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Summary

This thesis treats the generation of weather scenarios that may cause flooding, gen-
erally referred to as events, within the context of flood risk. A key concept for the risk
approach is that not only hazardous events are generated, but that realistic probabilities,
or frequencies, are connected to the events. The purpose of this thesis is to provide some
methodological improvements on flood hazard generators and to bring into discussion
some useful concepts with regards to spatio-temporal challenges.

The flood risk approach is largely data driven. Themethods used in this thesis start
from obtained data sets, provided by others. General computer algorithms and statistical
models are used to generate hypothetical, or ‘synthetic’ data sets. These synthetic data
sets are investigated and analysed using computational code.

The starting point is the generation of a large synthetic set of pan-European river
discharge events, spread out over several hundreds of locations in Europe. Somemethod-
ological advances are provided, which allow moving discharge waves to be tracked
throughout all major river basins in Europe. A key point in the used methodology is to
capture the spatial dependence between events occurring at different locations, which
will be referred to as the static spatio-temporal approach. Compared to a local approach,
where each location is considered individually, the gains of considering spatial depen-
dence seem rather clear. However, it appears that the static spatio-temporal approach
does not work well with an event-based approach, since thismethodology implicitly puts
boundaries on the procedure of spatio-temporal event identification.

Therefore, the next step was the development of a generator that could provide
large synthetic sets of precipitation events, over the entire Atlantic sea and Europe. A
key point in the methodology used here is that not only the events are dynamic, as their
movement is tracked, but also the event descriptors are dynamic. Hence, here the dy-
namic spatio-temporal approach is introduced, which implies the generator methodol-
ogy moved beyond generation at a fixed set of locations. The methodological framework
is established, which allows a first version of such a dynamic generator, with the potential
to be applied globally. And some exploration is provided of methodological extensions
that allow to treat multiple variables concurrently in a compound framework.

With the newly introduced complexity of the dynamic generator, the final step was
to start generating big synthetic data sets and to thoroughly test what the generator
produced. A comprehensive sensitivity analysis provides some first insights into the be-
haviour of the generator, which allow to understand two key concepts. First, with the
dynamic spatio-temporal approach, spatial coherence of extremes comes naturally. This
contrasts with the static spatio-temporal approach where spatial coherence of extremes
has to be assumed prior to the modelling and is typically done by the application of a
spatial process. Second, for any location, the dynamic spatio-temporal approach allows
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4 Summary

to more directly include events occurring in the area surrounding a location to compute
extremes at that particular location. Relatively short data records are a standard limita-
tion for the risk approach, whereby this ‘dynamic expansion of information’ may be of
help.

The provided methodological advances and new concepts may help the way for-
ward to the generation of global hazard events that may cause flooding. Large-scale,
coherent event sets allow interactions and system behaviour to be studied, which is a
main requirement to be able to compute the system risk. In addition, an interesting out-
look is provided for future research. The dynamic spatio-temporal approach may in the
future be able to provide not only spatially coherent extremes, but also temporally co-
herent extremes. This could be a first step towards credible global flood risk time series,
which could be a very useful tool, in the current predicament of global climate change.
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1.1. Background
1.1.1. What is flood risk?

Flood events cause large damages
worldwide [27]. To decide on mitigating
measures, a comprehensive understanding
is required of the risk. Large investments,
like in infratructure and in other urban
capital, generally involve long time spans.
Structures are designed to have a lifespan
of multiple years or decades. Before invest-
ing in structures, we would like to know
what conditions the structure may have
to face. This contrasts with the current
state of forecasting systems, which gener-
ally are capable of forecasting a few days
or weeks at maximum with reasonable cer-
tainty. Forecasting can be expected to im-
prove, but will not reach years or decades
any time soon. So, with risk analysis, the
question of what exactly will happen in the
future (forecasting) is reduced to the ques-
tion of what to expect, which may be con-
sidered a more feasible question to ask for
long-term investments. Therefore, we de-
viate from the attempt to predict exactly
what will happen to the investment, but
we resort to scenarios. For a good quality,
scenario-based analysis, not only should all
(relevant) scenarios be considered, but it is
important to include the probability of oc-
currence of scenarios. In fact, the probabil-
ity of a particular scenario has a large influ-
ence on the relevance of that scenario.

Flood risk is defined to be the sum
of consequences of all possible flood sce-
narios, where for each scenario the con-
sequences are scaled by the probability
of occurrence. With ‘Flood Risk Assess-
ments’ (FRA), we attempt to approximate
the flood risk. It may be decomposed into
three parts; hazard, exposure and vulner-
ability. First, the hazard part, is the com-
ponent related to the sources of flooding.

Floods can arise fromdifferent sources (flu-
vial, pluvial and coastal). These sources
can be studied separately, although it may
be interesting to understand how these
sources interact, which is referred to as
multi-source or compound flooding. Sec-
ond, the exposure part, is the component
related to societal assets that are affected,
such as population and infratructure. The
hazard scenarios are used to drive flood
models, which show how much flooding
occurs when and where. Third, the vulner-
ability part, is the component related to the
consequences of flooding. It is typically de-
composed into casualties and damages.

The focus of this thesis is within the
hazard part, in which scenarios are typ-
ically referred to as events. As extreme
floods occur rarely it is necessary to con-
sider a specialist branch of statistics, ex-
treme value theory, to gain understanding
of the hazard component of flood risk.

1.1.2. The flood hazard
The flood hazard consists of all possi-

ble scenarios of flooding, with for each sce-
nario the associated probability of occur-
rence. The probability of occurrence can be
directly converted to the frequency of oc-
currence, which is a standard in engineer-
ing. Typical terms used are return peri-
ods and associated return level estimates,
which are the estimated values that corre-
spond to the return periods.

Computers can deal with a limited
amount of information. Therefore, it is
impossible to consider all, i.e. an unlim-
ited amount of, possible scenarios. It is
only possible to consider a discrete set of
(many) scenarios. The computational fac-
tor is limiting at present, and was more
so in the past. With the increase in com-
putational power, large-scale flood risk as-
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sessments have become feasible in the 21st
century. So, now that the right tools have
become available, it seems to be the right
time to start tackling the problem of large-
scale flooding, and, thereby, to investigate
the effect of the system behaviour on the
flood risk.

A flood hazard assessment can only
be valid for a particular system state. Since
systems are never stationary (i.e. things
change), the possibility and probability of
scenarios are both time dependent and
therefore the flood hazard itself is time de-
pendent. Time is discretised, under the as-
sumption that a system state remains sta-
tionary for the time of the discretised in-
terval. Events inform specifically about the
system state in which they occur. Typi-
cally, the aim is to obtain the flood hazard
for a small time interval, but the informa-
tion used may fall outside that time inter-
val. We normally try to infer the hazard in
the current system state from past events,
which are events that contain information
about a system state in the past. This is par-
ticularly problematic when using very ex-
treme events, such as events that occurred
10.000 years ago.

In this thesis, trends in the flood haz-
ard, i.e. changes in system states, are not
considered. Climate change is out of scope,
as the stochastic process is not extrapo-
lated into the future. However, the meth-
ods developed here may be relevant for fu-
ture flood hazard studies, which would re-
quire extensions of methodology. In Sec-
tion (7.2), an outlook will be provided,
demonstrating how to approach climate
change in future research, by considering
flood hazard time series.

Figure 1.1: A simple flood risk model chain.

1.1.3. A chain of models - where to start?
Typically, for FRA, a chain of models

is applied. It covers the entire risk cas-
cade from hazardous extreme events down
to flood damages (for example, expected
annual damage) or to casualties resulting
from inundation.

A simplified example of a flood risk
model chain is displayed in Fig. (1.1). The
objective is to obtain an estimation of the
flood risk (green star). The arrows indi-
cate different steps to get to the green star.
Red arrows represent a transformation of
variables, performed by input-outputmod-
els such as hydrological models, hydraulic
models or damage models.

A first argument for the choice of
flood risk model chain set-up is the in-
tended application of the flood risk anal-
ysis. For example, the application can be
cost-benefit analysis, which is an impor-
tant tool for decision makers. For cost-
benefit analysis the flood risk in different
system states has to be explored. For ex-
ample, to explore the cost-benefit of the
construction of a dike, a flood risk analy-
sis can be performed with and without the
dike. The costs could be the construction
and (yearly) maintenance of the dike, and
the benefit could be the (yearly) reduction
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in flood risk after building the dike. The
model chain would have to include an in-
undation model, such that the dike can be
modelled and different results are obtained
with or without the dike. Another example
could be how changes in land use affect the
flood risk, for which a hydrological rainfall-
runoff model would have to be included.

After determining which model steps
are required for the intended application,
a route through the model chain has to be
chosen. As can be observed in Fig. (1.2),
there are multiple options to get to the
green star with different degrees of com-
plexity and/or computational effort. Yel-
low arrows are introduced, which represent
the statistical step, in which the stochas-
tic process is simulated. In the statistical
step, methods are applied to an observed
data set (for example, 25 years) to create a
large synthetic data set (for example, a syn-
thetic 10.000 years). In this thesis, the data
concerning what has happened in the past
will be referred to as ‘observed data’ and
the generated scenarios will be referred to
as ‘synthetic data’. What happens exactly
in these yellow arrows will be further dis-
cussed in more detail in Chapter (3). First
we will consider the implications of the
choice of route.

Route A might be the simplest route,
where statistical methods are directly ap-
plied to observed flood damage data to ob-
tain an approximation of the flood risk. A
disadvantage of this very short route could
be the relatively low availability of flood
damage data, whereas statistical methods
typically improve with more data. This
route can be found in actuarial studies
based on insurance claims data.

Route B starts from inundation data
(flood depth). The (modelled) observed
damages are calculated with a flood dam-

age model. If more flood depth data is
available than damage data, this additional
model step could address the (potential)
shortage of observed data in route A. How-
ever, is the modelled data as reliable as the
observed?

Route C is similar to route B, but here
statistical methods are directly applied to
the flood depth data. A synthetic 10.000
years of data may be run through the dam-
age model. These 10.000 years of syn-
thetic data will contain a larger number
of extreme scenarios than the 25 years of
observed data, which is great. However,
should the (damage) model be asked to
perform calculations outside the range in
which it has been calibrated?

Route D is often applied in practice,
since the discharge in rivers can be con-
stantly monitored and discharge data are
therefore widely available. Statistics are di-
rectly applied to observed river discharge.
Something unrealistic may happen with
this particular variable, e.g. can we reli-
ably extrapolate the river discharge beyond
bank-full condition using a standard ex-
treme value distribution?

Route E is again slightly more com-
plex, since it starts from precipitation. Pre-
cipitation data is widely available, but yet
another (hydrological) input-outputmodel
is required. In this case, statistics can be
applied to the modelled river discharge,
rather than to observed discharge, which
can give a larger spatial coverage (for ex-
ample, ungauged basins). However, again,
should we extrapolate river discharge be-
yond bank-full?

Route F is the interesting alternative
to route E, where the difference is in the
first step. Instead of using the observed
(25 years of) precipitation data to force the
hydrological model, the synthetic (10.000
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Figure 1.2: Different routes through the flood risk model chain. These different routes
should lead to the same result, the green star, which would be a flood risk estimate.
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years of) precipitation data are used. How-
ever, should now also the hydrological
model be asked to perform calculations
outside the range in which it has been cal-
ibrated?

Different routes through the model
chain are supposed to lead to the same re-
sult (a flood risk estimate). However, in
practice they will not. This gives a second
argument for the choice of set-up of the
flood risk model chain, which is based on
the quality of the entire route.

At this point, it could be useful to
shortly discuss the outdated use of ‘de-
sign events’. In each layer of the model
chain, events can be defined and proba-
bilities, or frequencies, can be associated
to these events. So, one could identify a
design event in the first layer, e.g. a pre-
cipitation event with a 100-year return pe-
riod, and then run this event through the
model chain. The outcome could be a dam-
age event, and in the old practice of design
events, the original probability would then
be assigned to this damage event (100-year
return period). However, it is important
to realise that probabilities of events are
generally not portable across model trans-
formations. For example, a precipitation
event with a peak that has a 100-year re-
turn period may fall on a catchment which
has a particular level of wetness that oc-
curs once every 10 years, the combination
of which may lead to a discharge event
that has a peak that has a 1000 year re-
turn period. Or a dike, weakened by a sus-
tained period of drought, may fail when a
peak-discharge with a 25-year return pe-
riod occurs, which may cause an inunda-
tion extent that has a 500-year return pe-
riod. Decisionmaking benefits from a large
catalogue of events/scenarios of results of
flooding, i.e. in terms of damage or loss of

life. Therefore, the entire range of possi-
ble hazard events has to be inferred from
available data to be subsequently evalu-
ated. In summary, we should not consider
design events, but should aim to develop
methods to generate comprehensive sets of
boundary conditions for full flood risk as-
sessments (yellow arrows).

In this thesis, the focus lies not so
much with the routes, but specifically with
the statistical step (yellow arrows), where
the routes provide context for this step.
The statistical step will be applied to dis-
charge in Chapter (4) and to atmospheric
variables (mainly precipitation) in Chap-
ters (5) and (6). How to generate synthetic
data sets? What methods are currently
available and how to improve them?

1.2. Research context
1.2.1. Project: System-Risk

System-Risk – a large-scale systems
approach to flood risk assessment and
management. System-Risk is a Marie-
Skłodowska-Curie European Training Net-
work which aims on developing and im-
plementing a systems approach for large-
scale flood risk assessment and manage-
ment and provides a framework for train-
ing and career development of 15 Early
Stage Researchers.

Particularly, national and regional
policy development adhering to the soli-
darity principle anchored in the European
Flood Directive as well as the insurance in-
dustry require tools to assess and manage
flood risk at large scales, from the larger
river basin to the European scale. Yet, the
majority of flood research has centred on
small- to meso-scale catchments and, to
date, such requirements have usually been
addressed by piecing together small-scale
solutions.
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Today, increased data availability,
new numerical algorithms and dramat-
ically higher computer performance en-
able large-scale analyses andmodels which
were not feasible a few years ago. System-
Risk performs leading-edge research with
spotlights on three essential pillars of flood
risk research. First, the risk chain, con-
sidering the complete risk chain from the
Sources through the Pathways to the Re-
ceptors and Consequences. Second, inter-
actions, augmenting the ‘Source-Pathway-
Receptors and Consequences’ model by
putting interactions centre stage and, in
this way, replacing the traditional linear
approach of the risk chain by a more realis-
tic approach with interdependent linkages
between physical and societal processes
which finally shape the spatio-temporal
flood risk. Third, temporal dynamics,
investigating the time-varying nature of
flood risk and its components on differ-
ent time scales as for instance hours to
days when flood defence failures change
flood probabilities, months to years when
people learn from damaging floods and
improve private precaution and decades
to centuries when human settlements in
floodplains evolve.

System-risk is composed of 15
Early Stage Research Projects (ESRs)
organised in three scientific work pack-
ages (WP) complemented by training,
dissemination and management. The
scientific WPs beam the ‘risk chain –
interactions – dynamics’ spotlights on the
‘Atmosphere-Catchment-System’ (WP1),
‘River-Dike-Floodplain System’ (WP2)
and the ‘Socio-Economic System’ (WP3).
System-risk brings together research and
training at ten leading centres of flood
research in Europe and embeds partner-
ships with eight partners from the industry

and administration in five countries. This
Project has received funding from the
European Union’s Horizon 2020 research
and innovation program under grant
agreement No 676027.

Source www.system-risk.eu

1.2.2. Study: topic
Probabilistic approach As extreme
floods occur rarely it is necessary to
consider a specialist branch of statistics,
extreme value theory, to gain understand-
ing of the probability component of flood
risk. In this Early Stage Research project
(ESR4) in WP1 of the System-Risk project,
the focus lies with the flood hazard. The
flood hazard can be defined to consist of
all potential scenarios of flooding that may
occur. The idea is that many flood scenar-
ios could potentially occur, from which
only some actually do occur. So, given
that only a few flood scenarios occurred
in reality, and even fewer observed with
complete data record, we have to address
the problem of sparsity of extreme events.
Namely, the observed data hold only a
fragmented picture of the actual flood
hazard, whereas we are trying to get the
whole picture. The statistical model that
belongs to this approach is called the full
stochastic process.

Systems approach Methods that are
currently in use to address sparsity have
mostly been developed on a per-location
basis, i.e. are local. They address spar-
sity in time by fitting distributions to data
records per location. This approach has al-
ways been sensible, because data records
have traditionally been available per loca-
tion, typically for a limited number of loca-
tions only. An example can be found in the

https://www.system-risk.eu
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current UK national FRA, which is a mo-
saic of the results of locally executed FRA.
When putting together the individual, lo-
cal FRA, the results are fragmented. This
means that thesemethods do not allow sys-
tem interactions to be studied. They can-
not provide a whole, coherent picture of
the flood risk and, since system behaviour
influences the flood risk, they cannot be ac-
curate.

The generation of hypothetical sce-
narios, derived from observed data, is the
specific aspect of focus of this ESR project
(4) ‘Development of a spatio-temporal
weather generator for large-scale floods’.
To address sparsity not only in time but
concurrently in space, methodology is to
be developed for spatio-temporal weather
generation. The weather generator is the
tool required to generate hypothetical sce-
narios that are coherent in space and in
time, which is a requirement to be able to
incorporate a systems approach in FRA.

Large-scale The weather generator
should not work with data records per
location, but is to be developed for large-
scale, gridded data sets. Flood models that
are cut off at country borders or catchment
boundaries are inappropriate, because
rainfall and catchments do not respect
such boundaries. The weather generator
has to provide the opportunity to get the
whole picture of the flood hazard using
the new generation of data: big data.

Interaction and changes The weather
generator can be used as a tool to study
the system-risk in river basins. For exam-
ple, the system interactions of dike failures.
In combination with hydrological and hy-
draulic models it would allow the produc-
tion of coherent, large-scale (continental)

summary maps of the flood hazard. Such
maps have broad application and are re-
quired by the EU floods directive. These
maps will be spatially coherent, rather than
fragmented maps compiled from separate,
local analyses. They will include the ef-
fects of the system behaviour of floods, the
importance of which is described in more
detail in the other ESR sub-projects of the
System-Risk project.

Finally, with the use of atmospheric
data, the weather generator will allow the
cost-benefit analysis of human interven-
tions in river basins, such as the construc-
tion or adjustment of dikes or changes in
land use. In short, it allows to study the in-
fluence of changes in one part of the system
on other parts of the system.

Title Development of a spatio-temporal
weather generator for large-scale floods.

1.3. Academic contribu ons
1.3.1. A framework to generate haz-

ardous flood events
Based on the upcoming literature re-

view in Chapter (2), a new, generally appli-
cable framework for event-based flood haz-
ard generation will be proposed in Chap-
ter (3).

1.3.2. The limita ons of analysis on a
per-loca on basis
Measurements are traditionally col-

lected per location. Gauging stations
at rivers constantly monitor water levels,
which are transformed to river discharge
using rating curves. Precipitation rates
are captured with a wide range of meth-
ods, from simple buckets tomore advanced
methods (such as acoustic or image based
devices). With the availability of per-
location data, a large range of methods has
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been devised for local probabilistic analysis
(LPA), defined in Appendix (A.1.4).

In this thesis, event-based methodol-
ogy is considered, which will be explained
in Section (3.1.2). When an event occurs at
a particular location, nearby locations are
likely to be affected, whereas locations far
away are less likely to be affected. A depen-
dence structure exists between the occur-
rence of events at different locations. This
spatial dependence structure gave rise to
the development of the multi-site type of
analysis, which has been extensively stud-
ied in (approximately) the last 20 years.
In this thesis, multi-site analysis is re-
ferred to as ‘static spatio-temporal prob-
abilistic analysis (SSTPA)’, defined in Ap-
pendix (A.1.5). The general idea of SSTPA
is to connect what occurs at a predefined
set of locations.

When aiming to describe hazardous
events at a predetermined set of locations,
the problem arises that events do not oc-
cur at all locations simultaneously. The
event identification metholodogy can be
adjusted to produce events that occur at all
locations simultaniously. But these events
are far from what anyone imagines spatio-
temporal events to be. Should it be part
of the same event what happens simulta-
neously on the moon?

For SSTPA, the requirement of a data
point for each event at each location, orig-
inates from that methods for multivariate
analysis generally require complete matri-
ces. If statisticians manage to developmul-
tivariate methods that can handle incom-
pletematrices, event-based SSTPA can con-
tinue to be developed. However, whether
this is feasible remains to be seen, because
the literature points out that it is already
quite challenging to address all (relevant)
patterns in a complete matrix (see Sec-

tion (2.3)), where incompleteness of a ma-
trix adds severe, additional complexity.

In Chapter (4), the limitations of
event-based SSTPA will be discussed. De-
tails can be found in Section (4.5.2).

1.3.3. A framework to explore the perfor-
mance of generators
A framework to explore the perfor-

mance of generators will be proposed in
Chapter (6). This framework proposes that
generators are checked for generic gener-
ator objectives. It allows to go beyond
focussed performance checks, in which
only the particular generator objectives are
checked for which the generator was op-
timised. With this framework, different
generators can theoretically be compared
and per generator, it can be more clearly
mapped what the trade-offs are regarding
several aspects, such as the particular gen-
erator methodology, the chosen settings,
and more.

1.3.4. Spa ally coherent extremes - why
the spa al process may not be sci-
en fic
With the general concept in mind

that events are dynamic, moving around
through space in time, extremes at neigh-
bouring locations are generally expected to
show a high degree of similarity. However,
when fitting distributions to extremes per
location, the distributions that emerge are
not guaranteed to be smooth at all, which
can be explained by the sparsity of extreme
events.

With the expectation of spatial
smoothness of extremes in mind and
within the context of fitting distribu-
tions per location, methods have been
developed to force spatial smoothness.
Such methods are referred to as a ‘spatial
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process’ and are typically applied to dis-
tribution parameters. First an expectation
of spatial smoothness is formulated and
then methods are incorporated to force
this expected spatial smoothness. Such an
approach is appriopriate in a practically
orientated world of engineering, but
appears to lack scientific rigour.

The newly developed type of genera-
tor, that will be discussed in Chapter (5),
will be demonstrated to be able to pro-
duce spatially coherent extremes in Chap-
ter (6), without forcing spatial smooth-
ness. The quality of the generator method-
ology and of the synthetic events will be
up for discussion. This developed genera-
tor will require plenty of improvement in
the future. However, the generation of
synthetic events may provide a more sci-
entific approach than the application of a
spatial process, since spatial coherence is
not forced but instead emerges as a con-
sequence of the applied methodology. In
short, the discussion may be moved from
how much smoothening to apply towards
whether the generated (dynamic) events
are realistic. Details can be found in Sec-
tion (6.5.2).

1.3.5. Dynamic expansion of informa on
Natural phenomena travel. Discharge

waves move through a river network,
clouds and associated precipitation fields
move through the atmosphere, etcetera.
Thus, physical phenomena are dynamic by
nature. A dynamic approach, in which the
spatio-temporal footprints of events are
captured and described by spatio-temporal
descriptors, is different from a multi-site
approach. A definition of spatio-temporal
probabilistic analysis is provided in Ap-
pendix (A.1.5).

The confidence decision makers can

have in flood risk analyses is limited by
the uncertainty inherit in risk analyses. A
major source of uncertainty is the limited
availability of information, i.e. ‘evidence’.
Merz and Blöschl [61] introduced a frame-
work for potential methods to address the
limitation of information. They proposed
a framework of expansion of information,
distinguishing between temporal, spatial
and causal expansions. Although the com-
bination of temporal and spatial expansion
of information may suggest it has already
been incorporated, this framework does
not include spatio-temporal coherence of
information. The reason for missing this
coherence is that time and space are ad-
dressed separately in the original frame-
work. Therefore, an addition to the orig-
inal framework is proposed, namely dy-
namic expansion of information.

Using dynamic spatio-temporal prob-
abilistic analysis (DSTPA), for each loca-
tion, information is utilised from the entire
region of influence of that particular loca-
tion. This principle will becomemore clear
by the example analysis in Section (6.3.4),
Fig. (6.10). Details can be found in Sec-
tion (6.5.1).

1.4. Prac cal contribu on
1.4.1. From gauge data towards gridded

data sets
To enable the capturing of spatio-

temporal events, physical phenomena have
to be tracked in space and time. The feasi-
bility of a spatio-temporal approach is de-
termined by temporal and spatial coverage,
which is different for each variable. More-
over, the higher the resolution of the data
set, the more is to be gained from a track-
ing method. Physical phenomena could be
tracked in a dense network of gauges, but
gridded data sets generally have a higher
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resolution (density). With the increasing
availability, quality and resolution of re-
mote sensing of data, it is likely that grid-
ded data sets will be considered for FRA
more and more in the future.

Gridded data sets have particular res-
olutions in space and time, which, because
of the different dimensions, are not directly
comparable. To determine which dimen-
sion is the limiting factor, the celerity can
be used, which is the speed with which
physical phenomena propagate through a
medium (such as water or air). The celerity
is different for different variables, such that
different combinations of spatial and tem-
poral resolutions are required for differ-
ent variables. Discharge waves propagate
through (the larger) channels and rivers
with celerities ranging between 1-10 𝑚/𝑠
(roughly 100-1000 𝑘𝑚/𝑑𝑎𝑦), which can be
used as a scaling factor. Discharge data
with a spatial resolution of about 100 𝑘𝑚
would require a temporal resolution which
is at least daily. In contrast, precipitation
fields move around with celerities that are
an order of magnitude higher, such that
precipitation data with a spatial resolution
of about 100 𝑘𝑚 would require a temporal
resolution which should be hourly. With
the increase in computational power since
the 2ndmillennium and the recent releases
of large-scale, gridded data sets, new and
novel methods of event identification and
description are required.

However, it should be noted that
these types of analysis are currently com-
putationally expensive and may produce
large data quantities (many terabytes).
Fully-probabilistic risk analysis can be ex-
plored, but to apply sensitivity analysis on
top of the fully-probabilistic approach is,
though feasible, computationally still very
demanding and, therefore, limited. Grid-

ded data is used throughout this thesis and
so this thesis was limited by the computa-
tional capacity that was available.

1.4.2. The tracking of discharge waves
In Chapter (4), an event-based, multi-

site approach will be used to capture the
spatial dependence of local discharge peaks
in a gridded, pan-European data set. It
is not trivial to capture a spatial depen-
dence structure within a multi-site frame-
work. Two main groups of methods are
currently applied in the literature; block-
based methods and event-based methods.
An overview of studies sorted by these two
methods is given in Table (2.3).

When using a block-based method,
a comparison can be made between de-
scriptors occurring at different locations
but within the same block of time. The
main benefit of this approach is its sim-
plicity. It is mainly usable for large tem-
poral blocks, in which travelling times are
relatively small, such that it is likely that,
within the temporal length of each block,
complete spatio-temporal events are cap-
tured at the different locations considered.
However, with an increasing level of de-
tail (i.e. higher resolution, smaller tempo-
ral blocks), it becomes more and more un-
likely that entire events are capturedwithin
each block, so it becomes more and more
likely that events are split between differ-
ent blocks.

Event-based studies are designed to
address the level of detail were block-based
methods do not suffice. However, when
using an event-based method, connecting
what happens at different locations may
become difficult. What if the events occur
at different times (time lags)? Therefore,
across locations, which events are to be
connected? To address these simple ques-
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tions, events have to be matched across lo-
cations. This could be a manual job, with
the application of expert judgement. How-
ever, when considering a large number of
locations and/or descriptors, this approach
will not be a feasible, such that matching
approaches that make use of algorithms
are required. A simple matching approach
would be to use dynamic time windows
(which differ from blocks in that there may
be gaps between the time windows), which
can be used specifically when time lags be-
tween events occurring at different loca-
tions are small. The time windows can
be lagged across locations, when the time
lags between events at different locations
are well-known and fairly constant. When
such assumptions no longer hold, more so-
phisticated approaches are required.

A highlight in this analysis is the
proposed matching method, where local
events are connected by the tracking of
discharge waves in all major river basins,
thereby not having to make any assump-
tions regarding time lags between different
locations.

1.4.3. A large-scale dynamic spa o-
temporal weather generator
In Chapter (5) a new type of dynamic

generator is developed. In Section (5.3),
the pioneering development work provides
insight on the feasibility of the new ap-
proach. In Section (5.4), the possibility of
multi-source analysis is demonstrated us-
ing the dynamic type of generator with a
few extensions.

The dynamic type of generator has
overcome the limitations of static spatio-
temporal probabilistic analysis, shortly dis-
cussed in Section (1.3.2). It has academic
benefits, already shortly discussed in Sec-
tions (1.3.4) and (1.3.5). Future researchwill

have to point out if the introduction of dy-
namic spatio-temporal probabilistic analy-
sis comes with new limitations.

1.5. Outline of the thesis
In Chapter (2), the existing literature

is reviewed. First, a high level view is ap-
plied on how studies fit into the model
chain. Second, the literature is organised
based on how the studies dealt with space
and time. Third, it is analysed which sta-
tistical methods were used in the studies.

In Chapter (3), as a result coming
forth from the literature review, a frame-
work for event-based flood hazard gener-
ation is proposed. This chapter supports
Section (1.3.1).

In Chapter (4), a static spatio-
temporal probabilistic analysis (SSTPA)
is applied to discharge for the European
continent. Events at different locations
are matched using a new wave tracking
methodology. A problem with event-based
SSTPA is identified and discussed. This
chapter supports Sections (1.3.2), (1.4.1)
and (1.4.2).

In Chapter (5), a dynamic spatio-
temporal probabilistic analysis (DSTPA)
is applied to atmospheric variables for a
large chunk of the world. The spatio-
temporal footprints of precipitation fields
are captured and summarised with spatio-
temporal descriptors. The descriptors
are then used partly for classification and
partly for multivariate, statistical analy-
sis. From the resulting synthetic descrip-
tor sets, synthetic events are reconstructed
and placed in space-time continua, where
the observed atmospheric configuration
is more or less respected. This chapter
supports Sections (1.4.1) and (1.4.3). The
dynamic spatio-temporal methodology is
further expanded by considering multiple
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sources (precipitation, pressure and wind).

In Chapter (6), a framework is intro-
duced to check the performance of genera-
tors. Local probabilistic analysis and static
spatio-temporal analysis are contrasted
with dynamic spatio-temporal probabilis-
tic analysis. A broad range of performance
indicators is introduced and subjected to
a sensitivity analysis with a few genera-
tor settings. This chapter supports Sec-
tions (1.3.3) to (1.3.5).

In Chapter (7), the work is concluded.
A summary is provided of the academic
contributions, where the connections be-
tween these contributions are described.
An outlook for future research is pro-
vided, with a preliminary proof-of-concept
of large-scale, flood hazard time series. Fi-
nally, the main conclusions of the different
chapters are connected and combined.
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Figure 2.1: All possible routes through a
flood risk modelling chain.

2.1. Flood risk model chain
2.1.1. Set-up of the model chain

One of the first decisions to be made
in a flood risk analysis is the choice of
modelling chain and the route through
the chain. This was introduced in Sec-
tion (1.1.3). For this thesis, no input-output
models are applied. However, the set-up of
the modelling chain determines to which
variable statistics are applied. So which
model chains are used in the literature?

An example of a model chain for flu-
vial flooding is displayed in Fig. (2.1). For
the analysis of fluvial flood risk, most stud-
ies apply statistical methods to discharge
[2, 17, 31, 53, 61, 64, 65, 77, 102, 103, 105].
Others apply statistical methods to precip-
itation [6, 13, 17, 21, 25, 39, 47, 85, 86, 103],
thereby introducing the additional require-
ment of setting up a hydrological model.

2.1.2. Routes, methods and the issue of
valida on
All Roads Lead to Rome

Flood risk requires the full spectrum
of hazard scenarios that may occur, with

Figure 2.2: Different routes to obtain a flu-
vial flood hazard estimate comprising dis-
charge scenarios (black star): A.) statisti-
cal methods are applied to observed pre-
cipitation data (and/or other atmospheric
variables), after which the resulting syn-
thetic data are used to drive a hydrological
model, B.) statistical methods are applied
directly to the observed discharge data, C.)
observed precipitation (and/or other at-
mospheric variables) are fed into a hydro-
logical model, after which statistical meth-
ods are applied to the (real-world) mod-
elled discharge data.

associated probabilities. The discretised
approximation of this full spectrum of haz-
ard scenarios will be referred to as ‘the syn-
thetic data’ throughout this thesis. Stud-
ies that aim to generate synthetic data sets
run into the issue of validation. This is
a difficult topic, since synthetic data sets
have no observed data (‘ground truth’) to
be directly validated against. However,
what can be done is a comparison of sta-
tistical products. It would strengthen the
credibility of an analysis when different ap-
proaches would lead to similar results. So
which different approaches can be found in
the literature?

