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The survival and well-being of humans require solving the patch-switching problem: we must decide when to stop collecting rewards in
a current patch and travel somewhere else where gains may be higher. Previous studies suggested that frontal regions are underpinned
by several processes in the context of foraging decisions such as tracking task difficulty, and/or the value of exploring the environment.
To dissociate between these processes, participants completed an fMRI patch-switching learning task inspired by behavioral ecology.
By analyzing >11,000 trials collected across 21 participants, we found that the activation in the cingulate cortex was closely related
to several patch-switching-related variables including the decision to leave the current patch, the encounter of a new patch, the
harvest value, and the relative forage value. Learning-induced changes in the patch-switching threshold were tracked by activity within
frontoparietal regions including the superior frontal gyrus and angular gyrus. Our findings suggest that frontoparietal regions shape
patch-switching learning apart from encoding classical non-learning foraging processes. These findings provide a novel neurobiological
understanding of how learning emerges neurocomputationally shaping patch-switching behavior with implications in real-life choices
such as job selection and pave the way for future studies to probe the causal role of these neurobiological mechanisms.

Key words: patch-switching; fMRI; individual differences; learning.

Introduction

In everyday life, we must frequently decide whether to stay at

the current location (henceforth; patch) or to move to a new one,

such as leaving our current job to move to a new one. Indeed,

humans engage in patch-switching decisions for a wide range

of purposes including survival/reproduction (e.g. food, potential

mates), education purposes (e.g. which books to read), human

social connection (e.g. which social groups to join), and entertain-

ment (e.g. music/movies/leisure activities). Furthermore, humans

are often faced with patch-switching problems not only for our-

selves but also for others such as family or community members

(Zacharopoulos et al. 2018). Given the ubiquitous nature and

impact of such decisions in shaping our survival and well-being,

it is not surprising that research across multiple disciplines has

recently turned to examine the neurocomputational mechanisms

underlying patch-switching (Kolling et al. 2012, 2016a, 2016b;

Shenhav et al. 2014, 2016a, 2016b; Constantino and Daw 2015).

There are several parameters encoded by the brainwhen decid-

ing whether to leave a current location or move to a new one

including the patch-switching decision threshold, the harvest

value, the travel value, and other parameters, which apply in a

changing environment such as the depletion rate and the travel

time (for details, seeMaterials andMethods). For example, activity

within the monkey dorsal anterior cingulate cortex (dACC) is

positively related to the decision to leave the patch, and this

activity increases with greater travel time to the next patch,

suggesting that dACC activity reflects a patch-switching decision

threshold (Hayden et al. 2011; Hall-McMaster and Luyckx 2019). In

the human brain, activity within the dACC was positively related

to the value of searching for alternative options (Kolling et al.

2012) although it has also been proposed that dACC encodes task

difficulty instead (Shenhav et al. 2014). Still, subsequent reports

showed that decision difficulty and search value in the original

foraging study (Kolling et al. 2012) shared only 2% of their variance

(Kolling et al. 2016a). A subsequent investigation identified a

negative correlation between search value and decision difficulty

and found that dACC activity still tracked search value (Kolling

et al. 2018) and in the macaque, it was shown that dACC activity

tracks search value (Stoll et al. 2016).

Moreover, some accounts emphasize that vmPFC activity is

positively related to the chosen option’s reward magnitude in

binary economic choices as well as encoding the value of the

default (non-switch) option during stay-switch foraging style deci-

sions (Kolling et al. 2012), and other accounts emphasize that

activity within the dACC and vmPFC correlates with the relative

value of searching for alternatives over engaging with current

options (Shenhav et al. 2016b).

Overall, it is currently an open question whether dACC activity

indicates closer proximity to a lower patch-switching threshold

(Hayden et al. 2011), a higher search value (Kolling et al. 2012,

2016a, 2016b), or task difficulty/cognitive control (Shenhav et al.

2014, 2016a), and whether vmPFC has a role only in classical

binary economic choices or whether its role extends to (personal

and/or social) patch-switching decisions. To interrogate these
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Fig. 1. Graphical depiction of the experimental task. On each trial, participants were presented with a cartoonish picture of an apple tree (patch) below
which was displayed the harvest value (e.g. 8.4 apples), and participants indicated (within 1.5 s) whether to harvest the tree for apples and incur a short
harvest delay (∼3 s), or move to a new tree and incur a longer travel delay (∼6 or ∼9 s). Harvests earned apples, albeit at an exponentially decelerating
rate. Choosing to harvest the tree entailed (i) receiving the harvest value (e.g. 8.4) and (ii) experiencing the harvest delay (∼3 s) until the tree was ready
to be harvested again but in the next trial, the harvest value of the tree was smaller (e.g. 7.5). Choosing to switch the tree entailed (i) not receiving any
reward and (ii) experiencing a travel delay (∼6 or ∼9 s depending on the environment, see Materials and Methods for details) to travel to a new tree with
potentially higher starting harvest value (e.g. 9.6) than the harvest value of the last tree at exit (e.g. 8.4) (modified from Constantino and Daw 2015).

possibilities,we asked participants to perform a novel fMRI patch-

switching learning task (Fig. 1), which allowed us to decouple

the neurocomputational basis of several patch-switching latent

variables including the patch-switching threshold, and thus dis-

cern the specific role of distinct brain networks in tracking these

variables shaping personal and social patch-switching behavior

(for details on the calculation of patch-switching latent variables,

see Materials and Methods).

