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A B S T R A C T   

This paper tests the market jump contagion hypothesis in the context of the Covid-19 pandemic. 
We first use a nonparametric approach to identify jumps by decomposing the realized volatility 
into continuous and jump components, and we use the threshold autoregressive model to describe 
the jump interdependency structure between different markets. We empirically investigate the 
contagion effect across several major Asian equity markets (Mainland China, Hong Kong, Japan, 
South Korea, Singapore, Thailand, and Taiwan) using the 5-minute high frequency data. Some 
key findings emerge: jump behaviors occur frequently and make an important contribution to the 
total realized volatility; jump dynamics exhibit significant nonlinearity, asymmetry, and the 
feature of structural breaks, which can be effectively captured by the threshold autoregressive 
model; jump contagion effects are obviously detected and this effect varies depending on the 
regime.   

1. Introduction 

In the past 30 years, several severe financial crises have occurred against the background of the continuous deepening of global 
financial integration, such as the 1997 Asian crisis, the 2000 Internet bubble crisis, the 2003 Latin America crisis, the 2007 subprime 
crisis, and the 2009 European debt crisis. The common feature of these crises is that they were triggered in one country or region and 
then spread to other markets in a very short time, causing significant turbulence in the global financial market. Financial crisis has also 
become the subject of keen interest in the field of financial research, and the issue of financial contagion is a topic of even more debates. 
It is of concern not only to investors, who want to properly allocate their assets through international market diversity, but also to 
policy-makers wanting to stabilize the financial market and prevent systemic risks. The most recent manifestation of financial 
contagion appeared last year. As the outbreak of the Covid-19 pandemic has shaken the global financial markets, it has led to sig-
nificant turmoil in the global financial markets, and the international major equity markets have suffered a common sharp fall. 
Accordingly, research about the contagion effect across global financial markets induced by the Covid-19 pandemic has been very 
popular, and many researchers have studied the topic from different perspectives (Ahelegbey, Giudici and Hashem, 2021; Yang, Luo 
and Jiang, 2021; Akhtaruzzaman, Boubaker and Sensoy, 2021; Apergis, Christou and Kynigakis, 2019; Zorgati and Garfatta, 2021; Li, 
2021; Belhassine and Karamti, 2021; Choi, 2021; Davidovic, 2021; Guo, Li and Li, 2021; Iwanicz-Drozdowska et al., 2021; Lai and Hu, 
2021; Luo, Liu and Wang, 2021; BenMim and BenSaïda, 2019; Rao et al., 2021; Zainudin and Mohamad, 2021). 
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In the literature, the definitions of financial contagion are ambiguous and diverse (Pericoli and Sbracia, 2003). Early studies do not 
always distinguish between contagion and integration, since they mainly aim at unraveling the channels through which negative 
shocks are propagated. In fact, two definitions of financial contagion are widely adopted in the existing studies, which refer to the 
spillover and the co-movement definition respectively. The spillover definition describes financial contagion as when the volatility of 
asset prices in one market spills over to another (Hohamed & Jawadi, 2011). Meanwhile, the co-movement definition, also referred to 
as pure contagion, defines financial contagion as a significant increase in market co-movement after an exogenous shock, and this co- 
movement cannot be interpreted by economic fundamentals (Forbes & Rigobon, 2002). Following the latter definition of financial 
contagion, our study examines the pure jump contagion based on the observed data series without considering the underlying eco-
nomic mechanism. 

For empirical research, in the past two decades, scholars have developed numerous methodologies for analyzing the financial 
contagion hypothesis, with the focus mainly on the contagion effect estimation. Among these methods, the three most frequently used 
approaches are noteworthy. The first approach uses correlation analysis to measure co-movements between markets, and it serves as a 
measurement of contagion effects. This method corresponds to the definition of financial contagion that is viewed as a rise in the cross- 
country co-movement of asset prices which cannot be explained by fundamentals. Under this definition, several correlation regression 
methods have been developed, such as conditional correlation analysis (Dungey and Fry, 2009; Thomas et al., 2007; Anastasopoulos, 
2018; Mollah, Quoreshi and Zafirov, 2016; Inci, Li and McCarthy, 2011; Li and Zhu, 2014; Ahlgren and Antell, 2010; Choe et al., 2012), 
quantile regression analysis (Ye et al., 2016; Ye, Luo and Liu, 2017; Baur and Schulze, 2005; Caporin, Gupta and Ravazzolo, 2020; 
Chevapatrakul and Tee, 2014; Bianchi, Fan and Todorova, 2020; Deev and Lyócsa, 2020; Soylu and Güloğlu, 2019; Rejeb and Arfaoui, 
2016; Baur, Saisana and Schulze, 2004), and local correlation analysis (Zorgati and Lakhal, 2020; Støve, Tjøstheim and Hufthammer, 
2014). These scholars do not reject the contagion hypothesis, but they point out the limitations of using correlation for such a purpose. 

The copula function is used to test the contagion effect between markets in the second approach used by Fenech and Vosgha, 
(2019), Hoesli and Reka (2015), Niţoi and Pochea (2020), and Jayech (2016). With a copula model, the multivariate distribution of 
asset returns can be decomposed into marginal distributions and the copula function, and the joint behavior between the returns in the 
tails of the distribution can be captured by the copula function. As financial data series always show a non-normal distribution in actual 
applications, many types of copula functions have been developed to accommodate the real data statistical styles, such as the t-copula, 
Clayton-copula, Gaussian-copula, and Garch-copula. 

The examination of volatility spillover is at the core of the third methodology. The main idea of this approach is to firstly estimate 
the variance of the returns through the GARCH family model, and then use the dynamic time-varying correlation coefficient to es-
timate the volatility of asset prices in one country spilling over into another. Many researchers investigate the volatility spillovers 
among international equity markets over the period of the 2008 global financial crisis (e.g., Pragidis et al., 2015; Reboredo, Rivera and 
Ugolini, 2016; Diebold and Yilmaz, 2012; Johansson and Ljungwall, 2009; Kenourgios, Samitas and Paltalidis, 2011; BenSaida, 
Boubaker and Nguren, 2018; Boubaker, Jouini & Lahiani, 2015; Sugimoto, Matsuki & Yoshid, 2014). Kang, Mclver and Yoon (2017) 
investigate the volatility spillover among six commodity markets using MGARCH models and a spillover index framework, showing 
that the spillover effects apparently increase during a time of crisis. Furthermore, Yiu, Ho and Choi (2010) use a dynamic conditional- 
correlation model with seven Asian daily equity-return data series and empirically verify the contagion effect among markets. 
Recently, since the outbreak of the Covid-19 epidemic has resulted in significant turbulence in the global financial markets, many 
researchers investigate the volatility spillover among markets during this time. Fur et al. (2016) examine the spillover effect between 
stock markets by using the ADCC-GARCH model, finding apparent evidence of market contagion during the financial turmoil. Li, 
Zhuang and Wang (2021) use the GARCH-BEKK technique to construct the spillover index and test the risk contagion effect among 
different regions in China’s stock market. Vo and Tran (2020) combine the EGARCH model with the ICSS algorithm to investigate 
volatility spillovers from the US equity market to the stock markets of ASEAN economies. Laborda and Olmo (2021) measure volatility 
spillovers between sectors of economic activity using network connectivity measures. The authors show that volatility spillovers 
exhibit the ability to predict high episodes of volatility for the S&P 500 index and so are useful as early financial crisis indicators. 