Three ways are distinguished to vary
the general approach. First, different
methods are used. Basinger, Montalto, and
Lall [6] and Hundecha, Pahlow, and Schu-
mann [47] generated synthetic precipita-
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Route Studies

A and B Cameron et al. [17], Cow-
pertwait et al. [25], Winter
et al. [103]

C Pappenberger et al. [64],
Winsemius et al. [102], Al-
fieri et al. [2], Paprotny and
Morales-Nápoles [65]

Table 2.1: Overview of studies applying
routes A,B and/or C in Fig. (2.2).

tion and validated their product by check-
ing if the synthetic precipitation showed
the same distribution as lower resolution
block maxima. Eastoe and Tawn [31] did
a similar check for discharge, where their
main focus was the use of frequency mod-
els. Cowpertwait et al. [25] compared
both synthetic precipitation and synthetic,
modelled discharge to the observed. Gen-
erally, the simpler methods (like block
maxima) are used as a ‘dummy ground
truth’ for validation. Note that, within
the context of extreme value analysis,
even when using the simplest methodol-
ogy available, models are used (such as dis-
tributions). Second, different routes are
taken through themodel chain. Within the
hazard component of fluvial flood risk as-
sessment, different routes have been taken
in the literature which meet in synthetic
discharge data. Fig. (2.2) shows three
main routes taken through this step. An
overview of routes taken is displayed in Ta-
ble (2.1). Cameron et al. [17], Cowpert-
wait et al. [25], and Svensson, Kjeldsen,
and Jones [86] generated synthetic precip-
itation (in combination with other vari-
ables), which they ran through a hydro-
logical model to obtain synthetic, mod-
elled discharge (route A), the distributions

of which they compared statistically to the
distributions fitted directly to the observed
discharge data (route B). Within the con-
text of large-scale (continental) flood risk
assessments, several studies have explored
route C. Alfieri et al. [2], Pappenberger
et al. [64], Paprotny and Morales-Nápoles
[65], and Winsemius et al. [102] used dis-
tributed precipitation data to drive dis-
tributed hydrological models, after which
they captured the distributions of the re-
sulting discharge for all sites (grid-cells).
Vorogushyn et al. [93] concluded that cur-
rent methods simply assemble local re-
sults to form the larger picture, thereby
‘contravening the fundamental principles
of the flood risk system functioning be-
cause they largely ignore basic interactions
and feedbacks between atmosphere, catch-
ments, river-floodplain systems, and socio-
economic processes’. They called for an
‘Evolutionary leap in large-scale flood risk
assessment’. Third, the settings with which
the synthetic data is produced are varied.
This approach is applied throughout the
literature and leads to examination in the
form of sensitivity analyses. In addition,
different set-ups along themodelling chain
can provide synthetic data sets that can be
compared. An example can be found in
Winter et al. [103].

Within the context of large-scale
flood hazard studies, two developments
would be helpful. First, the development
of a spatially consistent, large-scale gen-
erator of discharge events, which would
extend existing methodology by capturing
and modelling the dependence structure
(joint distributions) of large-scale events.
This would be the second step (yellow ar-
row labelled statistics) of route C. Second,
the development of a consistent, large-
scale (spatio-temporal) precipitation gen-
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erator, which would be the first step (yel-
low arrow labelled statistics) of route A.

2.1.3. Con nuous versus event-based
Two modes are distinguished to run

the models in the flood risk chain. First,
continuous mode, for which initial con-
ditions have to be formulated only once
for a run, such that models run a long
time span continuously. Running themod-
els in continuous mode has the advan-
tage that pre-event conditions such as, for
example, soil moisture state or pre-event
river flow are explicitly simulated by the
model chain. Simulation in continuous
mode requires continuous forcing and can
be computationally expensive. This proce-
dure results in continuous output data, in
which there will be the occasional flood-
ing. Boughton and Droop [12] provided
a review of ‘continuous simulation for de-
sign flood estimation’ some time ago. Fal-
ter et al. [33] provided a proof-of-concept
to run an entire flood risk model chain
in continuous mode. Second, simulation
in event-based mode. Event-based simula-
tion requires an event catalogue and initial
conditions for each event, introducing the
challenge to include the influence of an-
tecedent conditions [8, 9, 67]. This proce-
dure results in the direct output of (flood)
events. Some examples of extensive analy-
sis of flood events can be found in Fischer,
Schumann, and Bühler [35], Tarasova et al.
[87], and Tarasova et al. [88].

Another matter, which has to be
clearly distinguished from the mode of
model simulation, is the mode of the
methodology to obtain the synthetic data.
This is where the switch in model chain
forcing is made from observed (reality) to
synthetic (hypothetical/scenarios). Here,
two groups ofmethods are separated. First,

continuous-based generation, for which
statistical methods are directly applied to
continuous data series. This procedure
results directly in synthetic, continuous
forcing. A recent example can be found
in Brunner and Gilleland [14]. Second,
event-based generation, which is a proce-
dure that results in a synthetic event cat-
alogue. A recent example can be found in
Quinn et al. [68]. These two groups may
appear to directly correspond to the two
modes of model simulation, but they cor-
respond to the preceding step and switches
can be made. For example, gaps may be
filled between events, such that an event-
based generation method produces syn-
thetic data to run the model chain in con-
tinuous mode. Or, the opposite, events
may be extracted from a continuous-based
generation method, such that the model
chain can be run event-based.

Several generators are used that are
continuous-based. For example, in a re-
cent review of precipitation generators, Vu
et al. [96] compared five models for nine
sites around the world and compare the
generated continuous precipitation series
statistically to observations at gauging sta-
tions. The methods in these precipita-
tion generators are continuous-based, with
the exception of the ‘RainSim’ generator
[15], which is event-based and will be fur-
ther discussed in Section (2.2.3). Event-
based generators are slightly more rare
and sometimes hard to spot. The title of
Cameron et al. [17] may seem to suggest
that they used a continuous-based gener-
ation method. However, they used pre-
cipitation event descriptors (duration and
mean intensity) and generated a synthetic
catalogue, after which which they fitted
normalised storm profiles to reconstruct
synthetic storms. They did notmention ex-
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plicitly that they placed events in time, but
they used a ‘storm inter-arrival time’ de-
scriptor, which implies that they were con-
cerned with putting their generated events
on a (synthetic) time line. As mentioned,
the option exists to fill the gaps between
events (generally with non-event data, i.e.
low values in the context of flooding). Al-
though event-based, this is an example of
where an event-based generator produced
continuous, synthetic data.

In this thesis, the focus lies with
event-based methods to generate synthetic
data. Whether methods are to be applied
to fill the gaps for the data to become con-
tinuous, depends on the variables consid-
ered. Generally, discharge waves can be
well characterised as events and can there-
fore be modelled reasonably well in event-
based mode, with perhaps not too much
influence of the initial conditions in the
river system. In contrast, whether precip-
itation events may trigger relatively small
or large pluvial or fluvial flood events, will
largely depend on the state of the catch-
ment when the precipitation event occurs
(i.e. will depend on the antecedent condi-
tions). In this case, running the flood risk
model chain in continuous mode may be
more appropriate.

2.2. Time and space
2.2.1. Local probabilis c analysis

Historically, observations have been
made at specific locations. For exam-
ple, discharge gauging stations are placed
at specific locations along rivers. Meth-
ods for local probabilistic analysis, defined
in Appendix (A.1.4), were extensively de-
veloped in the previous century. In the
UK, simple methods came up such as the
flood index method [49], for which the
mean ‘flood’ (discharge) �̄� was captured,

which was multiplied with a location de-
pendent correction factor to be used as a
design ‘flood’ (discharge). The strength
of this method is that it is a very prag-
matic approach, easy to apply. Another
example is the method of duration fre-
quency curves, where the aim was to cap-
ture the dependence structure of duration,
frequency and the magnitude of a specific
variable with specific lines. For discharge,
these would be discharge(peak)-duration-
frequency (QDF-)curves. For precipita-
tion, these would be intensity-duration-
frequency (IDF-)curves.

In more recent methodology, joint
distributions are considered. The mo-
tivation for this development would be
that scatter is generally observed in joint-
distributions. With significant scatter, the
dependence structure cannot be appropri-
ately modelled with a (few) curve(s). The
modelling of dependence will be discussed
in Section (2.3). However, to be able to
model dependence, first dependence has to
be captured. For that, data clusters have to
be identified and described. Which meth-
ods of cluster identification and descrip-
tion are used in the literature?

A large group of studies applies the
(simple) method of blocks to identify data
clusters [2, 6, 13, 47, 61, 64, 65, 77, 85, 102].
The main benefit of this approach is that it
is easy to implement and allows to rapidly
capture basic distributions. For block data
clusters, the most widely used descriptor is
the maximum [2, 13, 17, 25, 31, 39, 47, 61, 64,
65, 77, 86, 102]. Some use sums [6] or ap-
ply their statistical methods to the original
data values [6, 47, 85]. Maybe worthwhile
to mention is the GRADE [70] method-
ology, since it is currently operational in
the Netherlands to derive the design dis-
charge in the country in the Rhine and
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Meuse rivers. In this method, spatial im-
ages of daily means are reshuffled to form
sequences of several days, that are different
(and potentially more ‘extreme’) than ob-
served before. This implies that (on a daily
basis) no values can be generated that are
more extreme than (ever) observed, which
is unusual for generators. The sequencing
is based on particular (local) indices of sim-
ilarity, which means it may not be straight-
forward to extend themethodology to large
spatial scale.

Another large group of studies ap-
plied event-based methods to obtain the
data clusters [17, 21, 25, 31, 39, 53, 86, 105].
For events, a large range of descriptors can
be found in the literature, of which only
a few will be discussed. Most used peaks
[31, 39, 105]. Other descriptors include,
but are not limited to, the mean [17, 86],
duration [17, 86] and original data values
[21, 53]. Peaks-over-threshold (POT) [20]
is the most widely used method in the lit-
erature and comprises of both steps in one,
according to the framework of this thesis,
which will be discussed in Section (3.3).
First, a threshold is set, where events are
the data clusters exceeding the threshold.
Second, the events are described by their
peaks (maximum values).

Patterns, which will be be discussed
in Section (2.3.1), are to be captured be-
tween data clusters (and their descriptors).
In this process, data clusters are compared,
which means that they have to be com-
parable. The process of grouping com-
parable data clusters is referred to in this
thesis as ‘classification’. Cameron et al.
[17] divided the precipitation events into
classes of different duration. Cooley, Ny-
chka, andNaveau [21] separated their gauge
data based on climate, for the fitting of
spatially coherent distribution parameters.

Hundecha, Pahlow, and Schumann [47]
aimed to address seasonality by splitting
their data set based on month of occur-
rence. Cowpertwait et al. [25] made a
distinction between convective and strati-
form storm types, which they used for their
spatio-temporal point process and model
fitting. Some studies addressed the sea-
sons by splitting summer andwinter events
([54, 77, 86]). Implicitly, all studies that
compare data clusters on a per-location ba-
sis, use location for classification. Men-
tioning this may seem redundant at this
stage, but, whenmoving to dynamic events
in Section (2.2.3), the (exact) location will
no longer be used for classification. This
is why the classification procedure is extra
important for dynamic events.

An overview of block-based and
event-based methodology for LPA is
provided in Table (2.2).
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Table 2.2: Studies applying local probabilistic analysis. A general distinction is made
between studies applying a block-based method and studies applying an event-based
method. Acronyms can be found in Table (A.1).

Type Method Variable Descriptors Study

blocks annual discharge Cameron et al. [17]

annual discharge Merz and Blöschl [61]

daily rainfall Hundecha, Pahlow, and Schu-
mann [47]

annual rainfall Hundecha, Pahlow, and Schu-
mann [47]

daily rainfall Srikanthan and Pegram [85]

annual,
monthly,
daily

rainfall Long list, see pa-
per

Srikanthan and Pegram [85]

daily rainfall Basinger, Montalto, and Lall [6]

daily, annual rainfall , Basinger, Montalto, and Lall [6]

annual discharge Eastoe and Tawn [31]

annual precipitation Ghosh and Mallick [39]

annual discharge, stor-
age, depth

Pappenberger et al. [64]

annual rainfall Cowpertwait et al. [25]

annual discharge Cowpertwait et al. [25]

annual discharge Svensson, Kjeldsen, and Jones [86]

annual discharge Winsemius et al. [102]

annual discharge Alfieri et al. [2]

annual precipitation ( , 3-day) Bracken et al. [13]

annual discharge Paprotny and Morales-Nápoles
[65]

3-day discharge Schneeberger and Steinberger [77]

events thresholds precipitation , , Cameron et al. [17]

thresholds precipitation Cooley, Nychka, and Naveau [21]

thresholds
(unclear)

discharge ± Keef, Tawn, and Svensson [53]

thresholds discharge Eastoe and Tawn [31]

thresholds precipitation Ghosh and Mallick [39]

disks (?) rainfall , Cowpertwait et al. [25]
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thresholds rainfall , , ,
,

Svensson, Kjeldsen, and Jones [86]

thresholds
(runs)

discharge Wyncoll and Gouldby [105]

NR discharge Diederen et al. [28]
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2.2.2. Sta c spa o-temporal probabilis-
c analysis

A logical step after local probabilis-
tic analysis is to extend single-site anal-
ysis to multi-site, thereby addressing the
challenge of spatial dependence [50]. Con-
necting what happens at different sites has
received a lot of attention in the last two
decades, and still does. To recall from the
previous Section (2.2.1), two main groups
of cluster identification methods were dis-
tinguished for local (temporal) probabilis-
tic analysis: block-based and event-based.
When extending the analysis to include
space, things become slightly more com-
plicated, so that for spatio-temporal prob-
abilistic analysis three main groups can be
distinguished: ‘blocks’; ‘block-events’; and
‘dynamic events’, which will be discussed in
the next Section (2.2.3).

Merging single-site blocks to multi-
site blocksmay seem conveniently straight-
forward. For example, Ghosh and Mallick
[39] apply this approach to monthly
(blocks of) precipitation data. However,
the limitations of this approach become
evident with a decreasing temporal length
of the blocks, such as weekly, daily or even
hourly. For example, a discharge wave
travels from site A to B with a 1-day time
lag. Using multi-site blocks, the maximum
in day 1 at site A may be compared with the
maximum in day 1 at site B, and day 2 at
A may be compared with day 2 at B. Since
the wave is travelling, observations at site
A and B may respectively show ‘high-low’
and ‘low-high’. The blocks method would
fail to capture the positive correlation
(high-high) that could be found when
properly taking the time lag into account
(i.e. by comparing the maximum of day 1
at site A with the maximum of day 2 at site
B). Instead, it finds two data points that

show negative correlation (high-low,low-
high). The probability that time lags are
captured within amulti-site block depends
on the (temporal) size of the time lag as
compared to the (temporal) size of the
block. The size of the time lag depends on
the celerity of the physical phenomenon
and on the distance between the sites. Ex-
amples for (moving) precipitation (fields)
would be similar as for discharge, except
that the celerity of precipitation fields is
significantly higher. Given a study of a
phenomenon with a particular celerity,
blocks may be reasonable for near sites but
may not work for distant sites. It can be
concluded that the performance of multi-
site, block-based methods becomes poorer
with an increasing spatial scale (i.e. large
distances) and/or an increasing temporal
resolution (so not so much monthly or
yearly blocks, but when moving to daily,
hourly or sub-hourly). Wilks [101] provided
results where their stochastic generator
‘under-represents’ the 1-day lag corre-
lations of daily precipitation amounts.
Srikanthan and Pegram [85] present better
results for this particular aspect, since they
showed that they managed to capture the
1-day lag correlations of daily precipitation
amounts reasonably well. However, with
reasonable results for a spatial domain of
about 500𝑘𝑚 diameter at a daily resolu-
tion, it is unclear if this method can be
extended to a larger domain or to hourly
resolution. Several comparisons of precip-
itation generators of the type block-based
SSTPA can be found in the literature [19,
60, 84, 89, 100]. The performance of these
generators is discussed based a large range
of statistical indicators (such as distribu-
tions, annual cycles, wet/dry spells, etc.).
Although some of these reviews include
checks of spatial dependence (using pair-
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wise correlation), they do not carefully
consider the capturing of dependence,
which is problematic for all block-based
approaches.

Another group of studies applies a lo-
cal event-based method, after which con-
current values are chosen for all other lo-
cations. This type of analysis may be re-
ferred to as ‘block-events’. An overview of
such studies is provided in Table (2.3). The
block-events are event-based in time, but
block-based in space. As a result, these
block-events are different from blocks in
that not the entire time series of data is
sliced into (regular) blocks, but that there
are (irregular) time intervals in between
the blocks. For these studies, about the
same limitations apply as for the block-
based studies concerning the capturing of
time lags (i.e. they are not well-suited
for large spatial scale and/or high tem-
poral resolution). However, with block-
events the option that time windows can
be be moved back or forward in time, al-
lows to better capture the relevant data
clusters (and time lags). On a higher level
of detail; if time lags are known and ‘con-
stant’ between different sites, blocks may
be shifted forward or backward per loca-
tion. This may work decently well for dis-
charge within a single river basin, but not
for precipitation, since precipitation fields
move in different directions (i.e. time lags
can be positive or negative). In addition,
this manoeuvrability decreases with an in-
creasing number of sites addressed.

What ‘blocks’ and ‘block-events’ have
in common, is that a set of sites of interest
is predefined, where for the statistical anal-
ysis each site is considered in each block.
Therefore, these types of (multi-site) analy-
sis are referred to as ‘static spatio-temporal
probabilistic analysis’ (SSTPA), as defined

in Appendix (A.1.5). The spatial extent of
each block-event is equal to the entire spa-
tial domain. This is a limitation for all
event-based SSTPA, that was shortly dis-
cussed in Section (1.3.2) and will be elabo-
rated in Section (4.5). So studies that apply
event-based SSTPA are limited to the use
of blocks or block-events. However, this is
not really what practitioners have in mind
when they think of events. Events are gen-
erally thought of as something that occurs
then here, then there, etcetera. Events are
often conceptualised to be dynamic.

2.2.3. Dynamic spa o-temporal proba-
bilis c analysis

In the context of flooding, it is
hard to find studies that work with dy-
namic events, i.e. that apply ‘dynamic
spatio-temporal probabilistic analysis’
(DSTPA), as defined for this thesis in
Appendix (A.1.6). DSTPA is an event-based
approach, where ‘dynamic events’ are
conceptualised to be clusters of related
data that freely occur at different locations
in space and time with (potentially) time
varying spatial extents (and therefore
spatially varying durations). Physical
phenomena, such as moving precipitation
fields, often show a dynamic, progressive
behaviour, rather than a static behaviour.
Rainfall organization and movement
within basins is an essential control
of flood response and in particular of
hydrograph timing [87]. DSTPA allows
dynamic behaviour to be captured, thereby
potentially providing a more physically
meaningful event definition (OBJ3 that
will be formulated in Section (3.2)). In
addition, for a particular site of inter-
est, moving events allow inference from
data occurring outside that particular
site, which was shortly discussed in Sec-
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Study Method

Keef, Tawn, and Svensson
[53]

Identification of local event peaks (POT), expansion to
a week by day of peak ±3 days, concurrent values at all
other sites.

Wyncoll and Gouldby [105] Identification of local event peaks (POT), concurrent
values at all other sites.

Schneeberger and Stein-
berger [77]

Identification of local blocks of three days, concurrent
values at all other sites.

Table 2.3: A sample of a few studies that applied block-events.

tion (1.3.4) and which will be elaborated in
Section (6.5.1).

To capture dynamic events, one has to
let go of the (static) idea that a set of sites of
interest can be predefined and that events
will occur exactly at those predefined sites.
One explanation for the lack of studiesmay
be that a key ingredient for DSTPA is the
tracking of progressive, physical phenom-
ena. Tracking requires (preferably gridded)
data sets of sufficiently high spatial and, in
particular, temporal resolution. Discharge
is typically available for a limited set of dis-
charge gauges. For precipitation, data sets
with hourly resolution have become avail-
able fairly recently [72].

A number of studies performed (sub-
routines of) DSTPA. In the study area of
droughts, which is inversely related to
floods, some first steps of DSTPA were ap-
plied several years ago: Andreadis et al.
[3], Corzo Perez et al. [22], Haslinger and
Blöschl [44], Sheffield et al. [82], and Vi-
dal et al. [92]. In particular, Corzo Perez
et al. [22] studied gridded discharge out-
put from a global hydrological model and
captured low discharge anomalies. They
tracked drought events by capturing con-
nections in space using an algorithm that

looked at neighbouring pixels and subse-
quently using overlap between time steps.
The result was a catalogue of observed dy-
namic events of low discharge. It should be
mentioned that drought eventsmovemuch
more slowly than flood events and that,
therefore, drought events can be tracked
in data sets with a much lower tempo-
ral resolution than required to track flood
events. Compared to low discharge anoma-
lies, precipitation fields move around at
higher speeds, such that higher resolution
data products are required.

Within the context of flood related
DSTPA, Cowpertwait [23] extended the
single-site pulse process proposed by
Rodriguez-Iturbe, Cox, and Isham [71] to
the spatio-temporal Neyman-Scott pulse
process (STNSPP). The original concepts
in these studies were further extended and
developed into a well-established rainfall
generator called ‘RainSim’ Burton et al.
[15]. An analytical model was used to
generate synthetic precipitation events, in
the form of disks with particular radii. The
concepts they built on originated from the
previous century, in which computational
power was not what it is today. Therefore,
it seems a sensible approach that they
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drew synthetic events from an analytical
model, rather than built synthetic events
from observed events in a discretised
manner. STNSPP was applied to place the
generated events in space and time. With
a specific calibration procedure (using
numeric optimisation), they focussed on
placing these synthetic events in such a
way that the continuous, synthetic data
generated respected particular statistical
properties of the observed continuous
data. This was achieved by formulating a
set of statistical properties as an objective
function. Vallam and Qin [89] concluded
that RainSim compares favourably to
three other generators (of the type SSTPA)
concerning the capturing of spatial de-
pendence. However, what mainly sets this
approach aside from other approaches, is
that there is no statistical process at the
heart of this method in which the statistics
of events are directly addressed. This
statistical process will be discussed in the
next Section (2.3).

2.3. Sta s cal methods
2.3.1. General pa erns

Multivariate statistics refers to tech-
niques used to capture patterns in matri-
ces. The columns in the matrix repre-
sent stochastic variables, which in this the-
sis will be event descriptors. To clarify
this with an example, in Section (4.3.2) we
will construct a matrix in which each col-
umn represents peaks of discharge events
at a particular site. With 298 sites and
428 identified events, this matrix has 298
columns and 428 rows. In Section (5.3.2)
we constructmultiplematrices, where each
matrix represents a particular class of pre-
cipitation events. These matrices have 3
columns; peak, volume and extent - and
have a variable numbers of rows, depend-

ing on the number of events captured per
class.

For a particular matrix, three base
patterns are often considered in practice.
First, marginal distributions, which are
captured per column; Section (2.3.2). Sec-
ond, dependence between columns, which
is captured in row-wise direction; Sec-
tion (2.3.3). Third, dependence between
rows, which is captured in column-wise
direction; Section (2.3.4). Finally, an
overview is provided in Section (2.3.5),
where statistical patterns are listed accord-
ing to study in Table (2.4).

2.3.2. Marginal distribu ons
Description One of themain patterns to
capture for statistical analysis is the dis-
tribution of each variable [20]. This is
done similarly in univariate analysis, where
there is only one variable, and in multivari-
ate analysis, where there are multiple vari-
ables. Formultivariate analysis, matrices of
descriptors are defined, but distributions
are still fitted per column per matrix.

Generalised extremevaluedistribution
The generalised extreme value distribu-
tion is a distribution for entire popula-
tions, with three model parameters; loca-
tion, scale and shape. It is typically used
in the literature to describe populations of
block maxima.

Generalised Pareto distribution The
generalised Pareto distribution is a dis-
tribution for tail-end populations, with a
threshold (location) and two model pa-
rameters; scale and shape. It is often
used in the literature to describe popula-
tions of peaks of events, which are typically
obtained using the peaks-over-threshold
event identification method.
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2.3.3. Row-wise dependence
Description Row-wise dependence
refers to joint distributions [32]. For an
analysis to be considered multivariate, this
pattern has to be addressed.

Copulas A popular theme in the litera-
ture is the applications of copulas [38, 62].
An approach is copular when the matrix
of descriptors is marginally transformed to
uniform, i.e. the values within every col-
umn are transformed to a uniform distri-
bution with range 𝑋 = ]0, 1[. This allows
the marginal distributions and the row-
wise dependence structure to be separately
studied.

Heffernan and Tawn (2004) In this the-
sis, Heffernan and Tawn [46] (HT04) pro-
vide the model of choice for extremal de-
pendence. The essence of this model will
be described in Section (3.4.4).

2.3.4. Column-wise dependence
Description Three different column-
wise dependence patterns may be distin-
guished.

First, short-term dependence, refer-
ring to auto-dependence. Whether or not
this pattern is presentmay be studied using
auto-correlation (internally correlating the
values of a particular stochastic variable to
the previous values of that same stochas-
tic variable). If strong auto-correlation pat-
terns are found, methods for dependent
sampling should be considered (for exam-
ple, Markov chains). This pattern may be
avoided by capturing (nearly) independent
events, i.e. making sure that low auto-
correlation exists in the descriptors, which
would then allow random sampling.

Second, medium-term dependence,
referring to a repeating pattern (like sea-
sonality). Whether or not this pattern is

present may be studied by splitting the
data sample, for example by season. A
pragmatic way of dealing with this pattern
could be to take season into account at the
classification step.

Third, long-term dependence, refer-
ring to a trend in the data series. Since
systems change, observationsmay hold sig-
nificant trends. If that is the case, the
matrix may have to be de-trended, to find
appropriate distributions for the particular
system state under study. However, since
trends are not easy to capture and are un-
sure in extrapolation, such an additional
data transformation may introduce addi-
tional uncertainty.

2.3.5. Discussion
To explore the range of hypothetical

scenarios, most studies fit marginal distri-
butions to observed descriptors (with the
notable exception of Cowpertwait [23] and
follow up work like RainSim). For block
maxima, the generally used distribution is
the Generalised Extreme Value (GEV) dis-
tribution [13, 17, 31, 39, 47, 65, 86], of which
the Gumbel [2, 64, 65] and the Fréchet [61]
are family types. For event-based meth-
ods, the generally used distribution is the
Generalised Pareto (GP) distribution [17,
21, 31, 39, 47, 77, 86]. Cameron et al.
[17] randomly sample duration, mean in-
tensity and inter-event-arrival-time sepa-
rately, thereby assuming complete inde-
pendence. The large-scale studies so far
capture distributions per pixel [2, 64, 65,
102].

Event-based studies tend to avoid
short-term column-wise dependence (au-
tocorrelation), by aiming to capture inde-
pendent events. Having mid-term depen-
dence (seasonality) in the multivariate ma-
trix is typically avoided by splitting the data
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set by month or season. Long-term depen-
dence may be neglected with the assump-
tion of stationarity. Several studies use a
multivariate dependence model. Bracken
et al. [13] and Ghosh and Mallick [39] use
copulas. Keef, Tawn, and Svensson [53],
Schneeberger and Steinberger [77], and
Wyncoll and Gouldby [105] use the HT04
model. In contrast, continuous-based
studies that do address short-term column-
wise dependence (autocorrelation) gener-
ally do not address the row-wise depen-
dence. Two examples are Srikanthan and
Pegram [85] and Basinger, Montalto, and
Lall [6]. Only Ghosh and Mallick [39] tick
the box for all three patterns: marginal
distributions, row-wise dependence and
column-wise dependence. However, they
analyse monthly data, which shows only
weak temporal dependence. It is unclear
if their methodology can readily be applied
to data with a higher temporal resolution,
which would introduce a lot of additional
difficulty.

To simultaneously capture statistical
patterns is challenging, such that patterns
are prioritised based on the application.
In Table (2.4), an overview is provided of
statistical methods applied in the litera-
ture. Distributions are always important
for extreme value analysis. For some ap-
plications, dependence between marginals
(columns) has the second priority, like case
studies of spatial dependence, in which
the marginals may represent data at differ-
ent sites. For other applications, the row-
wise dependence is important, like case
studies of short term sequences or of cli-
mate change. Generally, studies address
a combination of distributions with either
a row-wise dependence model (like copu-
las or HT04) or a column-wise dependence
model (mainly Markov chains). To develop

advanced methods that address all three
main patterns, for a multivariate matrix in
which all three patterns are prevalent, is a
current challenge for the statistical com-
munity. The current stance of this chal-
lenge is important for applied studies (such
as flood risk assessments), because it pro-
vides feedback on (and limitations for) the
methodology applied to set up the multi-
variate matrices.

Within the context of large-scale
studies, Alfieri et al. [2], Pappenberger et al.
[64], Paprotny and Morales-Nápoles [65],
and Winsemius et al. [102] address distri-
butions per pixel, but do not consider ei-
ther dependence structures. This observa-
tion has pointed towards an event-based
approach for large-scale discharge in this
thesis, for which the multivariate approach
will be extended to high dimensionality.
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Table 2.4: An overview of statistical methods applied, Section (2.3.5). Acronyms can be
found in Table (A.1).

Study Marginal distribu-
tions

Dependence
(Row-wise)

Dependence
(Column-
wise)

Space-time

Cameron et al. [17] GP(ML)

GEV(ML)

Cooley, Nychka, and Naveau
[21]

GP (ML, SGP)

Merz and Blöschl [61] Weibull

Keef, Tawn, and Svensson
[53]

Gumbel HT04

Hundecha, Pahlow, and
Schumann [47]

Gamma, GP AR

GEV

Srikanthan and Pegram [85] Gamma, Exp, NST DW MC

Basinger, Montalto, and Lall
[6]

MC

Eastoe and Tawn [31] GEV, GP PP

Ghosh and Mallick [39] GEV copula

GP copula MC PP

Pappenberger et al. [64] Gumbel(L)

Cowpertwait et al. [25] STNSPP

Emp

Svensson, Kjeldsen, and
Jones [86]

Exp, GP

GEV (L)

Winsemius et al. [102] ?

Alfieri et al. [2] Gumbel

Wyncoll and Gouldby [105] Emp, GP HT04

Bracken et al. [13] GEV(ML, SGP) copula

Paprotny and Morales-
Nápoles [65]

Gumbel(ML)

Diederen et al. [28] GP(PML) NP, HT04
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2.4. Conclusions
To calculate flood risk estimates, a

chain of models is used (Section (2.1.1)).
Different statistical methods and different
routes to move through the chain are pos-
sible, where the transition from observed
(reality) to synthetic (scenarios) is made
for different variables (Section (2.1.2)). Val-
idation of synthetic data is a general is-
sue. Alternative methods and routes can-
not provide a ‘baseline truth’, but a com-
parison between different approaches may
provide confidence in analyses. However,
references to comparisons as ‘validation’
appear regularly in the literature, with lit-
tle contextual discussion, such as on routes
and methods. A general discussion could
be useful that focusses on the quality of
the flood risk assessments resulting from
the different methods and routes. An ex-
ample can be found in Winter et al. [103].
To advance this discussion, methodology
should be further developed and extended
for all possible routes. This would be use-
ful for both continuous-based and event-
based methodology (Section (2.1.3)). In
this thesis, the focus lies withmethodology
for event-based generation methodology.

Most studies, including recent stud-
ies, have focussed on the analysis of local
data (Section (2.2.1)). A number of studies
has connected what happens at multiple
sites by applying a SSTPA (Section (2.2.2)).
With SSTPA, the small (regional) scale
has been well explored, but not so much
the large (continental) scale. Event-based
methods for a regional scale SSTPA can-
not simply be extended to a continental
scale. Event-based SSTPA is limited inher-
ently by the fact that the spatial domain of
every event is fixed to be the entire spatial
domain considered (by definition, hence
‘static’). The answer to the limitation of

event-based SSTPA could be to turn to-
wards event-basedDSTPA (Section (2.2.3)).
New data products with large spatial cov-
erage (which are typically gridded, but
which may also be highly dense networks
of gauges) have started to allow the captur-
ing of the dynamic spatio-temporal (wave-
like) behaviour of the physical phenomena
that cause flooding. However, only a lim-
ited of number of studies has applied (parts
of the methodology required for) event-
based DSTPA. Some DSTPA event identifi-
cation methods were found in the drought
risk literature. Overall, the progressive
(wave-like) behaviour of physical phenom-
ena, that move through a large spatial do-
main and that lead to flooding, remains
barely addressed. This calls for the devel-
opment of DSTPA.

In most studies a statistical step (Sec-
tion (2.3)) lies at the heart of themethodol-
ogy. Generated synthetic data should show
the same statistical patterns as the ob-
served data, since the observed data should
be a likely subset of the (large set of) syn-
thetic data. Three base patterns were iden-
tified, which the literature pointed out are
hard to address simultaneously. Therefore,
the choice of patterns to address appears to
be intimately related to the application. In
this thesis, the HT04 model was chosen for
extremal dependence (Section (2.3.3)).

