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Receptors, enzymes and self-attraction as autocrine
generators and amplifiers of chemotaxis and cell
steering
Robert H. Insall
Abstract
Cells create their own steering cues, or modify cues from their
outside, for a number of reasons. These include generating
optimal, legible directional information; probing their environ-
ments for information to help decide an optimal route; sym-
metry breaking; generating new patterns and complexity; and
bringing together collectives such as neutrophil swarms.
Recent advances include more mechanisms of self-steering, in
particular by using cell-generated mechanical cues, and gra-
dients of respired oxygen. An increasing number of cell types
are being found to use self-steering, in particular immune cells
responding to chemokines and mesodermal cells during
gastrulation. Finally, receptor modification has emerged as an
important limit on the range of neutrophil swarming, allowing
cells to monitor other areas as well as coming together. Self-
steering is thus emerging as a dominant feature of cell motility.

Addresses
School of Cancer Sciences, University of Glasgow, G61 1BD, UK

Corresponding author: Insall, Robert H. (Robert.Insall@glasgow.ac.
uk)
Current Opinion in Cell Biology 2023, 81:102169

This review comes from a themed issue on Cell Dynamics (2022)

Edited by Bruce Goode and Ewa Paluch

For a complete overview see the Issue and the Editorial

Available online xxx

https://doi.org/10.1016/j.ceb.2023.102169

0955-0674/© 2023 The Author(s). Published by Elsevier Ltd. This is an
open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

Introduction
Accurate migration of cells is essential to biology. In
processes such as embryogenesis and immunity, it is
absolutely required that the correct cells migrate effi-
ciently to their intended place. In embryogenesis, direct

migration allows embryonic patterns to be set up and
tissues precisely defined. In immune responses, leuko-
cytes use it to attack infections or tumours but not the
surrounding tissue. Similar processes are important
throughout evolution.
www.sciencedirect.com
Cells are frequently steered by chemotaxis. During this
process, they read gradients of diffusible molecules and
move towards the highest concentration [1]. Other,
related processes are similarly important, for example
durotaxis, where cells read a gradient of stiffness in the

underlying matrix [2], and electrotaxis, where cells
read the direction of an electric field [3]. The mecha-
nisms that allow cells to read gradients are complex,
because it is not sufficient to detect the presence of a
stimulus; cells must also read its direction, comparing
the strength of the stimulus at two spatially separated
points. Bacteria achieve this by measuring the change
in concentration as they swim in a consistent direction
[4]; eukaryotic cells can read gradients without moving,
by comparing receptors at different parts of their
membranes [5], though it is unclear that this is the

exclusive mechanism [6]. Both methods suffer from
the problem of signal-to-noise ratio. If the attractant is
being released from a source and removed by a sink that
is any distance away, the resulting gradients are shallow
when compared to the length of a cell. Similarly, if the
concentration of attractant is high, receptors are simi-
larly saturated at the front and rear of the cell; if the
concentration is low, too few receptors are activated for
a measurable difference.

Main text
The simple view of chemotaxis, in which cells just
respond to a passive, unchanging gradient, struggles
precisely because it is passive - the gradient is not
altered by the locations of the cells. This means that
the gradient needs to be readable throughout the cells’
whole path, and information is spread thinly. If cells
create their own gradients, or modify existing gradients
to make them more readable (Figure 1), the informa-
tion is restricted to the vicinity of the cells; gradients
can be steeper and more readable. Recently we [7,8]
and others [9e12] have shown that cells can generate

their own steering gradients as they move. The
gradient-making mechanisms are discussed in detail
below, but frequently involve groups of cells locally
breaking down an abundant attractant, or responding to
one attractant by secreting a different one. This has
many interesting advantages. It can create, amplify and
complexify information, where passively reading
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Figure 1

Current Opinion in Chemical Biology

Passive chemotaxis, self-generated chemotaxis, and modification of an existing gradient. A: Passive chemotaxis. Cells respond to the gradient but do not
alter it. The entire gradient, throughout its length must contain enough information to steer cells locally. B: Chemotaxis to a self-generated gradient. The
chemoattractant is initially abundant and homogeneous; cells break it down locally to create a gradient in their vicinity, forming a chemotactic wave. There
is little readable information outside the wave. C: Chemotaxis to a self-modified gradient. The chemoattractant is initially present in a gradient. Cells locally
break it down to create a different, near-exponential gradient. The new gradient is oriented in the same direction as the initial one, but the level of attractant
is tuned to the optimal concentration and steepness for cells to read it. A local wave may or may not form.
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gradients can only lose and diminish it [13e15]. It
allows cells to interact with their environments by
probing the way attractants diffuse locally [12,16]. It is
extremely robust to changes in cell number [9], and it
addresses the problems of signal-to-noise ratio by
making gradients sharp in the vicinity of the cells [17],
and adjusting the attractant concentration so it is

legible by the cells’ receptors [18].