As asset returns constantly exhibit non-normal distribution patterns, such as skewness, kurtosis, fat-tail, and asymmetry, it is hard 
to sufficiently reveal extreme co-movements in asset returns by only using the lower moments under these conditions. In this regard, 
some recent studies seek to investigate the higher moment interdependency among asset returns and especially to highlight the jump 
linkages among financial markets. For example, Fry, Martin and Tang (2010) estimate the cross-market contagion effect through an 
asset-pricing model based on the second and third moments. Asgharian and Bengtsson (2006) examine the higher moment propagation 
across markets during the financial crisis period, showing that jump linkages among markets change after a significant shift in market 
structure. Asgharian and Nossman (2011) employ a stochastic volatility model, which incorporates the jump component into the 
model. The authors test the jump spillover between the U.S. and the European stock markets, finding that jumps generated in the U.S. 
market largely drive the European market jumps. Jawadi, Louhichi and Cheffou (2015) used a nonparametric method to estimate the 
jump events in the markets in the U.S. and Germany, U.K., and France. The authors further test the jump contagion among these 
markets and deliver some meaningful results. 

Our work aims to further the understanding of higher moment contagion in asset returns from the perspective of jump events. To 
this end, we first identified the jumps of each market through a nonparametric technique presented by Barndorff-Nielsen and Shephard 
(2004). In the literature, many approaches have been developed to estimate discontinuity as well as jump behaviors in the asset price 
dynamics (e.g., Lee and Mykland, 2008; Heiny and Podolskij, 2021; Corsi, Pirino and Reno, 2010; Dungey and Hvozdyk, 2012; Aït- 
Sahalia and Xiu, 2016; Pukthuanthong and Roll, 2015). All of these jump testing approaches provide evidence in favor of the presence 
of discontinuities of returns or jumps. Among these approaches, the nonparametric method proposed by Barndorff-Nielsen and 
Shephard (2004) stands out, as it can detect precise jump behaviors by decomposing the realized volatility into continuous and jump 
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components, without any pre-specification of the asset pricing model. 
Another extension to the present knowledge of financial contagion by our work is that we check the relationships between market 

jumps through a particular nonlinear analysis framework, namely, the threshold autoregressive model. It is well known that asset 
returns always show nonlinear, time-varying, and asymmetric characteristics which cannot be sufficiently described by the linear 
models. Moreover, as some studies (Mandilaras and Bird, 2010; BenSaïda, 2018; Bianchi et al., 2019) point out, financial time series 
often show a threshold effect, that is, the dynamic shift in the market after an abruptly structural breakpoint. This leads the linkages 
across markets also to change simultaneously. So, a new specification is required to capture the complex price dynamics as well as the 
interaction process. Recently, threshold models have been used extensively in the field of financial research due to the advantages they 
have in describing nonlinearity and structural breaks in the market dynamics (e.g., Tsagkanos, Evgenidis and Vartholomatou, 2017; 
Evgenidis and Tsagkanos, 2017; Wen, Gong and Cai, 2016; Guidolin and Tam, 2013; Namaki et al., 2011). It is also appropriate for the 
jump contagion test, as jumps often occur suddenly, and their propagation among markets is expected to be abrupt and simultaneous. 
Based on these existing works, we consider the threshold autoregressive models to be valid in capturing these market dynamics. 

The empirical research provides evidence that jump behaviors frequently occur in stock markets, and this kind of discontinuous 
price movement is an important component of the total realized volatility. We test the jump contagion linkages among markets using 
the threshold autoregressive model. The results suggest a significant contagion effect across markets, and this effect shows both 
nonlinearity and asymmetry. Moreover, it also demonstrates that jump dynamics shift significantly under different market regions, 
thus supporting the effectiveness of our TAR model. 

The remainder of the paper is organized as follows. Section 2 presents the methodology including the nonparametric jump 
identification technique and the threshold autoregressive model. Section 3 describes the data and empirical results. Section 4 gives the 
concluding remarks. 

2. Methodology 

2.1. Jump tests 

In a typical jump-diffusion pricing model, the logarithm price process can be expressed as. 
dp(t) = μ(t)dt+ σ(t)dW(t)+ κ(t)dq(t) (1)  

in which p(t) is the log price at timet, and μ(t) is a continuous and locally bounded variation process which measures the average rate of 
growth of the asset price. σ(t) represents the volatility of the asset price, and W(t) is the standard Brownian motion. q(t) represents a 
jump process with jump size κ(t) and intensityλ(t). 

We can use the realized volatility (RV) defined by Andersen et al. (2007) to observe the continuous sample path for asset prices as 
follows: 

RVt+1(Δ) ≡
∑

1

/Δ

j=1

r2

t+jΔ,Δ (2) 

It can be further verified that the realized volatility converges uniformly in probability to a quadratic variation, and in this way, it 
provides a consistent nonparametric estimation of total variation: 

RVt+1(Δ) →

∫ t

t−1

δ2(s)ds+
∑Nt

j=1

κ2

t,j (3)  

where rt,Δ ≡ p(t)−p(t − Δ) represents the discretely sampled Δ-period return, Nt is the number of jump events per day t and κt,j denotes 
the jth intraday jump size. 

Since the real stock market is affected by information shocks and investors’ irrational sentiment, the movements of financial asset 
prices are always discontinuous with jump behaviors. In order to make the discrete jump component separate from the realized 
volatility, Barndorff-Nielsen and Shephard (2004) presented the realized bi-power variation (BV) defined as follows: 

BVt+1(Δ) ≡ μ−2

1

∑
1

/Δ

j=2

⃒⃒
rt+jΔ,Δ

⃒⃒⃒⃒
rt+(j−1)Δ,Δ

⃒⃒
→

∫ t

t−1

δ2(s)ds, μ1 =
̅̅̅̅̅̅
2
/π

√
(4) 

In the caseΔ → 0, the difference between the realized volatility (RV) and the bi-power variation (BV) is a consistent estimator of the 
discrete jump variance. 