During the fMRI patch-switching learning task (Fig. 1), partic-

ipants were shown an image of an apple tree (patch) and had

to decide whether to harvest it for apples and incur a short

harvest delay (and subsequent diminishing returns), or move to

a new tree (patch) and incur a longer delay because of travel

between the initial and new tree. In other words, participants were

faced with a patch-switching problem where they experienced an

option with diminishing returns and must decide when it was

best to leave that option. Importantly, the time they spent in

this virtual environment was fixed; therefore, participants had to

maximize reward in relation to time. Crucially, the properties of

the environmentwere not static but changed frequently (from run

to run), thus, in order to achieve optimal behavior and maximize

reward, participants were expected to constantly keep track of

the environment properties and update the corresponding patch-

switching latent variables. Moreover, and as alluded to earlier,

many patch-switching decisions are social decisions (e.g. partner

choice, joining/leaving a social group), and people often have to

solve the patch-switching problem not only for themselves but

also for others.How then dowe solve the patch-switching problem

when it concerns others? Does the human brain perform patch-

switching computations similarly or distinctly when we forage for

others compared with when we merely forage for ourselves? To

answer these questions participants during the scanning session

performed personal patch-switching (the returns were given to

the participant) as well as social patch-switching (the returns

were given to a charity). This foraging task allowed the quan-

tification of variables that track learning-induced processes such

as patch-switching threshold, depletion rate learning, and travel

time learning, as well as the quantification of variables that

track non-learning foraging processes such as the binary decision

(i.e. stay/harvest vs switch/travel), task difficulty/reaction time,

harvest value, new patch, and relative forage value (for details,

see Materials and Methods).

We started addressing these questions in a previous study

where participants made foraging decisions for themselves

and a charity of their choice (Zacharopoulos et al. 2018). We

found that individuals who possessed a stronger self-focused

value orientation obtained more rewards when they foraged for

themselves rather than for charity, and this effect was associated

with activity in the dACC. The present study aimed to expand on

the previous one by examining the neurocomputational bases

of a task that involves a wide range of unique computations

and learning variables that we had been able to model in our

original study. For example, it is currently unknown how the

human brain computes and tracks changing environmental

properties that shape foraging behavior, such as travel time,

and the depletion rate when we forage for others compared

with when we merely forage for ourselves. Apart from our little

understanding of how these changing environmental properties

(which are explicitly set by the experimenter), our study also

examined the neurocomputational basis of latent psychological

parameters derived from the person’s behavior, such as the

patch-switching threshold, which vary considerably between

participants.

Therefore, our aims were: (i) to decouple the neurocomputa-

tional basis of several patch-switching latent variables, and thus

discern the specific role of certain brain networks in tracking

these variables, and (ii) to discern the extent to which these

computations are differentially modulated by personal vs social

patch-switching decisions. (iii) A secondary aim of the study was

to discern how individual differences in human value orientation,

assessed via a questionnaire outside the scanner (see Materials

and Methods for details), predicted patch-switching behavior.
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Materials and methods
Participants
We recruited 21 healthy participants (mean age: 26.86; the

standard deviation of age: 6.3; 5 males, 16 females) by advertising

the study online on Cardiff University notice boards. The

study was approved by the Ethics Committee of the School of

Psychology at Cardiff University. All participants gave written

informed consent according to the Declaration of Helsinki and

received £15 monetary compensation for taking part in the

study plus additional performance-based payment (see below for

details).

Procedure and experimental task
Prior to scanning, all participants underwent an MRI safety

screening, were familiarized with the scanning environment, and

performed a training session with stimuli similar to those used

in the fMRI session. The scanning session comprised 4 functional

runs (∼16 min each) and the acquisition of a structural image,

leading to a total scanning time of ∼1.5 h.

Participants were informed at the start of the experiment

that the reward (i.e. the number of points/apples) they collected

during the scanning session would be converted into real money

at the end of the experiment and that the reward obtained

during personal patch-switching would be paid to them (on top

of the fixed participation payment of £15), whereas the reward

obtained during social patch-switching would be given to a

charity of their choice. Participants were then asked to select

the charity of their choice from a list including the following

charities: British Red Cross, Save the Children Fund, Oxfam, The

Salvation Army, Cancer Research UK, and Macmillan Cancer

Support.

Participants completed a modified version of a virtual patch-

switching task used previously (Constantino and Daw 2015;

Zacharopoulos et al. 2018; Fig. 1) in a single scanning session. The

scanning session consisted of 4 functional runs and each run con-

sisted of 4 blocks (overall 16 blocks: 8 personal patch-switching

blocks and 8 social patch-switching blocks). The scanning session

consisted of 4 functional runs and each run consisted of 4 blocks

(overall 16 blocks: 8 personal patch-switching blocks and 8 social

patch-switching blocks). In every run, half of the blocks (i.e. 2

out of 4) were personal patch-switching blocks and the other

2 blocks were social patch-switching blocks. The environment

changed from run to run with the first run being short-

shallow (ShSh), the second short-steep (ShSt), the third long-

steep (LoSt), and the fourth long-shallow (LoSh). For additional

information depicting how several parameters changed per

participant, run, and block, see Supporting Information 6, which

shows that the order of personal/social conditions and the

combination of travel time and depletion rate conditions were

fixed across participants. For plots presenting how the patch-

switching threshold was modulated across the 4 environments

for each participant, see Supporting Information 8. At the onset

of each block, an introductory screen was briefly presented

indicating the reward recipient (e.g. “Self” or “Charity”). Stimuli

were presented via a 45◦ angled mirror positioned above the

head coil reflecting the projection of a computer screen. The

description of the trial events is explained in the legend of

Fig. 1. After the scanning procedure, participants were debriefed,

thanked, and paid both for participating (£15) as well as for

their performance (i.e. total reward obtained in response to

the personal patch-switching, which was ∼£10–£15 in most

cases).