Self-steering is common
Despite these practical advantages to cells generating
their own cues, self-steering is only described in a tiny
proportion of publications that describe chemotaxis or
related steering mechanisms. This might be taken to
imply that it was rare. However, another interpretation -
more accurate, in our opinion - is that it is usually not
considered, and most ways of measuring steering are
actively or passively designed not to detect it. Transwell/
Boyden chamber assays, for example, which dominate
the chemotaxis literature (unfortunately, as they are
subject to a range of artefacts as well as concealing self-

steering), give a positive result if any kind of chemotaxis
has occurred; they do not differentiate passive and self-
steered chemotaxis. For example, if cells respond to a
chemical in the reservoir by secreting an autocrine
chemoattractant, then any cell that gets through the
membrane will attract all its neighbours; the chemical
will incorrectly be scored as an attractant, even though
the actual attractant was made by the cells. More
modern devices (for example [19] or [20]) can identify
self-generated gradients, but only if they are specifically
sought. This is particularly important, because in most

biological cases (see below) there are elements of both
passive chemotaxis, because there is some underlying
gradient, and self-steering, because cells must modify or
reinforce gradients in order to read them.
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However, the mechanisms described below are widely
prevalent in steered cells. Mammalian leukocytes often
secrete chemokines to which they also have receptors.
Almost every known chemoattractant is attacked by
locally produced enzymes, such as cell-surface pepti-
dases [21] and proteases [22] (for peptide signals), and
enzymes like phosphodiesterases [23] for chemical sig-

nals. Essentially all receptors used for chemotaxis are
also endocytosed, taking their ligands with them [24].
In general, it seems likely that self-steering is possible
with almost every attractant; if the passive gradient is
steep enough it may dominate, but in real biological
contexts this appears to be rare.

Sometimes self-steering is mistaken for other mecha-
nisms. For example, an apparent example of self-
generated gradients to CCL19 was recently reported
as “chemokinesis” [25] - where cells’ speed is controlled

by an agent, but not direction - but in hindsight, the
cells are probably creating their own gradient [10].
Similarly, when macrophages migrate in liquid-walled
devices [26] their migration can be followed in detail;
the resulting pattern, with a wave of migration at the
front [27], strongly suggests that the cells are locally
amplifying the gradient.

Underlying mechanisms for cells to create or change
steering gradients
Mechanisms that use either receptor-mediated uptake
of chemoattractant, or enzymes to inactivate them, have
been identified since the first descriptions of self-
generated gradients. A newly described, and probably

general, self-steering mechanism uses durotaxis [28].
Neural crest cells create a stiffness gradient in the tissue
ahead of themselves, which steers them away from the
neural crest and towards the placodes. This gradient is a
www.sciencedirect.com
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simple analogue of self-generated chemotactic gradi-
ents, with the dispersion of physical properties replacing
diffusion of chemical, and is required for efficient
migration. Emphasising the consistency of the under-
lying idea, self-generated durotaxis synergises with
chemotaxis to SDF-1, itself also potentially
self-generated.

Cells taking part in mechanical interaction that go on to
steer them - feedback loops, that may be positive or
negative - have been seen elsewhere, for example in the
Drosophila nerve cord [29] and the zebrafish mesoderm
during gastrulation [30]. It may also be seen in vitro, as a
means of driving persistent migration in cell clusters
[31]. Like self-generated chemotactic gradients, they
are probably commonplace but only seen when specif-
ically looked for.

One interesting additional mechanism is oxytaxis. Cells

in a restricted environment deplete oxygen by aerobic
respiration; chemotaxis towards fresh oxygen leads them
away from the hypoxic conditions they are in. This has
been shown for cancer cells [32] and, more recently and
in more detail, Dictyostelium [33].

Making gradients using receptors and endocytosis
Previous work showed that signalling receptors [12] or
scavenger receptors, receptor analogues that take up
attractants but do not transduce a signal [34] are used to
create self-generated gradients. Several new examples
have emerged, again demonstrating the generality of the
concept. Dendritic cells are extremely chemotactic to-
wards the chemokine CCL19 [35], but it has never been

completely clear how the gradients are formed. Now
examination of migration in under-agarose assays, which
provide a good 3D environment, shows that dendritic
cells respond to CCL19 almost as well when it is pro-
vided uniformly in the agarose as in a preformed
gradient [10]. The cells take up and degrade the CCL19
through its receptor, CCR7; the resulting gradient gives,
if anything, more robust chemotaxis. As seen earlier for
Dictyostelium and cancer [16], this also allows cells to
navigate a branched path, and determine the most
direct route to a CCL19 source, and thus mimics the

steering problem faced in a lymph node. Similarly, the
unusual signal Toddler/Apelin is the ligand for G-protein
coupled receptors that are essential for directed cell
movement in gastrulation, but it has not been clear how,
or where the directional stimulus might arise [36]. This,
too, has now been found to use a self-generated gradient
- the receptor acts as both scavenger and transducer,
making a gradient while it detects it [37].