Jumpt+1(Δ) = RVtt+1(Δ)−BVt+1(Δ) (5) 
We further use the Z statistics presented by Huang and Tauchen (2005) on the basis of the realized tri-power quarticity (TQ) to 

identify statistically significant jumps. The representation of the Z statistics is given as. 
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Zt+1(Δ) ≡
[RVt(Δ) − BVt(Δ) ]RVt(Δ)−1

[
(μ−4

1 + 2μ−2
1 − 5)max

{
1, TQt(Δ)BVt(Δ)−2

} ]1

/

2

(6)  

in whichTQt+1(Δ) ≡ Δ
−1μ−3

4
3

∑1
/Δj=3

⃒⃒rt+jΔ,Δ

⃒⃒4 /3 ⃒⃒rt+(j−1)Δ,Δ

⃒⃒4 /3 ⃒⃒rt+(j−2)Δ,Δ

⃒⃒4 /3
,μ4

3
≡ 22

3Γ
(7

6
)

⋅ Γ
(1

2
)−1. 

At the significance level of1 - α, the estimator of the discrete jump variance can be obtained as. 
Jt+1,α(Δ) = I[Zt+1(Δ)〉ϕα ] × [RVt+1(Δ) − BVt+1(Δ) ] (7)  

where I( ⋅ ) is the indicator function, and t denotes the day. 
After the above jump-identifying process, we can further investigate the jump contagion effect across markets by using the 

threshold models. 

2.2. Threshold jump relationships 

2.2.1. TAR models 
We investigate the contagion effect between jumps across markets in the framework of the threshold autoregressive model (TAR). 

The TAR model is appealing in modeling the dynamic characteristics of a financial system, such as nonlinearity and mutagenicity. As 
has been extensively proved, financial markets are highly complex time-varying nonlinear dynamic systems which are coupled 
through various channels in “normal” times. However, the structure of dependence among the markets will shift after a structural 
breakpoint in the underlying probability distribution of the data series. In this regard, TAR models are designed to describe the 
interdependence of dual time series with different market regimes when the underlying dynamics of the data generating processes of 
the markets are unknown. So, we focus on TAR models and examine our specification via nonlinearity and threshold tests. 

TAR models were first presented by Tong and Lim (1980) and have been widely used in the fields of economic and finance research. 
The basic idea of TAR is that it models on the nonlinear data series using a “piecewise” linear approximation, that is, it separates the 
global space into multiple subspaces (noted as regimes in the threshold autoregressive model); each regime has the same linear 
structure. The specification criterion of the regimes depends on the recognition of the threshold value. Generally, a simple two-regime 
TAR model can be written as follows: 

Yt = α10 +
∑p

i=1

α1iYt−i +
∑p

j=0

β1jX1t−j +
∑p

k=0

δ1kX2t−k + ε1t if St⩽c

Yt = α20 +
∑p

i=1

α2iYt−i +
∑p

j=0

β2jX1t−j +
∑p

k=0

δ2kX2t−k + ε2t if St > c

(8)  

where 
(
α10, α1i, β1j, δ1k

)
and 

(
α20,α2i, β2j, δ2k

)
denote the parameters in the two distinct regimes respectively,∀i, j = 1,⋯,p. Yt is the 

dependent variable (jump event), and Yt−i is the lagged jump. X1t−i and X2t−k are explanatory variables that represent the current and 
lagged jump events in other systems. ε1t and ε2t are the error terms that follow a white noise process with zero mean and bounded 
variance. St is the transition variable; c denotes the threshold variable, which is determined according to the result of nonlinearity test; 
and p is the lag order. 

As for estimating TAR, it requires the application of the sequential conditional least squares technique as developed by Tong and 
Lim (1980). The complete estimation process of the TAR model can be summarized as the following three steps: firstly, preset the initial 
values of parameters c andd; secondly, estimate the current TAR model using the least squares technique; finally, search for the optimal 
parameters c and d and obtain the final TAR model specification. 

A nonlinear model must pass a nonlinearity test to identify its specific form. However, the test process of nonlinearity always suffers 
from the “Davis problem”, that is, redundant parameters will appear in the distribution function under the null hypothesis due to the 
inconsistency of the parameters in both the null and alternative hypothesis (there are unidentifiable parameters in the distribution 
function of the statistics under the null hypothesis, which makes it difficult to obtain the asymptotic distribution of the test statistics). 
This leads to a relative lack of test methods in the existing literature. At present, the two most widely used test approaches are Tsay’s 
non-parameter method and Hansen’s parameter test, which are based on the principles of the arranged autoregressive model and the 
nested model, respectively. We mainly introduce the former, which we use as the test method due to its advantages in calculation 
efficiency. 

2.2.2. Threshold specification 
The basic idea of the Tsay (1989) test method can be summarized as follows. First, the autoregressive lag order p of the model is 

determined using the information specification or the partial autocorrelation function, and then the original data is grouped according 
to the autoregressive dynamic structure. Under the assumption that the delay parameter d is known and a preset threshold variable St is 
given, we can classify the above groups into different regimes according to the value of the threshold variablec, and the number of 
samples contained in each regime is a function of the threshold variable. Note that in the process of data assignment, the autoregressive 
dynamic relationship between the data remains unchanged, but the original sequence is separated into two subsequences with 
different regimes. Next, we conduct the regression analysis on the observations evolved in the first regime. If the actual threshold value 
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is greater than the preset threshold value, the error sequence of the model obeys to an asymptotic white noise process. We then add one 
observation at a time to the first regime by adjusting the threshold value and perform the regression again. We repeat the above 
implement until the asymptotic white noise nature of the error term is no longer valid. This is a verification that the threshold effect is 
detected, and the threshold value is at the same time determined. The ordering model that corresponds to model (8) is given as follows: 

Y(O) = α10 +
∑p

i=1

α1iY(O)t−i +
∑p

j=1

β1jX(O)t−j + ε1(O) for the k first values of S0

Y(O) = α20 +
∑p

i=1

α2iY(O)t−i +
∑p

j=1

β2jX(O)t−j + ε2(O) for the next values of S0

(9)  

in which O represents the observation ranking according to the value of the threshold variable. The advantage of Tsay’s nonlinear test 
is that it is a non-parametric method and does not refer to the “Davis problem”. In addition, all of the data points in a group are depicted 
by the same linear AR specification and this division does not require the accurate specification of the threshold variable. Since the 
threshold value is unknown, we employ the recursive technique for each value of d and use the method proposed by Tsay (1989) to test 
the null hypothesis that the AR structures of the two regimes are equal. The test statistic is given as. 

Q(p) =

∑T

t=1
ê

2

t −
∑T

t=1
û

2

t∑T

t=1
û

2

t

T − k − 2p− 1

p+ 1
(10)  

where êt is the estimated standard prediction errorεt, μ̂t is the residual term andk = T
10 + p. 