Manipulation of environmental parameters
defining the quality of the patch-switching
environment
Similar to the previous behavioral investigations (Constantino and

Daw 2015; Zacharopoulos et al. 2018), we varied the quality of

the patch-switching environment by manipulating 2 parameters:

(i) depletion rate and (ii) travel time.The depletion rate determines

the rate at which earned apples decreasewith subsequent harvest

decisions at a given tree. It is a multiplicative decay κ, such that if

a participant harvests 8 apples in the current trial, the number

of apples to be offered/harvested in the next trial will be the

depletion ratemultiplied by 8. Bymanipulating the depletion rate,

we created one environment with fast depletion (steep, where

κ was ∼0.88) and one with a slower depletion (shallow, κ was

∼0.94). Additionally, we created 2 more types of environments—

long (∼9 s) and short (∼6 s)—by manipulating the travel time,

which is the time it takes to travel to a new tree. Based on this

procedure, the harvest time (which was jittered around 3 s) or

the travel time (which was jittered around 6 or 9 s) served as

the inter-trial interval. The manipulation of these 2 variables (i.e.

travel time and depletion rate) resulted in the 4 environments

that participants visited during the task: LoSh, LoSt , ShSh, and

ShSt. In previous studies using a similar paradigm, participants

exhibited higher exit thresholds in the short orchards than in

the long orchards and in the shallow orchards than in the steep

ones (Constantino and Daw 2015; Zacharopoulos et al. 2018). This

occurs because “a longer travel delay or a steeper depletion rate

reduces the rate at which apples can be earned,” which, in turn,

“reduces the opportunity cost of time spent harvesting, which

as a consequence leads an ideal forager to harvest a tree down

to a lower number of apples” (Constantino and Daw 2015). In

otherwords, participants switched earlier (higher patch-switching

threshold) for short (vs long) orchards and shallow (vs steep)

orchards (Constantino and Daw 2015; Zacharopoulos et al. 2018),

and we replicated this set of findings in the current investigation

(see Results section).

Apart from the depletion rate and travel time, all the other

environmental parameters remained the same across the 4

environments. Participants experienced one environment per

each run and were notified when the environment was about to

change (i) by an introductory message (e.g. “You are now entering

a new orchard”) and (ii) by a background color change, even

though participants were not aware which parameters of the

environment were changed (i.e. depletion rate or travel time) or

by how much, but had to empirically experience the changes.

New trees were drawn from a Gaussian distribution and the

environmental richness or opportunity cost of time was varied

across the runs, as mentioned, by changing the travel time and/or

the reward depletion rate. The initial value of a tree (see Fig. 1

for an example), depletion rate, and richness of the environment

were unknown to the participants. The participants aimed to

maximize reward (i.e. number of points/apples) for themselves

(personal patch-switching) and/or a charity of their choice (social

patch-switching), depending on the experimental condition. This

was a within-subject design.

Human values
Participants completed the Schwartz Value Survey (SVS; Schwartz

1992), a 56-item scale that is used to measure human value ori-

entation. Participants were asked to rate the importance of each

of the 56 values as a guiding principle in their lives, using a quasi-

bipolar 9-point scale ranging from −1 (opposed to my values),
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0 (not important), 4 (important) to 7 (of supreme importance).

Examples of SVS items are as follows: “Equality: Equal opportunity

for all” (Universalism), “Pleasure: Gratification of desires” (Hedo-

nism), and “Obedient: Dutiful meeting obligations” (Conformity).

The average score across the 56 items was calculated and sub-

tracted from each of the 56 initial raw scores, before calculating

the average of the value scores within each of the 10 value types.

The initial raw scores were the original responses of the partic-

ipant in response to each item recorded using a quasi-bipolar

9-point scale ranging from −1 (opposed to my values), 0 (not

important), 4 (important) to 7 (of supreme importance). Schwartz

recommends this procedure to help control for superfluous indi-

vidual variations in rating styles (Schwartz 1992). Following his

model, we created the self-focus score, by calculating the aver-

age score on self-direction, stimulation, hedonism, achievement,

power, and security values. To calculate the social-focus score,

we calculated the average score of universalism, benevolence,

tradition, conformity, and security values.

MRI data acquisition
MRI images were acquired with a General Electric 3T scanner

equipped with an 8HR Brain parallel head coil for radio frequency

transmission/reception. Anatomical high-resolution T1-weighted

volume scans (1 mm3) were acquired using FSPGR sequence

(TR=7.796 ms; TE=2.984 ms; voxel size = 1× 1× 1 mm, 200

slices). Functional images were acquired with an EPI sequence

(TR=2,000 ms, TE=30 ms, flip angle = 85 degrees, slice thick-

ness = 3 mm). Each volume consisted of 39 slices obtained in an

ascending interleaved order.

fMRI data preprocessing and analyses
Imaging data were preprocessed in CONN (Whitfield-Gabrieli and

Nieto-Castanon 2012) (a toolbox in SPM12) using the default

MNI-space direct normalization preprocessing pipeline, which

performs several steps including realignment, slice-timing cor-

rection, structural segmentation and normalization, functional

normalization, and smoothing (smoothing kernel was 8 mm). At

the first-level analyses,we ran a single GLM (for an example of the

parametric modulators, see Supporting Information 4) that fea-

tured 2 main predictors: (i) the event onsets during the personal

patch-switching condition and (ii) the event onsets during the

social patch-switching condition (convolved with the canonical

HRF). For the correlations between the parametric modulators see

Supporting Information 11. Each main predictor featured 8 para-

metric modulators that are clustered into 2 general categories:

(i) parametric modulators that are associated with individual

behavior (i.e. decision (1), reaction time (2), patch-switching

threshold (3)) and (ii) parametric modulators that are associated

with the foraging environment (harvest value (4), new patch (5),

travel time learning (6), depletion rate learning (7), relative forage

value (8)):

(1) Decision: this was a binary variable denoting whether par-

ticipants have chosen to harvest (1) or switch (0) the tree on

every trial.