Enzymes that degrade attractants
Using receptors to create gradients has advantages and
disadvantages. One great advantage is simplicity - the
system that is used to perceive the gradient also creates
www.sciencedirect.com
it. Fewer components are needed, and systems can
evolve gradually (as presumably occurred with scavenger
receptors). However, this system lacks robustness - re-
ceptors usually have a very high affinity, but as such can
easily be saturated; and the cycle time for receptors to
be endocytosed, then returned to the surface, is slow,
perhaps 300 or more. Together these limit receptors’
ability to generate gradients out of high attractant con-

centrations. Enzymes, on the other hand, may each
degrade tens or hundreds of molecules per second.
Their Michaelis constants - representing the point at
which they become saturated - are higher, typically in
the region of 10 mM. They are thus much better placed
to degrade high concentrations of attractant that satu-
rate receptors, which typically have dissociation con-
stants (the equivalent measure for receptors) more than
1000-fold lower, in the region of 0.1e10 nM.

Two classes of enzymes have been widely described in

chemotaxis - peptidases, which trim small peptide at-
tractants like chemokines, and phosphodiesterases.
Leukocytes (in particular) are covered with an array of
membrane-bound peptidases with their catalytic sites
exposed to the medium, including specific N-terminal
and C-terminal trimming enzymes and nonspecific
proteases like MT1-MMP. Any peptide attractant that
encounters such a cell will be subject to degradation and
inactivation, so more self-generated gradients will likely
soon be found. Phosphodiesterases attack signalling
lipids like lysophosphatidic acid and sphingosine-1-

phosphate and, in cells like Dictyostelium, extracellular
cAMP. The best-described phosphodiesterases are wunen
and wunen2 in Drosophila, which are essential for germ
cells to chemotax to the gonad [38,39]. Curiously,
however, the lipid targets for wunens are not known,
though there is a suggestion they may be related to
isoprenoids like retinoic acid [40]. The components of
the system -Tre1, the receptor, as well as wunens 1 and
2 - are also important in combination for Drosophila
astrocyte steering [41], again implying a widespread role
for self-generated chemotaxis in biology.

Cell-generated autoattractants
When cells generate their own chemoattractants - as

opposed to breaking down chemoattractants made
elsewhere - the results are yet more complex. Cells
attract their neighbours, who in turn attract other cells
near them. The resulting positive feedback loop tends
to bring cells together, but the details can be unpre-
dictable, depending on the precise dynamics of
the feedback.

This mechanism, like self-generated chemotaxis by
ligand breakdown, may be more common than we
expect. Several classes of immune cells express both

chemokines and their cognate receptors; neutrophils,
for example, express both CXCL2 and CXCR2 so can
Current Opinion in Cell Biology 2023, 81:102169
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self-attract [42]. Similarly, neural crest cells both make
and respond to complement C3 [43]. However, the most
widely studied examples of self-attraction are Dictyoste-
lium aggregation - using extracellular cAMP as an
attractant, detected by the receptor cAR1 [44] - and
neutrophil responses to leukotriene B4 (LTB4) [45].
The Dictyostelium system is very well understood, and
consequently much picked over by mathematical bi-

ologists. It is the neutrophil system that has yielded the
most recent progress. Activation of LTB4 pathways leads
to “swarming”, in which neutrophils move collectively
and in large numbers to a single site [45]. One signifi-
cant problem with swarming is stopping it from
happening excessively, focusing all the body’s defences
in a single point. A recent paper confirms that stopping
self-attraction by receptor inactivation [46] is essential
to allow broad areas of tissue to be monitored.
Conclusions
The different methods of self-steering described here
together provide the most efficient, robust, and infor-
mative ways for cells to migrate to a target. The un-
derlying mechanisms e diffusible signalling molecules,
physical interactions, and respiration e are diverse, but

the idea is consistent. Cells and their surroundings
together modulate signals, allowing complex and
nuanced responses to neighbouring cells, larger collec-
tives, and the environment. Complexity is thus a
dominant feature in both self-generated gradients and
self-stimulated chemotaxis. Outcomes are hard to pre-
dict, and often counterintuitive, because small changes
are amplified. For example, if a large group of neutro-
phils receives a small stimulus, a single cell randomly
secreting LTB4 completely changes the motility of the
whole group. Likewise, the secondary processes that
limit feedback (receptor saturation or substrate deple-

tion, for example), which are rarely considered, can
rapidly become very influential.

In general, this is a beneficial outcome. Biology is usually
complex; the ability to explain complex outcomes with
simple rules is a strong advantage. However, the
resulting narrative often conflicts with the simple stories
preferred in the biology literature. This is the primary
reason why so few cases of self-steering have been
described e if authors seek simplicity, self-steering will
rarely be the answer.

Recent work has focused on revealing self-steering to be
active in cells that were previously thought only to
chemotax passively. We expect this will continue, and
most chemotactic cells will be found to use at least a
degree of self-steering, for example by reinforcing gra-
dients that have already been externally set up. We also
predict that complex combinations will increasingly
emerge, in which cells use different combinations of
receptors, enzymes, and self-stimulation to tune their
Current Opinion in Cell Biology 2023, 81:102169
responses. The range and importance of self-steering
mechanisms will surely continue to grow.
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