Tsay (1989) demonstrate that under the hypothesis of linearity, the statistic Q(p) should be relatively small and should obey a 
Fisher testF(p + 1,T − k − 2p − 1). If the null hypothesis of linearity is rejected, then a threshold effect is detected, and the optimal 
value of d is determined by maximizing the statisticQ(p). If there are multiple thresholds in the data, we can search and locate the 
structural break point of the first k observations according to the method discussed above. We can then use the same principle to search 
for the next threshold sequentially until the last observation is found. 

After determining the threshold variable c and delay parameterd, the TAR model expressed in Equation (9) is then estimated by the 
least squares method. 

Table 1 
Summary descriptive statistics of the sample data. This table presents the statistic characteristics of each market’s realized volatility and their two 
components over the January 2016-December 2020 period. The realized volatility is calculated by summing the intraday 5-minute interval squared 
returns. The jump part is calculated by subtracting the bi-power variation from the realized volatility.  

Market Mainland China Hong Kong Japan South Korea Singapore Thailand Taiwan 
Panel A: Realized volatility 
Mean  1.498  1.564  1.498  1.354  1.410  1.325  1.398 
Median  0.468  0.514  0.526  0.536  0.398  0.298  0.415 
Std. Dev  3.315  3.541  4.051  3.987  3.641  3.546  3.368 
Skewness  8.065  8.645  9.687  10.451  7.987  7.084  7.978 
Kurtosis  90.456  86.548  85.687  86.987  87.684  86.187  80.645 
Jarque-Bera  330.51  336.541  340.542  298.548  277.815  408.516  411.135 
Probability  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

Panel B: Continuous component 
Mean  1.470  1.436  1.453  1.332  1.376  1.173  1.382 
Median  0.451  0.499  0.514  0.526  0.381  0.288  0.411 
Std. Dev  3.102  3.487  3.948  3.794  3.514  3.526  3.298 
Skewness  7.894  6.978  8.521  8.461  8.213  8.064  7.978 
Kurtosis  85.461  83.897  81.798  82.687  79.845  78.795  82.465 
Jarque-Bera  345.541  336.840  340.879  355.498  362.456  365.456  348.458 
Probability  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

Panel C: Jump component 
Mean  0.028  0.128  0.045  0.022  0.034  0.152  0.016 
Median  0.00  0.01  0.02  0.00  0.01  0.00  0.00 
Std. Dev  0.123  0.059  0.214  0.987  1.120  0.251  0.197 
Skewness  7.945  8.056  7.897  7.945  7.846  8.121  8.078 
Kurtosis  79.845  81.879  105.543  122.942  76.845  79.849  97.865 
Jarque-Bera  354.851  368.874  371.181  299.879  286.978  313.854  320.879 
Probability  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
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3. Empirical research 

3.1. Data 

We use the jump detection approach discussed in Section 2.1 to derive the jump and the continuous volatility component using 5- 
minutes high frequency intraday data for seven Asian equity markets, which are the HS300 Composite Index (China), the Hang Seng 
Index (Hong Kong), the Nikkei 225 Stock Index (Japan), the Korea SE Composite Index (South Korea), the Straits Times Index 
(Singapore), the SET Index (Thailand), and the Taiwan Weighted Index (Taiwan), respectively. The selected markets’ setting enabled 
us to examine the effect of jump transmission across these markets. The data, which were collected from Bloomberg, cover the period 
from January 3, 2016 to December 31, 2020. We consider these data convenient to our study for the following reasons: firstly, the 
sample covers a relatively long observation period, which contains a calm sub-period and a turbulence sub-period caused by the Covid- 
19 pandemic, so we can investigate the effect of jump contagion during different market phases. Secondly, the selected markets have 
overlapping intraday trading hours; thus, high-frequency data can be used to study the co-movement behavior among them. The 
overlapping intraday trading times of the seven markets are 10:00 am to 11:00 am and 02:00 pm to 03:00 pm (Beijing time), so we 
sample the price series every five minutes from the above periods to smooth the effect of market microstructure noise. 

3.2. Preliminary analysis 

Tables 2 reports the descriptive statistics results of daily returns and realized volatility, as well as the continuous and jump 
components of the realized volatility. It can be observed that the difference between the median and the mean level is significant, 
which indicates that the distribution of returns and volatility is asymmetric. This asymmetry is also apparent in the skewness dis-
tribution, in which Mainland China and Thailand are left-skewed, and the rests are right-skewed. All of the samples exhibit lep-
tokurtosis, ranging from 368.67 (Mainland China) to 78.45 (Japan). The null hypotheses of normality are rejected by the J-B test for all 
the indices. 

We use the approach proposed by Andersen et al. (2007) to recover the normality of the return series, and we report the descriptive 
statistics of the standardized returns in Panel B (Tables 2). After standardization, the normality is no longer rejected for Hong Kong, 
Japan, South Korea and Singapore. In addition, as the occurrence of jump events can be a cause of normality rejection, we separate the 
jump part of the volatility and standardized the returns by the unit root of the continuous part. The results are reported in Panel C. We 
find that in this way, the China and Thailand index enter normality at the significance level of 5%. However, it is still abnormally 
distributed for the Japan index, even after standardization. 

Table 3 gives the number of jumps detected in each market index. We detect the largest number of jumps in the Thailand market, 
where a total of 143 jumps occurred with an intensity of 11.52%. The Taiwan market has the least active jumping behaviors, with 92 

Table 2 
Summary descriptive statistics of daily returns. This table presents the statistic characteristics of each market’s daily returns and their two forms of 
standardization.  

Market China Hong Kong Japan South Korea Singapore Thailand Taiwan 
Panel A: Daily returns 
Mean  −0.0021  0.0013  0.0001  0.0003  −0.0012  0.0001  −0.0001 
Median  −0.0001  0.0002  0.0000  0.0001  −0.0001  0.0003  0.0005 
Std. Dev  0.0015  0.0014  0.0013  0.0015  0.0014  0.0015  0.0013 
Skewness  −0.1258  0.3212  0.2145  0.3396  0.3215  −0.2145  0.0018 
Kurtosis  13.5412  14.8543  16.6551  18.4232  13.5152  10.5164  11.6245 
Jarque-Bera  3230.51  3336.42  410.54  263.54  269.51  526.51  309.54 
Probability  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

Panel B: returns after standardization (standardized by the square root of realized volatility) 
Mean  0.0021  0.0002  0.0021  0.0033  0.0013  0.0041  0.0052 
Median  0.0003  0.0001  0.0001  0.0021  0.0005  0.0022  0.0039 
Std. Dev  1.3212  1.5261  1.4321  1.5124  1.2951  1.8424  1.6354 
Skewness  0.2251  0.3125  0.1587  0.1215  0.3526  0.2145  1.1358 
Kurtosis  2.1212  2.6213  3.5143  5.1541  4.4654  1.6584  6.1254 
Jarque-Bera  25.541  2.840  1.879  2.498  2.456  13.456  21.458 
Probability  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