(2) Reaction time: this was defined as the time in seconds that

participants took to reach a decision in each trial. This was

added as a proxy for task difficulty.

(3) Patch-switching threshold: this was defined as the average

between the (i) harvest value of the tree at the exit and the

(ii) harvest value during the most recent harvest of the same

tree. Importantly, because the patch-switching threshold can

only be changed when participants exit a tree, for the trials

where the participant chose to harvest the tree, the value

of the patch-switching threshold was defined as the most

recently changed patch-switching threshold and stayed as

such until participants exited the tree. Put simply, if in trials

1, 2, 3 the harvest valuewas 9, 8, 10, and the participant chose

to harvest, exit, and harvest, then the parametric modulator

patch-switching threshold would have been (9+8)/2 = 8.5 for

trial 2 (changed because of exit decision), and stayed at 8.5

for trial 3 (not changed because of harvest decision).

(4) Harvest value: this was defined as the reward (i.e. the num-

ber of points/apples) offered on every trial.

(5) New patch: this was a binary variable denoting whether

participants encountered a new tree (1) or not (0) on every

trial. Although similar, this differs from the first parametric

modulator in that (i) it is shifted in time (i.e. if a participant

chooses to switch on trial i, the value of the first parametric

modulator on trial i will be 0 and the value of this parametric

modulator will be 0 but the value of this parametric modu-

lator will be 1 when the new patch emerges, that is on trial

i+ 1), and (ii) there are instanceswhere a novel patch appears

(and thus this parametric modulator is set to 1) not because

a participant had chosen to travel in the previous trial, but

because of a changing condition (i.e. because the orchard or

the recipient changed).

(6) Travel time learning: in trial ith, this was defined as the

average between (i) the average of all previous travel times

experienced from trial 1 to trial i−1, and (ii) the travel

time on trial i. This is a learning variable because it tracks

the accumulated changes in travel time across orchards,

whereas participants learn the properties of each orchard.

(7) Depletion rate learning: in trial i, this was defined as the

average between (i) the average of all previous depletion rates

experienced from trial 1 to trial i− 1, and (ii) the depletion

rate in trial i. This is a learning variable because it tracks

the accumulated changes in depletion rate across orchards,

whereas participants learn the properties of each orchard.

(8) Relative forage value: this was defined as the ratio between

the patch-switching threshold on trial i and the harvest value

on trial i (i.e. patch-switching threshold/harvest value).

To identify the effects of interest while controlling for the other

predictors irrespective of their added order in all GLMs, we set

the orthogonalization to 0. To remove variations in signal because

of movement artifacts, we additionally included in our GLM the

movement parameters calculated during the realignment in the

model as parameters of no interest. Moreover, we excluded all

runs where there was beyond 2 mm movement in either of the

3 translations (x,y,z).

We created 16 contrasts during the first-level analyses as we

examined the effects of each of the 8 parametric modulators

(collapsing across personal and social conditions) as well as the

corresponding 8 interactions of these parametric modulators

with the reward recipient (i.e. personal vs social conditions).

We then entered the contrast of parameter estimate images

into a second-level group analysis. Examples of contrasts can

be seen in Supporting Information 12, where the reader can

also find a table featuring the order of the predictors in the

design matrix, the name of the predictors, and the predictor

type. Each parametric modulator was a separate regressor

in the GLM. The interactions were computed as contrasts

after the GLM were run. The parametric modulators were not

demeaned as can be seen in Supporting Information 4. For

control analyses featuring demeaned parametric modulators
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see Supporting Information 13. The imaging results, which were

significant at a cluster-wise PFWE <0.05, were obtained using the

SPM toolbox Statistical Non-Parametric Mapping (SnPM, http://

warwick.ac.uk/snpm), which uses the GLM to construct statistic

images, which are then assessed for significance using a standard

nonparametric procedure based on randomization/permutation

testing. The cluster-wise PFWE that is reported for each significant

cluster in the main text and the Supporting Information does not

account for the correction across the different contrasts but it is

the value generated fromSPM for a given contrast.We also provide

the FDR corrected P-value for each cluster after controlling

for all significant clusters. In addition, we created pseudo-t

maps that are computed by smoothing the variance before

creating a t-ratio, as this approach eliminates the roughness of

the activation cluster and effectively increases the degrees of

freedom, increasing statistical power (SnPM, http://warwick.ac.

uk/snpm). Our approach is consistent with current guidelines on

the reporting of whole-brain MRI data (Roiser et al. 2016).

Statistical analyses
For the behavioral analyses, the dependent variables were (i) the

total reward obtained (i.e. the sum of numbers/apples) and

(ii) the patch-switching threshold, which was calculated as the

mean patch-switching threshold (see above) only based on the

trials when participants chose to travel to a new tree. To assess

the behavioral effects of our manipulation, we employed a 2

(Travel time: Short vs Long) ∗2 (Depletion rate: Steep vs Shallow) ∗2

(Source: Personal vs Social) repeated measures ANOVA predicting

patch-switching threshold or total reward. To assess the extent

to which the human value orientation predicted total reward, we

employed bivariate correlations between the self-focus human

value orientation (see above for details) and total reward obtained

during the personal patch-switching condition. To assess the

extent to which the human value orientation predicted the

patch-switching threshold, we employed bivariate correlations

between the self-focus human value orientation (see above for

details) and the patch-switching threshold in the 4 orchards

separately and we corrected for the 12 comparisons (denoted by

PFDR). For completeness, we additionally present the analogous

results using the social-focus human value orientation. Of

note, we excluded the first 4 participants from the behavioral

analyses because they only experienced one travel time (e.g.

