 5387 9126 4217 9865 4035 10218 4029 12645 3915 

 

Table 2: Average running time(sec) of two algorithms with different edge densities 

 

Number of 
Vertices 

2 3 4 5 6 7 

40 1 1.13 2.56 3.15 4.66 4.79 

45 1 1.15 2.20 2.60 7.05 9.83 

50 1 1.32 2.09 3.72 6.01 9.25 

55 1 1.19 1.59 5.85 10.08 13.07 

60 1 1.18 1.66 3.17 5.41 8.09 

65 1 1.52 1.67 5.28 5.49 8.93 

70 1 1.79 2.93 4.73 5.55 6.61 

75 1 1.29 2.92 4.78 5.18 5.59 

80 1 1.06 1.60 2.01 2.40 2.83 

85 1 1.29 1.10 1.41 1.78 2.11 

90 1 1.68 1.98 3.22 3.77 5.06 

95 1 1.23 1.47 1.59 1.64 2.03 

 

Table 3: Ratio of Exact Algorithm for Different Densities 

 



31 

 

        The experimental results show that our algorithm can help to improve efficiency on resolve 

a 3-coloring problem when the input size n is large, edge density is large and the parameter k is 

relative small. It is better than Eppstein‟s Algorithm for solving 3-coloring when k is less or 

equal than n/2. Our theoretical analysis proves that, when parameter k is a small value, the 

implemented with our method has higher speed. 

 

Number of 
Vertices 

2 3 4 5 6 7 

40 1 0.88 0.83 0.90 0.79 0.71 

45 1 0.83 0.75 0.79 0.71 0.82 

50 1 0.93 0.74 1.03 0.86 0.70 

55 1 0.79 0.55 1.04 0.83 0.75 

60 1 0.99 0.96 0.92 0.84 0.74 

65 1 0.99 0.84 0.76 0.88 0.79 

70 1 1.11 0.98 1.35 1.22 1.10 

75 1 0.97 1.00 0.98 1.03 0.92 

80 1 0.80 0.90 1.12 1.10 1.04 

85 1 0.74 0.64 0.59 0.56 0.53 

90 1 1.03 1.01 0.99 0.82 0.74 

95 1 0.96 0.75 0.72 0.71 0.69 

 

Table 4: Ratio of Parameterized Algorithm for Different Densities 
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CHAPTER IV 

 

 

FUTURE WORK 

 

        Given a graph G, if there exists a 3-coloring of G such that k   0.527n, our algorithm is 

faster than the best algorithm to solve the 3-coloring problem. It is interesting to improve our 

algorithm to beat the best algorithm for the 3-coloring problem. There are some questions. Can 

we solve the case dealt by step 6 and 7 is polynomial time or better than    /      ? What kind 

graphs have a large independent set such that the remaining graph is 2-colorable? We have 

studied the parameterized 3-coloring problem on vertex coloring. How about the same idea on 

edge coloring? 

        Another direction is to consider different parameters. One possible candidate is the size of 

an independent size. Can we find an independent set of size k such that the remaining graph is 2-

colorable? If we do not require the k vertices to be an independent set, there is an FPT algorithm 

of time        [14]. When we require the k vertices to be an independent set, is there any fpt 

algorithm for this problem?  
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