Panel C: returns after standardization (standardized by the square root of continuous component of realized volatility) 
Mean  0.028  0.128  0.045  0.022  0.034  0.152  0.016 
Median  0.0002  0.0001  0.0001  0.0019  0.0002  0.0014  0.0005 
Std. Dev  1.3521  1.5212  1.4431  1.4224  1.3151  1.3924  1.5954 
Skewness  0.2145  0.1984  0.3216  0.2165  0.1985  0.1864  0.1751 
Kurtosis  2.4512  2.6963  3.4943  4.4321  4.1434  1.6379  5.8947 
Jarque-Bera  1.1845  2.9784  9.4561  1.8456  1.9587  1.8645  3.879 
Probability  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
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detections in total, accounting for 6.87%. This ratio is around 8.81%, 8.98%, 9.78%, 11.16%, and 10.42% for Mainland China, Hong 
Kong, Japan, South Korea, and Singapore, respectively. Panel B and C show the relationship between jump events and the sign of daily 
returns. We find that a larger proportion of jumps are accompanied by negative returns compared to positive returns. This further 
confirms the asymmetry in the jumping dynamics. 

Next, we assess the contribution of the jump event to total volatility risk. We report the computing results in Table 4. It can be seen 
that for all the markets, the proportion of variance that can be accounted for by jumps exceeds 25%, in which the highest and lowest 
ratios are 33.31% (Hong Kong) and 26.01% (Taiwan) respectively. This further suggests that jump risk is an important component of 
the total volatility risk. Then, turning to jump size, we examined whether jump size is related to the sign of the daily return on the jump 
event date. Panels B and C in Table 4 show that jump size associated with negative daily returns are apparently larger than that with 
positive daily returns. The last two rows in Panel A give the maximum and minimum values of jump size for each index. We can observe 
that the contribution of jumps to the total volatility varies across a wide range, indicating that higher moments of returns need to be 
taken into account when describing jump dynamics. 

In a nutshell, we can summarize our findings into two points. First, jump risk is an important part of the total volatility risk, and the 
contribution of jump to variance is asymmetric, as well as corresponding closely to the sign of the returns. Second, jump size and 
intensity exhibit significant intraday characteristics, needing higher moments to be taken into consideration to better reveal the 
properties of jump dynamics. 

3.3. Linear jump linkages 

There is plenty of evidence to prove that the international equity markets are generally connected to the high linkage effect 

Table 3 
Number of jumps detected. This table presents the number of jumps detected over the January 2016-December 2020 period. Jump intensity is given 
by dividing the number of jumps detected by the total number of observation days. We also report the ratio of jumps associated with positive and 
negative returns, respectively.  

Market China Hong Kong Japan South Korea Singapore Thailand Taiwan 
Panel A: Total sample jumps 
number 91 99 102 139 125 143 92 
intensity 8.81% 8.98% 9.78% 11.16% 10.42% 11.52% 6.87%  

Panel B: Jumps associated with positive returns 
number 41 42 37 58 51 61 38 
intensity 40.9% 42.4% 37.1% 41.7% 40.8% 42.7% 41.3%  

Panel C: Jumps associated with negative returns 
number 50 57 65 81 74 82 54 
intensity 59.1% 57.6% 62.9% 58.3% 59.2% 57.3% 58.7%  

Table 4 
Jump contribution to total realized volatility. This table reports the percentage of realized volatility that can be explained by jumps for each market. 
We also report the jump contribution associated with positive and negative returns, respectively.  

Market China Hong Kong Japan South Korea Singapore Thailand Taiwan 
Panel A: Jump contribution (total sample) 
Mean  27.45%  33.31%  28.89%  29.25%  29.54%  32.12%  26.01% 
Median  25.68%  31.64%  26.87%  27.45%  26.84%  28.46%  23.54% 
Std. Dev  0.089  0.094  0.154  0.149  0.162  0.125  0.097 
MAX  0.672  0.782  0.654  0.662  0.716  0.747  0.668 
MIN  0.123  0.094  0.135  0.182  0.219  0.232  0.193  

Panel B: Jump contribution (jumps associated with positive returns) 
Mean  28.05%  33.91%  29.49%  29.85%  30.14%  32.72%  26.61% 
Median  26.01%  32.12%  27.18%  28.78%  27.84%  30.12%  24.45% 
Std. Dev  0.091  0.095  0.156  0.153  0.171  0.132  0.102 
MAX  0.683  0.795  0.661  0.665  0.720  0.764  0.697 
MIN  0.123  0.093  0.137  0.189  0.221  0.241  0.201  

Panel C: Jump contribution (jumps associated with negative returns) 
Mean  27.05%  32.91%  28.49%  28.85%  29.14%  31.72%  25.61% 
Median  25.18%  31.14%  26.37%  26.95%  26.34%  27.96%  23.04% 
Std. Dev  0.085  0.092  0.147  0.143  0.155  0.122  0.093 
MAX  0.651  0.767  0.621  0.632  0.701  0.713  0.623 
MIN  0.119  0.089  0.128  0.169  0.201  0.213  0.179  
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between their returns, volatilities, and higher moments, such as jumps. The research of linkage among jumps is an ongoing topic for a 
better understanding of risk management, diversification benefit, and contagion. Moreover, it provides us with an insight into whether 
there is a cause and effect between jump events that are generated in different markets. To this end, we first used a couple of linear 
specifications to model the linkage of jumps among the seven equity markets. 

We first compute the unconditional correlation coefficients between jumps and present the results in Table 5. It can be seen that the 
correlation between jumps ranges from 0.182 (between South Korea and Thailand) to 0.298 (between Hong Kong and Singapore). This 
measurement is limited in that it provides only a static measure of the linkages between jumps and fails to capture the dynamic 
interaction or the lead-lag effects. Moreover, it cannot describe the nonlinear dependence between jumps. 

Next, we establish the linear model to capture the lead-lag effect on jumps as follows: 
Jump indexi,t = σ1 + σ2Jump indexi,t−1 + σ3Jump indexj,t + σ4Jump indexj,t−1 + εi,t (11)  

in which Jump indexi,t denotes the contribution of the jump event detected in the domestic market to the realized volatility at the 
present period. Jump indexi,t−1 is the jump contribution in the previous period. Jump indexj,t and Jump indexj,t−1 denote the contri-
bution of jumps to the foreign markets during the present and the previous period, respectively. In the case that there is no jump event 
for a trading day, the jump contribution is equal to 0. 

We first perform the White heteroskedasticity test (White test) and the Breusch-Godfrey Serial Correlation Lagrange Multiplier 
(LM) test for all the jump series to examine the autocorrelation and heteroscedasticity that might exist in the jump series. The results 
are shown in Table. 6. They suggest that all the jump series are significantly autocorrelated and heteroscedastic at a significance level 
of at least 5%. An exception is the China market, as we do not detect significant autocorrelation or heteroscedasticity in the China 
market jump series. We then estimate Eq. (11) by using the least squares technique combined with the Newey-West method to correct 
the errors from this autocorrelation and heteroscedasticity. 