Long) across the experiment because of a technical error. The

first 4 participants were pilot participants, which were included

in the imaging analyses to increase the statistical power to detect

the effects as all the conditions and parametric modulators were

present in these cases.

Results
Behavioral results
As a first step, we assessed the effect of travel time and depletion

rate on the patch-switching threshold (for details of the full sta-

tistical model see Materials and Methods) and we fully replicated

the results of the previous studies by others and us (Constantino

and Daw 2015; Zacharopoulos et al. 2018). Specifically (see

also Fig. 2), travel time (F(1, 16) = 32.73, P< 0.001) and depletion

rate (F(1, 16) = 35.97, P< 0.001) were statistically significant in

predicting patch-switching threshold but neither source (F(1,

16) = 0.036, P=0.852) nor any of the interactions were significant

(source∗travel time: F(1, 16) = 0.096, P=0.761, source∗depletion

rate: F(1, 16) = 0.010, P=0.921, travel time∗depletion rate: F(1,

16) = 0.017, P=0.899, source∗travel time∗depletion rate: F(1,

16) = 1.598, P=0.224). The same pattern of results emerged when

the dependent variable was the total reward, where the main

effects of travel time (F(1, 16) = 62.45, P<0.001) and depletion

rate (F(1, 16) = 131.17, P<0.001) were statistically significant

but neither source (F(1, 16) = 0.001, P=0.973) nor any of the

interactions were significant (source∗travel time: F(1, 16) = 1.54,

P=0.232, source∗depletion rate: F(1, 16) = 0.290, P=0.598, travel

time∗depletion rate: F(1, 16) = 0.274, P=0.608, source∗travel

time∗depletion rate: F(1, 16) = 0.278, P=0.605). For additional

information from the ANOVA models including estimates and

post hoc comparisons, see Supporting Information 7. Moreover,

we found that self-focus was positively related (r(15) = 0.514,

P=0.035), whereas social focus was negatively related, albeit

nonsignificantly (r(15) =−0.364, P=0.151), to the number of points

obtained during personal patch-switching, consistent with our

previous findings (Zacharopoulos et al. 2018).

We additionally assessed the effect of human value orientation

in predicting the patch-switching threshold in the 4 environ-

ments. We found that this was the case only for one of the 4

environments: the ShSt. Specifically, self-focus was consistently

positively associated with the social (Fig. 3C, r(15) =0.673,

P=0.003, PFDR =0.037), and average (Fig. 3E, r(15) = 0.646, P=0.005,

PFDR =0.031) mean patch-switching threshold, and showed a trend

with the personal (Fig. 3A, r(15) = 0.585, P=0.014, PFDR =0.05).

Consistent with this, social focus was consistently negatively

associated with the social (Fig. 3D, r(15) = −0.526, P=0.030)

and average (Fig. 3F, r(15) = −0.516, P=0.034) mean patch-

switching threshold and showed a trend with the personal

(Fig. 3B, r(15) =−0.479, P=0.05). Regarding ShSh, self-focuswas not

significantly associated to the personal (r(15) = 0.132, P=0.613),

social (r(15) =−0.048, P=0.855), and average (r(15) = 0.047,

P=0.858) mean patch-switching threshold. Social focus was not

significantly associated to the personal (r(15) =−0.186, P=0.475),

social (r(15) = 0.029, P=0.911), and average (r(15) =−0.086,

P=0.744) mean patch-switching threshold.

Regarding LoSt, self-focuswas not significantly associatedwith

the personal (r(15) = 0.191, P=0.463), social (r(15) = 0.355, P=0.162),

and average (r(15) = 0.281, P=0.274)mean patch-switching thresh-

old. Social focus was not significantly associated to the personal

(r(15) = −0.218, P=0.401), social (r(15) =−0.282, P=0.273), and

average (r(15) =−0.258, P=0.318)mean patch-switching threshold.

Regarding LoSh, self-focus was not significantly associated

with the personal (r(15) =−0.159, P=0.542), social (r(15) = −0.231,

P=0.371), and average (r(15) = −0.207, P=0.425) mean patch-

switching threshold. Social focus was not significantly associated

to the personal (r(15) = 0.065, P=0.805), social (r(15) = 0.110,

P=0.674), and average (r(15) = 0.094, P=0.721) mean patch-

switching threshold.

Imaging results
After establishing that the experimental manipulation induced

robust behavioral effects, and discerning how the patch-switching

threshold and total reward were predicted by the human value

orientation, we assessed the neurobiological computations of the

8 parametric modulators (and for a full description of the sig-

nificant clusters, see Supporting Information 1), which are clus-

tered into 2 general categories: (i) parametric modulators that are

associated with individual behavior (i.e. decision (1), reaction time

(2), patch-switching threshold (3)) and (ii) parametric modulators

that are associated with the foraging environment (harvest value

(4), new patch (5), travel time learning (6), depletion rate learning

(7), relative forage value (8)). Here we present the results from 4

parametric modulators because 2 of the parametric modulators
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Fig. 2.Themean patch-switching threshold in each of the 8 experimental conditions (P: personal patch-switching condition and S: social patch-switching
condition). The error bars represent 95% confidence intervals. People switched earlier (higher patch-switching threshold) for short (vs long) environments
and shallow (vs steep) environments replicating previous work (Constantino and Daw 2015; Zacharopoulos et al. 2018).

