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Abstract

Referring expression generation (REG) aims at generating natural language definite
descriptions for objects within images called referring expressions (REs). Despite the
substantial progress in recent years, REG models are still far from being perfect. Existing
attempts focus exclusively on how accurately referring expressions describe an object.
However, other essential natural language attributes such as diversity and naturalness
are overlooked. Therefore, this thesis aims to develop REG systems that produce REs
that are: (1) unambiguous: the generated sentences describe the object unambiguously;
(2) natural: the REs should be less distinguishable from the human ones; (3) diverse:
the REG model should be able to produce a set of REs for a given target object that are
notably different.

A limitation of the language models that have been used in REG is that, they utilize
a static global visual representation that is excessively compressed and lacks in granu-
larity since all the visual information is fused into a single vector. Therefore, the first
contribution of this thesis is a novel object attention mechanism that dynamically uses
salient object features. To further demonstrate the advantages of attention in REG, a
novel transformer model is proposed that exploits different levels of visual information.

Secondly, neural approaches that follow the encoder-decoder architecture are usu-
ally trained to maximize the likelihood of the generated word given the history of
generated words. However, two shortcomings stem from this training scheme: (1) the
exposure bias: the model is never exposed to its own error during training; (2) training-
evaluation mismatch: during training a strictly word-level loss is used, while at test
time the model is evaluated on sequence level metrics. Recently approaches that utilize
reinforcement learning techniques have shown promising results in training neural
systems directly on non-differentiable metrics for the task at hand. Thus, a second con-
tribution that this thesis makes, is a novel optimization approach to REG based on the
REINFORCE algorithm that normalizes the reward by averaging over multiple-samples.
However, it was found that, while directly optimizing the evaluation metrics the models
achieve higher scores, the generated text lacks diversity due to repeated n-grams. Thus,
this thesis proposes the use of minimum risk training (MRT) as an alternative way of
optimizing REG systems on sequence level.

Finally, to overcome the lack of diversity it is proposed to extend the investigation
in generating sets of referring expressions. Specifically, the effect of different decoding
strategies is investigated by comparing their performance along the entire quality-
diversity space.
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; First Chapter <

Introduction

Referring Expression Generation (REG) aims at generating natural language descriptions

for objects within scenes called referring expressions (REs) (48). The recently released

datasets RefCOCO, RefCOCO+ and RefCOCOg (67, 116) which contain natural images of

cluttered scenes impose new challenges to the task. Referring to objects in open domain

images requires in depth understanding of the global concepts of the image, as well as

their attributes and relationships. Deep learning approaches have yielded promising

results on this task (8, 115, 116, 119). Such approaches derive their inspiration from the

recently introduced encoder-decoder paradigm (72) originally proposed for machine

translation (12, 87) and since have been widely used in various NLG sub-fields such

as storytelling (19, 36), summarization (25, 91), dialogue systems (55, 103), and image

captioning (102, 108). This architectural scheme utilizes a deep convolutional neural

network (CNN) (49) to extract a vector representation of an image or image region, and

a variation of recurrent neural networks (RNNs) (42), e.g. a Long Short-Term Memory

(LSTM) network (34) to generate the output.

Despite the substantial progress in recent years REG models are still far from being

perfect. Existing neural REG attempts focus mostly on the generation of unambiguous

referring expressions. However, other essential natural language attributes such as di-

versity and naturalness have received less attention. Diversity is important for a number

reasons. First, an image contains multiple concepts at various levels of detail, and thus

a RE describes a set of attributes that are interesting to the human speaker that uttered

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Generated reffering expressions by systems presented by (63, 115, 116)

the expression. It has been shown that the content of a RE is speaker dependent (97).

In other words for the same referential environment (e.g. image), different speakers

will often utter diverse expressions, a property that is reflected by the naturally existing

human text. However, as it shown in Figure 1.1 generated expressions are repetitive.

Furthermore, each of the REG datasets used in this study, namely RefCOCO and Re-

fCOCO+, average 3 REs per object. Hence, from a machine learning standpoint, it is

reasonable not only to evaluate the modes of the learned conditional distribution that

reflect the accuracy, but also its variance which reflects the diversity of the generated

output (104).