The estimated results of Eq. (11) are presented in Table 7. There is obvious evidence of the contagion effect between jumps in the 
Asian markets. A positive and significant contemporaneous relationship of jumps can be seen in a majority of the pairwise markets 
under consideration. This suggests that a specific jump event in one market may be driven by the jumps in other markets. Most market 
jumps do not exhibit apparent autocorrelation features; only the jumps in the Japan and Singapore markets are affected by the previous 
jumps in the domestic market and present a reversal effect. It should be noted that the Hong Kong market plays a crucial role in jump 
interdependency since Hong Kong market jump events in both the current and previous period have a significant impact on the jumps 
for most of the remaining markets. This may be due to Hong Kong’s central position in the Asian financial market. 

We also conducted a Granger causality test, and we show the results in Table 8. The results confirm the structure of linear de-
pendency between each pair of indices. It should be noted that the null hypotheses that the Hong Kong market jump does not Granger 
cause the jump behavior in the China, Japan, South Korea, Singapore and Taiwan markets are all rejected at the level of 1%. This 
suggests that most of Asian stock market jumps are driven by the Hong Kong market jumps due to its central position in the regional 
financial markets. 

The above analysis shows that there is at least a linear dependence across markets. However, this linear specification may fail to 
capture the nonlinear interdependency associated with jumps among markets. To provide a deeper insight into the nonlinear dynamics 
of jumps, we explored how jumps are propagated to the nonlinear framework, while allowing the jump dependency to show its 
nonlinear and dynamic appearances. 

3.4. Linearity and structural break test results 

Before performing nonlinear analysis, we need to first conduct a preliminary analysis on the nonlinear and dynamic appearances of 
the jump series according to the information criteria. 

The testing results presented in Table 9 confirm the nonlinearity in jump behaviors, and the null hypothesis of the threshold effect 
cannot be rejected under the significance level of 1%. Our findings also indicate that a significant structural change occurred in 2020, 
which suggests that the market turbulence caused by the Covid-19 pandemic has profoundly changed the dynamics of the financial 
data indices. Moreover, it seems that jumps in the Hong Kong market drive propagation for the other indices under consideration 
except for the Thailand Index, while the Hong Kong jump is more of a self-incentive process. This evidence supports the findings we 
obtained in Section 3.3, which also manifest that the Hong Kong market plays a crucial role in the transition of jumps. Overall, it 
suggests that the dynamics of jump contagion exhibit an obvious threshold effect and are regime-dependent, which requires an 

Table 5 
This table presents the unconditional correlation between the pairwise markets over the January 2016-December 2020 period.  

Market China Hong Kong Japan South Korea Singapore Thailand Taiwan 
China  1.000  0.192  0.201  0.222  0.199  0.235  0.189 
Hong Kong   1.000  0.211  0.231  0.298  0.245  0.255 
Japan    1.000  0.264  0.271  0.231  0.229 
South Korea     1.000  0.269  0.182  0.231 
Singapore      1.000  0.255  0.241 
Thailand       1.000  0.272 
Taiwan        1.000  
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appropriate nonlinear framework to deliver further understanding. 
We next examine whether the analysis of the jump spread effect can be improved by considering the threshold effect. To this end, 

we re-estimated model (11) with a structure point by using the LS technique. The results show apparent evidence of breakpoints in 
jump events, and are very consistent with the linearity test results as reported in Table 9. Overall, these results show that the contagion 

Table 6 
This table reports the results for the White heteroskedasticity test (White test) and the Breusch-Godfrey Serial Correlation Lagrange Multiplier (LM) 
test. ***, **, and * denote the significance level at 1%, 5%, and 10%, respectively.  

Market Chinat Hong Kongt Japant South Koreat Singaporet Thailandt Taiwant 

Panel A: White test 
F-statistic  0.425  31.254***  29.645***  28.458***  19.874**  20.774**  15.484** 
p-value  0.815  0.000  0.000  0.000  0.000  0.000  0.000  

Panel B: LM test 
F-statistic  0.579  33.645***  36.456***  30.145***  28.154***  16.487**  13.584** 
p-value  0.794  0.000  0.000  0.000  0.000  0.000  0.000  

Table 7 
This table reports the estimated results of linear model (11) using the high frequency data collected from the seven major Asian equity markets over 
the January 2016-December 2020 period. Markett and Markett-1 denote the jump part of realized volatility for the domestic market during the current 
and previous period, respectively. ***, **, and * denote the significance level at 1%, 5%, and 10%, respectively.  

Market Chinat Hong Kongt Japant South Koreat Singaporet Thailandt Taiwant 

Intercept 0.005*** 

(0.001) 
0.011*** 

(0.000) 
0.008** 

(0.000) 
0.007*** 

(0.000) 
0.002** 

(0.000) 
0.015*** 

(0.000) 
0.016** 

(0.000) 
Chinat – 0.021 

(0.181) 
0.016 
(0.222) 

0.054* 
(0.001) 

0.031** 

(0.098) 
0.009 
(0.081) 

0.011 
(0.079) 

Chinat-1 0.316*** 

(0.000) 
0.006 
(0.101) 

0.008 
(0.164) 

0.065 
(0.159) 

−0.049 
(0.162) 

0.045 
(0.134) 

0.021 
(0.144) 

Hong Kongt 0.353*** 

(0.014) 
– 0.265*** 

(0.012) 
0.471** 

(0.002) 
0.249*** 

(0.000) 
0.103*** 

(0.001) 
0.286* 
(0.009) 

Hong Kongt-1 0.124*** 

(0.019) 
0.126*** 

(0.008) 
0.237** 

(0.007) 
0.199*** 

(0.018) 
0.214* 
(0.139) 

0.185 
(0.305) 

0.226** 

(0.003) 
Japant 0.236* 

(0.002) 
0.045 
(0.516) 

– 0.037 
(0.465) 

0.038 
(0.501) 

0.106* 
(0.014) 

0.311*** 

(0.001) 
Japant-1 −0.003 

(0.334) 
0.002 
(0.864) 

−0.015 
(0.704) 

0.003 
(0.604) 

0.011 
(0.534) 

0.008 
(0.454) 

0.210** 

(0.004) 
South Koreat 0.032 

(0.064) 
0.119* 
(0.009) 

0.322** 

(0.011) 
– 0.142* 

(0.009) 
0.003 
(0.043) 

0.004 
(0.056) 

South Koreat-1 0.004 
(0.078) 

0.152 
(0.311) 

0.009 
(0.302) 

0.312*** 

(0.001) 
0.198* 
(0.021) 