Fig. 3. Scatterplots depicting positive (self-focus) or negative (social focus) associations between the human value orientation displayed on the x-axis
(self-focus or social focus) and path-switching threshold (y-axis) in the ShSt environment during all of the trials A, B), only the personal condition C, D)
or only the social condition E, F).
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George Zacharopoulos et al. | 7

Fig. 4. Imaging results depicting the effect of the parametric modulator
patch-switching threshold on bilateral (A): right: angular gyrus, superior
frontal gyrus, precentral gyrus; B): left: angular gyrus) frontoparietal
regions (negative association).

were essentially confounding variables we wanted to account for

(i.e. new patch and reaction time) and 2 parametric modulators of

interest (i.e. travel time learning and depletion rate learning) did

not yield significant results.

Parametric modulators that are associated with individual
behavior
Patch-switching threshold

The patch-switching threshold was tracked by activity within

frontoparietal regions (for a full description of the significant clus-

ters, see Supporting Information 1) including the bilateral angular

gyrus (right: PFWE =0.003, k=2,399, x=36, y=−66, z=46, and left:

PFWE =0.008, k=1,251, x=−34, y=−60, z=40, Fig. 4A-B), the right

superior frontal gyrus (PFWE =0.021, k=546, x=4, y=28, z=44,

Fig. 4A), and the right precentral gyrus (PFWE =0.001, k=3,813,

x=52, y=10, z=18, Fig. 4A). Activity within all of these regions was

negatively associated with the patch-switching threshold.

Decision

The decision whether to harvest or to leave the current patch was

encodedmainly by frontoparietal regions (for additional details on

the significant clusters, see Supporting Information 1) where the

decision to harvest vs to leave engaged activity within the right

superior frontal gyrus (PFWE =0.008, k=1,221, x=0, y=58, z=2,

Fig. 5), whereas the decision to leave vs harvest elicited activity

within the dACC/paracingulate gyrus (PFWE =0.003, k=1,823, x=4,

y=24, z=42, Fig. 5), the right angular gyrus (PFWE =0.002, k=2,130,

x=46, y=−56, z=52, Fig. 5), and the left supramarginal gyrus

(PFWE =0.004, k=1,536, x=−46, y=−34, z=38, Fig. 5).

Parametric modulators that are associated with the
foraging environment
Harvest value

The parametric modulator harvest value was positively associ-

ated with activity within frontoparietal regions (for additional

details on the significant clusters, see Supporting Information 1),

including the angular gyrus (right: PFWE =0.003, k=1,581, x=36,

y=−68, z=46, and left: PFWE =0.004, k=896, x=−52, y=−48, z=48,

Fig. 6), the frontal gyrus (right inferior: PFWE =0.036, k=317, x=54,

y=12, z=16, and right middle/frontal pole: PFWE =0.033, k=323,

x=42, y=50, z=8, Fig. 6), and a region encompassing PCC/dACC

(PFWE =0.017, k=511, x=0, y=−28, z=26, Fig. 6).

Relative forage value

The parametric modulator foraging value was positively asso-

ciated with activity within frontoparietal regions (for additional

details on the significant clusters, see Supporting Information 1),

including the angular gyrus (right: PFWE =0.001, k=2,103, x=36,

y=−68, z=46, and left: PFWE =0.003, k=862, x=−52, y=−48, z=48,

Fig. 7), the frontal gyrus (right inferior: PFWE =0.001, k=1,678,

x=56, y=14, z=14, right middle/frontal pole: PFWE =0.005, k=699,

x=42, y=50, z=8, right superior frontal: PFWE =0.013, k=492, x=4,

y=28, z=42, and another right middle region: PFWE =0.03, k=264,

x=24, y=10, z=50, Fig. 7), and a region encompassing PCC/dACC

(PFWE =0.029, k=253, x=2, y=−28, z=26, Fig. 7).

Discussion

The present fMRI study assessed the neurocomputational

basis of patch-switching by focusing on computational metrics

such as patch-switching threshold and relative forage value

elicited in response to a novel learning paradigm inspired by

behavioral ecology. Four main findings emerged from our study:

(i) the patch-switching threshold was tracked by activity within

frontoparietal regions including the angular and superior frontal

gyrus, which possibly inhibits switching propensity, (ii) several

frontoparietal regions (angular and frontal gyrus) tracked several

patch-switching properties, (iii) the absence of activity differences

in these computational metrics between the personal and

social conditions, and (iv) the identification that human value

orientation predicted patch-switching threshold in a specific

foraging environment.

The present investigation primarily focused on the examina-

tion of the patch-switching threshold, a computational metric

that determines when to leave collecting rewards in a current

patch and travel somewhere else. Behaviorally, we consistently

replicated the previously documented effects of the experimental

manipulation (Constantino and Daw 2015; Zacharopoulos et al.

2018). Namely, participants exhibited a higher patch-switching

threshold (they switch earlier) in shallow vs steep environments,

and in the short vs long environments, both across personal

and social conditions. Apart from replicating these findings, we

also revealed a psychological determinant that predicted individ-

ual variation in the total reward obtained and patch-switching

threshold: the human value orientations of self-focus and social

focus. We replicated our previous finding that the personal-focus

value score was positively related (r(15) = 0.514, P=0.035) to the

number of points during personal patch-switching (Zacharopou-

los et al. 2018), and we also found that self-focus was posi-

tively, and social focus was negatively associated with the patch-

switching threshold both during the personal and the social con-

ditions. This identification of a novel determinant of the patch-

switching threshold is a clear demonstration of how social psy-

chology research (Schwartz 1992) can help inform behavioral

ecology.