These observations have driven the
research topic, which is the development
of a large-scale, spatio-temporal generator
of hazardous events. Insights gained from
the literature review have helped develop
a general framework of event-based gen-
eration, which will be presented in Sec-
tion (3.3). No studies were found that ad-
dress the large scale using the full chain
of event-based methodology, that will be
defined in this framework. Within the
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context of event-based flood risk assess-
ment, this thesis will deliver synthetic forc-
ingwith increased physical realism andwill
allow the study of the system response to
large-scale floods. Therefore, the research
topic (Section (1.2.2)) is logically embed-
ded in theMarie-Curie project System-Risk
(Section (1.2.1)), in which the influence of
system behaviour on flood risk is studied.
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3.1. Introduc on
3.1.1. The full stochas c process and

generators
For decision making, different tools

are used in practice. For relatively short-
term decision making, forecasts may be
used. In the context of flooding, (weather)
forecasts could be produced in the order of
magnitude of days or, at maximum, weeks
ahead in time with a usable amount of
certainty. After a certain point ahead in
time, the uncertainty bands of (ensemble)
weather forecasts start to widen, as a result
of time integration and thereby the time in-
tegration of errors that are inherit in any
weather model. Sometimes the question is
raised of why to do risk analysis, given the
large amount of uncertainty inherit in risk
analyses. The simple answer would be that
it is required to do risk analysis because
of uncertainty, specifically because of the
wide spread in uncertainty bands of fore-
casts that try to go far ahead in time. So,
long-term decision making, in the order of
magnitude of months to decades, will be
applied on the basis of scenarios and can
be expected to remain so in the foreseeable
future. Large works of infrastructure, that
may be built for the purpose of flood pro-
tection or mitigation, are designed to last
for multiple decades if not centuries.

For flood hazard analysis, a stochas-
tic process is simulated. This is an arti-
ficial construct. The general idea is that
many hypothetical scenarios could poten-
tially occur, of which certain scenarios ac-
tually will occur (reality). Given a con-
text of scenario-based analysis, it is sensi-
ble to assign probabilities to scenarios. If
no probabilities were to be assigned, de-
cision makers would have no other op-
tion than to weigh every scenario in equal
measure. This can be considered to cor-

respond to a probabilistic approach with
uniform probabilities. A uniform distri-
bution is generally not a suitable distribu-
tion, since more extreme scenarios will oc-
cur with lower frequencies. Even though a
substantial amount of uncertainty may be
associated to risk analyses in general, and,
in particular, to the proposed probabili-
ties (or frequencies), it should be kept in
mind that any probabilities assigned with
extreme value theory will be better than
uniform probabilities.

By fitting a stochastic process, we are
trying to generate a more complete picture
from a fragmented picture. As the name
suggests, the full stochastic process is sup-
posed to be the full picture, which implies
that the statistics derived from the stochas-
tic process, e.g. the mean or the extreme
quantiles, should be smooth. Smoothness
may be looked for both in space and in time
Therefore, the fitting of the stochastic pro-
cess involves smoothening techniques. A
simple example is the fitting of a (smooth)
distribution to a (rough) set of observed
data records. Or the reverse thought:
a particular (small) draw from a smooth
stochastic process will be quite rough, but,
if one keeps drawing, the drawn samples
together become more and more smooth
until eventually the full stochastic process
is approximated. Analytical models repre-
sent an infinite amount of draws, but, given
limited computational power and storage,
at some point the stochastic process, as
represented by a generator, will have to be
accepted as sufficiently smooth. In this
process, sparsity in the tail-end of the dis-
tributions will be pushed farther and far-
ther towards the extreme, where extremely
low probabilities in the tail-end should
eventually render this sparsity of insignifi-
cant consequence. So, (a sufficient amount
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of) smoothness can be considered a re-
quirement for a stochastic process.

The full stochastic process is formu-
lated based on available evidence, typically
mainly in the form of observed data. Given
a particular set of evidence, an infinite
amount of stochastic processes could be fit-
ted. So, from all available options, how do
we choose a stochastic process? The gen-
eral concept applied in this thesis is based
on likelihood. This concept works approx-
imately as follows. Many stochastic pro-
cesses are considered and, given each con-
sidered process, the (approximate) proba-
bilities of the draw (observed data) are cal-
culated. The stochastic process is chosen of
which the observed data is the most likely
draw, i.e. ‘maximum likelihood’. This im-
plies we are dealing with a particular form
or inverse modeling. Incorporation of ev-
idence hopefully helps to limit the set of
possible fits of stochastic processes and,
thereby, leads to a clear maximum signal
in terms of likelihood. This implies that
incorporation of additional (relevant) evi-
dence should lead to a reduction in equi-
finality and, as a consequence, a reduction
in uncertainty. So, incorporation of more
evidence should generally make a stronger
case, which implies that asmuch (relevant)
evidence should be incorporated as possi-
ble.

3.1.2. Event-based probabilis c analysis
To unveil the full stochastic process,

the development of a generator is required.
In Section (2.1.3), it was explained that
generatormethodology can be continuous-
based or event-based. A large part of the
discussion on which type of methodol-
ogy to use, requires a dive into complex
methodology, in which the details matter.
However, for now, it will be attempted to

explain why an event-based is chosen in
this thesis by discussing a simple example
of time series analysis.

Fig. (3.1) demonstrates a few typical
ways of obtaining a set of descriptors from
a particular bit of observed data, in this
case a simple time series of river discharge.
Fig. (3.1)a shows how a yearly maximum
is extracted from a year of (daily) data
records. As can be observed, much in-
formation is lost, as the resolution of the
descriptor is very coarse as compared to
the variability present in the observed data.
Fig. (3.1)b shows how monthly maxima are
extracted. The level of detail captured
by the descriptors is vastly improved com-
pared to the yearly. Some temporal depen-
dence between subsequent maxima can al-
ready be observed in the resulting sample
of maxima. An increased level of complex-
ity will have to be dealt with, since, for a
generator developed on the basis of these
maxima, methods to capture seasonality
may have to be included. Fig. (3.1)c shows
how daily maxima are extracted. It is a
step farther with the idea in mind that a
more detailed description is better. How-
ever, it would probably be difficult - if not
impossible - for a statistical generator to re-
produce this type of data. A model using
time integration would probably be more
appropriate. This is the type of model that
is used in the field of (ensemble) forecast-
ing, more appropriately used for relatively
short-term decision-making, as explained
in Section (3.1.1). Fig. (3.1)d shows that
events are defined and that, in this case,
their peaks are extracted. By coincidence,
the sample seems to resemble the monthly
peaks and seems to contain a similar level
of detail, but an important difference can
be observed. In the context of flooding,
the most important parts of the observed
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data would be the large discharge values,
i.e. the discharge waves. With event-based
statistical methodology, the focus lies with
these values. And if multiple separate dis-
charge waves occur in a single month, not
just one is picked, but all dischargewaves in
that month can be considered. Discharge
waves could be more easily reconstructed
from these event peaks than from the max-
ima. Producing some synthetic peaks and
then drawing simple triangular discharge
waves, with the largest value being the
event peak, would already be a (half-) de-
cent effort. On the downside, additional
complexity can be found compared to the
maxima. For example, for a generator
based on these peaks, a secondary statis-
tical process would be required to place
reconstructed discharge waves back on a
(synthetic) timeline.

Improving methodology and tackling
the complexity of event-based probabilis-
tic analysis is a key point in this thesis.
All methodology in the upcoming chapters
will be event-based. Having established
that choice, the next question comes up.
What objectives are to be achieved using an
event-based generator?

3.2. Objec ves of a generator
3.2.1. Objec ve 1 - Introducing the unob-

served
Sparsity In the context of flooding,
events are the (clusters of) extreme highs
of system forcing, i.e. when much water is
thrown into the system. In a limited sam-
ple of observed data, there will hopefully
be only a few hazardous events, so they will
be sparse. For higher extremes, hazardous
events will be more sparse, because higher
extremeness implies that, in a data sample
of a given temporal length, there will be
fewer events.

Addressing sparsity with a generator
If a system can be described by a stochastic
process, and the interest of the application
lies with extremes, sparsity will play an im-
portant role. According to themodel of the
stochastic process, reality is just a particu-
lar sample drawn from the stochastic pro-
cess. Each individual sample will be sparse,
especially in the extremes. The draw from
a stochastic process of one particular sam-
ple, will be different from the next sam-
ple drawn. The sparse data sample of ob-
servations of reality is the basis on which
the full stochastic process is inversely mod-
eled. Theoretically, it should be possible
to address sparsity with the generator ap-
proach, as a (sufficiently large) synthetic
data sample is supposed to represent the
full stochastic process at a particular (dis-
cretised) point in time. As explained in
Section (3.1.2), the methodology applied in
this thesis will be event-based, so the gen-
erators will be designed to generate syn-
thetic events.

Sufficient synthetic data For a particu-
lar synthetic data set, the more synthetic
events are generated, the farther sparsity
is pushed to the extremes. Therefore, the
more extreme the events of interest are,
themore synthetic events have to be gener-
ated. Very high extremes, such as the entire
world being flooded, may appear to be in-
teresting, when focussing only on the con-
sequences. However, the more extreme a
particular event, the lower the associated
probability. Since risk is defined as the
sum of consequences of scenarios multi-
plied by the probabilities of the scenarios,
very low probabilities will become domi-
nant at some stage. This means that when
sparsity has been pushed to the domain
where (low) probabilities are dominant, it
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Figure 3.1: From block-based to event-based time series analysis. With yearly blocks,
much information is ignored and lost. With monthly blocks, a time series is captured
that is a mixture of extremes and low values. With daily blocks, a time series is captured
that will be hard to reproduce by a stochastic model. With an event-based approach, a
time series is captured of details of the extremes only, which is a good starting point for
the stochastic model.



3

46 3. Methodology

may be concluded that sufficient synthetic
data has been generated. This is fortu-
nate, because in practice, the generator ap-
proach will always hold some sparsity for
high extremes, since computational limita-
tions only allow the generation of a finite
amount of synthetic events.

Unlimited degrees of freedom? Objec-
tive 1 - Introducing the unobserved, can
be considered the main objective for any
generator. However, is it sufficient to sim-
ply generate events that have not been ob-
served before? No, generators should not
be allowed to freely generate random syn-
thetic events. Particular constraints should
be formulated, guided by additional objec-
tives. Synthetic data has to follow the sta-
tistical patterns in the observed and the
synthetic data should be physically plausi-
ble, i.e. follow physical constraints.

3.2.2. Objec ve 2 - Reproducing pa erns
Disclaimer The first type of generator
constraint is that the synthetic data pro-
duced by a generator should follow the pat-
terns found in the observed. The patterns
will be discussed at the hand of event de-
scriptors. The same principle that applies
for the descriptors, applies for the event
layer and the continuous data layer, which
will be introduced in Section (3.3), and dis-
played in Fig. (3.2).

Different statistics may be used to
capture patterns. In fact, there is no limit
to the amount of patterns to follow, as any
pattern found should be followed. The lim-
itations are the capacity and capability of
the architects of the generator. Therefore,
the following list of patterns that is going to
be discussed is non-exhaustive. However,
hopefully, it will provide a general idea of
the requirement of the reproduction of pat-

terns.

Data format matrix At present, ad-
vanced methods exist for multi-variate
statistics, in which matrices are the key
data format. Although more complex
data formats exist, such as arrays, matri-
ces appear to currently prove challenging
enough. Therefore, in this thesis, the data
format by which data is described will be
a matrix. When describing the following
patterns, it will be indicated how the pat-
terns relate to the matrix format.

The overall objective of reproducing
patterns To a relatively small matrix of
observed descriptors, a statistical model is
fitted, from which a large matrix of syn-
thetic descriptors is sampled. How this is
done will be elaborated in Section (3.4).
Overall, if all patterns are captured and re-
produced by a generator, it should be pos-
sible to ‘hide’ the matrix of observed de-
scriptors in thematrix of synthetic descrip-
tors, without anyone being to able to tell
where it is. More generally, patterns can
be regarded to be appropriately reproduced
when it is possible to ‘hide’ the observed
data in the synthetic data.

Marginal distributions A first pattern
to capture may be the pattern of marginal
distributions. It is a pattern that occurs per
column in the matrix. The row-wise order
of entries does not matter for the distribu-
tion. To each separate column, a distribu-
tion is fitted. Dependent on the type of
variable and the method event identifica-
tion, a different distribution may be appro-
priate.

By fitting a distribution, the marginal
population is smoothened. This can eas-
ily be visualised by sampling from a distri-
bution and plotting a histogram. As the
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amount of sampled data increases, the his-
togram may be plotted with more bins and
will become increasingly smooth.

Dependence structure A second pat-
tern to capture may be the dependence
structure. This pattern works across dif-
ferent columns and is captured row-wise.
The order of rows does not matter for
the dependence structure. The depen-
dence structure describes how variables
(one variable per column) are dependent
on each other. If there is dependence, then,
when a particular first variable is large, it
may be more likely that a particular sec-
ond variable is also large or, reversely, more
likely to be small. With no dependence be-
tween the two variables, the magnitude of
the second variable does not depend on the
first or the other way around. The depen-
dence structure is as high-dimensional as
the number of columns in the matrix.

The dependence structure may vary
over regions in the multidimensional pa-
rameters space of the variables. It may be
appropriate to fit different statistical mod-
els to different regions. For extreme values
theory in particular, tail-end dependence
may be distinguished from the dependence
in the general populations. Therefore, it
may be appropriate to fit one statistical
model to capture the dependence in cen-
tral regions and another statistical model
for tail-end dependence.

Temporal dependence A third pattern
to capture may be the temporal depen-
dence. This pattern works across different
rows and is typically captured per column,
where it is assumed that each row repre-
sents a different time window or a different
subsequent event. So, for temporal depen-
dence, the row-wise order of entries does

matter. Statistical models are required that
allow the sampling of entire rows, where a
new row sample is dependent on the (mul-
tiple) previous row sample(s).

Seasonality A fourth pattern to capture
may be seasonality. This pattern does
not work across subsequent rows or across
columns. However, the matrix can typi-
cally be related to a (real or synthetic) time
line, often per row. It is a pattern that can
be found when variables are seasonally de-
pendent, as they often are. For example,
precipitation patterns can be quite differ-
ent in summer than in winter, maybe less
persistent but with higher intensity.

Seasonality may be found on different
temporal scales, for which different termi-
nology may be appropriate. For example,
for a particular variable, magnitudes may
vary with day or night. Or, specifically in
relation to floods, magnitudes may depend
on an ‘el niño’ or a ‘la niña’ year.

3.2.3. Objec ve 3 - Respec ng physical
constraints

Generators andmodels of physical phe-
nomena A generator is to be used to cre-
ate synthetic scenarios. They can be cre-
ated in different forms, e.g. as events or as
continuous data. These scenarios typically
comprise boundary conditions and/or ini-
tial conditions.

Models of physical phenomena re-
quire boundary conditions and initial con-
ditions. On the basis of these conditions,
time integration of physically-based gov-
erning equations, such as the mass balance
and the momentum balance, will be ap-
plied for a particular spatial domain. Al-
though such models contain errors, which
may accumulate in time due to the time in-
tegration, the use of physically-based gov-
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erning equations provides physical realism.

In contrast, the statistical techniques
used in a generator do not guarantee phys-
ical realism. In fact, a generator that is al-
lowed to freely generate based on a statisti-
cal process, can be expected to create un-
realistic scenarios. When unrealistic sce-
narios are used to drive models of physical
phenomena, the model outcomes will also
be unrealistic. Therefore, it is important to
formulate physical constraints and imple-
ment them in the generator.

Constraining a generator No general
pysical constraints can be formulated for
generators. Which physical constraints are
appropriate is specific to the type of data
to generate. For example, physical con-
straints will be different for river discharge
and for precipitation.

Physical constraints can have differ-
ent levels of complexity. They could simply
be based on common sense. For example,
in a relatively short period of time, there
should not be more rainfall in particular
area than that there is water on the planet.
Or, physical constraints may require expert
knowledge, i.e. insight in geophysical be-
haviour of extreme events that comprise
the flood hazard. Hurricanes should not be
allowed by a generator to travel too far over
land, since they typically gain strength over
the ocean and reduce in strength over land.

From a practical point of view, it may
make sense to apply an iterative strategy.
Generator algorithms may already be com-
plex in order to satisfy objectives 1 and
2 and may quickly increase in complexity
when applying physical constraints. It is
recommended to start by developing a sim-
ple generator. Then, to analyse the gener-
ated data and seewhat does notmake sense
physically. Then, to come up with addi-

tional constraints, and repeat.

3.3. A framework for event-based
genera on

3.3.1. Overview
The literature review, see Chapter (2),

led to the deduction of a framework for
event-based generation, used troughout
this thesis. The framework can be seen as
a tool to reach the objectives stated in Sec-
tion (3.2).

The framework is displayed in
Fig. (3.2) and decomposes the process of
event-based generating into five general
steps: (1) event identification; (2) event
description; (3) multivariate statistics; (4)
event reconstruction; and (5) space-time
placement and gap filling.

3.3.2. Event iden fica on
In this step, the subset of interest is

extracted from the original data set, where
the subset should exist of separated data
clusters. In the next chapters, event-based
methodology is used, so these clusters rep-
resent events. To be able to fit the lit-
erature to the framework in Section (3.5),
these clusters can also be blocks, for which
the data set would be sliced into temporal
blocks, like years, months, weeks or days,
etc.

3.3.3. Event descrip on
In this step descriptors are captured

for each event. The more descriptors used,
the higher the level of detail that can be
captured. Descriptors are captured for two
purposes. First, to be able to divide the
data into classes, where within each class
the events are (supposed to be) compara-
ble. Second, to be used for multivariate
analysis. The subset of available descrip-
tors to be used in the multivariate analysis
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Figure 3.2: A framework for the generation of synthetic continuous data. STP refers to
the spatio-temporal process and GF to gap-filling. 1000 years is indicative for a large
(infinite) amount of synthetic data.

is determined by the event reconstruction
method.

3.3.4. Mul variate sta s cs

In this step, statistics are applied to
the captured descriptors. The aim of this
step is to generate a large matrix of syn-
thetic descriptors, of which the matrix of
observed descriptors should be a likely sub-
set. The synthetic matrix should have
many more rows than the observed ma-
trix, but the same number of columns. If
this step is applied successfully, it should
be possible to hide the small matrix of ob-
served descriptors somewhere within the
large matrix of synthetic descriptors. This
would imply that patterns were success-
fully captured and simulated. Since this
step is at the heart of the analysis, but kept
constant throughout this thesis, it will be
elaborated in Section (3.4), in anticipation
of the subsequent chapters.

3.3.5. Event reconstruc on
In this step, synthetic events are gen-

erated from the catalogue of simulated syn-
thetic descriptors. The higher the level of
detail, the better the result of this step will
be, but also the more challenging this step
will be. A higher level of detail can be ob-
tained with a higher resolution and by us-
ing more descriptors. Potentially, different
descriptors can be used for different classes
of events.

3.3.6. Space- me placement and gap fill-
ing
For studies in which a subset of data

was analysed in step 1, which are the studies
where the clusters are events, the gaps be-
tween the reconstructed synthetic events
may be filled to obtain synthetic continu-
ous data.

When simulating high resolution
blocks, continuous data is directly ob-
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tained (with the resolution of the blocks).

3.4. Mul variate sta s cs

3.4.1. General

The statistical step can be performed
in different ways. Multivariate statistics,
where statistics are applied to matrices, is
the current state of the art, and proves suf-
ficiently challenging. This type of statistics
is applied in this thesis. The general pur-
pose of the statistical step is to generate a
large matrix of synthetic event descriptors
that is similar, but more comprehensive,
than the matrix of observed event descrip-
tors.

In this thesis, the statistical step is im-
plemented with two sub-steps. First, sta-
tistical models are fitted, which may ad-
dress distributions, row-wise dependence
or column-wise dependence. Second, a
discrete synthetic data set is simulated
from the fitted statistical models.

3.4.2. Marginals

Multivariate statistical analysis deals
with the data form of matrices. Marginal
distributions are univariate distributions,
fitted per column of a matrix.

3.4.3. General dependence structure -
kernel density

In this thesis, a multivariate kernel
density model is applied for the bulk of the
populations, i.e. where samples are non-
extreme. Multivariate kernel density esti-
mation is a non-parametric way to estimate
the probability density function of random
variables. For the samples that are extreme
in one or multiple dimensions, a separate
model is used to capture the extremal de-
pendence structure.

3.4.4. Extremal dependence structure -
HT04

Heffernan and Tawn (2004) In this the-
sis, Heffernan and Tawn [46] provide the
model of choice in this study for extremal
dependence (HT04). The original HT04
model was proposed for the conditional
distribution of all variables 𝑋 where 𝑖 =
1, 2, ..., 𝑑 given one of the variables is above
a large threshold. More specifically, if the
marginal distribution of each variable 𝑋 is
transformed to a standard Laplace distribu-
tion, denoting the transformed variables as
𝑌 , then 𝑌 |𝑌 = 𝑦 𝑎 𝑦 + 𝑦 ⋅ 𝑍 for all
values 𝑦 > 𝑢 and 𝑖 ∈ {1, 2, ..., 𝑑}, where the
(𝑑−1)-dimension random variable 𝑌 rep-
resents all but the 𝑖-th margin of the orig-
inal full joint distribution; parameter 𝑎
and 𝑏 are the location and scale param-
eter vector of length (𝑑 − 1); the (𝑑 − 1)-
dimensional random variable 𝑍 is a non-
degeneratemultivariate distribution that is
independent of the value of 𝑌 , referred to
as the residual distribution; and constant 𝑢
is a high threshold above which the HT04
structure is assumed to apply with negligi-
ble error.

HT04 is a semi-parametric approach,
in which the dependence at the extreme
tail region is based on extrapolation (in
the conditional mean and standard devia-
tion) of the dependent variable conditional
on the conditioning variable. Two HT04
model fits are required for each pair of
marginals, with either marginal as the con-
ditioning marginal 𝑌 and the other as the
dependent marginal 𝑌 . Each fit holds two
parameters, 𝑎 and 𝑏, after which a resid-
ual 𝑍 is calculated from each observed data
point. The data used to fit the model are
the pairs where the conditioning marginal
𝑌 is larger than a fitting threshold 𝜁 .
With an infinite number of samples drawn
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from HT04, each model fit would result in
as many pair-wise lines as there are data
points. However, for simulation a set of
these lines is used, since HT04 should be
applied only if the largest marginal in the
set is above a particular simulation thresh-
old.

To explain why HT04 is used, two
margins of a joint distribution (𝑋 and𝑌) are
considered. They can be assumed to fol-
low the same distribution without loss of
generality. Quantity 𝑢 is a very high quan-
tile of the distribution of 𝑋 and of 𝑌. An
exceedance probability 𝑃(𝑋 > 𝑢) and a
conditional exceedance probability 𝑃(𝑋 >
𝑢|𝑌 > 𝑢) are considered.

𝑃(𝑋 > 𝑢) converges to 0 as 𝑢 goes to
infinity. 𝑃(𝑋 > 𝑢|𝑌 > 𝑢) also converges to
a (not necessarily 0) probability as 𝑢 goes
to infinity. In particular, the convergence
rates of these probabilities in the tail-ends
of the respective distributions are of impor-
tance, as the relative rate of convergence
decides the type of extremal dependence
between 𝑋 and 𝑌.

1. When 𝑃(𝑋 > 𝑢) and 𝑃(𝑋 > 𝑢|𝑌 > 𝑢)
converge at the same rate, this im-
plies (near) independence.

2. When 𝑃(𝑋 > 𝑢|𝑌 > 𝑢) converges
more slowly than 𝑃(𝑋 > 𝑢), this im-
plies a positive association.

3. When 𝑃(𝑋 > 𝑢|𝑌 > 𝑢) converges
faster than 𝑃(𝑋 > 𝑢), this implies a
negative association.

So, first, HT04 is used, because it can
capture all these types of extremal depen-
dence simultaneously. Second, for the tail
region, HT04 is very flexible in terms of
capturing different types of extremal de-
pendence [58]. Third, with HT04 the esti-
mation of the model parameters does not

suffer from the curse of dimensionality,
whereby the number of observation data
available for fitting the model decreases
dramatically as the dimension of the prob-
lem grows.

HT04 was recently applied for fluvial
flooding [53, 57, 77] and for coastal flooding
[42, 105], in which the model fitting proce-
dure is described in more detail.

3.4.5. Simula on
Simulation is performed by random

sampling (Monte-Carlo). For the bulk of
the populations, sampling is straightfor-
ward, making use of the kernels. For the
tail-ends, conditional sampling is applied.
One variable is sampled in the tail-end re-
gion (extreme), as defined by a marginal
quantile threshold, and the rest of the vari-
ables are deduced making use of the HT04
model. Dependent on the HT04 model fit
and on how extreme the sampling variable
is, the dependent variables may also be ex-
treme or may be non-extreme. Sampling is
done until the number of envisioned syn-
thetic sets is reached, where each synthetic
set has the same number of samples as the
observed set. These synthetic sets are com-
bined to a single set, comprising the chosen
synthetic length of time, e.g. 10.000 years.

3.5. Literature according to the
framework
To demonstrate that the framework is

generally applicable for event-based stud-
ies, a number of studies was fitted to the
framework, displayed in Table (3.1). A
slight modification was applied to be able
to include studies that are block-based,
where the more general term for event
identification or block slicing would be
clustering.
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Table 3.1: A number of studies sorted according to the general framework of this thesis;
Fig. (3.2). Acronyms can be found in Table (A.2).

Study Variables Clustering Descriptors Classification Statistics

Cameron et al. [17] 1. precipita-
tion (gen)

thresholds , , loc,
duration

GP (ML)

2. discharge
(val)

annual Loc GEV (ML)

Cooley, Nychka,
and Naveau [21]

prec. thresh. Loc,
climate

GP
(ML, SGP)

Merz and Blöschl
[61]

discharge annual Loc Weibull

Keef, Tawn, and
Svensson [53]

discharge,
precipita-
tion

thresholds
(unclear)

± Loc1 Gumbel, HT04

Hundecha,
Pahlow, and
Schumann [47]

1. rainfall
(gen)

daily Loc1,
month

Gamma, GP, AR

2. rainfall
(val)

annual Loc GEV

Srikanthan and
Pegram [85]

1. rainfall
(Gen)

daily Loc Gamma, Exp,
NST, DW, MC

2. rainfall
(Val)

annual,
monthly,
daily

Long list, see
paper

Loc

Basinger, Mon-
talto, and Lall
[6]

1. rainfall
(Gen)

daily Loc MC

2. rainfall
(Val)

daily, annual , Loc

Eastoe and Tawn
[31]

1. discharge annual Loc GP, PP

2. discharge thresholds Loc GEV

Ghosh and
Mallick [39]

1. precipita-
tion

annual Loc, month GEV, copula

2. precipita-
tion

threshold Loc GP, copula, MC,
PP

Pappenberger
et al. [64]

discharge,
storage,
depth

annual Loc Gumbel (L)

Cowpertwait et al.
[25]

1. rainfall,
temperature
(Gen)

? , Storm type
(convective,
stratiform)

STTP (NS)
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2. rainfall
(Val)

annual Loc Emp

3. discharge
(Val)

annual Loc Emp

Svensson, Kjeld-
sen, and Jones
[86]

1. rain-
fall, soils
moisture,
evaporation,
discharge
(Gen)

thresholds
(rain)

, , ,
,

Loc,
summer-
winter

Exp, GP

2. discharge
(Val)

annual Loc GEV (L)

Winsemius et al.
[102]

discharge annual Loc ?

Alfieri et al. [2] discharge annual Loc Gumbel

Wyncoll and
Gouldby [105]

discharge threshold
(runs)

Loc1 Emp, GP, HT04

Bracken et al. [13] prec. (Gen) annual
( , 3-day)

Loc1 GEV
(ML, SGP),
copula

Paprotny and
Morales-Nápoles
[65]

discharge annual Loc Gumbel(ML)

Schneeberger and
Steinberger [77]

discharge 3-day, an-
nual

Loc1,
Summer-
winter

GP (ML), GEV (L),
HT04 (Laplace)

Diederen et al.
[28]

discharge NR Loc1 GP (PML), NP,
HT04

1Partial classification: marginals per site, lumped dependence model for all sites.
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4.1. Introduc on
Flood events cause large damages

worldwide [27]. Flood risk assessments
(FRAs) are required for long-term plan-
ning, for example, for investments in in-
frastructure and other urban capital. Fol-
lowing the definition of risk [34], simply
put as probability of damage, FRA requires
an approximation of the risk curve under
stationary climate conditions and a current
distribution of asset values. Typically, for
FRAs a chain of models is applied, cover-
ing the entire risk cascade from hazardous
extreme events down to flood damages or
casualties resulting from inundation (for
example, expected annual damage, loss of
life). The risk curve represents the proba-
bility of damages and is approximated by
the evaluation of a comprehensive cata-
logue of hazard scenarios. The chain can
be run in continuous mode [10, 12, 16, 33],
or with separate events [42, 94]. To drive
the chain ofmodels, boundary forcing is re-
quired. This typically comprises a large cat-
alogue of synthetic forcing data, with mod-
els conditioned on observations.

Widespread flooding can potentially
cause large damage in a short time-
window. Continental events and, for in-
stance, maximum probable damages are of
interest. In particular, the (re)insurance
industry wants to know the chance of a
widespread portfolio of assets getting af-
fected in a short time-window. With the in-
crease in computational power, continen-
tal FRAs have recently become feasible [2,
29, 66, 80, 95, 97]. Vorogushyn et al. [93]
call for new methods for large FRA to en-
able the capturing of system interactions
and feedbacks. The focus in this case study
is on methodology required for the genera-
tion of a large catalogue of synthetic conti-
nental discharge event descriptors for flu-

vial FRA.

River discharge waves may cause the
exceedance of bank-full conditions or may
cause dikes to fail. They are dynamic, i.e.
show a wave-like behaviour. Travel times
of discharge waves in large river basins
can be long, i.e. time lags between dis-
charge peaks at different locations can be
large. With large travel times, a new dis-
charge wave may be generated upstream,
while the previous discharge wave has not
yet reached the river mouth. Further-
more, discharge waves in river basins are
triggered by atmospheric events that may
span across multiple river basins. Finally,
discharge waves in different river basins
may be related to a single atmospheric
event, but do not occur at the same time,
since catchments have different response
times. With an increasing spatial do-
main, dynamic events start overlapping in
time and merge into a space-time contin-
uum. For a continental FRA, the challenge
arises how to define observed continental
river discharge events and how to simu-
late synthetic continental river discharge
events while retaining the observed sta-
tistical properties in space (spatial depen-
dence/coherence).

A distinction can be made between
two groups of event identification meth-
ods: methods based on time blocks and
methods based on dynamic events. Time
blocks were previously discussed in Sec-
tion (2.2.1). Dynamic events are de-
fined as events with spatially varying time-
windows, which are based on the discharge
values. As described above, for large spatial
domains small dynamic events at different
locationsmay overlap in time and form one
single long-lasting spatio-temporal event.
Hence, a practical definition of dynamic
space-time-windows is required.
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Outline In Section (4.2), the method-
ology will be introduced, comprising the
used data set and the (reduced) frame-
work. In Section (4.3), Pan-European dis-
charge waves, which are characterised by
significant time lags between peaks at dis-
tant locations, will be analysed in the
space-time continuum. A new method of
dynamic event identification will be ap-
plied, where the aim is to capture discharge
events in each major European river basin,
after which a block-based time-window
method will be used to merge them to
spatially-coherent, pan-European events.
The pan-European discharge events will
be described by their peaks, with which a
stochastic event-based generator of event
descriptors will be parameterised. Using
the generator, synthetic descriptor sets will
be simulated, after which the statistical
properties of the synthetic sets will be com-
pared to those of the observed. In Sec-
tion (4.4.2), the sensitivity of the gener-
ated synthetic descriptor sets will be in-
vestigated with regards to the coverage of
the peaks and the capturing and retaining
of the (spatial) dependence structure. In
Section (4.5), applicability and the main
limitations of the methodology will be dis-
cussed.

4.2. Methodology
4.2.1. Data

A gridded discharge reanalysis data
set is used, which was obtained with the
well-established LISFLOOD model [90]
and which covers the major river networks
in Europe. This data set resulted from a
hydrological model driven by a climate re-
analysis data set for the period 1990 to 2015.
It has a spatial resolution of 5x5 km and a
daily temporal resolution. A high tempo-
ral resolution is critical for river discharge

waves to be tracked in the extended river
network.

In order to keep the computational
costs reasonable, the network is reduced
to the major streams and tributaries. This
means that, although the input data was
two-dimensional in space (𝑥,𝑦), only the
network of 1-dimensional rivers (𝑠) is con-
sidered. For high-order small streams to be
included, a higher spatial and temporal res-
olution would be required for wave track-
ing. Although the data set is derived from a
modelled reanalysis data set, the used sub-
set of data will be referred to as ‘observed
data’ as it comprises observations of real-
ity, contrasting with ‘synthetic data’, which
comprises data values of what may hypo-
thetically occur.

4.2.2. Generator objec ves
There are threemain generator objec-

tives:

1. introduce the unobserved (GO1),

2. reproduce patterns (GO2) and

3. respect physical restraints (GO3).