0.781* 
(0.031) 

0.069 
(0.123) 

Singaporet 0.035 
(0.812) 

0.037 
(0.625) 

0.212* 
(0.031) 

0.255* 
(0.033) 

– 0.197** 

(0.074) 
0.005 
(0.302) 

Singaporet-1 0.003 
(0.912) 

0.002 
(0.453) 

0.015 
(0.392) 

0.013 
(0.405) 

0.231*** 

(0.001) 
0.009 
(0.312) 

0.017 
(0.562) 

Thailandt 0.004 
(0.454) 

0.011 
(0.348) 

0.009 
(0.321) 

0.010 
(0.415) 

0.124* 
(0.006) 

– 0.136* 
(0.012) 

Thailandt-1 0.013 
(0.205) 

0.012 
(0.845) 

0.008 
(0.699) 

0.009 
(0.546) 

0.011 
(0.498) 

0.212* 
(0.006) 

0.013 
(0.397) 

Taiwant 0.012 
(0.718) 

0.251** 

(0.003) 
0.003 
(0.687) 

0.015 
(0.598) 

0.016 
(0.462) 

0.312*** 

(0.002) 
– 

Taiwant-1 0.009 
(0.097) 

0.011 
(0.102) 

0.008 
(0.213) 

0.013 
(0.385) 

0.009 
(0.684) 

0.016 
(0.758) 

0.292*** 

(0.002)  

Table 8 
This table reports the Granger causality test results for market jumps.  

Null hypothesis Number of markets 
Chinese market jump Granger cause other market jump 1 
Hong Kong market jump Granger cause other market jump 5 
Japan market jump Granger cause other market jump 3 
Singapore market jump Granger cause other market jump 3 
South Korea market jump Granger cause other market jump 2 
Thailand market jump Granger cause other market jump 2 
Taiwan market jump Granger cause other market jump 2  
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effects between jumps are asymmetrical and vary under different regimes. Therefore, the jump contagion dynamic can be better 
characterized by the TAR model. 

3.5. TAR model estimation 

This section shows how we use the TAR model to investigate the nonlinear dynamics of jump contagion with different regimes. 
Some meaningful findings are shown in Table 10. Generally, there is strong evidence that jump dynamics are time-varying with 
endogenous structural breaks for most of the markets under consideration. The results also suggest that the jump dependency 
structures change significantly across regimes. In the first regime, we note an obvious domestic lagged effect for most of the markets 
with the exception of the Japan market. In line with the findings of the linear analysis, the Hong Kong market seems to play an active 
role in the propagation of jumps as we can observe that the dependencies of Hong Kong jumps with respect to all the other markets are 
all positive and significant at the level of 10%. It is relatively rare to see this sort of dependency in other pairs of markets; only the 
Japan jumps shows a negative effect on South Korea jumps at the significance level of 10%. 

While in the second regime, we observe a much more significant nonlinear interdependent structure and lead-lag effects between 
market jumps, indicating that the jump contagion effects are apparently strengthened after an abrupt change in market conditions. In 
this stage, the domestic lagged effects become weaker for the China, Japan, Singapore, and Taiwan markets compared to the first stage, 
whereas the instantaneous contagion effects increase significantly for most of the markets. For China, it seems to be obviously driven 
by the instantaneous and lagged Hong Kong market jumps. However, the domestic lagged effect of China market jumps is dis-
appearing. The Hong Kong market still plays a key role in this regime, as the effects of Hong Kong jumps on the South Korea, Singapore, 
Thailand, and Taiwan markets are all significant at the level of 1%. This is consistent with the findings observed in the first regime with 
only higher degrees of dependency. As for the Japan market, inconsistent with the findings in the first regime, we find that the Japan 
market jumps are mostly self-excited within the domestic market. A more special case is the Thailand market, where the jumps are 
much more independent and are not affected by any other factors. We also test the residual term estimated from the TAR model for 
each of the individual market jumps, and find that it is white noise distributed, confirming the validity of the model specification. 

Overall, our study provides significant evidence of the jump contagion hypothesis across major Asian stock markets. We find that 
the linkages among the markets vary across regimes in respect to direction, amplitude, and strength. This suggests that the TAR model 
captures more significant jump contagions compared to the linear model and so meets our research requirements. 

4. Conclusion 

This paper examines the jump contagion effects across major Asian equity markets over the period 2016–2020. We investigate 
whether a jump event that occurs in one market has an instantaneous or lead-lag effect on jumps from other markets for high frequency 
data. To this end, we first identify jumps by using the nonparametric method and then conduct a linear test to show the nonlinearity 
and threshold effect in jump dynamics. We detect an obviously abrupt change in the market structure, which corresponds exactly to the 
moment of the Covid-19 outbreak. To accommodate these jump dynamics in the contagion analysis framework, we use the threshold 
autoregressive model to assess the jump contagion effects for different regimes. Our findings support the existence of jump interde-
pendence across Asian equity markets. Specifically, we show that the Hong Kong market plays a key role in propagating the jump risks 
for both regimes. Moreover, the interdependence between jumps is significantly strengthened after the abrupt change in the market 
condition. However, such market linkages vary with respect to direction, time, and strength. These results suggest that the TAR model 
serves well in capturing more nonlinearity in the analysis of financial contagion effects. 

Our research provides some useful insights for market regulators and investors to better control higher order moment risks between 
stock markets. For the future research, it would be worth broadening the scope of this study by revealing more nonlinearity in the data 
of financial markets. Extending our “regional contagion” analysis to a more extensive “global contagion” analysis by using some 
alternative nonlinear specifications should also be of interest. 
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Table 9 
This table reports the estimated results of the threshold value. We tried different threshold autoregression models while varying the lag order and the 
regimes using Tsay’s method, as described in Section 2.2.2. The best outcomes correspond to a two-regime TAR specification with lag order equal to 1. 
Column 4 reports the p-value of Tsay’s nonlinear test. Column 5 presents the time point of the threshold effect detected for each market.  

Market Lag order Optimal transition variable p-value Threshold data Model specification 
China 1 Hong Kong  0.00 2020:02:18 TAR 
Hong Kong 1 Hong Kongt-1  0.03 2020:02:25 TAR 
Japan 1 Hong Kong  0.00 2020:03:18 TAR 
South Korea 1 Hong Kong  0.00 2020:02:24 TAR 
Singapore 1 Hong Kong  0.00 2020:03:06 TAR 
Thailand 1 Japan  0.08 2020:03:05 TAR 
Taiwan 1 Hong Kong  0.00 2020:02:19 TAR  
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Table 10 
This table reports the estimated results of the threshold autoregressive model as given in model (8). ***, **, and * denote the significance level at 1%, 
5%, and 10%, respectively.  