Crucially, these consistent patterns of association were

obtained only for one of the 4 environments, the ShSt environ-

ment. This suggests that the relevance of human value orienta-

tion in shaping decision-making depends on the environmental

properties even though participants performed the same compu-

tations (i.e. deciding when to leave collecting rewards in a current

tree and travel somewhere else) across the 4 environments.

The present study was designed to assess the neurobiological

mechanisms that track patch-switching threshold learning.

This was done by identifying the extent to which single-trial

brain activity correlated with the trial-wise fluctuation in the

patch-switching threshold. Our analyses revealed such brain

activity within the frontoparietal system. We would infer that

frontoparietal activation possibly inhibits switching propensity as

brain activity within frontal and parietal regions was associated

with a lower patch-switching threshold. Specifically, the bilateral

angular gyrus and right frontal gyrus activities were negatively
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Fig. 5. Imaging results (A): positive association and B): negative association) in response to the parametric modulator of decision.

Fig. 6. Imaging results in response to the parametric modulator of harvest value.

associated with the patch-switching threshold. The angular gyrus

has been implicated in a constellation of functions that can be

related to the decision process involved in the tracking of the

patch-switching threshold such as the manipulation of different

numerical operations (Roland and Friberg 1985; Dehaene et al.

1998, 2003), memory retrieval (Ciaramelli et al. 2008; Vilberg and

Rugg 2008), and conflict resolution (Wager et al. 2005; Nee et al.

2007).Notably, diffusion tensor imaging and tractography analysis

showed that the angular gyrus is connected to the inferior,middle,

and superior frontal gyrus, and the frontal gyrus was the other

region that was found to track the patch-switching threshold in

the present work. Specifically, the angular gyrus is connected to

the inferior frontal gyrus via the third branch of the superior

longitudinal fascicle (Frey et al. 2008), to the middle frontal

gyrus via the second branch of the superior longitudinal fascicle

(Makris et al. 2005), and the superior frontal gyrus via the occip-

itofrontal fascicle (Makris et al. 2007). Both the angular gyrus and

the superior frontal gyrus tracked the patch-switching threshold

and future studies could examine whether functional coupling

between these regions is important for learning-induced changes

in this decision variable. This working model can be assessed in

future investigations that transiently experimentally disrupt this

documented frontoparietal connectivity, for example, with the

use of brain stimulation techniques such as transcranial direct

current or magnetic stimulation as was done previously for other

aspects of cognition such as working memory (Jones et al. 2017;

Zacharopoulos et al. 2020). Moreover, such future investigations

can examine whether the impact of this experimentally induced

disruption is also dependent on self and other values, particularly

in the ShSt environment.Another possibility forwhy brain activity
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Fig. 7. Imaging results in response to the parametric modulator of relative forage value.

within frontal and parietal regions was associated with a lower

patch-switching threshold could also be related to differences in

control demands between environments. Specifically, additional

analyses (Supporting Information 14) revealed that participants

take more harvest actions before exiting in environments with

lower patch-leaving thresholds. Thus, participants might need

increased attentional control to leave at the right time, as

compared with an environment with a high leaving threshold,

where fewer harvest actions are needed before exit.

This study was designed for discerning the extent to which the

activity of these frontoparietal regions was uniquely associated

with certain patch-switching computations. We found that the

contribution of frontoparietal regions went well beyond the com-

putation of the patch-switching threshold to include the relative

forage value, reaction time/task difficulty, and harvest value. Sim-

ilar to the prior work (Cohen Kadosh et al. 2005; Kolling et al. 2012),

we might assume that the engagement of these regions across

several patch-switching computations (e.g. harvest value, deci-

sion) depends on the entrenched property of the frontoparietal

network in encoding magnitude, which was both essential and

pervasive in guiding optimal behavior in the current behavioral

ecology task. For example, a classic effect in the literature that

applies in the context of the frontoparietal network is the distance

effect, which states that the closer 2 compared magnitudes (e.g.

2 numbers such as the harvest value vs the patch-switching

threshold in the present study), themore difficult the comparison,

and the greater the activity of this frontoparietal network, and this

finding was shown both for nonsocial and social processing (such

as beauty comparisons) (Cohen Kadosh et al. 2005; Nieder and

Dehaene 2009; Kedia et al. 2014). In our task, the computational

parameter that ismost related to the distance effect is the relative

forage value as it encodes the numerical relationship between the

individual’s threshold (patch-switching threshold) and the reward

value (harvest value), which we found was negatively related

to reaction time (Supporting Information 5) indicating that the

higher the distance the faster the reaction time.

Another important conclusion from the present study is that

the behavioral and brain findings detailed above were similar in

the personal and social conditions. An explanation of this may be

that, across evolution, the need to protect loved ones equipped

the foraging brain with biologically entrenched patch-switching

mechanisms that operate for both direct and indirect rewards. In

the present study, the “other” reward recipient was chosen by the

participants and thuswe could infer an underlying familiarity and

associated effort to do well also in the “other” conditions. Indeed,

the level of social focus on values within all of our participants

was overall higher than the mean level of self-focus, consistent

with cross-cultural research showing a relative dominance of

social-focus values (Schwartz and Bardi 2001; Hanel et al. 2019).

This dominance of social-focus values is consistent with the idea

that theremay be a default integration of others’ needs as a part of

the basic motivational goal hierarchy within humans. Despite our

finding that the behavioral and brain findings detailed abovewere

similar in the personal and social conditions, we do acknowledge

that our study’s sample size may have prevented the detection

of potential smaller effect sizes that can be captured in future

studies employing larger samples.