These generator objectives were described
in more detail in Section (3.2).

The aim in this chapter is to provide a
methodology (of the type SSTPA) to gener-
ate a large catalogue of synthetic, discharge
descriptor sets at many different locations
throughout Europe.

4.2.3. Framework
The framework for the generation of

synthetic peak sets consisted of three con-
secutive steps, see Fig. (4.1). This is a re-
duced version of the generic framework in-
troduced in Section (3.3). First, the identi-
fication of continental events in the contin-
uous data on the entire pan-European river
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Figure 4.1: The applied framework, which
comprises three steps. It is a reduced
version of the framework displayed in
Fig. (3.2).

network (OBJ1). To achieve this, first local
(single location) events were identified, for
which a new method of time series anal-
ysis, ‘Noise Removal’ (NR), was applied at
every location (grid-cell) in the river net-
work. These local events were connected
to neighbouring locations to obtain river
basin events, to be subsequently merged
to pan-European events, which span across
multiple river basins. Second, the descrip-
tion of the pan-European events (OBJ1).
To reduce the dimension (number of lo-
cations) for statistical analysis while try-
ing to maintain an acceptable spatial cov-
erage, 298 representative locations were se-
lected within the network of major Euro-
pean rivers, see Fig. (4.2). At these rep-
resentative locations, the continental dis-
charge events were described by their local
peaks. Third, the generation of a large cat-
alogue of synthetic descriptor using multi-
variate statistical analysis (OBJ2). A multi-
variate dependence model was fitted to the
catalogue of observed descriptors covering
25 years, retaining the observed spatial cor-
relation structure. Finally, the fitted statis-
ticalmodel was used to simulate a large cat-
alogue of synthetic event descriptors, char-

Figure 4.2: The network of major European
rivers and a subset of 298 representative lo-
cations.

acterised by spatial coherence and com-
prising a synthetic period of 10,000 years.

4.3. A generator of river discharge
peaks

4.3.1. Event iden fica on
Single-location events When using the
popular ‘Peaks-Over-Threshold’ method
(POT) per location, all events below a
particular threshold are dropped. This
is appropriate for event identification
only when events show a homogeneous
‘extremeness-per-location’. However,
when studying discharge waves moving
through the river network by ‘extremeness-
per-location’, a heterogeneous behaviour
can be expected. Relatively extreme events
upstream may become less extreme mov-
ing downstream when the lower part of
the river basin is not activated. Or, in
contrast, relatively non-extreme events at
different upstream branches can generate
a relatively extreme event at confluences
downstream due to wave superposition. To
address the heterogeneity, a new noise re-
moval algorithm was developed to capture
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Figure 4.3: (a) All local minima and maxima. (b) Removal of noise using the value-
window. (c) Removal of noise using the time-window.

local events which manages to eliminate
small local peaks that are part of a bigger
event (noise), while retaining small events
that may be spatially connected to larger
events upstream or downstream. This is
a key feature to the wave tracking, which
will be introduced in the next section.

In the procedure of NR the following
variables are used:

• 𝑋 is an arbitrary variable,

• 𝜇 are the local minima of 𝑋,

• 𝑀 are the local maxima of 𝑋,

• 𝑌 = 𝜇 ,𝑀 , 𝜇 , .., 𝜇 ,𝑀 , 𝜇 is

a series of alternating minima and
maxima,

• 𝛿 is the NR value-window (setting),

• 𝑡 are the times at which there is a
local minimum,

• 𝑇 = (𝑡 , 𝑡 , .., 𝑡 ),

• 𝛿 is the NR time-window (setting),

First, all local minima 𝜇 and max-
ima 𝑀 are identified, defined as the points
where the sign of the increment changes
fromnegative to positive and vice versa, see
Fig. (4.3)a. Second, small perturbations are
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identified as noise and are removed, where
the following algorithm is applied:

1. Define a series 𝑌 =
(𝜇 ,𝑀 , 𝜇 , .., 𝜇 ,𝑀 , 𝜇 )
and calculate 𝑑𝑌 =
|𝜇 −𝑀 ,𝑀 − 𝜇 , .., 𝑀 − 𝜇 |.

2. Either calculate the ‘NR value-
window’ 𝛿 = 𝑓 × 𝑚𝑎𝑥(𝑑𝑌), where
𝑓 is a fraction to set, or set 𝛿
directly.

3. Find 𝑖 by selecting the smallest dif-
ference in value 𝑑𝑌 = 𝑚𝑖𝑛(𝑑𝑌). If
𝑑𝑌 < 𝛿 , remove 𝑌 and 𝑌 from 𝑌,
then recalculate 𝑑𝑌. This step is re-
peated until there is nothing left to
remove.

An example of the NR value-window filter-
ing is displayed in Fig. (4.3)b. Third, to
make sure that two local minima are not
too close in time, the following algorithm
is applied:

1. Define a series 𝑇 = (𝑡 , 𝑡 , .., 𝑡 )
and calculate 𝑑𝑇 =
(𝑡 − 𝑡 , 𝑡 − 𝑡 , .., 𝑡 − 𝑡 ).

2. Either calculate the ‘NR time-
window’ 𝛿 = 𝑓 ×𝑚𝑎𝑥(𝑑𝑇), where 𝑓
is a fraction to set, or set 𝛿 directly.

3. Find 𝑖 by selecting the smallest dif-
ference in time 𝑑𝑇 = 𝑚𝑖𝑛(𝑑𝑇). If
𝜇 < 𝜇 , 𝑗 = 𝑖 + 1, else 𝑗 = 𝑖. If
𝑀 < 𝑀 , 𝑘 = 𝑗 − 1, else 𝑘 = 𝑗. Re-
move 𝑌 , 𝑌 and 𝑇 , then recalcu-
late 𝑑𝑇. Repeat this step until there
is nothing left to remove.

An example of the NR time-window filter-
ing is displayed in Fig. (4.3)c. Fourth, a lo-
cal event can be chosen to last from mini-
mum to minimum, or to be only the time
step in which the peak occurs, or some-
thing in between.

The NR value-window fraction was
set relatively low 𝑓 = 0.01[−], such
that many small local events were retained.
However, by setting the fraction low, small
perturbations (noise) made it difficult to
spatially separate events. This was amelio-
rated by using the NR time-window 𝛿 =
10𝑑, ensuring a minimal amount of time
between local minima. The choice of
NR parameters will be elaborated in Sec-
tion (4.4).

River basin events River discharge
waves propagate through the network in
the downstream direction, introducing
time lags between the moments the waves
pass at different locations. Time lags are
difficult to estimate, because the celerity
of river discharge waves can be highly
nonlinear. The wave celerity is a function
of the hydraulic depth and changes in a
nonlinear way when overbank flow occurs
and floodplains become inundated. When
using gauge data (point-observations),
combining local events to events that
span multiple locations, time lags are
typically addressed using time-windows.
The gridded data set used in this case
study allowed us to try a new method to
combine local events to river basin events,
which will be referred to as ‘wave tracking’.
Each location in the river network is
physically connected to its neighbouring
locations, which allows waves to be tracked
throughout the entire river network. Wave
tracking is robust to non-linearities in the
wave celerity, and therefore it allows to
better address time lags, so that, when
peaks at different locations are compared
in Section (4.3.3), it is made sure that they
are of the same discharge wave.

To track river dischargewaves, the fol-
lowing procedure was applied. First, lo-
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Figure 4.4: a) A particular branch of the river Rhine. b) The continuous discharge data
on the river branch, where the river mouth is located at 𝑠 = 0𝑘𝑚 and the head water is
located around 𝑠 = 1100𝑘𝑚. c) Events on the river branch. The polygons (i.e. separated
islands of data) are discharge waves moving through the river branch.

cal events were separated by applying NR
to time series at every location in the river
network, where of each local event the day
of the peaks ±1 day was retained. Sec-
ond, separate events per river branch were
identified by capturing the polygons in the
branch’s space-time image; Fig. (4.4). The
settings of the NR were adjusted by trial
and error to try to obtain consistent poly-
gons in space (low noise removal), but sep-
arated in time (high noise removal). Third,
the events of different river branches were
merged, based on overlap of event time
coordinates at the confluences. This pro-
cedure resulted in a variable number of
tracked discharge waves per river basin.

Pan-European events Precipitation
events, which are the main driving source
of river discharge events, span across
different river basins. Therefore, large
discharge events in adjacent river basins
are likely to be correlated. To account for
this correlation, events had to be defined
that included discharge waves across

different river basins (in this case study:
pan-European events). Since discharge
waves do not span across different river
basins (by definition), such events should
be connected to each other in a different
way. Discharge waves in different basins
are not synchronised, which adds addi-
tional complexity. In order to obtain a
method to construct pan-European events,
which on the one hand considers discharge
waves in river basins and on the other hand
accounts for trans-basin dependence, a
combined approach of wave tracking and
‘global time-windows’ is proposed.

The following procedure was
adopted. First, subsequent global time-
windows were set up with a length of
𝛿 = 21𝑑, which resulted in 428 global
time-windows in the period 1990-2015 (i.e.
428 pan-European events). The length of
the global time-windows will be discussed
in Section (4.5.2). Second, to each global
time-window complete, tracked discharge
waves were assigned. To do this, each
discharge wave was represented by its first
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Figure 4.5: Daily snapshots of a Pan-European event with a large spatial extent.

time coordinate, i.e. the day when the
discharge wave started somewhere (up-
stream) in the river basin. The discharge
wave was then assigned to the global
time-window in which this day occurred.
If, per river basin, multiple discharge waves
were assigned to a particular global time-
window, only the discharge wave with the
largest discharge value was retained. This
procedure resulted in 428 pan-European
events. An example of a pan-European
event is displayed in Fig. (4.5).

4.3.2. Event descrip on

The aim in this case study was to de-
scribe the pan-European events by their

peak discharge, at 298 representative lo-
cations on the river network. However,
the pan-European events did not yield dis-
charge peaks at all representative locations
for each event, i.e the observed descrip-
tor matrix had gaps. To be able to capture
the spatial dependence structure in Sec-
tion (4.3.3), gaps had to be filled by assign-
ing ‘auxiliary values’. This will be further
discussed in Section (4.5.2).

The following procedure was applied.
At locations where an event occurred, the
discharge peak was extracted. Where no
event occurred (36% of the entries in the
observed descriptor matrix), the gaps were
filled using auxiliary values. Per repre-
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Figure 4.6: Correlation of descriptors at all
representative locations versus descriptors
at Vienna (black dot).

sentative location (i.e. column-wise), a
number of local time-windows were set up
in between the peaks of identified events,
corresponding to the number of gaps be-
tween those respective peaks. Within each
of these local time-windows, the maxi-
mum value was selected as auxiliary value.
This procedure resulted in a (complete) ob-
served descriptor matrix.

Fig. (4.6) shows the correlation of the
descriptors with those at Vienna. It can
be observed that the highest correlation
was found at nearby locations within the
same river basin. However, significant cor-
relation was found in nearby locations that
were not in the same river basin, which
confirmed the importance of identifying
events spanning multiple river basins.

In order to align with the correspond-
ing literature in statistical models for mul-
tivariate extreme values, in the next Sec-
tion (4.3.3) columns of the observed de-
scriptor matrix will be referred to as mar-
gins and the large values in each column
will be referred to as the upper tails of the
marginal distributions.

4.3.3. Mul variate sta s cs
Marginal distributions Generalised
Pareto Distributions (GPDs) [20] were
fitted to the upper tail of the marginal

distributions, i.e. for each column in
the observed descriptor matrix. The
issue of threshold choice for GPDs is
well-discussed in the literature [63]. After
comparing the model fits, the empirical
quantile 𝑞 = 0.94 was used as marginal
threshold for the GPD at each location.
This threshold was found by trial and error.
The quality of the marginal GPD fits was
tested with a standard method, comparing
the empirical quantiles and probabilities
against the modelled, including checks of
the tolerance intervals.

Dependence model To be able to cap-
ture the dependence between sets of de-
scriptors (i.e. rows in the observed de-
scriptor matrix), the marginals were trans-
formed to the uniform space. This transfor-
mation is applied in many other analyses,
for example, copulas [38, 62]. Values be-
low the marginal threshold, used to fit the
GPDs, were transformed using the empiri-
cal marginal distribution and values above
the marginal threshold were transformed
using the GPDs of the previous (marginal)
step. A model was applied with two dif-
ferent components to capture the depen-
dence structure, one for the non-extreme
part and one for the extreme part.

The dependence structure of the non-
extreme part was captured using a non-
parametric, multivariate kernel density
model with Gaussian kernels. The (entire)
uniformmarginals were transformed to the
normal space, with themean 𝜇 = 0 and the
standard deviation 𝑠𝑑 = 1. Bandwidths
𝐻 for the kernels were selected using the
method of Silverman [83]. Silverman’s rule
(see also [18]) is defined as

𝐻 = ( 4
𝑛(𝑚 + 2))

/( )
Σ̂ (4.1)

where𝑚 is the number of variables, 𝑛 is the
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sample size, Σ̂ is the empirical covariance
matrix.

To capture the dependence of the
extreme part the HT04 model was cho-
sen, which is described in detail in Sec-
tion (3.4.4). To fit HT04, the (entire)
uniform marginals were transformed to
the Laplace space [51]. HT04 model fits
were obtained in the Laplace space using
maximum likelihood, with each marginal
as conditioning variable and all other
marginals as dependent variables, result-
ing in a total of 298*297 model fits, where
the fitting threshold 𝑞 = 0.9 was chosen,
whichwas a trade-off between variance and
bias.

Simulation The observed uniform de-
scriptor matrix was split into a ‘non-
extreme’ part, and an ‘extreme’ part. Each
row in which not a single descriptor ex-
ceeded an extremal simulation threshold
𝑞 = 0.98 was determined to be non-
extreme (23%), the rest (77%) was deter-
mined to be extreme (somewhere). For the
non-extreme sets, re-sampling was done
from the non-parametric model. For the
extreme sets, re-sampling was done from
HT04, where the model fit was used of
the marginal that was the largest by quan-
tile in the set. All sets were re-sampled
𝑁 = 𝑇 /𝑇 times, where 𝑇 is the
duration of the observed data (25 years)
and 𝑇 is the duration of the synthetic
data (10.000 years). After the simulation,
the marginals of the synthetic descriptor
matrix were transformed to respect the fit-
ted GPDs. This implies that the synthetic
marginals were forced to have the same
distribution as the corresponding observed
marginals. However, by forcing this trans-
formation, the dependence structure was
slightly distorted.

4.4. Focussed performance check
of the discharge generator

4.4.1. Performance indicators

General dependence structure Using
multivariate extreme value analysis, the
observed descriptor matrix was extended
with synthetic data, obtaining a (large)
synthetic descriptor matrix. The patterns
in the larger synthetic descriptor matrix
had to match the patterns found in the
smaller observed descriptor matrix. The
focus was on two main patterns; marginal
distributions (a column-wise pattern) and
dependence structure (a row-wise pattern).
To respect the fitted marginal distributions
and, simultaneously, retain the depen-
dence structure, is challenging. There is
no perfect method for these two objectives.
The choice was made to respect the distri-
butions fitted to the observed marginals,
for which the synthetic marginals were
transformed to follow the corresponding
observed distributions. Therefore, the de-
pendence structure in the synthetic data
had to be compared to that in the observed.

To further investigate the dependence
structure, Fig. (4.7) shows a sample of the
observed descriptors versus the synthetic
descriptors. It can be observed that the
distributions of the individual descriptors
were filled up reasonably well (GO1), while
retaining the observed dependence struc-
ture reasonably well (GO2), as the simu-
lated descriptors follow the trends in the
observed data.

Fig. (4.8.1) shows the pair-wise, spa-
tial correlation structure between descrip-
tors at different locations. Rather than
choosing the distance between locations
along the river branch, geo-spatial dis-
tancewas chosen, such that locations could
be compared not only within river basins,
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Figure 4.7: Observed (purple) versus synthetic (yellow) descriptors (discharge peaks) at
three locations. In the diagonal, distributions of observed and synthetic descriptors per
location are compared using box-plots. Below the diagonal, pair-wise scatter plots are
displayed. Above the diagonal, pair-wise correlations are displayed.

but also across different river basins. The
Spearman correlation coefficients of the
observed descriptors and the synthetic de-
scriptors agree very well (GO2), which in-
dicates that the general spatial dependence
structure is similar in the observed descrip-
tor matrix and in the synthetic descriptor
matrix. The difference indicates an over-
all slightly higher (positive or negative) cor-
relation in the observed descriptor matrix.
In both the observed and the synthetic de-
scriptor set, a shift from positive to neg-
ative correlation can be observed around
2000 − 2500𝑘𝑚, which may be related to
large atmospheric patterns.

Extremal dependence structure Fol-
lowing up on the general check of corre-

lation between the entire descriptor sets,
it was specifically checked if the tail-end
correlations were captured. Fig. (4.8.2)
shows that the general behaviour of co-
occurrence of extremes was relatively well
captured in the dependence model (GO2).
The general pattern in the synthetic de-
scriptors is reasonably similar to the pat-
tern in the observed descriptors. A small
positive bias can be observed, which shows
that the dependence model slightly un-
derestimated the frequency of joint occur-
rence of extremes. The zero difference gen-
erally falls within the lower quartile. More-
over, the higher the quantile for which the
exceedance was checked, the fewer quan-
tile exceedances to count, which lead to a
larger spread in the difference between the
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(4.8.1) Spatial correlation of the observed descriptors versus the synthetic descriptors, sum-
marised by pair-wise Spearman correlation. The upper panel shows the correlation in the ob-
served data, the middle panel shows the correlation in the synthetic data and the lower panel
shows the difference between the observed and the synthetic correlation for each pair. The left
column shows the correlation between all pairs of locations, right shows only the pairs that are
in the same river basin.

(4.8.2) Spatial extremal correlation of the observed descriptors versus the synthetic descriptors.
For a selection of high quantiles, the fraction 𝐹 was counted of events where extremes at both
locations exceeded the respective quantile divided by the total number of quantile exceedances.
The upper panel shows the fractions in the observed data, the middle panel shows the fractions
in the synthetic data and the lower panel shows the pair-wise difference between the observed
and the synthetic fractions.

Figure 4.8: Spatial correlations.
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observed and the synthetic.

4.4.2. Sensi vity
Coverageof peaks In Section (4.2.3), the
objective was stated to capture the spa-
tial dependence structure between peaks
of discharge events at different locations
spread out through Europe (OBJ1), for
which events had to be identified. In the
event identification procedure, three main
parameters were used for the identifica-
tion of pan-European events: the value-
window fraction 𝑓 and time-window 𝛿 of
the noise removal method, and the length
of the global time-windows 𝛿 for the pan-
European events (Section (4.3.1)). The fol-
lowing trade-off was considered. For each
pan-European event, one discharge peak
could be assigned to each location. How-
ever, depending on the length of the global
time-window, there may be no river basin
event to assign to the global time-window,
i.e. a missing discharge peak, or multiple
river basin events may be assigned from
which only one discharge peak could be
retained per global time-window per loca-
tion. Therefore, a relatively large global
time-window lead to the underestimation
of the frequency of discharge waves in river
basins, whereas a relatively small global
time-window lead to a large percentage of
missing local events at the representative
locations. Since this was a continental
analysis, the fraction of missing values in
the observed descriptor matrix 𝑓 was rel-
atively large and therefore decisive for our
choice of parameter settings.

Fig. (4.9.1) shows the sensitivity of
𝑓 , which is the percentage of missing
peaks in the observed descriptor matrix
(Section (4.3.1)). When more noise was re-
moved, i.e. larger 𝑓 and 𝛿 , events had a
larger fraction of missing peaks, i.e. larger

𝑓 . In contrast, a larger 𝛿 lead to a smaller
fraction of missing peaks 𝑓 , since the
chance was larger for an event to occur at a
particular location given more time. When
comparing the sensitivity of the three pa-
rameters, it can be observed that the out-
come is relatively stable with regard to the
choice of 𝑓 and 𝛿 , whereas the percentage
of missing peaks 𝑓 𝑎 could vary quite a lot
with 𝛿 . Our final choices are 𝑓 = 0.01[−],
𝛿 = 10𝑑 and 𝛿 = 21𝑑. A lower 𝛿 would
have caused toomany peaks beingmissing,
which would have lead to unreliable esti-
mation of the dependence model.

Dependence structure In Sec-
tion (4.2.3), the objective was stated
to generate a large catalogue containing
synthetic discharge peaks, filling up the
observed distributions while retaining the
observed dependence structure (OBJ2).
Two key features were defined for the
quality of the generated synthetic cata-
logue. First, it had to contain descriptions
of a much larger variety of hypothetical
(synthetic) events than those identified
in the observed data (GO1), which was
achieved by sampling a large number of
synthetic descriptors and transforming
them to follow the same distributions
as fitted to the observed. Second, the
dependence structure of the synthetic
catalogue needed to agree with that of the
observed, since the observed descriptor
catalogue had to be a likely subset of
the synthetic (GO2), which was achieved
with the dependence model, of which the
results were demonstrated in Fig. (4.8).
The sensitivity of the results was further
investigated for GO2, using a summary
descriptor of Fig. (4.8.1).

Fig. (4.9.2) shows the sensitivity of
𝑓 , which is the mean absolute difference
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(4.9.1) Sensitivity of 𝑓 , which is the frac-
tion of missing values in the observed de-
scriptor matrix, to the three main settings
used for the identification of events in Sec-
tion (4.3.1). 𝑓 is the NR value-window frac-
tion, 𝛿 is the NR time-window, 𝛿 is the
length of the global time-windows.

(4.9.2) Sensitivity of 𝑓 , which is themean of
the absolute differences in correlation be-
tween the synthetic and the observed de-
scriptor sets for all locations, to the three
main settings used for the statistical anal-
ysis in Section (4.3.3). 𝑞 is the quantile
threshold for the GPDs, 𝑞 is the quan-
tile threshold for HT04, 𝑞 is the quantile
threshold for the simulation from HT04.

Figure 4.9: Sensitivity.

in Spearman correlation between the syn-
thetic and the observed descriptor sets for
all locations. No clear trend was found
for both 𝑞 , which is the quantile thresh-
old for the GPDs, and 𝑞 , which is the
quantile threshold for the simulation from
HT04. A local minimum was found for
𝑞 , which is the quantile threshold to se-
lect the observed descriptors to which the
HT04 model was fitted.

A recent, more comprehensive study
of the sources of uncertainty in a proba-
bilistic flood risk model was provided by
Winter et al. [104], who used the framework
provided by Hall and Solomatine [43].

4.5. Discussion
4.5.1. Applicability to pan-European FRA

The generated synthetic descriptor
catalogue can be used to drive an event-
based chain of models, which may cascade
from a hydraulic model of the river net-
work coupled with an inundation model to
damage and/or life safety models. To drive
an inundation model, synthetic discharge

events have to be reconstructed from the
synthetic descriptor sets in the catalogue,
which corresponds to what would be step
4 in Fig. (3.2), moving down from synthetic
descriptors towards synthetic events. This
step comprises fitting discharge hydro-
graphs to the synthetic descriptors and as-
signing time lags. The catalogue of syn-
thetic discharge event descriptors was pro-
vided at 298 locations for a synthetic pe-
riod of 10.000 years (with stationary cli-
mate conditions). Both the number of lo-
cations and the number of synthetic years
can be expanded to provide amore detailed
coverage. This catalogue can be used to
generate discharge hydrographs to drive a
pan-European inundation model for conti-
nental, event-based flood risk assessment.

4.5.2. Limita ons in mul variate sta s-
cs

Historically, observations have been
made at specific locations, for example,
discharge gauge stations at certain loca-
tions along rivers. Therefore, most event
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𝐿 𝐿 𝐿 𝐿 𝐿 𝐿

Set 1 P P P P A A

Set 2 A P P A P A

Set 3 P A P P P A

Set 4 P P A P P P

Table 4.1: 𝐿 -𝐿 are different locations. Sets
1-4 describe a discharge event. Generally,
dynamic discharge events do not occur at
all locations, such that peaks (P) cannot be
identified for all locations. Therefore, aux-
iliary values (A) have to be used to fill in the
gaps.

identification methods are designed for
local probabilistic analysis of discharge
waves, starting with the identification of
‘local events’, i.e. events at certain loca-
tions, based on temporal dynamics [88].
When addressing spatial dependence us-
ing an event-based approach, the difficulty
arises that discharge waves will not occur
at all gauged locations within a reasonable
time-window. The larger the spatial do-
main in which discharge waves are consid-
ered, the more likely it is they are spread
out in time. Therefore, an extraction of a
dynamic event from a space-time contin-
uum, trying to obtain local peaks for all lo-
cations, will lead to a matrix of incomplete
peak sets. This is problematic, because
current statistical methods formultivariate
event generation cannot handle a matrix
with missing components [53]. Therefore,
‘auxiliary values’, i.e. values that do not rep-
resent discharge peaks, are required in or-
der to fill up the gaps (see Table (4.1)). Dif-
ferentmethods exist to assign auxiliary val-
ues, for different purposes. Gouldby et al.
[42] analysed different coastal flood vari-
ables with an event-based approach, where

they adopted concurrent values at all loca-
tions where particular thresholds had not
been exceeded (i.e. no local event). Keef,
Tawn, and Svensson [53] relaxed the time
constraint, where they considered the val-
ues at all locations within a -3 to +3 days
time-window. Since a large number of loca-
tions was considered, with large time lags,
neither of thesemethods were appropriate.
Therefore, auxiliary values were found us-
ing local time-windows, where these time-
windows depended on the gaps per loca-
tion.

4.5.3. Limita ons in reconstruc on of
events
Difficulty can be expected in that the

synthetic descriptor sets partially consist
of synthetic discharge peaks and partially
consist of synthetic auxiliary values. For
the synthetic peaks, hydrographs can be re-
constructed by fitting a typical (triangular)
hydrograph shape to the synthetic peaks,
whereas for the synthetic auxiliary values,
it will not be entirely clear how to fit a hy-
drograph. Time lags for the synthetic de-
scriptors sets could be borrowed from the
corresponding observed descriptors sets.
However, this would implicitly use the as-
sumption that travel times or wave celeri-
ties are independent of magnitude, which
is not a great assumption to make. These
difficulties are not specific to this analysis,
but apply for all analyses in which an event-
based approach is combined with descrip-
tors per location.



4

70 4. The limita ons of sta c spa o-temporal event genera on

4.6. Conclusions
A new ‘noise removal’ method and

a ‘wave tracking’ method were used with
which discharge waves were successfully
identified and tracked in all major Eu-
ropean river basins. Using global time-
windows, these river basin events were
clustered to pan-European events. The
dependence structure, between discharge
peaks of daily discharge at 298 different lo-
cations on the river network of major Eu-
ropean rivers, was captured with a mixture
multivariate dependence model. A cata-
logue of spatially coherent synthetic event
descriptors was created, containing 10.000
years of synthetic discharge peaks with a
dependence structure that is similar as in
the observed data, thereby showing spa-
tially coherence. This catalogue can poten-
tially be used as a starting point for the ex-
ploration of the range of possible scenar-
ios of pan-European flooding and associ-
ated probabilities, which is the foundation
of flood risk assessment.

However, several limitations were en-
countered, which require awareness for the
usage of the catalogue. A major limita-
tion of event-based SSTPA was described
in Section (4.5.2). The a priori choice of
a set of locations at which events are to
be described leads to an incomplete ma-
trix of event descriptors. Current statis-
tical methodology is not compatible with
incomplete matrices, such that the ma-
trix has to be compromised by, first, ad-
justing the event identification procedure
and, second, filling the gaps in the descrip-
tor matrix with auxiliary values (i.e. non-
specific event descriptors), such as time-
window maxima. Since this particular case
study was executed on a large spatial scale,
there were many gaps in the matrix, which
meant the matrix was severely compro-

mised. Given the problem of gaps, it can be
concluded that event-based SSTPA is not
spatially scalable, which is a problem when
the methodology is to be applied on a large
spatial scale. Limitations in the recon-
struction of hydrographs were described in
Section (4.5.3). In particular, it would be
difficult to reconstruct hydrographs from
a matrix which holds inaccurate event de-
scriptors as a result of the gap filling.

As a result of these limitations, the
analysis stopped at the generation of the
descriptor set. This implies that the orig-
inal framework, displayed in Fig. (3.2), was
reduced to the framework used in this case
study, displayed in Fig. (4.1), by dropping
the last two steps: event reconstruction;
and space-time placement and gap filling.
The limitations drove the decision to de-
velop a new approach: event-based, dy-
namic, spatio-temporal probabilistic anal-
ysis (DSTPA), which will be applied to at-
mospheric variables in Chapter (5).
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5.1. Introduc on
Large-scale flood events cause devas-

tating impact on the human society world-
wide [27]. Probabilistic flood risk analy-
sis (FRA), based on large sets of synthetic
flood event data, provides a scientific ap-
proach to study the consequence of such
flood events [42]. Stochastic precipitation
generators [1, 4–7, 13, 15, 16, 19, 23, 24,
30, 37, 41, 45, 47, 60, 89, 96, 98, 101] can
be used to generate synthetic precipitation
data, by which hypothetical flood scenarios
(i.e. scenarios that have not occurred) can
be explored.

Flood risk analysis (FRA) based on
large sets of synthetic flood event data pro-
vides a scientific approach to study the con-
sequence of such flood events [42]. Three
different approaches can be distinguished,
with an increasing level of complexity.

First, for small and individual regions
of interest, weather generators were used
on a single-site basis. Cameron et al. [16],
Eagleson [30], and Hebson and Wood [45]
applied a local, event-based, probabilistic
analysis, where the single-site was repre-
sented by catchment average precipitation.
A recent overview inwhich currentweather
generators were tested for local weather
generation was provided by Vu et al. [96],
exploring different climatic regions indi-
vidually. They tested local performance
only, as they did not include any tests for
spatial dependence.

Second, the extension from single-
site analysis to multi-site received a lot of
attention in the last two decades, address-
ing the challenge of spatial dependence
[50]. For example, Wilks [101] described
a local daily precipitation generator which
he extended to multi-site. Wilby, Tom-
linson, and Dawson [98] applied a simi-
lar approach, where they separated their

gauging stations into sub-regions. Fowler
et al. [36] provided an extension by link-
ing sub-regional multi-site models to cap-
ture the historical spatial monthly cross-
correlation between the sub-regions. Seri-
naldi [78] used copulas for the capturing
of spatial dependence. Bárdossy and Pe-
gram [5], Davison, Padoan, and Ribatet
[26], Hundecha, Pahlow, and Schumann
[47], Srikanthan and Pegram [85], Verdin
et al. [91], and Zhang et al. [106] provided
further extensions or variations of method-
ology. Serinaldi and Kilsby [79] describe a
method to obtainmeta-Gaussian daily pre-
cipitation fields for all of Austria, which
may be interpreted as a step in which a sig-
nificant increase in number of sites is con-
sidered, outlined on a grid. What these
studies have in common is that a set of sites
of interest was predefined, where for the
probabilistic analysis each site was consid-
ered in each time step. This type of analysis
will be referred to as ‘static spatio-temporal
probabilistic analysis’ (SSTPA). SSTPA as-
sumes that the essence of the physical phe-
nomenon studied can be captured in snap-
shots, i.e. that images can be defined with
relevant values for all locations studied.
Keef, Tawn, and Svensson [53] and Quinn
et al. [68] define events in time series, but
then take concurrent values at all other
sites. This means events are delineated
in time but not in space, i.e. events oc-
curs everywhere in a particular time win-
dow, which makes it suitable for SSTPA.
None of these precipitation generators of
the type SSTPA use spatio-temporal events,
which may be explained by the difficulty
of incorporating an approach that makes
use of spatio-temporal events into a SSTPA
[28]. An overview of stochastic precipita-
tion generators of the type SSTPA was re-
cently provided by Ailliot et al. [1].
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Third, the contrasting approach of
‘dynamic spatio-temporal probabilistic
analysis’ (DSTPA), which was applied in
this chapter. DSTPA is an event-based
approach, where ‘dynamic events’ are con-
ceptualised to be clusters of related data
that occur at different locations in space
and time with (potentially) time varying
spatial extents (and therefore spatially
varying durations). Physical phenomena,
such as moving precipitation fields, often
show a dynamic, progressive behaviour,
rather than a static behaviour. Rainfall
organization and movement within basins
is an essential control of flood response
and in particular of hydrograph timing
[87]. DSTPA allows dynamic behaviour
to be captured, thereby potentially pro-
viding a more physically meaningful
event definition (GO3 that will be for-
mulated in Section (5.2.3)). In addition,
for a particular site of interest, moving
events allow inference from data occurring
outside that particular site, which will
be discussed later in Section (6.5.1). A
number of studies performed (subroutines
of) DSTPA. In the study area of droughts,
which is inversely related to floods, some
studies applied DSTPA several years ago
[3, 22]. Corzo Perez et al. [22] studied
gridded discharge output from a global
hydrological model and captured low
discharge anomalies. They connected
events in space using an algorithm that
looks at neighbouring pixels. The result
was a catalogue of observed dynamic
events of low discharge. Compared to
low discharge anomalies, precipitation
fields move around at higher speeds, such
that higher resolution data products are
required. Within the context of flood
related DSTPA, Cowpertwait [23] extended
the single-site pulse process proposed by

Rodriguez-Iturbe, Cox, and Isham [71]
to the spatio-temporal Neyman-Scott
pulse process (STNSPP). The original con-
cepts in this paper were further extended
and developed into a well-established
rainfall generator called ‘RainSim’ [15].
Using RainSim, synthetic, dynamic events
are generated from an analytical model
(disks of rainfall) and placed in space and
time using the STNSPP. Vallam and Qin
[89] concluded that RainSim compares
favourably to three other generators (of
the type SSTPA) concerning the capturing
of spatial dependence.