Market Chinat Hong Kongt Japant South Koreat Singaporet Thailandt Taiwant 

Regime 1 
Intercept 0.033*** 

(0.001) 
0.021*** 

(0.000) 
0.011** 

(0.000) 
0.017*** 

(0.000) 
0.029** 

(0.000) 
0.013*** 

(0.000) 
0.012** 

(0.000) 
Chinat – 0.032 

(0.125) 
0.021 
(0.232) 

0.056 
(0.002) 

0.075 
(0.089) 

0.011 
(0.056) 

0.009 
(0.082) 

Chinat-1 0.332*** 

(0.001) 
0.005 
(0.132) 

0.011 
(0.224) 

−0.071 
(0.172) 

0.053 
(0.202) 

0.051 
(0.204) 

0.019 
(0.224) 

Hong Kongt 0.413*** 

(0.002) 
– 0.305*** 

(0.003) 
0.511** 

(0.001) 
0.319*** 

(0.001) 
0.323*** 

(0.000) 
0.316* 
(0.002) 

Hong Kongt-1 0.124 
(0.002) 

0.126*** 

(0.008) 
0.317* 
(0.047) 

0.201 
(0.318) 

0.214* 
(0.219) 

0.185 
(0.132) 

0.222 
(0.065) 

Japant 0.236 
(0.042) 

0.032 
(0.516) 

– 0.037** 

(0.005) 
0.039 
(0.481) 

0.156 
(0.064) 

0.311 
(0.061) 

Japant-1 −0.004 
(0.624) 

0.012 
(0.904) 

−0.015*** 

(0.001) 
0.004 
(0.604) 

0.043 
(0.464) 

0.007 
(0.694) 

0.213 
(0.064) 

South Koreat 0.039 
(0.164) 

0.119 
(0.009) 

0.412 
(0.013) 

– 0.143 
(0.011) 

0.001 
(0.039) 

0.003 
(0.046) 

South Koreat-1 0.003 
(0.069) 

0.142 
(0.221) 

0.009 
(0.302) 

0.242*** 

(0.001) 
0.198 
(0.021) 

0.781 
(0.031) 

0.069 
(0.123) 

Singaporet 0.035 
(0.812) 

0.331 
(0.585) 

0.302 
(0.087) 

0.315 
(0.053) 

– 0.207 
(0.068) 

0.005 
(0.292) 

Singaporet-1 0.002 
(0.772) 

0.003 
(0.513) 

0.021 
(0.392) 

0.013 
(0.405) 

0.321*** 

(0.001) 
0.008 
(0.292) 

0.017 
(0.492) 

Thailandt 0.004 
(0.454) 

0.011 
(0.348) 

0.009 
(0.321) 

0.010 
(0.415) 

0.124 
(0.006) 

– 0.136 
(0.012) 

Thailandt-1 0.032 
(0.185) 

0.011 
(0.735) 

0.009 
(0.709) 

0.011 
(0.486) 

0.009 
(0.518) 

0.362* 
(0.002) 

0.021 
(0.412) 

Taiwant 0.015 
(0.698) 

0.331 
(0.052) 

0.003 
(0.687) 

0.015 
(0.598) 

0.016 
(0.462) 

0.312 
(0.002) 

– 

Taiwant-1 0.014 
(0.078) 

0.051 
(0.332) 

0.008 
(0.213) 

0.013 
(0.385) 

0.009 
(0.684) 

0.016 
(0.758) 

0.292*** 

(0.002) 
Regime 2 
Intercept 0.006*** 

(0.001) 
0.016*** 

(0.000) 
0.006** 

(0.000) 
0.011*** 

(0.000) 
0.004** 

(0.000) 
0.012*** 

(0.000) 
0.011** 

(0.000) 
Chinat – 0.022** 

(0.179) 
0.012* 
(0.211) 

0.044* 
(0.054) 

0.029 
(0.008) 

0.008* 
(0.081) 

0.011* 
(0.093) 

Chinat-1 0.019* 
(0.008) 

0.007 
(0.231) 

0.011 
(0.159) 

0.244* 
(0.201) 

−0.041 
(0.131) 

0.024 
(0.164) 

0.015 
(0.114) 

Hong Kongt 0.413*** 

(0.004) 
– 0.216** 

(0.003) 
0.541*** 

(0.001) 
0.367*** 

(0.001) 
0.021 
(0.001) 

0.306*** 

(0.003) 
Hong Kongt-1 0.254*** 

(0.002) 
0.196*** 

(0.001) 
0.281** 

(0.003) 
0.329*** 

(0.004) 
0.359*** 

(0.003) 
0.295 
(0.003) 

0.366** 

(0.001) 
Japant 0.316* 

(0.002) 
0.055* 
(0.316) 

– 0.027* 
(0.454) 

0.041** 

(0.801) 
0.111 
(0.009) 

0.281** 

(0.005) 
Japant-1 −0.002 

(0.434) 
0.013 
(0.814) 

0.325** 

(0.001) 
0.013* 
(0.694) 

0.011 
(0.504) 

0.007* 
(0.534) 

0.330* 
(0.004) 

South Koreat 0.132** 

(0.006) 
0.149* 
(0.008) 

0.382** 

(0.013) 
– 0.212* 

(0.010) 
0.004 
(0.033) 

0.114* 
(0.016) 

South Koreat-1 0.003 
(0.071) 

0.162* 
(0.006) 

0.010 
(0.292) 

0.342** 

(0.001) 
0.208* 
(0.009) 

0.391 
(0.006) 

0.071* 
(0.006) 

Singaporet 0.144* 
(0.002) 

0.201** 

(0.005) 
0.243** 

(0.004) 
0.283** 

(0.003) 
– 0.007 

(0.074) 
0.005* 
(0.012) 

Singaporet-1 0.004 
(0.882) 

0.012 
(0.393) 

0.032* 
(0.402) 

0.015 
(0.555) 

0.008 
(0.931) 

0.009 
(0.312) 

0.021 
(0.692) 

Thailandt 0.005* 
(0.504) 

0.013 
(0.398) 

0.111** 

(0.021) 
0.311** 

(0.005) 
0.124 
(0.316) 

– 0.112* 
(0.021) 

Thailandt-1 0.011 
(0.077) 

0.009 
(0.009) 

0.011 
(0.113) 

0.109 
(0.385) 

0.011 
(0.684) 

0.017 
(0.638) 

0.192** 

(0.002) 
Taiwant 0.109* 

(0.007) 
0.111* 
(0.003) 

0.198** 

(0.013) 
0.113* 
(0.005) 

0.239** 

(0.005) 
0.136 
(0.008) 

– 

Taiwant-1 0.011 
(0.089) 

0.011 
(0.114) 

0.021 
(0.205) 

0.015 
(0.415) 

0.109 
(0.594) 

0.016 
(0.698) 

0.106 
(0.051)   
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influence the work reported in this paper. 
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