Nonetheless, the associations between self- and social-focus

values and the task-switching thresholds in this research indi-

cate that the relative personal priority attached to these val-

ues matters in the prediction of foraging behavior. It would be

interesting to introduce measures of these values in paradigms

with a wider range of social meanings attached to the foraging

behavior. For example, future studies could test whether the

behavioral and neurobiological isomorphism across the personal

and social conditions is disrupted when participants are asked to

forage on behalf of an unfamiliar, and unrelated “other,” or even a

perceived adversary (e.g. a member of a different political party),

and whether this disruption is dependent on personal levels of

self- and social-focused values.

Of note, one potential limitation of the current study stems

from the fact that choice uncertainty typically increases up to
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the patch-switching threshold. As a result, variables that cor-

relate with a greater likelihood of exiting (or that code for the

exit decision itself) are typically conflated with increasing lev-

els of choice uncertainty. Therefore, some of the activations in

response to exit decisions and relative forage value could reflect

increases in choice uncertainty and associated monitoring/con-

trol functions encoded in regions such as the dACC (Shenhav

et al. 2014). However, this is not the case in designs where there

are many trials where participants substantially exceed their

current exit threshold (Fontanesi et al. 2022). To this end, our

paradigm was designed in a way that featured a great number

of trials where participants substantially exceeded their current

exit threshold. This is illustrated by the fact that the empirical

patch-switching threshold in the present study was not static

but changed robustly and predictably (Fig. 2) between orchards in

response to our manipulation.

Another potential limitation of this study is the presence

of a certain amount of collinearity between the parametric

modulator pair relative forage value and harvest value. However,

our choice for utilizing a single GLM that even included related

predictors was to allow us to identify the unique variance in

brain activity of certain predictors over and above that of other

predictors. This may also explain the seemingly contradictory

findings between parametric modulators that are negatively

related to each other. Specifically, similar frontoparietal regions

were positively associated with both the relative forage value

and the harvest value, which seems to track the unique (but not

shared) variance between these 2 negatively related regressors.

Moreover, to reduce the possibility that the imaging results

were conflated by choice uncertainty, we statistically controlled

for reaction time, which is typically strongly associated with

choice uncertainty/task difficulty. However, we acknowledge

that reaction time measures can be noisy and that sequential

choices can be complicated by the fact that participantsmay have

partly prepared responses based on the previous trials. Another

point of consideration is that there are different possible ways

to conceptualize and, in turn, quantify the concept of the patch-

switching threshold. For example, it can be quantified as the

mean (objective) experienced reward rate across the environment

or the mean (subjective) reward rate for the environment (e.g.

estimated using a delta learning rule). However, here we aimed

at using a more direct and intuitive measure that best captures

learning-related changes directly derived from the participants’

behavior (for details, see Materials and Methods), which is

also the standard way of measuring patch-switching threshold

in the prior behavioral work (Constantino and Daw 2015;

Zacharopoulos et al. 2018). Moreover, as can be seen behaviorally

(Fig. 2), the patch-switching threshold was empirically modulated

as expected in response to the experimental manipulation

(Supporting Information 8). Furthermore, additional analyses

(Supporting Information 15) showed that variability in the patch-

switching threshold significantly reducedwith time (P<0.01), and

these data provide additional evidence that our patch-switching

measure is an adequate measure to capture learning-induced

changes.

Future work could expand the current findings in a number of

ways. First, future studies can employ more detailed behavioral

modeling, inspired by well-established theoretical frameworks

such as the marginal value theorem and the temporal-difference

learning as was done previously (Constantino and Daw 2015), to

elucidate more explicitly how variables are learned, and provide

different computational fits for the personal and social patch-

switching behavior. Second, and relatedly, future work building

on the current findings could identify formal learning markers

such as decreasing variance in the patch-switching threshold

or reductions in the deviations from optimal switching behavior

and assess how these are modulated depending on the reward

recipient, the human value orientation, and the foraging orchard.

Third, such information provided from the above 2 points can be

used to generate novel regressors that are specific to the neurobi-

ological mechanisms of patch-switching learning and updating,

as opposed to merely tracking the patch-switching threshold

as was done here. Taken together, such expansions of the cur-

rent work have the potential to motivate greater specificity in

behavioral and neural analyses allowing a more detailed under-

standing of the neurobiological mechanisms that shape foraging

behavior.

In our complementary analyses, the harvest value predictor

(Supporting Information 16) yielded frontoparietal positive brain

activity even when the relative forage value was not featured

in the same GLM model, and the same predictor (harvest value)

yielded frontoparietal negative brain activity only when the rel-

ative forage value was not featured in the same GLM model.

The patch-switching threshold was associated with frontoparietal

negative brain activity even when the harvest value was not

featured (but the relative forage value was featured) in the same

GLM model, but the same predictor (patch-switching threshold)

did not yield suprathreshold brain activity when the harvest value

was featured (but the relative forage value was not featured)

in the same GLM model. Indeed, one of the main aims of the

present study was to bring together all the different parameters

that influence foraging decisions and tease apart their unique

contributions in modulating brain activity. Our additional GLM

analyses (Supporting Information 16) show the relevance of close

attention to specific designs and combinations of predictors in a

design because they may influence the effects associated with

the different predictors and consequently the interpretation of

results.

In sum, the present research yielded preliminary evidence

(i) that the patch-switching threshold is tracked by activity within

frontoparietal regions including the angular gyrus and frontal

areas whose activation possibly inhibits switching propensity,

(ii) that overlapping frontoparietal regions (angular and frontal

gyrus) track several patch-switching properties, (iii) for an isomor-

phism of behavioral and neural effects for personal and social

patch-switching, and (iv) that human value orientation can be

related to the patch-switching threshold in specific foraging envi-

ronments. These findings expand on the decision-making liter-

ature, by illuminating a novel neurobiological understanding of

how learning in switching tasks emerges neurocomputationally

with implications for diverse real-life tasks.
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