Recently Vorogushyn et al. [93] called
for new methods in large-scale FRA to en-
able the capturing of system interactions
and feedbacks. Large-scale flood events
are usually triggered by extreme precipi-
tation fields with long duration, high in-
tensity or both. Large-scale synthetic pre-
cipitation fields can be used to study sys-
tem interactions and feedbacks, since in
the atmosphere there are no direct hu-
man interventions such as in catchments,
e.g. dikes; dams; reservoirs; changes in
land use. Gridded re-analysis data [72]
may provide the means to develop a next
generation of stochastic weather genera-
tors of the typeDSTPA, since for probabilis-
tic analysis a long record of coherent data
is required. This type of modelled input
data can eventually be replaced by more
direct precipitation observations, such as
satellite-derived high-resolution precipita-
tion products [55].

In addition to the generation of syn-
thetic data of a single variable, recent de-
velopments in the literature show an in-
creasing level of interest in combinations
of multiple variables, i.e. in ‘compound
events’ [48, 59, 69, 75]. Compound, event-
based analysis makes sense for sources that
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are dependent, but between which there
is no direct causality. The methodology
for of a single variable can be be extended
to handle compound events, which intro-
duces additional difficulty.

Outline In Section (5.2), the method-
ology will be introduced, comprising the
used data set, the objectives and the frame-
work. In Section (5.3), methodology will
be introduced for DSTPA and applied to
a single variable (precipitation). In Sec-
tion (5.4), extensions of methodology for
DSTPA will be introduced for compound
variables (precipitation, wind and (low)
pressure). In Section (5.5), the different
steps will be centrally discussed and rec-
ommendations will be provided for im-
provement and extension of the methodol-
ogy.

5.2. Methodology
5.2.1. Data

For this case study, the Climate Fore-
cast System Reanalysis (CFSR) data set [73]
was used, which is a gridded reanalysis
product of several variables with global
coverage. Precipitation rate, wind speed
and pressure were selected, all of which
have a .3125 degree spatial resolution, both
in longitude and in latitude. The tempo-
ral resolution of these data sets is hourly,
which was critical to be able to track mov-
ing fields. In order to reduce the computa-
tional burden, a spatial subset was taken of
the data, as displayed in Fig. (5.1).

5.2.2. Generator objec ves
There are threemain generator objec-

tives:

1. introduce the unobserved (GO1),

2. reproduce patterns (GO2) and

3. respect physical restraints (GO3).

These generator objectives were described
in more detail in Section (3.2).

The aim in this chapter is to provide a
methodology (of the typeDSTPA) to gener-
ate a large data set of synthetic, continuous
data.

5.2.3. Framework
The step-by-step framework applied

in this case study, which was introduced
in Section (3.3) and displayed in Fig. (3.2).
First, dynamic spatio-temporal events were
identified. They were conceptualised to
be coherent clusters of data, separated by
the application of a mask to the data set.
Second, of each event a wide range of de-
scriptors was captured. Some descriptors
were used to classify the events, others
were used for multivariate analysis. Third,
a non-parametric dependence model was
fitted and an extremal dependence model,
from which a large set of synthetic de-
scriptors was sampled. The objectives in
this step were to empirically fill up the
marginal distributions while retaining the
dependence structure between the vari-
ables, both in the non-extreme parameter
space and the extreme. Fourth, duplicates
of the observed event catalogue were cre-
ated and the events were manipulated with
the simulated, synthetic descriptors. This
led to a large catalogue of synthetic events.
Fifth, duplicates of the entire, continuous
precipitation data set were created and, the
original observed events were substituted
with the created synthetic events.

5.3. A generator of precipita on
5.3.1. Event iden fica on

Dynamic spatio-temporal precipita-
tion events were identified using the fol-
lowing procedure.
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Figure 5.1: Spatial domain (BSL2) of the dynamic spatio-temporal generator used in this
chapter. The British Isles are the target area under study. The spatial domain is chosen
across the atlantic, since most precipitation events travel with the south-westerly winds.

Separation Clusters of data points first
had to be separated, for which a global
threshold was set. Data values below the
global threshold were masked (i.e. set
to 𝑁𝐴). The threshold was set to 𝜈 =
1.8𝑚𝑚ℎ , based on a trial and error pro-
cedure. The threshold needed to be suffi-
ciently high such that clusters of precipita-
tion could be separated into events, where
the resulting events could be assumed to
be independent. On the other hand, the
threshold should not be too high to ensure
a reasonable amount of data (and hence
events) are available for fitting a statisti-
cal model. A lower threshold would allow
the introduction of more variability (GO1),
since a larger part of the observed data set
would be included in the catalogue of ob-
served events. This will be further dis-
cussed in Section (6.3.2).

Cluster labelling With the use of image
analysis, polygons were captured in (the

image of) each time step. Each polygon
was assigned an initial unique event ID
{𝐼𝐷 , 𝐼𝐷 , ...}. Connections between (poly-
gon) events were established. Across sub-
sequent time steps, connections were es-
tablished based on the spatial overlap of
events, i.e. a connection was established
between 𝐼𝐷 from time step 𝑡 and 𝐼𝐷 from
time step 𝑡 + 1 if the two polygons inter-
sected (i.e. overlapped). Implicitly, tem-
poral connections were established over
multiple time steps. For example, event
𝐼𝐷 at time step 𝑡 was connected to event
𝐼𝐷 at time step 𝑡 + 1, which was in turn
connected to event 𝐼𝐷 at 𝑡 + 2, and so
on. Fourth, after all connections were es-
tablished, all (directly and indirectly) con-
nected polygons were merged and defined
as one identified event.

Result Fig. (5.2) shows a sequence of
moving precipitation events. The event
identification procedure resulted in a cat-
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Figure 5.2: A sequence of a few moving observed precipitation events. Eight events are
displayed, each represented by a unique colour.
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alogue of 196810 observed events. Similar
algorithms have been used for identifying
dynamic spatio-temporal events in gridded
data sets. For example, Corzo Perez et al.
[22] identified dynamic events of low dis-
charge anomaly for drought analysis.

5.3.2. Event descrip on
Using statistical analysis, the statisti-

cal properties of the event descriptors will
be modelled in Section (5.3.3). Instead of
performing the statistical analysis over all
events in a lumped fashion, the statistical
properties are assumed to differ from one
class of events to another. Hence, first a
classification step was applied.

Classification For the classification pro-
cedure, two main decisions had to be
made, namely the number of classes and
which event descriptors to use for clas-
sification. For the former, from a sta-
tistical point of view, each class should
hold sufficient data to be able to con-
fidently fit joint-distributions, which im-
plies that there should not be too many
classes. Although no strict guidelines were
available, the multivariate extremal depen-
dence model would benefit from about
500-10000 events per class. With 196810
identified events, this implied a range of
about 20-400 classes. From a physical
point of view (GO3), each class should be
physically different from the others (i.e. a
class could represent hurricanes in region
A, thunderstorms in region B, etc.), which
implies there should be a sufficient num-
ber of classes. It was estimated that 196
separate classes should be sufficient to cap-
ture physically distinguishable classes. For
the latter, a combination of four descrip-
tors was considered. To be able to clas-
sify events according to region, the spatial

centres of gravity of the events (𝑐𝑜𝑔 and
𝑐𝑜𝑔 ) were used . Two descriptors were
included (𝑟𝑎𝑡 / and 𝑐𝑜𝑔𝑉 ) that provided
means to distinguish different physical be-
haviour of the precipitation events (GO3).
The ratio of the peak precipitation rate di-
vided by the precipitated volume 𝑟𝑎𝑡 /
provides an indicator for the heterogene-
ity of events, where a large value points to-
wards a relatively heterogeneous event and
a small value points towards a relatively
homogeneous event. The temporal centre
of gravity of the precipitated volume 𝑐𝑜𝑔𝑉
(normalised, i.e. duration set to 1) pro-
vides an indicator of timing of precipita-
tion release of events, where a small value
indicates that events showed a large initial
release and then slowly decayed, and vice
versa. Several standard approaches were
tested for cluster analysis, including hier-
archical cluster analysis, partitional algo-
rithms and self organising maps (SOM);
see Wilks [99] for a comprehensive list of
options. Finally, the technique of self or-
ganising maps [56] was used, because of its
efficiency in handling large data sets.

Fig. (5.3) shows a sample of the re-
sulting classes. Although different classes
may exhibit similar distributions in a sub-
set of the four classification descriptors,
the classes were defined to ensure the joint
distribution of the full set of classification
descriptors were statistically distinguish-
able between one class and another.

Multivariate descriptor sets Having
completed the classification, statistical
analysis was performed separately for each
class of events. The choice of descriptors
for classification depended on their ability
to produce distinct classes of compara-
ble events. The choice of descriptors to
which to apply the multivariate statistical



5

80 5. Development of a dynamic spa o-temporal weather generator

Figure 5.3: Density plots of the (normalised) descriptors used for classification. A sample
of 16 different classes is displayed. 𝑐𝑜𝑔 and 𝑐𝑜𝑔 are the spatial centres of gravity, 𝑐𝑜𝑔𝑉
is the temporal centre of gravity of the volume, 𝑟𝑎𝑡 / is the ratio of peak over volume.

analysis depended on the reconstruction
procedure, which will be discussed in
Section (5.3.4). Therefore, the descriptors
used for the multivariate statistical anal-
ysis were not the same as the descriptors
used for classification. For all classes the
same event descriptors were used: volume
𝑉[𝑚 ], which is the sum of all precipitation
in the event; peak 𝑃[𝑚ℎ ], which is the
maximum precipitation rate in the event;
and spatio-temporal extent 𝐸[𝑚 ℎ], which
is the sum of spatial extent of all time steps
in the event (i.e. if an event occurs at a
particular grid-cell for three hours, the
spatial extent of that grid-cell is counted
three times).

Result The event description procedure
resulted in 196 matrices of observed de-
scriptors with three columns (𝑃,𝑉,𝐸), one
for each class, with a variable number of
rows per matrix equal to the number of ob-
served events belonging to the respective
class.

In order to align with the correspond-
ing literature in statistical models for mul-
tivariate extreme values, in the next Sec-
tion (5.3.3) columns of these matrices will
be referred to as margins and the large val-
ues in each columnwill be referred to as the
upper tails of the marginal distributions.

5.3.3. Mul variate sta s cs
Joint distribution model To model the
joint distributions of event descriptors
within each separate class, a copula-like
method [38, 62] was adopted, whereby the
multivariate distribution was decomposed
to the marginal distribution and the de-
pendence structure. This involved fitting a
univariate probability distribution for each
margin as well as fitting models to cap-
ture the dependence structure between dif-
ferent margins. The concern was in par-
ticular with extreme events, where either
one or some of the descriptors were very
large. This was reflected in the proposed
approach for both themarginal and the de-
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Figure 5.4: Standard Kolmogorov-Smirnov
statistics are used to test the quality of the
GPDs fitted to the marginals of the spatio-
temporal descriptors. Above, the distance
𝐷 is displayed which should be low. Below,
the 𝑝−𝑣𝑎𝑙𝑢𝑒 is displayed which should be
close to 1.

pendence model.

Marginal distributions A mixture
model was used for the marginal distri-
butions, assuming values above a large
threshold to follow a Generalised Pareto
Distribution (GPD), where values below
were captured by the empirical distri-
bution. This type of mixture model is
considered suitable for situations where
attention is mostly focussed on the ex-
trapolation of the distribution into high
quantiles. A mixture model has been
used for various applications of environ-
mental data modelling [57, 105]. Scarrott
and MacDonald [76] provided a detailed
description regarding the formulation of
threshold-based mixture models.

The GPD for the upper tail of each
descriptor (i.e. each column of the ob-
served descriptor matrix) was fitted us-
ing likelihood-based inference [20]. Based
on standard threshold diagnosis suggested,
the 90% quantile was deemed a reasonable
threshold for fitting the GPD. This thresh-

old was sufficiently high so that the limit-
ing properties of the tail distribution could
be approximated by the GPD and not too
high that the variance of the GPD parame-
ter estimation was prohibitive. With three
event descriptors and 196 classes, the upper
tail distributions were captured with 588
marginal GPDs.

Fig. (5.4) shows quality tests of the
marginal GPD-fits, where the empirical
quantiles and probabilities were com-
pared against the modelled using standard
Kolmogorov-Smirnov statistics. Overall,
reasonable GPD fits were obtained.

Dependence structure Similar to the
marginal model, the dependence structure
was captured using a multi-dimensional
mixture of two models. Such a multi-
dimensional mixture was used previously
by Bortot, Coles, and Tawn [11], who mod-
elled coastal variables. First, the lower
part of the distribution was modelled us-
ing a kernel density distribution [83], as
therewas no obvious choice of a parametric
model to describe the dependence in this
region. The use of the kernel bandwidth
(rather than direct re-sampling) enabled us
to draw values that were broadly similar
but not identical to the observed data. Sec-
ond, the upper tail region (i.e. where one
or multiple variables were large) was mod-
elled by the HT04 model, described in de-
tail in Section (3.4.4).

The lower part of the joint distri-
bution was captured using a multivariate
kernel density based on Scott’s rule-of-
thumb choice of optimal bandwidth [83].
This was an improvement over the origi-
nal rule-of-thumb proposed in Silverman
(1982). Pairwise estimation of theHT04 pa-
rameters was performed based on pseudo-
likelihood, separately for each class of pre-



5

82 5. Development of a dynamic spa o-temporal weather generator

Figure 5.5: Pair-wise plots of the observed descriptor matrix and the synthetic descriptor
matrix of class 6. Purple (dark) is the observed and yellow (light) is the simulated. 𝑉 is
the sum of all precipitation, 𝑃 is the maximum precipitation rate and 𝐸 is the spatio-
temporal extent. In the diagonal, distributions of observed and synthetic descriptors
are compared using box-plots. Below the diagonal, pair-wise scatter plots are displayed.
Above the diagonal, pair-wise correlations are displayed. The data was transformed to
the Laplace space.

cipitation events. Due to the complexity
of the method, readers are advised to re-
fer to the original paper for detailed steps
in fitting the model. Similar to Heffer-
nan and Tawn [46], the joint upper tail
area, where multiple margins exceeded the
threshold, was partitioned into subspaces
such that the conditioning margin 𝑌 in the
above formulation was always the largest
margin in terms of quantile probability.
Equal thresholds were used for all direc-
tions of conditioning as no substantial im-
provement in model fitting was found by
allowing the threshold to be variable for
different conditioning margins. The final

threshold of choice was the 95% quan-
tile of the Laplace distribution, based on
the consideration of number of data points
available above the threshold as well as the
outcome of tests of independence between
the residual distribution 𝑍 and the values
of the conditioning margin 𝑦 .

With three descriptors and 196
classes, the dependence structure was
captured with 196 multivariate kernel
densities (one for each class) and 588
HT04 models (one for each conditioning
descriptor in each class).
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Figure 5.6: Pair-wise plots of the observed descriptor matrix and the synthetic descriptor
matrix of class 6. Purple (dark) is the observed and yellow (light) is the simulated. 𝑉 is
the sum of all precipitation, 𝑃 is the maximum precipitation rate and 𝐸 is the spatio-
temporal extent. In the diagonal, distributions of observed and synthetic descriptors
are compared using box-plots. Below the diagonal, pair-wise scatter plots are displayed.
Above the diagonal, pair-wise correlations are displayed. The data was transformed to
the uniform space.

Simulation Similar to the model fit-
ting, the simulation of the synthetic data
was performed for each class of precipi-
tation events separately. First, 𝑛 =
𝑛 𝑇 /𝑇 descriptor setswere sampled
from the multivariate kernel density distri-
bution, where 𝑛 is the observed number
of events in the class and 𝑇 is the total du-
ration of the respective data set. With the
space-time placement procedure in mind,
which will be discussed in Section (5.5.4),
exactly 𝑛 = 31 synthetic descriptor sets
were sampled from each observed, such
that 1000 years of synthetic event descrip-
tors were simulated from 32 years of ob-

served. Second, the synthetic descriptor
sets in which the largest marginal cumu-
lative probability exceeded the threshold
𝑝 = 0.99 were replaced them with simu-
lated descriptor sets drawn from the corre-
sponding HT04 model (conditional on the
largest margin). As suggested by Heffernan
and Tawn [46] a re-sampling method was
used to draw samples from the residual dis-
tribution 𝑍 in the HT04 model. With the
reconstruction procedure in mind, which
will be discussed in Section (5.5.4), this re-
sampling scheme ensured that each syn-
thetic descriptor set had a corresponding
observed set. Third, the marginals of the
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Figure 5.7: Pair-wise plots of the observed descriptor matrix and the synthetic descriptor
matrix of class 6. Purple (dark) is the observed and yellow (light) is the simulated. 𝑉[𝑚 ]
is the sum of all precipitation, 𝑃[𝑚ℎ ] is the maximum precipitation rate and 𝐸[𝑚 ℎ]
is the spatio-temporal extent. In the diagonal, distributions of observed and synthetic
descriptors are compared using box-plots. Below the diagonal, pair-wise scatter plots are
displayed. Above the diagonal, pair-wise correlations are displayed. No transormations
were applied to the data.

synthetic descriptors were transformed to
respect the mixed distributions fitted to
the observed marginals. This implies that
the synthetic marginals were forced to have
the exact same distribution as the corre-
sponding observed marginals. However,
by forcing this transformation the depen-
dence structure was slightly distorted.

Result The capabilities of the statistical
dependence model were already tested and
demonstrated in Section (4.3.3), where the
model was stressed with application to a
matrix that had more (298) columns and
fewer (428) rows. Therefore, for demon-

strative purposes, class 6was picked by ran-
dom selection in order to demonstrate the
results.

Fig. (5.5) shows the direct result of
the simulation, which was applied in the
Laplace space. As can be observed, each
variable centres around zero, which is typ-
ical for the Laplace space.

Fig. (5.6) shows the transformation of
the variables to the uniform space. As can
be observed, each variable falls in the range
of zero to one, which is typical for the uni-
form space. Since the pairwise correlations
are based on the rank (Spearman), they are
not influenced by monotone transforma-
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event 𝑉[𝑚 ] 𝑃[𝑚ℎ ] 𝐸[𝑚 ℎ]

×10 ×10 ×10

𝐷 , , 4.01 1.77 1.02

𝐷 , , 0.57 1.16 0.14

𝐷 , , 7.18 2.57 1.93

𝐷 , , 6.14 1.93 1.15

𝐷 , , 1.46 1.41 0.18

𝐷 , , 11.01 3.22 2.43

Table 5.1: Descriptor sets used for the
reconstruction example displayed in
Fig. (5.8). 𝑉 is the total precipitated vol-
ume, 𝑃 is the peak precipitation rate, 𝐸 is
the spatio-temporal extent.

tions.

Fig. (5.7) shows that with the syn-
thetic descriptor sets a much wider vari-
ety of events was explored than with the
observed (GO1) and that the observed de-
scriptors were a likely subset of the syn-
thetic (GO2), with similar correlations and
identicalmarginal distributions (boxplots).

With one synthetic matrix for each
observed matrix, the simulation procedure
resulted in 196 synthetic matrices. Each
row was a complete synthetic descriptor
set and where each synthetic matrix had 31
times as many rows as the observed from
the corresponding class, since 31 synthetic
descriptors were to be sampled to recon-
struct 31 synthetic data sets.

5.3.4. Event reconstruc on
Required information For the recon-
struction of each individual synthetic
event, several pieces of information were
used: the set of synthetic descriptors; the
connected set of observed descriptors,

from which the synthetic descriptors were
sampled using the statistical models; the
observed event, corresponding to the
observed descriptor set, which was used as
a starting point for reconstruction; and the
continuous observed data set, to be able
to assign values to synthetically expanded
events. For each synthetic descriptor set,
the starting point was the observed event
corresponding to the observed descriptor
set from which the synthetic set was
re-sampled. The following procedure was
applied.

Adjustment of extent First, the spatio-
temporal extent of the observed event was
adjusted, changing it from the observed ex-
tent 𝐸 to the synthetic extent 𝐸 . If
𝐸 < 𝐸 , the coordinates of the ob-
served event were ranked by value and the
coordinate with the smallest value was re-
moved, which was repeated until the ex-
tentwas reduced to the target value of𝐸 .
If 𝐸 > 𝐸 , neighbouring coordinates
were added around the boundary of the ob-
served event until the extent reached the
target value of 𝐸 . Each round of addi-
tion was performed randomly such that all
neighbouring coordinates on sharing the
boundary with the event extend had an
equal probability to be added.

Adjustment of volume and peak Sec-
ond, within the extended or reduced ex-
tent, the original observed volumes were
obtained for a given grid-cell𝑋 bymultiply-
ing the precipitation rate with the spatial
extent of the grid-cell. The synthetic vol-
umes for this grid-cell 𝑌 were constructed
using

𝑌 = 𝑚 + (𝑋 −𝑚 )
𝑀
𝑀 (5.1)
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Figure 5.8: Reconstruction of two synthetic events of high precipitation rate, correspond-
ing to the synthetic descriptor sets displayed in Table (5.1). a) The original observed
events. b) Synthetic events 1, for which the observed events are reduced in magnitude.
c) Synthetic events 2, for which the observed events are increased in magnitude. 𝑃 is the
sum of precipitation per grid-cell over the duration of the event. Indications of low and
high are used, because the actual values of 𝑃 depend on the grid-size.

where

𝑚 = 𝑀 − (𝑀 −𝑚 )
𝑀 − 𝜇
𝑀 − 𝜇 (5.2)

with

𝜇 = 𝜇
𝑉
𝑉 (5.3)

and

𝑀 = 𝑀
𝑃
𝑃 (5.4)

where 𝑚 = 𝑚𝑖𝑛(𝑥), 𝑀 = 𝑚𝑎𝑥(𝑥), 𝜇 =
𝑚𝑒𝑎𝑛(𝑥). This calculation preserves the
shape of the distribution of the observed
volumes with the mean and peak updated
from 𝜇 to 𝜇 and from 𝑀 to 𝑀 respec-
tively. Finally, the synthetic volumes per

grid-cell were transformed back to precip-
itation rates using the spatial extent of the
grid-cells.

Result Fig. (5.8) demonstrates two ex-
amples of the reconstruction of a synthetic
event. Four sets of synthetic descriptors
and the two connected observed descrip-
tor sets are displayed in Table (5.1). The
observed events, with corresponding set
of observed descriptors 𝐷 , are displayed
in Fig. (5.8)a. Two synthetic events are
displayed in Fig. (5.8)b, with correspond-
ing sets of synthetic descriptors 𝐷 ,
which demonstrate a reduction in magni-
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tude. Two synthetic events are displayed
in Fig. (5.8)c, with corresponding sets of
synthetic descriptors 𝐷 , which demon-
strate an increase in magnitude.

With 31 synthetic events recon-
structed from every observed, the recon-
struction procedure resulted in a catalogue
of 6.101.110 synthetic events.

5.3.5. Space- me placement and gap fill-
ing

Space-time placement To form a 1000-
year continuous gridded time series using
the catalogue of synthetic events, the fol-
lowing procedure was applied. For each
repetition of an observed event, a corre-
sponding synthetic event was randomly
sampled (without replacement). By the
design made in Section (5.3.3), the num-
ber of corresponding synthetic events for
each observed event was precisely 31, which
meant that all synthetic events were used
exactly once.

Gap filling The 31 repetitions of the 32-
year observed time series data were stacked
in order. The observed event, both extent
and precipitation intensity, were replaced
with that of the synthetic event. In particu-
lar, when the replacing synthetic footprint
was larger than that of the observed event,
the values in those coordinates that were
not covered in the observed event were still
overwritten. If the replacing synthetic foot-
print was smaller, the smallest value was
retained and all other values were trans-
formed linearly such that the largest value
equalled the global threshold of event iden-
tification used in Section (5.3.1).

Result The space-time placement and
gap gilling procedure resulted in a gridded,
1000-year continuous time series for the

entire modelled region, with a discontinu-
ity in between the subsequent repetitions.
Figs. (5.9) and (5.10) display small samples
of the observed continuous data versus the
synthetic. The difference between the two
data sets can be found where the observed
events occurred and were replaced by syn-
thetic events.

5.4. Extension for compound pre-
cipita on, wind and pressure

5.4.1. Event iden fica on
For the compound generator, events

were separated using multiple global
thresholds; one for each individual vari-
able. Fig. (5.11) displays the outcome of
the event separation method. As can be
observed, different variables show overlap
in space and time.

In Section (5.3.1), for the clustering of
events, connections were established based
on the spatial overlap of polygons of a sin-
gle variable across subsequent time steps.
For compound events, additional connec-
tions were established based on the spatio-
temporal overlap of the different variables.

The additional connections, as a re-
sult of the overlap between different vari-
ables, resulted in that the compound event
identification produced different events
than the single variable event identification
procedure. Multiple clusters, that in the
single variable approach were considered
separate events, were clustered together.
In particular, the low pressure fields often
pasted together separate wind fields, that,
as should be expected, can be found on the
edges of the low pressure fields.

With three different variables, seven
different event types were identified. Three
event types consisted of events of the in-
dividual variables only. Three event types



5

88 5. Development of a dynamic spa o-temporal weather generator

Figure 5.9: A sample is displayed of the precipitation rate 𝑝 in different time steps of
(a) the observed data, (b) the synthetic data and (c) the absolute difference between the
observed data and the synthetic.
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Figure 5.10: A sample is displayed of the precipitation rate 𝑝 in different time steps of
(a) the observed data, (b) the synthetic data and (c) the absolute difference between the
observed data and the synthetic.
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Figure 5.11: The tracking of movement of extremes is displayed for three variables. 𝑝𝑟𝑎𝑡𝑒
(black) is the precipitation rate, 𝑝𝑟𝑒𝑠𝑠𝑓𝑐𝐴𝑛𝑜𝑚 (orange) is the low pressure anomaly,
𝑤𝑛𝑑10𝑚𝐴𝑏𝑠 (blue) is the wind speed at 10m high in any direction.
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consisted of events of combinations of
three variables. One event type consisted
of events of all three variables combined.
Each event type was handled separately in
the subsequent steps in the generation pro-
cess.

5.4.2. Event descrip on

Per event type, events were classi-
fied using the same classification proce-
dure as in Section (5.3.2). Per class, the
same event descriptors were captured for
the compound procedure as for the single
variable procedure: peak (P), volume (V)
and spatio-temporal extent (E). However,
for the compound events, these event de-
scriptors were captured for each variable in
the event type considered.

5.4.3. Mul variate sta s cs

Per event type, per class, the mul-
tivariate structure was captured with
the same multivariate model as in Sec-
tion (5.3.3).

Fig. (5.12) displays the multivariate
structure of a particular class of compound
events that comprised of combinations of
all three variables. The dependence struc-
ture was successfully captured and repro-
duced.

5.4.4. Event reconstruc on

Events were reconstructed per vari-
able, similar to the procedure used in Sec-
tion (5.3.4), irrespective of the event type
and class that the events belonged to. The
reason for this was to keep the reconstruc-
tion procedure relatively simple, manage-
able and computationally not too expen-
sive.

5.4.5. Space- me placement and gap fill-
ing
Events were placed back in space and

time at their original locations, similar as
in Section (5.3.5).

5.5. Discussion
5.5.1. Event iden fica on

The key difference between the gen-
eration procedure for a single variable (in
Section (5.3.1)) and for compound variables
(in Section (5.4.1)) was found in the event
identification procedure. Particular types
of events, such as tropical cyclones, could
potentially be relatively clearly delineated,
providing similar event identification re-
sults in both a single and a compound vari-
able framework. However, in a compound
variable framework, (relatively large) low
pressure systems may lead to the merging
of precipitation and wind clusters, which,
when considered in a single variable frame-
work, would be considered separate events.

There is no commonly agreed defini-
tion of events - what some may consider
to be a single event, could be considered
to be multiple events by others. The gen-
eral procedure is to (iteratively) separate
and connect (cluster) according to a pre-
conceived, subjective idea of what an event
is. This is already the case for a single vari-
able and the compound approach appears
to contribute additional subjectivity. It can
be observed in Fig. (5.11) that a compound
variable approach may lead to different
events than the single variable approach,
even when the conceptual ideas (thresh-
olds, overlap) are very much the same for
both approaches. The subjective nature of
the event identification procedure can be
considered a hurdle for an objective, scien-
tific approach, since science requires a cer-
tain consistency in results. However, event
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Figure 5.12: Pair-wise plots of the observed descriptor matrix and the synthetic descrip-
tor matrix of class 6. Purple (dark) is the observed and yellow (light) is the simulated.
In the diagonal, distributions of observed and synthetic descriptors are compared using
box-plots. Below the diagonal, pair-wise scatter plots are displayed. Above the diago-
nal, pair-wise correlations are displayed. The labels are formatted as 𝐴.𝐵[𝐶], where 𝐴 is
the variable, 𝐵 is the descriptor type and 𝐶 is the magnitude. The three variables are 𝑝
[mm/h] the precipitation rate, 𝑃 [hPa] the low pressure anomaly and 𝑤 [m/s] the wind-
speed. The three descriptor types are 𝐸 the spatio-temporal extent of the event, 𝑃 the
peak value of the event and 𝑉 the sum of the event values over the entire extent and
duration of the event.

identification is a required step to be able
to apply event-based, probabilistic analy-
sis, and therefore cannot be avoided.

For future research, there are several
recommendations. First, from the dynamic
spatio-temporal idea that events are physi-
cal phenomena that travel, pathways could
be incorporated in the event identification
procedure. For example, a single event
may have to be split into two events if sub-
clusters of the event can be distinguished
that (at some point in time) move into or

arrive from distinctly different directions.
Second, the event identification method
should be compatible with the reconstruc-
tion method such that any reconstructed
events should be identified in its exact ex-
tent. The current reconstruction algorithm
may cause parts of the events to break off
when the synthetic event extent is reduced.

5.5.2. Event descrip on

Classification A robust classification
method should account for the difference
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between precipitation events in their sta-
tistical properties as well as their physical
characteristics. Statistical cluster analysis
should incorporate physical descriptors
about the class of events, whereas physical
descriptors about event classes could
probably be refined based on the results
of the statistical classification method.
This step is recommended to be executed
as an iterative process. Seasonality can
be expected to be effectively captured by
classification and therefore it can be rec-
ommended for future research to consider
temporal descriptors such as month of
occurrence [47] or season [86].

5.5.3. Mul variate sta s cs
HT04 In Section (5.3), 196 classes were
chosen, each of which had 3 marginals,
providing a total of 588 marginal distribu-
tions. Follow-up studies may be expected
to formulate a larger number of classes and,
for each class, to describe events more ac-
curately with a larger number of descrip-
tors (which makes sense when more ad-
vanced reconstruction methods are devel-
oped that wouldmake use of more descrip-
tors). Therefore, with an expected increase
in number of classes considered and an ex-
pected expansion of the dimensionality of
thematrix in each class, HT04will be a very
practical model and can be recommended
to be used in follow-up studies.

Fig. (5.12) displays the multivariate
structure of a particular class of compound
events that comprised of combinations of
three variables. With a total of nine de-
scriptors, additional complexity was found
and captured for the compound procedure
as compared to the multivariate structure
of the single variable analysis, which com-
prised of only three descriptors; Fig. (5.7).
In Section (4.3.3), the same multivariate

dependence model was applied to a multi-
variate matrix with 298 columns, so the in-
crease in dimensionality from three to six
(or nine) could easily be handled and al-
lows for further expansions of dimension-
ality in the future.

5.5.4. Event reconstruc on, space- me
placement and gap filling

Events were reconstructed using peak
𝑃, volume 𝑉 and extent 𝐸. This was done
similarly for each class of events. When the
synthetic event required a reduction in ex-
tent as compared to the observed (𝐸 <
𝐸 ), the used procedure for the reduc-
tion in spatio-temporal extent (using the
method of largest values) led to an issue.
A single synthetic event could turn out to
comprise multiple non-connected clusters
of data; Fig. (5.8)b. So what should be-
come a single synthetic event, could po-
tentially be split into multiple synthetic
events, when applying the same event
identification procedure as applied to the
observed data. Vice versa, when gener-
ating synthetic events by growing the ex-
tent of the observed and when placing the
synthetic events in a synthetic space-time
continuum at their original locations, oc-
casionally separate synthetic events were
merged. For future research, it is recom-
mended that these issues are taken into
account, since ideally the event definition
should be consistent for both observed and
synthetic events. In conjunction with im-
proved event identification and classifica-
tion methodology, it is recommended that
more advanced (i.e. realistic) reconstruc-
tion methods be developed. Potentially,
a different selection of descriptors can be
used for each class. Examples of descrip-
tors to include for reconstruction could
be: (object) orientation, for which princi-
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pal component analysis could be used; mo-
ments; duration; etcetera.

A parsimonious method was imple-
mented for the space-time placement of
synthetic events, by which copies of the
observed data set were created in which
the observed events were replaced by syn-
thetic events based on their original lo-
cation of occurrence. In particular, the
spatio-temporal extent of events was made
smaller or larger Fig. (5.8). This pro-
vided an increased spatial smoothness of
extremes, as will be discussed in Chap-
ter (6). To address spatio-temporal spar-
sity, additional randomness could be in-
troduced concerning the ‘when and where’
that events may occur, There are sev-
eral recommendations. First, pathways of
events could be altered. When consider-
ing the moving precipitation fields as 3-
dimensional objects (in x,y,t), this corre-
sponds to an altering of the orientation of
the objects and an altering of the shape
of the objects, where the centre of gravity
(in x,y,t) remains the same. Second, the
centre of gravity of events could stochasti-
cally be moved around. The farther events
are moved from their original location of
occurrence, the more likely that synthetic
events would start to overlap and the more
likely that the general atmospheric pattern
would be disturbed. Third, as a more rigor-
ous version of the second option, a spatio-
temporal point process (STPP) could ap-
plied, in which the catalogue of synthetic
events could be used to build continu-
ous data starting from an empty synthetic
space-time continuum. For example, Cow-
pertwait et al. [25] apply a flexible STPP in
which ‘independent superposed point pro-
cesses are used to allow for different storm
types (for example, convective and strati-
form).’ However, if an STPP is applied to

large-scale precipitation events, the chal-
lenge arises to place the synthetic events in
space and time in such a way that the large-
scale atmospheric patterns are well simu-
lated. This can be expected to pose a sig-
nificant challenge for a single variable ap-
proach and an even larger challenge for the
compound variables approach.
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5.6. Conclusions
For the development of the genera-

tor, the full event-based framework, as de-
signed in Section (3.3) was applied. Sim-
ple methodology of the type DSTPA (Ap-
pendix (A.1.6)) was provided for every step
in the framework. In general, simplistic
choices were taken for two reasons, first, to
keep the general flow of the analysis man-
ageable; and, second, to keep the compu-
tational burden manageable.

The limitations that applied in Chap-
ter (4), discussed in Section (4.5), which
caused a reduction to the framework,
were overcome with the dynamic spatio-
temporal approach. In particular, first,
with the dynamic approach, no gaps were
created in the descriptor matrix (as in Sec-
tion (4.5.2)), which implies that dynamic
event identification and description are
fully compatible with multivariate, statis-
tical methodology. Second, as a result of
working with a matrix of meaningful syn-
thetic event descriptors, synthetic events
were successfully reconstructed.

Extensions of methodology were pro-
vided to be able to apply the DSTPA, which
was developed for a single variable, to mul-
tiple variables, by addressing compound
events. In addition, a number of poten-
tial improvements was provided in Sec-
tion (5.5). In particular, an important im-
provement would be the implementation
of a process to induce variation in the
spatio-temporal occurrence of the events.
However, realistic atmospheric patterns
should be obtained, which will be a sig-
nificant challenge. Overall, it can be con-
cluded that, with these potential improve-
ments, the method appears to be promis-
ing.

This chapter addressed the challenge
of the development of a large-scale weather

generator that is capable of producing
long time series of synthetic, continuous
data containing spatio-temporally coher-
ent events. In Chapter (6), the dynamic
weather generator will be tested exten-
sively, which requires inspection of the
massive amounts of data generated, and a
final, large-scale, flood hazard time series
will be generated.
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6.1. Introduc on
6.1.1. General introduc on of generators

The starting point of a common prob-
abilistic flood risk analysis is the determi-
nation of the flood hazard, introduced in
Section (1.1.2). The flood hazard may be
considered a collection on all hypotheti-
cal scenarios that may cause flooding, with
associated probabilities or frequencies of
occurrence. The collection is often devel-
oped based on observed scenarios that oc-
curred in the past. The idea of considering
all hypothetical scenarios and their prob-
abilities can be implemented by the mod-
elling of a full stochastic process. The col-
lection of scenarios is obtained by the set
up of a specific type of statistical model, re-
ferred to as a generator. A generator can
be used to approximate the full stochas-
tic process of a system in a particular (dis-
cretised) time interval, by generatingmuch
synthetic data that can be used to drive a
chain of input-output models, as discussed
in Section (1.1.3). Generators may be event-
based, representing the scenarios to con-
sider by (hazardous) events. Event-based
generators typically make use of event de-
scriptors, which are first used to summarise
event characteristics and later, after being
subjected to statistical models, to recon-
struct synthetic events, as described in Sec-
tion (3.3).

In Chapter (5), a generator was devel-
oped based on large-scale dynamic events,
both for precipitation as a single source and
for the multi-source combination of pre-
cipitation, (low) pressure and wind speed.
In Section (5.5), a large number of recom-
mendations was provided to improve the
quality of the generator. However, before
further improvements to the generator are
to be implemented, it is important to ex-
plore the performance of the current gen-

erator, by examining thoroughly the data
that it generates.

6.1.2. A subset of generator objec ves
Generators are developed with a par-

ticular purpose in mind. A number of gen-
erator objectives is formulated, which is
typically a specific subset of the generic set
of generator objectives described in Sec-
tion (3.2). This subset is catered to the par-
ticular purpose for which the generator will
be used. Normally, generator methodology
is used that focusses on the optimisation of
the performance for this particular subset
of generator objectives. Examples can be
found in Table (2.4), which focusses in par-
ticular on the retention of statistical pat-
terns (GO2). It is evident that, in (almost)
all studies, methods are applied that opti-
mise the retention of a subset of the statis-
tical patterns formulated in this table. And
note that the patterns addressed in this ta-
ble are non-exhaustive. We appear to be
far from the creation of the perfect genera-
tor algorithm that, while generating max-
imum variability (GO1), manages to cap-
ture and retain all relevant statistical pat-
terns (GO2) and in doing so creates real-
istic events, i.e. respects all physical con-
straints (GO3). Thus, our priority is to fo-
cus the methodology on a subset of gener-
ator objectives.

In compliance with a focussed
methodology, it is interesting - and also
convenient - to perform a focussed per-
formance check. A focussed performance
check refers to a check on how a gen-
erator performs in those aspects that
its methodology was designed for. A
focussed performance check is a minimum
requirement, that should be easy to pass
in most cases. The literature typically
stays on this level of check. An example
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can be found in Chapter (4), published
in [28], where a static spatio-temporal
generator was developed with a focus on
marginal (local) distributions combined
with (spatial) dependence, for which the
performance check focussed indeed on
the two aspects that were optimised in the
particular methodology of this generator
- the extreme values and the (spatial)
dependence structure. Similar examples
can be found in [52, 68, 77].

Performance indicators can be de-
fined for most generator objectives. It
should be interesting to explore the per-
formance of generators for those genera-
tor objectives that the methodology was
not optimised for. In addition to how well
a generator is performing in certain as-
pects, this would provide insight in what
the shortcomings of a generator are.

6.1.3. Generator se ngs and sensi vity
Each performance indicator provides

information on the performance of a gen-
erator in a particular aspect. In order
to objectively compare performance across
different generators, separate performance
indicators could function as common stan-
dards. However, it is not the intention
of this chapter to summarise the differ-
ent performance indicators into a single
grade for a particular generator. To sum-
marise the different performance indica-
tors of a particular generator into a sin-
gle grade would require the appreciation of
different aspects compared to one another,
or ‘weighing’, which would be a subjective
procedure.

Generators require configuration us-
ing a (potentially large) number of gen-
erator settings. For example, in Sec-
tion (5.3), a number of generator settings
was described. First, settings may be quite

general: the spatial domain and tempo-
ral length of the observed data; and the
amount of synthetic data to generate. Sec-
ond, settings may be related to the specific
generator methodology: method of event
identification, method of classification and
which event descriptors to use, method of
reconstruction and which event descrip-
tors to use. Third, settings may be nu-
merical: for event identification, a thresh-
old; for event description, a number of
events per class; and formultivariate statis-
tics, GPD thresholds, extremal dependence
thresholds and simulation thresholds.

Changes to the generator settings
may significantly alter the synthetic events.
To provide some level of guidance on
the compromises between different perfor-
mance indicators for a particular generator,
a sensitivity analysis may be carried out. It
has been observed through this study and
others, that tuning the generator to per-
form well in one aspect may lower the per-
formance in other aspects. With a com-
plex generator, users typically face multi-
ple trade-offs in the settings. For example,
[52] showed how changing the threshold of
a GPD fit is a trade off between model bias
and parameter uncertainty.

It is important to keep in mind that,
to approximate the full stochastic process,
a synthetic data set has to be generated that
may comprise a large quantity of data. This
applies in particular for generators of grid-
ded data sets with high spatial and tem-
poral resolutions and/or when the objec-
tive of the study is to look at rare events
with small probabilities. For a sensitivity
analysis, many synthetic data sets have to
generated, which implies massive amounts
of data have to be generated and analysed.
Therefore, it is challenging to apply sen-
sitivity analysis to generators of large data
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quantities and the feasibility of sensitivity
testing has to be investigated.

For sensitivity analysis, various meth-
ods have been established. In particular,
a disctinction can be made between lo-
cal and global analysis [74]. In this chap-
ter, global sensitivity analysis will be ap-
plied. A grid of generator settings will be
used for the sensitivity analysis, which is
listed in Appendix (A.4.3). The main ad-
vantage of this method is that all parts
of the generator setting space are investi-
gated in equal measure. The main disad-
vantage is that, because of the limitations
of computational power and storage, a lim-
ited coverage of the generator setting space
will be obtained.

6.1.4. Chapter structure
The objective in this chapter is to es-

tablish a generic framework to help explore
the performance of a generator. First, the
methodology to apply the framework will
be defined. Second, as a case study, the
framework will be applied to the dynamic
generator developed in Chapter (5). In par-
ticular, the performance of this generator
will be explored for generator objectives
that its methodology was not optimised
for. In addition, the feasibility will be ex-
amined of applying a sensitivity test to a
generator of large-scale, gridded, synthetic
of high spatial and temporal resolution.

6.2. Methodology
6.2.1. Generator objec ves

There are threemain generator objec-
tives:

1. introduce the unobserved (GO1),

2. reproduce patterns (GO2) and

3. respect physical restraints (GO3).

These generator objectives were described
in more detail in Section (3.2).

6.2.2. The role of performance indicators
To be able to evaluate how well the

generator objectives are fulfilled, a number
of performance indicators has to be set up.
For the different generator objectives, dif-
ferent performance indicators are required.

First, for the introduction of the un-
observed (GO1), performance indicators
are required that provide insight in the
level of variability introduced. The goal of
these performance indicators is to check
howmuch the newly created synthetic data
differs from the observed, in all required
aspects, e.g. spatial event coverage of ex-
tremes or spatial and temporal smoothness
of the stochastic process. Variability may
typically be checked by use of distributions
of event descriptors on a per-location basis,
where, for flooding, the emphasis lies with
the upper tail of distributions. In addition,
since variability should be introduced not
only in time but also in space, spatial cov-
erage of events may be checked.

Second, to investigate if statistical
patterns are retained (GO2), performance
indicators are required that provide insight
in how well the observed data agrees with
the synthetic data. Distributions allow to
check if the event descriptors in the ob-
served data are a likely subset of the (much
larger) population of synthetic event de-
scriptors. However, to evaluate the pat-
tern of event occurances, additional perfor-
mance indicators are required. For tempo-
ral patterns, it matters in which sequence
events occur. For spatial patterns, it mat-
ters what happens at different locations in
a given time window. Although time and
space should not necessarily be considered
separately, temporal and spatial patterns
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may be relatively easily captured separately
and may be described using correlations.

Third, to investigate if physical re-
straints are respected (GO3), performance
indicators are required that demonstrate
how realistic the events are that are used
and produced in the generator. Reality of
events is a generic concept, but can not eas-
ily be described in a generic fashion. These
performance indicators will have to work
with the specific type of data that is pro-
duced by each particular generator.

6.2.3. Sensi vity analysis

A sensitivity analysis may be carried
out to explore the performance of a gener-
ator, for two reasons in particular. First, a
sensitivity analysis may provide insight in
the stability of the generator, by looking at
how much the results vary when settings
are adjusted. Second, a sensitivity analy-
sis may provide guidance on how to choose
parameters, by the testing of the quality of
the generated data, asmeasured for the dif-
ferent aspects by the performance indica-
tors.

For a risk analysis that considers the
full stochastic process, all possible events
are supposed to be covered. Therefore, a
generator is supposed to be used to gener-
ate large quantities of data. With a sensi-
tivity analysis, the generator is run many
times with different generator settings and
inputs, which means that very large quan-
tities of data will be produced. This im-
plies that compromises have to be made
for feasibility and that the completeness of
a generator sensitivity analysis will largely
be limited by the available computational
power and storage capacity.

6.3. Performance indicators ap-
plied to a dynamic precipita-
on generator

6.3.1. Overview
In this particular case study, the per-

formance is explored of the (single-source)
precipitation generator that was developed
in Section (5.3). In the following sections,
performance indicators will be defined and
discussed in detail. The BSL2 domain is
used for generation and the UK2 domain is
used to check the results. For the correla-
tion tests, a subset of locations in the UK2
domain will be used, displayed in Fig. (6.8),
for the reasons of dimensionality and inter-
pretability.

Performance indicators were organ-
ised into three aspects.

1. Local distributions. Local time se-
ries were cast into local distribu-
tions. A ‘local distribution’ is the
marginal distribution of a joint prob-
ability distribution, where each mar-
gin relates to data at a specific loca-
tion. For every location in the tar-
get domain, the means, event cover-
age, General Pareto distribution pa-
rameters and return level estimates
(RLE) were investigated. Since these
statistical indicators were captured
for each grid-cell in a grid, spatial
patterns emerged. The full stochas-
tic process is supposed be spatially
smooth, i.e. there should not be sud-
den changes in the parameter values
or in the RLE when moving across
the spatial domain, whereas the lim-
ited sample of observed data may
be spatially rough. Therefore, spa-
tial smoothness or roughness indica-
tors were used. So, these indicators
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should show that the statistics of the
synthetic data were smoother, than
the observed data.

A good generator needs to have sim-
ilar local distributions of the entire
populations between the observed
and synthetic data. Due to spar-
sity, the generator should be al-
lowed to produce slightly different
patterns of local extremes. It should
produce smooth local distributions,
since that would mean that sparsity
is addressed conform GO1. To sum-
marise the performance indicators of
the local distributions and of the spa-
tial smoothness, the spatial means
of the produced maps were used.
These summary performance indica-
tors were also used in the sensitivity
analysis.

2. Temporal and spatial correlations.
For a subset of locations, spatial cor-
relation and temporal correlations
were investigated. This was done
across different parts of the data in
different directions. The dimensions
of time and spacewere treated as sep-
arate directions.

Good performance was considered to
be obtained when these performance
indicators were similar for the syn-
thetic data and the observed data.

3. Spatio-temporal integrity. The
spatio-temporal aspect, where the
spatio-temporal nature of events
was investigated. One aspect of the
spatio-temporal nature, the use of
complete events, was investigated
using the region of influence. The
idea was that, if the region of influ-
ence shows much observed event
data on the edges of the domain, this

indicates that events have been cut
off, i.e. were incomplete. Incomplete
observed events were considered to
be disturbances in classification and
in distributions and also unlikely to
allow realistic synthetic events to be
constructed.

Good performance was considered to
be obtained when these performance indi-
cators were as low as possible for the ob-
served data. For these indicators, this im-
plies: a roughness as low as possible; the
proportion of incomplete observed events
as low as possible; and the similarity in spa-
tial and temporal correlations between the
observed and the synthetc as high as possi-
ble.

The performance indicators are elab-
orated in Sections (6.3.2) to (6.3.4). In each
of these sections, first, maps are provided
of the aspect under investigation and, sec-
ond, the summarising performance indica-
tors are provided as a function of the varied
generator settings.

Note that these indicators perform
checks on a per-location basis, whereas the
methodology of the investigated genera-
tor is dynamic by nature, i.e. is based
on distributions of descriptors of moving
precipitation events. This means that the
performance checks do not have the same
focus as the optimisation in the gener-
ator methodology, as introduced in Sec-
tion (6.1.2). So these performance checks
go beyond the minimum requirement of
the focussed checks.

6.3.2. Aspect 1: pa erns of local distri-
bu ons

Means. To check GO2 for the bulk of the
populations.

Temporal means were used to check
the bulk of the populations of precipita-
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Figure 6.1: Means of precipitation rate 𝑝 [mm/h] of the entire local populations (per grid-
cell) for (a) the observed data set (20 years), (b,c) two generated synthetic data sets (20
years each) and (d) the entire series of all generated synthetic sets (1.000 years).

tions rates per location, for both the ob-
served and the synthetic data. It is an im-
portant check to do, as the bulk popula-
tions of the synthetic data set should have
temporal means that are similar to those of
the observed data set. The reason is that
sparsity, see Section (3.1.1), is mainly an is-
sue for (unlikely) events, whereas sparsity
should not be expected to have a signifi-
cant effect on the bulk populations. Other
statistics can be drawn and compared be-
tween the observed and the synthetic in a
similar manner, e.g. variance, higher-order
moments, quantiles, etc.

Fig. (6.1) displays the temporal means
of precipitation rates for the BI, on a per-
location basis. It can be observed that the
temporal means were very similar for the
observed data set, two synthetic data sets
and the combined synthetic data sets. This
test is always relevant but, in particular,
will be more relevant with increased com-
plexity of the generator, which will proba-
bly give less similar results.

Event coverage To check GO1 and GO2
for the observed and synthetic event cata-
logues.

Although similar temporal means
may be an indicator of good performance

of the generator, the event coverage should
also be taken into account. Fig. (6.2) dis-
plays the event coverage in the BI, consid-
ering the observed and the synthetic event
catalogues.

For each location, Fig. (6.2.1) shows
𝑓 , which is the fraction of the number
of time steps in the event catalogue di-
vided by the number of time steps in the
continuous series. It generally shows the
same patterns for the observed and the syn-
thetic data, but it can be observed that 𝑓1
was slightly higher in the observed event
catalogue than in the synthetic event cat-
alogues. The event reconstruction algo-
rithm proposed in Section (5.3.4) did not
always succeed, which led to a lower num-
ber of events. Moreover, the event recon-
struction algorithm was iterating towards
the correct values of descriptors. For com-
putational reasons, there was a tolerance
on this iterative process, such that the re-
construction stops when the tolerance level
was reached. When this happened, per
event a slightly smaller spatio-temporal ex-
tent was obtained than was prescribed by
the synthetic spatio-temporal extent de-
scriptor.

For each location, Fig. (6.2.2) shows
𝑓 , which is the fraction of the total sum
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(6.2.1) 𝑓1 [-] is the fraction of the number of time steps in the event catalogue divided by the
number of time steps in the continuous series.

(6.2.2) 𝑓2 [-] is the fraction of the total sum of precipitation in the event catalogue divided by the
total sum of precipitation in the continuous series.

(6.2.3) 𝑓3 [-] is the fraction of the mean of precipitation in the event catalogue divided by the
mean of precipitation in the continuous series.

Figure 6.2: Per location (cell), fractions of descriptors are displayed for (a) the observed
data set (20 years), (b,c) two generated synthetic data sets (20 years each) and (d) the
entire series of all generated synthetic sets (1.000 years).
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of precipitation in the event catalogue di-
vided by the total sum of precipitation in
the continuous series. Again, it generally
shows the same patterns for the observed
and the synthetic data, but it can be ob-
served that 𝑓2 was slightly higher in the
observed event catalogue than in the syn-
thetic event catalogues. The difference was
small and harder to spot than the differ-
ence in 𝑓1, which means that the observed
event catalogue held a larger fraction of
small event values than the synthetic event
catalogue. About the same total sum of
rainfall was put into the synthetic event
catalogue as was in the observed event cat-
alogue, which is an important indicator of
performance.

For each location, Fig. (6.2.3) shows
𝑓 , which is the fraction of the mean of pre-
cipitation in the event catalogue divided by
the mean of precipitation in the continu-
ous series. It generally shows the same pat-
terns for the observed and the synthetic
data, but it can be observed that 𝑓3 was
slightly lower in the observed event cat-
alogue than in the synthetic event cata-
logues. This confirmed that the synthetic
event catalogue held a smaller fraction of
small event values compared to the ob-
served event catalogue.

Local (marginal) extreme value analy-
sis. To check GO1 for spatial sparsity of
extremes, to check GO2 for the tail ends of
the populations and to check GO2 for spa-
tial coherence of extremes.

First, in Figs. (6.3) to (6.6), the ex-
tremes in individual synthetic sets of 32
years each are compared to the extremes in
the 32 years of observed data. The purpose
is to check if the patterns in the extremes
are retained per synthetic set, i.e. the pat-
terns of the extremes in the observed data

should agree reasonable well with the syn-
thetic.

Figs. (6.3) and (6.4) show that the
GPD fits of the synthetic sets and the ob-
served data set are similar but not the
same. Here it should be kept in mind that
the scale and shape parameter can com-
pensate for each other for lower extremes.
Fig. (6.5) shows very similar patterns for
the lower RLE, with a return period of 10
years, in the synthetic sets and the ob-
served. Fig. (6.6) shows some similarity in
the patterns for the higher RLE, with a re-
turn period of 1.000 years, but also some
more distinct differences. This can be at-
tributed to the higher degree of sparsity of
higher RLE, which should indeed give the
expectation ofmore variability over the dif-
ferent sets.

Second, in Fig. (6.7), the extremes
in the entire collection of synthetic data,
which comprises 1.000 years of data as an
approximation of the full distribution, are
compared to the extremes in the distribu-
tions fitted directly to the observed data
per grid-cell. The purpose is to compare
spatial coherence of extremes for the dy-
namic generator, with the direct GPD fits
to the observed data per grid-cell as a base-
line model.

To assess the smoothening of the ex-
treme values in the synthetic data pro-
duced by statistical model𝐵1 (the dynamic
generator described in Chapter (5)), a sta-
tistical model𝐴1was used as a baseline ref-
erence for comparison. Statistical model
𝐴1 comprises local GPDs fitted to time se-
ries per pixel using Peaks-over-Threshold,
i.e. the peaks of local events above a high
threshold. The following procedure was
applied.

1. Statistical models 𝐴1 and 𝐵1 were
both fitted to the 32 years of observed



6

106 6. A generic framework to explore the performance of generators

Figure 6.3: Shape [-] parameters of the GPDs fitted per grid-cell. The centre figure dis-
plays the fits directly to the 32 years of observed data. The surrounding figures display
the fits to synthetic sets of 32 years each.
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Figure 6.4: Scale [-] parameters of theGPDs fitted per grid-cell. The centre figure displays
the fits directly to the 32 years of observed data. The surrounding figures display the fits
to synthetic sets of 32 years each.
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Figure 6.5: RLE of precipitation rate 𝑝 [mm/h] corresponding to a 10 years return pe-
riod. The centre figure displays the fits directly to the 32 years of observed data. The
surrounding figures display the fits to synthetic sets of 32 years each.
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Figure 6.6: RLE of precipitation rate 𝑝 [mm/h] corresponding to a 1.000 years return
period. The centre figure displays the fits directly to the 32 years of observed data. The
surrounding figures display the fits to synthetic sets of 32 years each.
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(6.7.1) Shape [-] and scale [-] parameters of
the GPDs fitted per grid-cell.

(6.7.2) RLE of precipitation rate 𝑝 [mm/h]
for two return periods.

(6.7.3) Spatial roughness 𝜉 [-] of the GPDs. (6.7.4) Spatial roughness 𝜉 [-] of the RLE.

Figure 6.7: Above, local GPD parameters and RLE are displayed for statistical models 𝐴2
and 𝐵2. Below, spatial roughness is investigated for the GPD parameters and RLE.
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data.

2. 1.000 years of synthetic time se-
ries were sampled and reconstructed
from the statistical models 𝐴1 and
𝐵1.

3. Statistical model 𝐴2 (local GPDs per
pixel using Peaks-over-Threshold)
was fitted per pixel to the 1.000 years
of synthetic time series sampled
from statistical model 𝐴1, using the
same GPD thresholds as used to fit
model 𝐴1.

4. Statistical model 𝐵2 (local GPDs per
pixel using Peaks-over-Threshold)
was fitted per pixel to the 1.000 years
of synthetic time series sampled
from statistical model 𝐵1, using the
same GPD thresholds as used to fit
model 𝐴1.

Note that, when using a sample of a syn-
thetic 1.000 years, the GPD parameters of
statisticalmodel𝐴2 are close to being iden-
tical to the GPD parameters of statistical
model 𝐴1. As the synthetic sample goes
towards infinitely long, the GPD parame-
ters of statistical model 𝐴2 become iden-
tical to the GPD parameters of statistical
model 𝐴1.

Fig. (6.7.1) shows the resulting GPD
parameters for each grid-cell within the
spatial domain of the British Isles (BI). It
is obvious that the GPD parameters of sta-
tistical model 𝐴2 were much rougher than
those of statistical model 𝐵2. For the scale
parameter, the GPD parameters for statis-
tical models 𝐴2 and 𝐵2 on average appear
to be similar. For the shape parameter, the
GPD parameters for statistical model 𝐴2
were slightly lower on average than those
for statistical model 𝐵2. This can be ob-
served more clearly in the sensitivity anal-
ysis. The estimators of the shape and scale

parameters are negatively correlated, so the
RLE analysis provides an additional angle
for observing any potential constrast be-
tween statistical models 𝐴2 and 𝐵2.

Fig. (6.7.2) shows the RLE in the BI.
For the return period of 10 years the RLE
of 𝐴2 show a similar pattern as the RLE
of 𝐵2, but are lower on average. For the
higher return period of 1.000 years, the RLE
of 𝐴2 are generally lower on average than
the RLE of 𝐵2, but contain very high lo-
cal values. This becomes more obvious in
the sensitivity analysis. This is potentially
caused by the sparsity of extreme observa-
tions, i.e. a few observed extreme events
may have largely influenced (upwards) the
extrapolation of the tail distribution for
particular grid-cells, whereas nearby grid-
cells with similar physical conditions were
not affected. Statistical model 𝐴1 works
per grid-cell, and does not have the capa-
bility to take into account what happened
around that grid-cell.

Fig. (6.7.3) shows the roughness of
the GPD parameters in the BI. Here, the
roughness (𝜉) is defined as the difference
between the maximum and the minimum
value of a grid-cell and its 8 surround-
ing grid-cells. The GPD parameters fit-
ted to statistical model 𝐵2 were spatially
much smoother, i.e. more spatially coher-
ent, than the GPD parameters of statisti-
cal model 𝐴2. This can be explained by a
lower degree of event sparsity in the syn-
thetic time series generated by statistical
model 𝐵1, as compared to the synthetic
time series generated by statistical model
𝐴1. Statistical model 𝐵1 does not work per
grid-cell and has the capability to take into
account what happened around that grid-
cell. This capability is referred to as ‘dy-
namic expansion of information’ and is dis-
cussed in length in Section (6.5.1).
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Fig. (6.7.4) shows the roughness of
the RLE in the BI. The combinations of
rough GPD shape and scale parameters in
the RLE of 𝐴2 delivered a relatively smooth
image of RLE for low return periods. The
roughness in the scale and shape param-
eter respectively have canceled each other
out to some extent. These RLE are closely
linked with the high quantiles observed
in the input data, which should be rela-
tively smooth. However, the roughness of
the GPD parameters becomes apparent in
the RLE for high return periods, where the
RLE are based on not only the observed
high quantiles, but also on the extrapo-
lation along the tail of the GPD distribu-
tion, where the shape parameter takes a
quite dominant role. The smooth combi-
nations of shape and scale parameters in
the RLE of 𝐵2 delivered a relatively smooth
image of RLE for both low and high return
periods. The RLE were generally slightly
higher in the synthetic data, but with fewer
outstanding RLE spikes across the domain.
This is most likely due to the capability of
‘dynamic expansion of information’ of sta-
tistical model 𝐵1.

6.3.3. Aspect 2: pa erns of occurrence
Temporal and spatial correlations To
check GO2 for simple patterns of occur-
rence.

To check if statistical patterns were
retained, correlations were captured for
both the observed and the synthetic data,
on a subset of locations; Fig. (6.8). Auto-
correlations were calculated to serve as an
indicator for temporal dependence per lo-
cation and spatial correlations were calcu-
lated to serve as an indicator for spatial de-
pendence, i.e. dependence between differ-
ent locations.

Fig. (6.9) displays correlations found

Figure 6.8: A subset of locations was cho-
sen to be able to investigate particular sta-
tistical patterns. These locations represent
individual grid-cells.

in the observed and the synthetic data, in-
cluding the difference between the two per
location or per pair of locations. Fig. (6.9.1)
shows that autocorrelations show compa-
rable patterns in the observed and the syn-
thetic data set. The autocorrelations are
slightly higher in the observed series than
in the synthetic. This will become more
clear in the sensitivity analysis. This means
that this pattern is not perfectly captured
with the current generator. Fig. (6.9.2)
shows that spatial correlations show very
comparable patterns in the observed and
the synthetic data set. The difference
is minimal, but again, in the observed
data set the spatial correlations are slightly
higher than in the synthetic data set. This
will become more clear in the sensitivity
analysis.



6.3. Performance indicators applied to a dynamic precipita on generator

6

113

(6.9.1) Autocorrelations [-] at the locations defined in Fig. (6.8) for 1-5 steps time lag, captured
from monthly and weekly maxima.

(6.9.2) Pairwise (spatial) correlations [-] between the locations defined in Fig. (6.8), captured
from monthly and weekly maxima. Above the diagonal Spearman correlation is used and below
the diagonal Pearson.

Figure 6.9: Correlations: (a) captured in the observed data, (b) captured in the generated
data and (c) the difference between the two.
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6.3.4. Aspect 3: spa o-temporal in-
tegrity

Region of influence To check GO3 for
complete dynamic events.

Fig. (6.10) displays the number of time
steps of observed events which have at least
one coordinate in the BI. Fig. (6.10)a shows
an example of a precipitation event that
started close to the east coast of the United
States (US) and travelled all the way to the
BI and beyond. Since all data points in
this observed event were used to gener-
ate synthetic events, the data points close
to the US (marginally) influenced the RLE
in the BI. Fig. (6.10)b shows the spatial
extent of all observed events used by the
generator for the generation of the syn-
thetic time series within the BI, provid-
ing a first order impression of the region
of influence of RLE in the BI. The sub-
set was taken of observed events which
have at least one coordinate (i.e. one
point in x,y,t of precipitation) within the
extent of the BI (red square). If synthetic
events would be reconstructed from ob-
served events by changing the precipita-
tion rates only (i.e. no changes in spatio-
temporal extent, no movement of the cen-
tres of gravity of events and no STPP), this
would be the data that influences RLE in
the BI. From this subset of events, the num-
ber of time steps was counted per grid-
cell. As can be observed, with the gener-
ator approach, many data points observed
outside the BI were used to generate events
in the BI. Note that Fig. (6.10) is for il-
lustrative purpose only, as it is highly de-
pendent on the event identification proce-
dure described in Section (5.3.1). A higher
global threshold for event identification
would lead to a smaller extent, and vice
versa. A global threshold indicates a sin-
gle threshold that is used to divide the

entire observed data set into data that is
part of the observed events (data above
the global threshold) and data that is not
part of the observed events (data below the
global threshold).

6.4. Sensi vity analysis of a dy-
namic precipita on genera-
tor

6.4.1. Overview

A gridded sensitivity analysis was per-
formed. This means that an array of set-
tings was defined, with which the effect of
three critical settings was investigated.

1. Global threshold for event identifica-
tion. First, given the importance
of event identification, five different
global threshold settings were inves-
tigated. For the entire observed data
set, data above this global threshold
was considered to be part of an event,
whereas data below this threshold
was not used.

2. Spatial domain of generator. Second,
three spatial domains were used to
generate synthetic data, displayed in
Fig. (6.11): a large, baseline domain
(BSL2); a small domain (SML2); and
the smallest domain (UK2), which is
a generator domain which is equal
to the domain in which a flood risk
analysis is to be executed. So, to
generate boundary conditions for a
particular target domain (UK2), the
generator made use of the same do-
main as the target domain, or the
generator made use of a bigger spa-
tial domain (BSL2 or SML2), the rea-
son of which will be discussed in Sec-
tion (6.5.1).
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Figure 6.10: Per grid-cell, the number of time steps 𝑛𝑇𝑠𝑡𝑒𝑝 [-] was counted, for (a) a
single event that travels from the east coast of the US to the BI, and (b) all observed
events which have at least one coordinate in the BI, which outlines an impression of the
region of influence for the RLE of the BI using DSTPA.
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Figure 6.11: Three spatial domains were used to generate data: a big domain (green,
BSL2), a medium domain (blue, SML2) and a small domain (red, UK2).

3. Temporal length of input. Third, vary-
ing temporal lengths of input data
are used. The input data was divided
into three periods: 𝑃1 = 1981 −
2010, 𝑃2 = 1986 − 2005, 𝑃3 =
1991 − 2000. With an assump-
tion of stationarity and without any
de-trending of the input data, the
idea was that these periods would re-
sult in an approximation of the haz-
ard around 1995 − 1996, which is
the midpoint of the three temporal
ranges.

4. Several other generator settings were
structurally adjusted such that the
analyses could be carried out. A de-
tailed overview of the settings can be
found in Tables (A.5) to (A.7).

With the variations in these three set-
tings, in total, 5 ∗3 ∗ 3 = 45 generator runs
were performed. Some other settings, that
were not under investigation, had to be de-
fined depending on the three critical set-
tings, listed in Appendix (A.4.3). Through-

out Section (6.4), each figure will be based
on a total of 45 summary performance indi-
cators. As such, the number of data points
in each boxplot will be 45 divided by the
number of subfigures.

So for this sensitivity analysis the
performance indicators, described in Sec-
tion (6.3), had to be summarized. This was
done by taking the spatial means of the
performance indicators, implying that each
figure led to one summary performance in-
dicator. These spatial means of the per-
formance indicators are labelled in the fig-
ures by ‘spatial mean (variable)’. In addi-
tion, roughness maps of each performance
indicator were provided in Section (6.3),
which were summarized similarly by spa-
tial means. These spatial means of the
roughness of the performance indicators
are labelled in the figures by ‘spatial mean
(roughness)’.

Table (6.1) shows which performance
indicators were investigated as a function
of the varying settings. For conciseness,
only results were described where, as a
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Global threshold Spatial domain Temporal input

Temporal means X

Event coverage X

Local extreme values X X X

Temporal dependence X

Spatial dependence X X X

Completeness of events X

Table 6.1: An overview of the performance indicators investigated as a function of the
varying settings.

function of the settings, there was some
form of dependence or trend.

It should be mentioned that the sen-
sitivity of many other components of the
generator remains to be checked, for ex-
ample settings with regards to classifica-
tion, statistical models and reconstruction
algorithms. These were not covered in
this study because (a) they follow roughly
the same procedure and (b) the amount of
computation has become excessive for no
obvious additional gain. The PI’s already
included in this chapter have served the
purpose, which is to give a good demon-
stration of how this performance evalua-
tion framework works for a statistical ex-
treme weather generator.

6.4.2. Aspect 1: pa erns of local distri-
bu ons

Temporal means Temporal means were
used to check the bulk of the popula-
tions of precipitations rates per location,
for both the observed and the synthetic
data. Fig. (6.12) shows that overall the tem-
poral means are slightly higher for the ob-
served data than for the synthetic, which
indicates that there is not enough pre-

Figure 6.12: Sensitivity of mean of precipi-
tation rate 𝑝 [mm/h] to global threshold of
Fig. (6.1).

cipitation in the generated synthetic data.
With a higher threshold, the temporal
means of the synthetic become higher and
the spread becomes smaller. Variation in
the other settings showed no pattern and
therefore they are omitted.

Considering the limited event cov-
erage fractions that will be shown in
Fig. (6.13), relatively similar maps of means
should be expected. The reason for this is
that the temporal means include not only
event values but also the values below the
gobal thresholds. The more variability is
introduced, for which (high) event cover-
age fractions are important indicators, the
more difficult it will be for the genera-
tor to retain similar means per location,
and, therefore, the more indicative tempo-
ralmeanswill be for the performance of the
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Figure 6.13: Sensitivity of event coverage to
global threshold of Figs. (6.2.1) to (6.2.3).
𝑓 [-] is the fraction of the number of time
steps in the event catalogue divided by the
number of time steps in the continuous se-
ries. 𝑓 [-] is the fraction of the total sum
of precipitation in the event catalogue di-
vided by the total sum of precipitation in
the continuous series. 𝑓 [-] is the fraction
of the mean of precipitation in the event
catalogue divided by the mean of precipi-
tation in the continuous series.

generator.

Several extensions of methodology
were proposed in Section (5.5). In particu-
lar, when a more daring space-time place-
ment procedure is incorporated, not only
will events be moved around, but, as a con-
sequence, also small non-event values will
be moved around. This means that an eye
should be kept on the spatial patterns of
local distributions, for which the temporal
mean is a basic indicator.

Event coverage Fig. (6.13) shows that
overall 𝑓1 and 𝑓2 decrease with a higher
threshold, whereas 𝑓3 increases. This
makes sense, because the fraction of time
steps in the event catalogues 𝑓1 should de-
crease with a higher threshold, since fewer
data points are assigned to events. As such,
the fraction of sums of precipitation in the
event catalogues 𝑓2 is to be expected to be
lower with a higher threshold. And since a

threshold is used, the fraction of means in
the event catalogues 𝑓3 is to be expected
to be higher with a higher threshold. It
can be observed that 𝑓1 is slightly lower
in the synthetic data than in the observed
and that 𝑓3 is slightly higher. However,
𝑓2 shows reasonable similar results in the
observed as in the synthetic data, with a
slightly lower mean. This indicates that,
although there is some room for improve-
ment, about the right amount of precipi-
tation is contained in the generated syn-
thetic event catalogue. In addition, the
spread of the distribution is wider in the
synthetic than the observed, possibly due
to the larger sample.

The generator described in Chap-
ter (5) was developed to derive a stochas-
tic process from an observed data set. In-
troduction of variability (GO1) was mainly
achieved by replacing observed events with
synthetic events. In order to be able to in-
troduce variability everywhere, events are
required for all locations. If variability is to
be introduced in a spatially homogeneous
way, the event coverage should be spatially
homogeneous, implying the same fraction
of event coverage for each location. There-
fore, it could be argued that an event iden-
tification procedure should produce a map
of spatially homogeneous event coverage.

To check whether the chosen event
identification procedure in Section (5.3.1)
led to spatially homogeneous event cover-
age, event coverage was considered with
different fractions. The global thresh-
old did a relatively good job in producing
spatio-temporally coherent events. How-
ever, it did not produce a homogeneous
event coverage, as certain areas, like hills
or mountain ranges with effects such as
orographic lifting, may receive relatively
high precipitation rates and thereforemore
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events, whereas other areas, like plains,
may receive relatively low precipitation
rates and therefore fewer events. A simple
alternative to the global threshold would
be to set thresholds varying per location.
That could lead to exactly the same event
coverage per location in the observed data
set, either: by using the fraction of num-
ber of precipitation values, as in Fig. (6.2.1);
by using the fraction of precipitation sums,
as in Fig. (6.2.2); or by using the fraction
of precipitation means, as in Fig. (6.2.3).
However, forcing the event coverage to
be homogeneous on a per-location basis
would lead to fragmentation in the spatio-
temporal events. This would be partic-
ularly the case in spatio-temporal events
with relatively small precipitation values.

A discussion should be raised in the
hydrological/statistical society on the topic
of dynamic event identification, which
should be the starting point for any event-
based hazard analysis. First, what should
be considered events and, second, how to
develop algorithms to capture these en-
visioned events? Note that the develop-
ment of sophisticated event identification
algorithms would only make sense after
a fruitful outcome of the discussion on
event identification. Some requirements
for events can potentially be used in the
discussion. First, variability should be in-
troduced in the entire data set (GO1). This
may be interpreted to give a requirement
for a relatively homogeneous event cov-
erage. Second, events should be spatio-
temporally coherent (GO3), which will re-
quire event identification procedures that
go beyond identification on a per-location
basis. Finally, sparsity, which was dis-
cussed in Section (3.2.1), should be ex-
pected to lead to a certain level of hetero-
geneity of the event coverage in the ob-

served data set. Therefore, a homogeneous
map of event coverage in the observed data
set should not be a goal. However, spar-
sity would theoretically not be present in
the full stochastic process and therefore a
fully homogeneous map of event coverage
of the synthetic data could be a goal.

Local extreme value analysis In
Fig. (6.14), the sensitivity of local GPD
parameters (per grid-cell) is investigated.
It shows that the scale parameter is roughly
similar for the GPDs fitted to the observed
and the synthetic data. For the GPDs
fitted to the synthetic data, the shape
parameters are generally higher and both
parameters are spatially much smoother
than the GPDs fitted to the observed.

Fig. (6.14.1) shows that both the
scale and the shape parameter vary only
slightly with a varying global threshold.
Fig. (6.14.2) shows that the GPDs fitted
to the synthetic data become slightly less
smooth with a higher global threshold.
Fig. (6.14.3) shows that the scale parame-
ters are roughly equal on average for the
GPDs fitted to the synthetic data than fit-
ted the observed, but the shape parameter
is much higher for the GPDs fitted to the
synthetic. It shows that the scale parame-
termay be slightly higher or lower, depend-
ing on the chosen generator domain. The
shape parameters appears to become closer
to zero with a decreasing size of generator
domain.

Fig. (6.14.4) shows that both the
scale and the shape parameter are much
smoother for the GPDs fitted to the syn-
thetic data than fitted the observed. The
GPDs fitted to the synthetic data are
slightly less smooth with a decreasing size
of generator domain. Fig. (6.14.5) shows
that both the scale and the shape param-
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(6.14.1) Sensitivity of local GPD parameters
to global threshold.

(6.14.2) Sensitivity of spatial roughness to
global threshold.

(6.14.3) Sensitivity of local GPD parameters
to generator domain.

(6.14.4) Sensitivity of spatial roughness to
generator domain.

(6.14.5) Sensitivity of local GPD parameters
to period of observed data.

(6.14.6) Sensitivity of spatial roughness to
period of observed data.

Figure 6.14: Sensitivity of: local GPD scale [-] and shape [-] parameters (per grid-cell),
Fig. (6.7.1); and of the spatial roughness [-] of the local GPD parameters, Fig. (6.7.3).

eter decrease with a shorter period of in-
put data. Fig. (6.14.6) shows that the GPDs
fitted to the synthetic data remain about
equally smooth with a varying period of in-
put data.

In Fig. (6.15), the sensitivity of lo-
cal RLE (per grid-cell) is investigated. It
shows that RLE calculated from the GPDs
fitted to the synthetic data on average are
higher for low return periods and lower for
high return periods, compared to those cal-
culated from the GPDs fitted to the ob-
served. This appears largely to be a re-

sult of the higher degree of spatial coher-
ence of the extremes in the synthetic data.
Fig. (6.15.1) shows that the RLE calculated
from the GPDs fitted to the synthetic data
are slightly lower when picking a lower
global threshold. Fig. (6.15.2) shows that
the roughness of the RLE calculated from
the GPDs fitted to the synthetic data is
much lower, i.e. is smoother. Fig. (6.15.3)
and Fig. (6.15.4) show similar behaviour as
found in Fig. (6.14.3). No clear pattern
is present so the sensitivity of RLE to in-
put domain could be further investigated.
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(6.15.1) Sensitivity of local RLE to global
threshold.

(6.15.2) Sensitivity of roughness of local RLE
to global threshold.

(6.15.3) Sensitivity of local RLE to generator
domain.

(6.15.4) Sensitivity of roughness of local RLE
to generator domain.

(6.15.5) Sensitivity of local RLE to period of
observed data.

(6.15.6) Sensitivity of roughness of local RLE
to period of observed data.

Figure 6.15: Sensitivity of: local RLE of precipitation rate 𝑝 [mm/h] per grid-cell,
Fig. (6.7.2); and of the spatial roughness [-] of the RLE, Fig. (6.7.4).
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Figure 6.16: Sensitivity of autocorrela-
tions [-] to period of observed data [y],
Fig. (6.9.1).

Fig. (6.15.5) shows that the RLE calculated
from the GPDs fitted to the synthetic data
are slightly lower when using a shorter pe-
riod of input data. Fig. (6.15.6) shows that
the RLE corresponding to low return peri-
ods are rougher when using a shorter pe-
riod of input data. However, this relation-
ship appears to reverse for RLE correspond-
ing to higher return periods.

The local extreme value analysis will
be further discussed in a dedicated Sec-
tion (6.5.2).

6.4.3. Aspect 2: pa erns of occurrence
Temporal dependence Fig. (6.16) dis-
plays the difference in autocorrelations be-
tween the observed data and the synthetic.
It shows that the differences in autocorre-
lations are significant and that the genera-
tor should be improved to take autocorrela-
tion into account. It shows that autocorre-
lations are lower in the synthetic data than
in the observed data when using a shorter
period of input data, which indicates that
they are not well captured by the genera-
tor.

Temporal dependence between
events was not taken into account in the
generator. Typically, event identifica-

tion procedures are designed to (aim to)
capture temporally independent events,
which means that no temporal sequencing
(or spatio-temporal process) has to be
implemented in the reconstruction proce-
dure, thereby significantly simplifying the
process. However, such independence can
be accomplished using event identification
procedures that result in temporally dis-
tant events, like annual blocks or like POT
with large temporal spacing using tempo-
ral separation techniques or simply very
high thresholds. Regardless of whether
a generator implements techniques to
capture temporal correlation, it is an
important check to include since temporal
sequencing can be important, in particular
for precipitation [8].

Fig. (6.16) showed that temporal cor-
relation was not well addressed with the
generator developed in Chapter (5). In Sec-
tion (5.5.4), a recommendation was made
to incorporate a space-time placement pro-
cess. It is expected that such a pro-
cess should be able to appropriately ad-
dress short term sequencing. Longer term
sequencing, such as seasonality, could
be incorporated by classification based
on seasonality, as recommended in Sec-
tion (5.5.2).

Spatial dependence Fig. (6.17) displays
the difference in spatial correlations be-
tween the observed data and the syn-
thetic. It shows that pair-wise spatial cor-
relations are generally quite similar for the
observed and the synthetic data, which
means that spatial correlation is reasonably
well captured by the generator. Fig. (6.17.1)
shows that the differences are slightly
smaller with an increasing global thresh-
old. Fig. (6.17.2) shows no clear relation be-
tween spatial correlations and the size of
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(6.17.1) Sensitivity of spatial correlations [-] to
global threshold of precipitation rate𝑝 [mm/h].

(6.17.2) Sensitivity of spatial correlations [-] to
generator domain [-].

(6.17.3) Sensitivity of spatial correlations [-] to
period of observed data [y].

Figure 6.17: Sensitivity of spatial correla-
tions; Fig. (6.9.2).

the input domain. The spatial correlations
are the least well captured in the medium
domain SML2. Fig. (6.17.3) shows no clear
relation between spatial correlations and
the period of input data. Themeans of box-
plots are quite similar for 𝑃1 and 𝑃2. It
could be that the differences become larger
for 𝑃3, because the observed data record
becomes too small and spurious correla-
tions are captured in the observed data.

Spatial dependence across locations
was not explicitly taken into account in the
generator. Fig. (6.17) showed that spatial
correlations were fairly well captured by
the dynamic spatio-temporal generator.

It should be expected that spatio-
temporal coherence of dynamic events
largely takes care of the spatial dependence
between different locations. However, a

Figure 6.18: Sensitivity of an indicator of
spatio-temporal integrity 𝑓4 [-] to genera-
tor domain of Fig. (6.10). 𝑓4 is the number
of time steps in the observed event cata-
logue at the edge of the generator domain,
divided by the total number of time steps
in the observed event catalogue within the
generator domain.

challenge lies with some of the expanded
proposed procedures in Section (5.5.4). In
particular, it will be challenging to re-
tain spatial dependence across locations, if
not only dynamic spatio-temporal events
are reconstructed, but if also a space-time
placement process is applied.

6.4.4. Aspect 3: spa o-temporal in-
tegrity

Completeness of events In Fig. (6.10)b,
it can be observed that if a domain is cho-
sen too small, incomplete dynamic events
are used to obtain RLE in the BI. To quan-
tify this effect 𝑓4 is used, which is the num-
ber of time steps in the observed event cat-
alogue at the edge of the generator domain
divided by the total number of time steps
in the observed event catalogue within the
generator domain.

Fig. (6.18) displays the number of time
steps in the observed event catalogue at the
edge of the generator domain, divided by
the total number of time steps in the ob-
served event catalogue within the genera-
tor domain.

As expected, Fig. (6.18) shows that 𝑓4
decreases with an increasing size of the
generator domain. Therefore, the genera-
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tor benefits from a generator domain that
approximates the area of influence on the
area of interest in which RLE are to be cal-
culated. To use a bigger generator domain
would be fine. To use a smaller generator
domain implies that statistics are applied
to incomplete dynamic events.

When considering a dynamic spatio-
temporal generator, in which events freely
move around, it would be best to formu-
late no spatial boundaries. A number of
problems can be avoided by applying the
generator on a global scale. No dynamic
precipitation events would be incomplete.
Classes of dynamic precipitation events,
which should probably be obtained by clas-
sification according to region as proposed
in Section (5.3.2), could be complete.

Computational limitations are the
reason why this method was not applied
at the global scale. Computational aspects
are reported in Appendix (A.4). For effi-
cient computation with the current code,
a massive amount of RAM and disc space
would be required for global scale compu-
tation. However, there are potential gains.
For example, global precipitation hazard
time series could be obtained, for which a
proof-of-concept will be proposed in Chap-
ter (7). Therefore, it should be worthwhile
to put some large computational power
to work to generate globally and, thereby,
avoiding the issue of incomplete events.

6.5. Discussion
6.5.1. Dynamic expansion of informa on

- a new alterna ve
One of the main sources of uncer-

tainty in risk analysis is the limited sam-
ple of observed data, i.e. a limited amount
of evidence. To expand a (relatively small)
sample of local evidence, Merz and Blöschl
[61] provided a framework for ‘expansion of

information’ (EOI), in which they outlined
three types: causal, temporal and spatial.

First, causal EOI. In Section (1.1.3), a
simple flood risk modelling chain was in-
troduced, which showed that the statisti-
cal step can be applied in different layers
in the chain; Fig. (1.2). In the statistical
step, multiple (compound) variables may
be addressed in a single layer, as was done
in Section (5.4). However, if causality ex-
ists between variables, then preferably the
variables should be put into different lay-
ers in the flood risk modelling chain. The
statistical step should be applied in a sin-
gle layer, and dependent variables should
be calculated through themodelling chain.
In the context of precipitation, causal EOI
implies that information on the causes of
precipitation events is used - or informa-
tion on the consequences. This means that
information would be combined fromwhat
should be different layers in the flood risk
chain. Therefore, causal EOI is not consid-
ered.

Second, temporal EOI. Given the rel-
atively large amount of uncertainty in haz-
ard analyses, typically all available tempo-
ral information at a particular location is
used. Temporal expansion of information
implies that not only all available informa-
tion should be used, but that additional in-
formation should be gathered. E.g. old
archaeological evidence, such as ancient
flood marks, which can then be used as
a proxy for peak water levels of extreme
flood events. For temporal EOI, a big as-
sumption is required: stationarity. This
may be considered a problematic assump-
tion, in particular in times of accelerated
climate change. When an event occurs,
it provides information about the system
in which it occurs. For example, an event
that occurred 100.000 years ago provides
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information about the system of 100.000
years ago. This means that, if such an
event would be incorporated to fit distri-
butions of the current system, implicitly an
assumption is made of 100.000 years of sta-
tionarity, i.e. no changes in the system. In
general, given a hazard analysis of a system
state (the system in a particular point in
time), the closer on the time line an event
is to the point in time of the studied sys-
tem state, the more informative the event
is. This means that, for a study of the cur-
rent system state, recent data should be
used. Since this statement directly contra-
dicts the idea behind temporal EOI, the fol-
lowing question is raised: how long should
the time window of evidence be - are there
any alternatives to temporal EOI - what is a
good compromise?

Third, spatial EOI. The general idea of
spatial EOI is that time is substituted for
space. So, as an example of spatial EOI, a
spatial process may be applied to GPD pa-
rameters, such that spatially coherent GPD
fits are produced. In Section (6.5.2), it was
explained that the application of such a
spatial process to model parameters may
be considered an approach that requires
quite strong and explicit assumptions, and
that instead the sparsity of dynamic events
should be addressed.

In Chapter (5), a generator was devel-
oped to simulate the stochastic process of a
particular system state. In Section (6.4.2),
two approaches to obtain RLE in the British
Isles (BI) were described; a naive generator
approach (denoted as 𝐴1, fitting extremal
distributions to observed data) and a dy-
namic spatio-temporal generator (denoted
as 𝐵1, fitting extremal distributions to syn-
thetic data).

The input data to both generators was
32 years (of observed data), whereas the

temporal length of the output was 1.000
years (of synthetic data). The spatial ex-
tent for both approaches was the same
(BI). However, the synthetic data came
from the dynamic spatio-temporal gener-
ator, in the procedure of which observed
data (evidence) outside the BI was used.
For each location, the dynamic spatio-
temporal generator made use of more ob-
served data than the local time series (per
pixel). Therefore, as compared to tradi-
tional local analysis of extremes in time se-
ries, EOI is applied, but none of the three
listed above (causal, temporal or spatial).
To understand what type of EOI was ap-
plied, it should be considered which ev-
idence (observed data) was used to cal-
culate the RLE. In Section (6.4.4), it was
roughly traced back which observed data
was used to generate synthetic data in the
domain UK2; Fig. (6.10). It is not temporal
EOI, since the generator is based on the 32
years of observed data, i.e. no additional
temporal evidence was used. It is different
from spatial EOI, in that time was not sub-
stituted for space, but was included based
on the movement of events through space
in time. This introduces a new concept:
‘dynamic expansion of information’.

6.5.2. Spa ally coherent extremes - what
is wrong with the spa al process

In Fig. (6.7.3), it was observed that the
parameters of General Pareto distributions
fitted to the synthetic data were spatially
muchmore smooth than those fitted to the
observed data. This may be explained by
the use of dynamic spatio-temporal prob-
abilistic analysis, Appendix (A.1.6), which
benefits from dynamic expansion of infor-
mation, as was discussed in Section (6.5.1).
However, when using generators that work
on a per-location basis, a spatial process is
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normally used to obtain a similar effect -
increased spatial smoothness.

The spatial process refers to partic-
ular methodology that works with static
spatio-temporal probabilistic analysis, Ap-
pendix (A.1.5). In essence, extreme local
distributions are fitted (on a per-location
basis), but then the spatial process pro-
vides smoothness across nearby locations,
based on the expectation that proximity
should give comparable extreme value dis-
tributions. This aspect relates to GO1, since
smooth local distributions show that vari-
ability is introduced with regards to the
sparse, local sample. Spatial sparsity is
another aspect that should be addressed.
These aspects directly relate to what is
aimed to be achieved in the overarching
model, the stochastic process, described in
Section (3.1.1).

In the literature, several authors
applied spatial process by forcing spa-
tial smoothness of GPD parameters using
Bayesian statistics. Gilleland, Nychka, and
Schneider [40] considered ozone: ‘ How-
ever, the number of observations is small
for any one station, and one would expect
significant uncertainty in the estimates be-
cause of too few observations (exceeding the
threshold). Also, the individual models pro-
vide no obvious way to extrapolate to loca-
tions where ozone is not measured. One
strategy to improve the accuracy and pro-
vide for spatial prediction is to include a spa-
tial component that links the distribution
for different stations. In this section, a hier-
archical component is added that treats the
parameters of the GPD as a smooth surface.
’ Cooley, Nychka, and Naveau [21] consid-
ered precipitation: ‘ We anticipate that the
log-transformed scale parameter 𝜑(𝑥) will
be sensitive to regional climate effects and
build a model which describes its relation-

ship with the latent spatial process. ... In
contrast to the transformed scale parame-
ter, we are less certain of the shape param-
eter’s sensitivity to regional variables. Be-
cause the shape parameter is more difficult
to estimate than the scale parameter, we
start to model 𝜉(𝑥) as a single value and
increasingly add complexity until we have
a reasonable fit ’ Sharkey and Winter [81]
considered precipitation: ‘ This layer <pro-
cess level> of the hierarchicalmodel borrows
strength across locations. We assume an
underlying spatial process in themeanof the
distribution of both GPD parameters, such
that the parameters are more likely to be
similar in neighbouring grid-cells. As well
as these spatial effects, we can also incor-
porate fixed climate or physical effects in a
grid-cell through the inclusion of covariates
in the model. ’

In general, these authors think that
a stochastic process of coherent events
should be expected to produce spatially
coherent extremes and therefore spa-
tially smooth GPD parameters. Although
slightly dependent on the spatial resolu-
tion of the data, this should be considered
a reasonable expectation. With that
thought in mind, all of these authors
spatially smoothened the parameters of
models fitted to descriptors of events.

With these approaches, it is quite
common that the directly estimated pa-
rameters were intentionally altered to fit
with an prior belief of smoothness in the
marginal distribution parameters. The ex-
tent of alteration would be dependent on
the assumption of a Bayesian prior dis-
tribution or a penalty term for rough-
ness during the parameter estimation. In
both cases, there is usually a quite ex-
plicit assumption about the expectation of
smoothness, which one could argue is dif-
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ficult to justify.

The roughness in the map of GPDs
fitted to the observed data may be due to
the sparsity of events in the observed data.
So, rather than spatially smoothening the
model parameters, which might require
quite explicit and often ”hard-to-justify”
assumptions, the spatial sparsity of events
should be addressed, directly in conjunc-
tion with the temporal sparsity. The gener-
ation of synthetic dynamic spatio-temporal
events provides a viable alternative in that
regard.
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6.6. Conclusions
Generators may generate massive

amounts of data, in particular those of the
dynamic type. The performance of gener-
ators can be explored by investigating how
the generated, synthetic data relates to the
observed data that it was generated from.

In Section (6.2), a generic framework
was provided which can be used to explore
the performance of generators. To check
the performance of a generator, all aspects
of performance should be considered and
not just the particular aspects that the gen-
erator is trying to optimise. The frame-
work was indicated to be non-exhaustive,
but aims to help in the organisation of the
performance check. It proposes to formu-
late generic generator objectives, where for
each aspect performance indicators should
be set up that then are to be tested with dif-
ferent generator settings, aiming to get an
idea of the sensitivity of the generator.

In Section (6.3), the framework was
tested using a generator of the dynamic
type, developed in Chapter (5). To ex-
plore the performance of the generator, a
plethora of diverse performance indicators
was set up after which a sensitivity analy-
sis of these performance indicators was ex-
ecuted in order to understand how the gen-
erator works with different settings. The
indicators informed on several aspects of
the generator’s performance. First, the
generator managed to replicate the event
coverage in the observed data fairly well.
Second, local tail-end distributions (Gen-
eralised Pareto distributions) were more
spatially coherent when fitted to the gen-
erated synthetic data than to the observed.
Third, local RLE of high return periods de-
rived from the synthetic data were spatially
more coherent than the ones derived di-
rectly from the observed data. Fourth, the

general patterns in temporal and spatial
correlations were fairly well captured, but
some significant differences were found,
which means that these patterns should
be aimed to be improved when further
extensions are applied to the generator.
Fifth, spatio-temporal integrity is an issue
when not using the entire global domain,
in which case dynamic events and classes
of dynamic events may be incomplete and
therefore potentially slightly misleading.

In Section (6.4), a sensitivity analy-
sis of the performance indicators was exe-
cuted in order to understand how the gen-
erator works with different settings. As a
tool for the exploration of generator perfor-
mance, the sensitivity analysis was found to
be feasible, under the condition that a large
amount of computational power and stor-
age capacity are available. The generator
developed in Chapter (5) was found to be
sensitive in several aspects. First, the event
coverage was found to be highly dependent
on the global threshold, which indicates
that alternative methods of event identifi-
cation should be discussed and developed.
Second, local distributions were found to
be sensitive to all settings, which indicates
that the generator method should be re-
fined and that a more extensive sensitivity
analysis should be conducted in which pa-
rameters spaces should be found that pro-
duce stable results. Third, local RLE were
found to be sensitive to all settings, which
is a direct result of the sensitivity of the
General Pareto distributions. Fourth, tem-
poral correlations were found to be sensi-
tive in particular to the period of input data
and spatial correlations were found to be
sensitive to all settings, which means that
the methodology should be expanded to
perform better on these aspects, in particu-
lar on seasonality. Fifth, the simple test of
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spatio-temporal integrity was found to be
sensitive to the size of the input domain,
which indicates that the generator domain
should be chosen sufficiently large, to be
able to deliver spatio-temporal integrity for
the smaller target domain.

In Section (6.5), two issues were dis-
cussed that relate to the performance of
generators, but that cannot be captured
within the framework itself. First, it was
discussed that generators operate based on
evidence (observed data), where the lim-
ited historical sample is one of the main
sources of uncertainty in risk analysis. The
performance of a generator is related to
how well it deals with the generator objec-
tives, for which the observed data is the
basis. However, it also matters how well
the generator is able to incorporate evi-
dence, for which a framework of ‘expansion
of information’ exists in the literature. An
addition to this framework was provided,
‘dynamic expansion of information’, which
comes with the newly developed type of
‘dynamic generator’. The investigation of
the region of influence showed that the ex-
treme value analysis using the synthetic
data was derived from much more than
the data observed in the region for which
the extreme value analysis was carried out.
This is a direct result of the consideration
of moving, dynamic events and hence the
concept was introduced of dynamic expan-
sion of information. When discussing the
quality of a generator, it should be included
how well the generator makes use of the
different options of expansion of informa-
tion. Second, the spatial process was dis-
cussed, which is a method used to pro-
vide spatial smoothness of extreme distri-
butions, based on the expectation that the
extreme distributions should be spatially
smooth. The dynamic type of generator

does not make use of a spatial process, but
the local extreme value analysis revealed
that the General Pareto distribution pa-
rameters fitted to the generated synthetic
data were spatially much smoother than
those fitted to the observed data. Where
typically in the literature such smoothness
is forced by use of a spatial process, which
could be related to strong and explicit as-
sumptions about the spatial smoothness.
When such assumptions are hard to jus-
tify, the generation of synthetic dynamic
events provides a viable alternative to the
approach of the spatial process.

In summary, a generic framework to
explore the performance of generators was
provided, tested and discussed. It provides
a tool to get an overview of the many dif-
ferent performance aspects that have to be
considered, which inform on the quality of
the generator and provide a certain amount
of grip on the often massive amounts of
synthetic data produced using generators.
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7.1. Summary
In Chapter (3), a framework was pro-

posed for the event-based generation of
synthetic data. This framework helps with
the systemic development of event-based
generators, to be used to provide an esti-
mate of the stochastic process. It was ap-
plied in this thesis within the context of
large-scale flood hazard sources.

In Chapter (4), the framework was
applied to the river discharge in all ma-
jor European river basins. This data was
extracted from a (modelled) gridded dis-
charge data set that covers the entire Euro-
pean continent. Methodology of the type
event-based static spatio-temporal proba-
bilistic analysis (SSTPA) was applied. Ad-
vances were made by tracking discharge
waves and by successfully applying the sta-
tistical model to a a matrix of high di-
mensionality, thereby capturing the spa-
tial dependence structure of discharge
peaks. Three main limitations of event-
based SSTPA were identified. First, the ap-
plication of event-based SSTPA lead to gaps
in the descriptor matrix. This is problem-
atic for the statistical model and the recon-
struction of events. Second, as a result of
the first, it was concluded that this type
of methodology is not spatially scalable.
With a larger spatial domain, there will be
an increasing amount of gaps. Third, with
SSTPA, an increased density of observed
data, i.e. usingmore locations, results in an
increased dimensionality of the statistical
model. This implies that, beyond the limit-
ing dimensionality of the statistical model,
event-based SSTPA does not benefit from
an increasing density of observed data.

In Chapter (5), methodology was
developed of the type event-based dy-
namic spatio-temporal probabilistic analy-
sis (DSTPA), designed in particular to over-

come the limitations of event-based SSTPA.
The generator was developed to be applied
to - and to benefit from - large, dense, grid-
ded data sets. It was applied to a global
precipitation data set. A subset of the
global data set was used, but, with more
computational resources, themethodology
can be readily applied to the entire global
data set and to data sets of increased res-
olution. By describing dynamic spatio-
temporal events, the dimensionality of the
matrices for multivariate analysis was sig-
nificantly reduced and no gaps emerged,
thereby affirming compatibility between
the method of application and the statis-
tical model used at the heart of the gener-
ator. In addition, the possibility of appli-
cation to multiple compound sources was
investigated and successfully applied, with
the requirement of a few slight extensions
of the methodology.

In Chapter (6), the performance of
the dynamic precipitation generator was
analysed. A framework of relevant checks
was developed, for which simple perfor-
mance indicators were provided. Us-
ing these performance indicators, a range
of reasonable generator settings was ex-
plored. This analysis required significant
computational effort and resources, which
highlighted the need for simple but ef-
fective algorithms in the context of big
data analysis. A non-standard category of
spatio-temporal integrity emerged, which
is related to the (new) spatio-temporal
character of the dynamic generator. It was
found that the generation of synthetic, dy-
namic events provides spatial smoothness
of extremes. This eliminates the need for
explicit assumptions (or prior belief) of the
spatial smoothness in the model parame-
ters from the application of SSTPA in com-
binationwith a spatial process, which is an-
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other popular approach in the literature.
Finally, the concept of dynamic expansion
of information was introduced, which may
play a key role the production of large-scale
hazard time series.

7.2. Outlook - large-scale precipi-
ta on hazard me series

7.2.1. Ingredients
Hazards are dependent on the system

state and therefore change in time, as the
system evolves in time. In Section (3.1.1),
it was explained that the stochastic pro-
cess should be expected to be smooth both
in space and in time. In Section (6.5.1),
a fundamental problem with temporal ex-
pansion of information was introduced, re-
lated to the (in)validity of the stationarity
assumption, where it was argued that not
necessarily all temporal evidence should be
included. Dynamic expansion of informa-
tion was introduced, which can be used to
incorporate additional evidence to a par-
ticular location by considering dynamic
events that (could potentially) move over
that location. To investigate if a stochas-
tic process with spatially and temporally
smooth return level estimates (RLE) can be
obtained using a limited time window of
evidence but with the help of dynamic ex-
pansion of information, the generator de-
veloped in Chapter (5) is applied, using the
results of the sensitivity analysis applied in
Chapter (6), to generate precipitation haz-
ard time series.

7.2.2. Se ngs
A maximum amount of event cov-

erage should be obtained using a lower
threshold (OBJ1), but the threshold should
not be chosen too low to be able to separate
dynamic events, which is required for suf-

ficiently large populations in the statistical
models. The global threshold was set to be
1.8, which showed reasonable performance
in all sensitivity tests.

The BSL2 domain was chosen based
on the spatio-temporal integrity of events;
Fig. (6.18). Computational power is the
argument to chose a smaller spatial do-
main, but sufficient computational power
was available for performing the analysis in
the larger domain of the three investigated;
Fig. (6.11).

A limited temporal coverage was used
comprising 20 years of observed continu-
ous precipitation data, which in the sensi-
tivity analysis gave reasonable performance
in retaining auto and spatial correlations.
The temporal coverage was subsequently
shifted by one year in order to obtain the
inputs for precipitation hazard time series.

7.2.3. Local temporal smoothness
In Figs. (7.1) to (7.3), time series of

RLE are displayed, corresponding to re-
turn periods of respectively 10, 100 and
1.000 years calculated from the observed
and the synthetic data. It can be ob-
served that, in general, the RLE calculated
from the synthetic data are slightly higher
than from the observed, with the excep-
tion of the locally very high RLE peaks,
for which the RLE calculated from the ob-
served data are much higher than from the
synthetic. So a smoothening effect is ap-
parent. It may be interpreted that the high
peak RLE, found at particular locations in
the observed data, are more spread out
in the synthetic data over adjacent loca-
tions. This spatial smoothening effect was
already evident in Fig. (6.7.4). However,
now a smoothening effect can also be ob-
served in time. This combination of spatial
and temporal smoothening demonstrates
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Figure 7.1: Time series of RLE of precipitation rate 𝑝 [mm/h] corresponding to a return
period of 10 years, for the locations defined in Fig. (6.8). The labels are the longitudes
and lattitudes of the locations.
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Figure 7.2: Time series of RLE of precipitation rate 𝑝 [mm/h] corresponding to a return
period of 100 years, for the locations defined in Fig. (6.8). The labels are the longitudes
and lattitudes of the locations.
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Figure 7.3: Time series of RLE of precipitation rate 𝑝 [mm/h] corresponding to a return
period of 1.000 years, for the locations defined in Fig. (6.8). The labels are the longitudes
and lattitudes of the locations.
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that a dynamic spatio-temporal generator
provides spatio-temporal smoothening of
RLE.

Note that the synthetic data suffers
from vibrations, which implies a slight
temporal instability in the synthetic data
produced by the generator that should be
addressed in future analyses. Moreover,
the analysis presented here might reveal
the effects on flood risk of changes in the
real world system (e.g. non-stationarity re-
lated to climate change), but the results
are also influenced by sample variability.
Therefore, further tests would be needed to
assess the causes of any changes shown in
Figs. (7.1) to (7.3).

7.2.4. Maps of temporal smoothness
In Fig. (7.4), time series of RLE are

displayed for the entire British Isles, cor-
responding to return periods of respec-
tively 10, 100, 1.000 and 10.000 years for
both the observed and the synthetic data.
With appropriate transformations of the
colourscale, it can be observed that the
time series of the RLE from the synthetic
data are more smooth, in line with the lo-
cal time series in Figs. (7.1) to (7.3).

In Fig. (7.5), the differences in RLE be-
tween the (yearly) time steps is displayed.
It can be observed that the differences be-
tween the RLE from the observed data are
highly fragmented, whereas, in the dif-
ferences between the RLE from the syn-
thetic data, spatio-temporal patterns are
emerging. These spatio-temporal patterns
are volatile. Therefore, the results require
improvement and should not yet be at-
tempted to be interpreted. At this stage,
it is difficult to detect clear trends or sig-
natures of (multi-year) variations in these
patterns, which means that it is not yet
possible to link these patterns to physical

processes. However, the simple fact that
spatio-temporal patterns emerge, is a mo-
tivating finding. Although the patterns are
not clear for the British Isles, it is likely that
global spatio-temporal patterns would be
more clear, which implies that in the first
place this type of analysis should be carried
out on the global scale, after which a finer
spatial scale should be considered.

Fig. (7.6) displays two indicators
of temporal smoothness/stability. In
Fig. (7.6.1), it can be observed that the
standard deviation of the return level esti-
mate time series are more smooth in the
synthetic data than in the observed. In
the observed data, at locations where there
was a few relatively small observed events,
small standard deviations are found, which
is not surprising. Large standard devia-
tions can be found in areas where there are
relatively big events, which correspond to
the large jumps observed in the time se-
ries of the subset of locations displayed in
Figs. (7.1) to (7.3). In Fig. (7.6.2), it can
be observed that the mean of absolute dif-
ferences between time steps shows a sim-
ilar general picture as the standard devia-
tion. However, this indicator is less sensi-
tive to trends in RLE. It is smaller at many
locations in the observed data, in particular
for the RLE corresponding to the lower re-
turn periods. In addition, some areas can
be identified in the synthetic data where
the mean differences pick up a large signal,
which probably means that the generator
has some instability in these regions. This
can also be observed by the noise in the sig-
nal in the time series of the subset of loca-
tions displayed in Figs. (7.1) to (7.3).
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Figure 7.4: Maps of the RLE of precipitation rate 𝑝 [mm/h] depicted in Figs. (7.1) to (7.3),
per time interval.
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Figure 7.5: Maps of difference in RLE of precipitation rate 𝑝 [mm/h] per subsequent time
interval, for the maps depicted in Fig. (7.4).
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(7.6.1) The standard deviation is displayed
of RLE in the 11 time steps displayed in
Fig. (7.4).

(7.6.2) The standard deviation is displayed
of the absolute differences in RLE between
timesteps displayed in Fig. (7.5).

Figure 7.6: Two indicators of temporal smoothness/stability of the time series of RLE of
precipitation rate 𝑝 [mm/h] displayed in Figs. (7.4) and (7.5).
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7.3. Conclusions
A new generation of analyses - why we
should move from static spatio-tempo-
ral analysis to dynamic spatio-tempo-
ral analysis In Chapter (3), a framework
for event-based flood hazard generation
was introduced. For event-based proba-
bilistic analysis, three reasons were iden-
tified to move from static spatio-temporal
probabilistic analysis to dynamic spatio-
temporal probabilistic analysis. First, in
Chapter (4), it was identified that for event-
based static spatio-temporal probabilistic
analysis a limited compatibility exists be-
tween methods of event description and
statistical multivariate methods. This lim-
itation led to the development of a new,
dynamic type of generator, which was car-
ried out in Chapter (5). Second, in Chap-
ter (6), it was found that dynamic spatio-
temporal probabilistic analysis leads to
spatial smoothness of extremes, which can
be considered a scientifically more rigor-
ous method than the standard application
of static spatio-temporal probabilistic anal-
ysis in combination with a spatial pro-
cess. Third, it turns out that the appli-
cation of dynamic spatio-temporal proba-
bilistic analysis provides the added value of
dynamic expansion of information, which
may increase the credibility of probabilis-
tic analyses by incorporating additional ev-
idence, or, alternatively, may allow the use
of a shorter temporal record for probabilis-
tic analysis.

Outlook In Section (7.2), an outlook was
provided of where this research may be go-
ing: large-scale precipitation hazard time
series. In particular, the concept of dy-
namic expansion of information was used,
which implies that, for a particular loca-
tion, additional evidence could be incor-

porated using the dynamic type of gener-
ator. This suggested the possibility of us-
ing shorter periods of input data, which in
turn enabled the estimation of hazard time
series. Since the dynamic spatio-temporal
generator is spatially scalable, it can be ap-
plied globally. Making use of these contri-
butions, an outlook of global hazard time
series analysis was proposed, supported
by a proof-of-concept which made use of
the ingredients provided in Chapters (5)
and (6). Although it was not yet possible
to link physical explanations to the results
of this trial experiment in terms of tem-
poral changes in the precipitation hazard,
it was clear that spatio-temporal patterns
started to emerge. The first next challenge
would be to improve the stability of the
stochastic process in time. The results sug-
gest that global precipitation hazard time
series are within reach. These global pre-
cipitation hazard time series could be used
to calculate global pluvial (and, with rain-
fall runoff models, global fluvial) flood risk
time series, which should be considered
extremely relevant in the current predica-
ment of global climate change. What is re-
quired now is a project team to improve the
quality of the generator and a very big com-
puter.





A
Appendix

A.1 Defini ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.1.1 Flood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.1.2 Blocks versus events . . . . . . . . . . . . . . . . . . . . . . . . 138

A.1.3 Return period/level. . . . . . . . . . . . . . . . . . . . . . . . . 139

A.1.4 Local probabilis c analysis . . . . . . . . . . . . . . . . . . . . . 139

A.1.5 Sta c spa o-temporal probabilis c analysis. . . . . . . . . . . . . 139

A.1.6 Dynamic spa o-temporal probabilis c analysis . . . . . . . . . . . 139

A.2 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.3 Implementa on: big data system . . . . . . . . . . . . . . . . . . . . . 144

A.3.1 Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.3.2 Computa onal mes . . . . . . . . . . . . . . . . . . . . . . . . 144

A.3.3 Se ngs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

143



144 A. Appendix

A.1. Defini ons
A.1.1. Flood

What is a flood? The word ‘flood’
is old and generally means ‘flowing water’
in different languages (Old-Dutch/Dutch:
‘fluod/vloed’; Anglo-Saxon: ‘flód’; Dan-
ish/Norwegian/Swedish: ‘flod’; French:
‘flot’; German: ‘flut’).

The old meaning of ‘flowing water’ is
not particularly useful to understand the
current usage of the word ‘flood’. Unfor-
tunately, ‘flood’ evolved into several direc-
tions, so that now several different defi-
nitions can be identified in the literature,
used in a mixed fashion:

1. A rising water level. This can be a ris-
ing water level in the river (as the re-
sult of a discharge wave) or in the sea
(tidal waves, flood/ebb; wind storm,
surge).

2. A (high) river discharge. The river
discharge is the water flowing within
the river banks. Coupling ‘flood’ to
high discharge is popular in the con-
temporary literature, where flood fre-
quency analysis generally refers to
(peaks of) discharge waves.

3. Water flowingwhere it normally does
not. This refers to water flowing
outside the river banks or coastal
defence structures, i.e. inundation
depth/extent. This definition appears
to agree with the way most people
understand the word flood.

Within the context of flood risk, where
we are interested in damage/consequences,
definition 3 would be the most useful.
However, where possible, the variables of
interest (discharge, water level, inundation
depth/extent, etcetera) will be directly re-
ferred to.

A.1.2. Blocks versus events
For statistical analysis, data series are

generally pre-processed to a particular set
of descriptors. These descriptors describe
particular clusters of data. We distinguish
two generic types of clusters of data:

a. ‘blocks’: the entire data set is sliced into
blocks of a particular temporal length,

b. ‘events’: the subset of interest is ex-
tracted from the data set.

Confusion may arise for several rea-
sons:

i. If the definition of events is that they
are the data clusters of interest within
a particular data set, one might argue
that all blocks of data are of interest,
and that therefore each block consti-
tutes an event. Here, events are de-
fined to be a subset of the continuous
data set, where the subset is not the en-
tire data set.

ii. The fact that blocks are included in
a thesis that focusses on event-based
analyses. Studies based on blocks are
widely found throughout the litera-
ture and therefore it was interesting to
compare and contrast the methods.

iii. When block-like events are applied,
like blocks of one week that are non-
regularly spaced in time, which would
here fall under the event-based ap-
proach. Hence, ‘block-events’.

iv. Descriptions which combine annual
maximum with peak are confusing,
since ‘annual’ suggests a block-based
approach, whereas ‘peak’ suggests an
event-based approach. Generally, an
annual maximum will correspond to
a peak of an event, unless the event
spans across two years, for example,
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from 30 December to 5 January, in
which case one of the two annual max-
ima may not be a peak. It is assumed
that ‘annual maximum peaks’ are the
largest peaks of events per year, where
events are assigned to the year inwhich
the peak occurred.

A.1.3. Return period and return level es-
mates

Reference is made to ‘floods’ (events)
with a particular return period, for exam-
ple, the ‘100-year flood’. Depending on:

• the variable of interest (water level,
discharge, inundation depth),

• the block/event definition,

• the chosen descriptor of the
block/event (peak, volume, extent,
duration),

a particular event will have a different re-
turn period. In other words, the different
descriptors of a particular flood event will
have return level estimates that can be as-
sociated with different return periods. For
example a particular event can have a peak
that occurs once every 100 years and an ex-
tent that occurs once every 10 years. It is
therefore concluded that a flood event does
not have a unique return period and there-
fore, when using the notion of return pe-
riod, it will be attempted to clearly explain
which event descriptor is referred to.

Return level estimates are defined to
be the values corresponding to the return
periods.

A.1.4. Local probabilis c analysis
In this study, ‘local probabilistic anal-

ysis’ (LPA) is defined as an analysis where
time series are analysed per location.

A.1.5. Sta c spa o-temporal probabilis-
c analysis

In this study, ‘static spatio-temporal
probabilistic analysis’ (SSTPA) is defined
as an analysis where the spatial extent of
events is determined by the (pre-defined)
locations at which data clusters, which are
generally temporal blocks or local events,
are described. In the literature, this type of
analysis may be referred to as ‘multi-site’, as
‘spatial-temporal’ or as ‘spatio-temporal’.

A.1.6. Dynamic spa o-temporal proba-
bilis c analysis

In this study, ‘dynamic spatio-
temporal probabilistic analysis’ (DSTPA)
is defined as an analysis where the spatial
extent of events: A.) is defined based on
the location of occurrence of the physical
phenomenon and B.) can vary in time for
each event.
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A.2. Acronyms
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Table A.1: Acronyms used in Tables (2.2) and (2.4).

Type Acronym Meaning

General Blocks The entire data set is sliced into blocks of a particular temporal length.

Events The subset of interest is extracted from the data set.

Descriptors Value

Maximum

Peak

Sum

Mean

Duration

Radius

Soil Moisture Deficit

Inter Event Arrival Time

Cross-Correlation

Number of wet..

Marginal
Distribu-
tions

Emp Empirical distribution

GP Generalised Pareto distribution

GEV Generalised Extreme Value distribution

Exp Exponential distribution

NST Normal Scores Transform

Row-Wise
Dependence

NP Non-Parametric model

AR Auto-Regressive model

HT04 Heffernan and Tawn 2004

Column-
Wise De-
pendence

MC Markov Chain

Space-Time PP Poisson process

STPP Spatio-Temporal Point Process

NS Neyman–Scott process

Model Fit-
ting

L L-moments

ML Maximum Likelihood
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PML Penalised Maximum Likelihood

AIC Akaike Information Criterion

SGP Spatial Gaussian Process

Table A.2: Acronyms used in Table (3.1).

Column Acronym Meaning

Variables Gen Generation

Val Validation

Descriptors Value

Maximum

Peak

Sum

Mean

Duration

Radius

Soil Moisture Deficit

Inter Event Arrival Time

Cross-Correlation

Number of wet..

Classification Loc Location/site

Statistics

Marginals Emp Empirical distribution

GP Generalised Pareto distribution

GEV Generalised Extreme Value distribution

Exp Exponential distribution

NST Normal Scores Transform

Dependence (row) AR Auto-Regressive model

NP Non-Parametric model

HT04 Heffernan and Tawn 2004

Dependence (col-
umn)

MC Markov Chain

Space-Time PP Poisson process

STPP Spatio-Temporal Point Process

NS Neyman–Scott process
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Model Fitting L L-moments

ML Maximum Likelihood

PML Penalised Maximum Likelihood

AIC Akaike Information Criterion

SGP Spatial Gaussian Process
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A.3. Assump ons Heffernan and Tawn (2004)
Denote the multivariate distribution with standard Laplace marginal distribution

Y = {𝑌 , 𝑌 , ..., 𝑌 } (A.1)

Denote the sub multivariate distribution

Y i = {𝑌 , 𝑌 , ..., 𝑌 , 𝑌 , ..., 𝑌 } (A.2)

The Heffernan-Tawn model assumes that vector functions 𝑎 and 𝑏, both 𝑅 → 𝑅( ),
exist such that the standardized variable

Z|(𝑌 = 𝑦 ) = Y i − a(𝑦 )
b(𝑦 ) (A.3)

has the property that
lim → Pr{Z ≤ z|(𝑌 = 𝑦 )} = G(z) (A.4)

where the limit distribution 𝐺 has non-degenerate marginal distributions. It follows
from this assumption that, conditional on 𝑌 being larger than a fixed threshold 𝑢, as the
threshold 𝑢 → ∞ variables 𝑌 and 𝑍 are independent for all 𝑌 . Here the same standard-
izing vector functions as Heffernan and Tawn [46] have been used, where

a(𝑦) = (𝑎 𝑦, 𝑎 𝑦, ..., 𝑎 𝑦, 𝑎 𝑦, ..., 𝑎 𝑦) (A.5)

and
b(𝑦) = (𝑦 , 𝑦 , ..., 𝑦 , 𝑦 , ..., 𝑦 ) (A.6)
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A.4. Implementa on: big data system
A.4.1. Devices

deviceNr device nCores memtotal

1 1 compute05.hrw-uk.local 12 47.16

2 2 compute06.hrw-uk.local 12 47.16

3 3 compute08.hrw-uk.local 12 47.16

4 5 compute19.hrw-uk.local 16 62.87

5 6 compute20.hrw-uk.local 16 62.87

6 7 compute21.hrw-uk.local 16 62.87

7 8 compute22.hrw-uk.local 16 62.87

8 9 compute27.hrw-uk.local 28 62.81

9 10 compute28.hrw-uk.local 28 62.81

Table A.3: Devices used

A.4.2. Computa onal mes

scriptNr script

1 1 CFSR/R_scripts/runtime/CFSR_all.R

2 2 CFSR/R_scripts/runtime/CFSR_inspection.R

3 3 R_scripts/generator/1_event_identification/1_eventsSeparate.R

4 4 R_scripts/generator/1_event_identification/2_eventsImageAnalysis.R

5 5 R_scripts/generator/1_event_identification/3a_eventsCluster_hours_stitch.R

6 6 R_scripts/generator/1_event_identification/3b_eventsCluster_months.R

7 7 R_scripts/generator/1_event_identification/3c_eventsCluster_compound.R

8 8 R_scripts/generator/2_event_description/1_featuresAll.R

9 9 R_scripts/generator/2_event_description/2_classification_som_hclust.R

10 10 R_scripts/generator/3_statistics/1_GPD.R

11 11 R_scripts/generator/3_statistics/2_transforms.R

12 12 R_scripts/generator/3_statistics/3_HT04.R

13 13 R_scripts/generator/4_simulation_features/1_simFaster.R

14 14 R_scripts/generator/4_simulation_features/2_varAnalysed.R

15 15 R_scripts/generator/5_reconstruction_events/1_reconstruct_events.R

16 16 R_scripts/generator/5_reconstruction_events/2_eventsPerVar.R

17 17 R_scripts/generator/6_reconstruction_continuous/1_reconstruct_contin.R

18 18 R_scripts/inspection/2_observed_versus_synthetic/0_data/0_arrayObs_to_timeSeries_hydra.R

19 19 R_scripts/inspection/2_observed_versus_synthetic/0_data/1_arraySyn_to_timeSeries_hydra.R

20 20 R_scripts/inspection/2_observed_versus_synthetic/0_data/2_merge_timeSeries_synSets_hydra.R

21 21 R_scripts/inspection/2_observed_versus_synthetic/0_data/3_subsetLoc.R

22 22 R_scripts/inspection/2_observed_versus_synthetic/1_local/1_2_3_b_returnlevels_POT_GPD.R

23 23 R_scripts/inspection/2_observed_versus_synthetic/1_local/4_correlation_temporal.R

24 24 R_scripts/inspection/2_observed_versus_synthetic/1_local/5_event_coverage.R

25 25 R_scripts/inspection/2_observed_versus_synthetic/2_spatial/1_spatial_correlations.R

26 26 R_scripts/inspection/2_observed_versus_synthetic/2_spatial/2_smoothness_images.R

Table A.4: Script numbers
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Figure A.1: Computational times for the different analyses performed (in Tables (A.5)
to (A.7)), per script (in Table (A.4)).
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Figure A.2: Computational times for the different analyses performed (in Tables (A.5)
to (A.7)), per script (in Table (A.4)).
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Figure A.3: Computational times for the different analyses performed (in Tables (A.5)
to (A.7)), per script (in Table (A.4)).
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A.4.3. Se ngs

analV variables domains.local domains.ST settings.years settings.months settings.nSynSets

1 ”V1-BSL2-1991-2000-1.5-R4” ”prate” ”UK2” ”BSL2” c(1991L, 2000L) c(1L, 12L) 100L

2 ”V1-BSL2-1991-2000-1.65-R4” ”prate” ”UK2” ”BSL2” c(1991L, 2000L) c(1L, 12L) 100L

3 ”V1-BSL2-1991-2000-1.8-R4” ”prate” ”UK2” ”BSL2” c(1991L, 2000L) c(1L, 12L) 100L

4 ”V1-BSL2-1991-2000-1.95-R4” ”prate” ”UK2” ”BSL2” c(1991L, 2000L) c(1L, 12L) 100L

5 ”V1-BSL2-1991-2000-2.1-R4” ”prate” ”UK2” ”BSL2” c(1991L, 2000L) c(1L, 12L) 100L

6 ”V1-SML2-1991-2000-1.5-R4” ”prate” ”UK2” ”SML2” c(1991L, 2000L) c(1L, 12L) 100L

7 ”V1-SML2-1991-2000-1.65-R4” ”prate” ”UK2” ”SML2” c(1991L, 2000L) c(1L, 12L) 100L

8 ”V1-SML2-1991-2000-1.8-R4” ”prate” ”UK2” ”SML2” c(1991L, 2000L) c(1L, 12L) 100L

9 ”V1-SML2-1991-2000-1.95-R4” ”prate” ”UK2” ”SML2” c(1991L, 2000L) c(1L, 12L) 100L

10 ”V1-SML2-1991-2000-2.1-R4” ”prate” ”UK2” ”SML2” c(1991L, 2000L) c(1L, 12L) 100L

11 ”V1-UK2-1991-2000-1.5-R4” ”prate” ”UK2” ”UK2” c(1991L, 2000L) c(1L, 12L) 100L

12 ”V1-UK2-1991-2000-1.65-R4” ”prate” ”UK2” ”UK2” c(1991L, 2000L) c(1L, 12L) 100L

13 ”V1-UK2-1991-2000-1.8-R4” ”prate” ”UK2” ”UK2” c(1991L, 2000L) c(1L, 12L) 100L

14 ”V1-UK2-1991-2000-1.95-R4” ”prate” ”UK2” ”UK2” c(1991L, 2000L) c(1L, 12L) 100L

15 ”V1-UK2-1991-2000-2.1-R4” ”prate” ”UK2” ”UK2” c(1991L, 2000L) c(1L, 12L) 100L

16 ”V1-BSL2-1986-2005-1.5-R4” ”prate” ”UK2” ”BSL2” c(1986L, 2005L) c(1L, 12L) 50L

17 ”V1-BSL2-1986-2005-1.65-R4” ”prate” ”UK2” ”BSL2” c(1986L, 2005L) c(1L, 12L) 50L

18 ”V1-BSL2-1986-2005-1.8-R4” ”prate” ”UK2” ”BSL2” c(1986L, 2005L) c(1L, 12L) 50L

19 ”V1-BSL2-1986-2005-1.95-R4” ”prate” ”UK2” ”BSL2” c(1986L, 2005L) c(1L, 12L) 50L

20 ”V1-BSL2-1986-2005-2.1-R4” ”prate” ”UK2” ”BSL2” c(1986L, 2005L) c(1L, 12L) 50L

21 ”V1-SML2-1986-2005-1.5-R4” ”prate” ”UK2” ”SML2” c(1986L, 2005L) c(1L, 12L) 50L

22 ”V1-SML2-1986-2005-1.65-R4” ”prate” ”UK2” ”SML2” c(1986L, 2005L) c(1L, 12L) 50L

23 ”V1-SML2-1986-2005-1.8-R4” ”prate” ”UK2” ”SML2” c(1986L, 2005L) c(1L, 12L) 50L

24 ”V1-SML2-1986-2005-1.95-R4” ”prate” ”UK2” ”SML2” c(1986L, 2005L) c(1L, 12L) 50L

25 ”V1-SML2-1986-2005-2.1-R4” ”prate” ”UK2” ”SML2” c(1986L, 2005L) c(1L, 12L) 50L

26 ”V1-UK2-1986-2005-1.5-R4” ”prate” ”UK2” ”UK2” c(1986L, 2005L) c(1L, 12L) 50L

27 ”V1-UK2-1986-2005-1.65-R4” ”prate” ”UK2” ”UK2” c(1986L, 2005L) c(1L, 12L) 50L

28 ”V1-UK2-1986-2005-1.8-R4” ”prate” ”UK2” ”UK2” c(1986L, 2005L) c(1L, 12L) 50L

29 ”V1-UK2-1986-2005-1.95-R4” ”prate” ”UK2” ”UK2” c(1986L, 2005L) c(1L, 12L) 50L

30 ”V1-UK2-1986-2005-2.1-R4” ”prate” ”UK2” ”UK2” c(1986L, 2005L) c(1L, 12L) 50L

31 ”V1-BSL2-1981-2010-1.5-R4” ”prate” ”UK2” ”BSL2” c(1981L, 2010L) c(1L, 12L) 34L

32 ”V1-BSL2-1981-2010-1.65-R4” ”prate” ”UK2” ”BSL2” c(1981L, 2010L) c(1L, 12L) 34L

33 ”V1-BSL2-1981-2010-1.8-R4” ”prate” ”UK2” ”BSL2” c(1981L, 2010L) c(1L, 12L) 34L

34 ”V1-BSL2-1981-2010-1.95-R4” ”prate” ”UK2” ”BSL2” c(1981L, 2010L) c(1L, 12L) 34L

35 ”V1-BSL2-1981-2010-2.1-R4” ”prate” ”UK2” ”BSL2” c(1981L, 2010L) c(1L, 12L) 34L

36 ”V1-SML2-1981-2010-1.5-R4” ”prate” ”UK2” ”SML2” c(1981L, 2010L) c(1L, 12L) 34L

37 ”V1-SML2-1981-2010-1.65-R4” ”prate” ”UK2” ”SML2” c(1981L, 2010L) c(1L, 12L) 34L

38 ”V1-SML2-1981-2010-1.8-R4” ”prate” ”UK2” ”SML2” c(1981L, 2010L) c(1L, 12L) 34L

39 ”V1-SML2-1981-2010-1.95-R4” ”prate” ”UK2” ”SML2” c(1981L, 2010L) c(1L, 12L) 34L

40 ”V1-SML2-1981-2010-2.1-R4” ”prate” ”UK2” ”SML2” c(1981L, 2010L) c(1L, 12L) 34L

41 ”V1-UK2-1981-2010-1.5-R4” ”prate” ”UK2” ”UK2” c(1981L, 2010L) c(1L, 12L) 34L

42 ”V1-UK2-1981-2010-1.65-R4” ”prate” ”UK2” ”UK2” c(1981L, 2010L) c(1L, 12L) 34L

43 ”V1-UK2-1981-2010-1.8-R4” ”prate” ”UK2” ”UK2” c(1981L, 2010L) c(1L, 12L) 34L

44 ”V1-UK2-1981-2010-1.95-R4” ”prate” ”UK2” ”UK2” c(1981L, 2010L) c(1L, 12L) 34L

45 ”V1-UK2-1981-2010-2.1-R4” ”prate” ”UK2” ”UK2” c(1981L, 2010L) c(1L, 12L) 34L

Table A.5: Settings sensitivity - part 1
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methods.sep settings.prate.threshSep methods.clust methods.class settings.featClassify settings.nEventsPerClass

1 ”threshGlob” 1.5 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 250L

2 ”threshGlob” 1.65 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 250L

3 ”threshGlob” 1.8 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 250L

4 ”threshGlob” 1.95 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 250L

5 ”threshGlob” 2.1 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 250L

6 ”threshGlob” 1.5 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 250L

7 ”threshGlob” 1.65 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 250L

8 ”threshGlob” 1.8 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 250L

9 ”threshGlob” 1.95 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 250L

10 ”threshGlob” 2.1 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 250L

11 ”threshGlob” 1.5 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 250L

12 ”threshGlob” 1.65 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 250L

13 ”threshGlob” 1.8 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 250L

14 ”threshGlob” 1.95 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 250L

15 ”threshGlob” 2.1 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 250L

16 ”threshGlob” 1.5 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 500L

17 ”threshGlob” 1.65 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 500L

18 ”threshGlob” 1.8 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 500L

19 ”threshGlob” 1.95 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 500L

20 ”threshGlob” 2.1 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 500L

21 ”threshGlob” 1.5 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 500L

22 ”threshGlob” 1.65 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 500L

23 ”threshGlob” 1.8 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 500L

24 ”threshGlob” 1.95 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 500L

25 ”threshGlob” 2.1 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 500L

26 ”threshGlob” 1.5 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 500L

27 ”threshGlob” 1.65 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 500L

28 ”threshGlob” 1.8 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 500L

29 ”threshGlob” 1.95 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 500L

30 ”threshGlob” 2.1 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 500L

31 ”threshGlob” 1.5 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 1000L

32 ”threshGlob” 1.65 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 1000L

33 ”threshGlob” 1.8 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 1000L

34 ”threshGlob” 1.95 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 1000L

35 ”threshGlob” 2.1 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 1000L

36 ”threshGlob” 1.5 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 1000L

37 ”threshGlob” 1.65 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 1000L

38 ”threshGlob” 1.8 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 1000L

39 ”threshGlob” 1.95 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 1000L

40 ”threshGlob” 2.1 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 1000L

41 ”threshGlob” 1.5 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 1000L

42 ”threshGlob” 1.65 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 1000L

43 ”threshGlob” 1.8 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 1000L

44 ”threshGlob” 1.95 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 1000L

45 ”threshGlob” 2.1 ”polygon” ”som” c(”ratPeakVol”, ”cogV_t”, ”cog_x”, ”cog_y”) 1000L

Table A.6: Settings sensitivity - part 2
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settings.mqu settings.dqu settings.pqu methods.rec settings.featReconstruct

1 0.8 0.8 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

2 0.8 0.8 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

3 0.8 0.8 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

4 0.8 0.8 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

5 0.8 0.8 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

6 0.8 0.8 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

7 0.8 0.8 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

8 0.8 0.8 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

9 0.8 0.8 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

10 0.8 0.8 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

11 0.8 0.8 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

12 0.8 0.8 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

13 0.8 0.8 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

14 0.8 0.8 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

15 0.8 0.8 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

16 0.85 0.85 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

17 0.85 0.85 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

18 0.85 0.85 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

19 0.85 0.85 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

20 0.85 0.85 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

21 0.85 0.85 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

22 0.85 0.85 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

23 0.85 0.85 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

24 0.85 0.85 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

25 0.85 0.85 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

26 0.85 0.85 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

27 0.85 0.85 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

28 0.85 0.85 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

29 0.85 0.85 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

30 0.85 0.85 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

31 0.9 0.9 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

32 0.9 0.9 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

33 0.9 0.9 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

34 0.9 0.9 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

35 0.9 0.9 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

36 0.9 0.9 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

37 0.9 0.9 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

38 0.9 0.9 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

39 0.9 0.9 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

40 0.9 0.9 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

41 0.9 0.9 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

42 0.9 0.9 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

43 0.9 0.9 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

44 0.9 0.9 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

45 0.9 0.9 0.9 ”R4” c(”volume”, ”peak”, ”extent”)

Table A.7: Settings sensitivity - part 3
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