Furthermore, as robots become increasingly pervasive in modern societies, it be-

comes increasingly important to endow them capabilities that allow fluent and natural

human-robot communication. Attracted by the naturalness of human communication,

robots were equipped with natural language capabilities especially those designed to

operate in domains that require cooperation or communication with human users. For

a single-purpose robot such as a vacuum cleaner, this interaction can be simplified even

to the press-of-a-button command. However, controlling robots that perform complex

tasks requires advanced communication capabilities, including the ability to refer to

objects or events in dynamic environments. For instance, users of housekeeper robot

that can fetch and deliver objects need to be able to refer to an arbitrary target object

and delivery point. More importantly, in the near future, new technological advances

might take into account all ongoing visual aspects of the environment in real time. Such

technological improvement will permit multipurpose human assistive robots to guide

2



CHAPTER 1. INTRODUCTION

visually impaired and elderly people to some predefined destination avoiding obstacles

and traffic. However, such communication scenario is highly dynamic and the robot

needs to refer to objects and events with high precision and be able to produce a set of

diverse responses in case the user is unable to understand a particular description.

Therefore, in this thesis an alternative approach is explored as to what a “good”

referring expression is. The objective of the systems developed in this thesis is to

produce referring expressions that are: (1) unambiguous: the generated expressions

should describe the object univocally; (2) natural: the referring expressions should be

less distinguishable from the human ones; (3) diverse: the REG model should be able to

produce a set of referring expressions for a given target object that are notably different.

1.1 Research questions and Contributions

This section states the research questions explored in this thesis and describes the

approaches that were developed to address those questions.

• RQ1: To what extend do language models affect the ambiguity and naturalness of

referring expressions?

First, it is proposed to incorporate a novel object attention mechanism to the

standard RNN network that has been used so far in REG. Under the standard

RNN framework, the generation of the next word is conditioned on the previously

generated words. While this may suffice when the visual stimuli is relatively

simple, for complex cluttered scenes a more fine-grained visual representation

is required in order to generate high quality output. The attention mechanism

bridges this gap by learning to focus on regions that are salient. They key novelty

of this model is that, instead of letting the language model to hallucinate over the

attributes that sound plausible the attention mechanism enables the language

model to be exposed to multiple salient regions of the object during generation. It

is shown that the inclusion of the proposed attention mechanism has significant

benefits for REG.

3



CHAPTER 1. INTRODUCTION

To further demonstrate the benefits of attention in neural REG, a transformer-

based (94) model is proposed. Transformers have revolutionized NLG fields

such as machine translation, where the machine generated translations surpass

the performance of those produced by human experts (94). However, there are

limited attempts to incorporate the transformer models in vision & language

tasks. To bridge this gap, this thesis investigates the effectiveness of the original

architecture and it proposes a novel layer configuration in order to provide the

network with a global “context” signal by connecting each layer of the encoder

with the respective layer of the decoder. Is is shown that the proposed transformer

model is highly effective. Specifically, significant improvements are reported,

both quantitative and qualitative, over baseline methods and the results compare

favorably to the state-of-the-art results not only in automatic metrics but also in

human evaluation.

• RQ2 To what extent do training objectives affect the ambiguity, naturalness and

diversity of the referring expressions?

The encoder-decoder models are trained mostly to maximize the likelihood of the

generated word given the history of generated words that far. This approach has

been coined in literature as “Teacher-Forcing” (4). A limitation that stems from

this approach is that the model is never exposed to its own predictions during

training, while during generation the model uses its own predictions to generate

the next word. Furthermore, there is a loss-evaluation metric mismatch coined as

exposure bias (79). During training the model utilizes a word-level loss, while dur-

ing generation its goal is to generate an expression that improves sequence-level

metrics. Recently, a completely novel point of view has emerged in addressing

these two problems, that is utilizing reinforcement learning techniques (88). How-

ever, training with RL is a non-trivial task due to a number of limitations: (1) high

variance of the gradient (81); and (2) reward configuration (79).

A limitation that stems from RL based approaches is that usually they utilize one

sample per data point. This thesis argues that one sample might be insufficiently

4



CHAPTER 1. INTRODUCTION

expressive for an observation. As a result, samples that poorly describe the obser-

vation will be heavily penalized, pushing the model to cover only high-probability

zones. To minimize this effect, this thesis propose an effective way to calculate

the baseline of the REINFORCE algorithm. Specifically, the proposed method

normalizes the reward by averaging over multiple-samples per observation. The

underlying idea of this method is that drawing multiple diverse samples allows

the construction of a robust baseline due to the diversity of the samples that are

considered. In other words, averaging over multiple samples lifts the burden of

having each sample to explain the observation well.

Furthermore, it was found that while directly optimizing the evaluation metrics

one can achieve higher scores, the generated text lacks diversity due to repeated

n-grams (105). The analysis shows that RL trained models are strongly biased

towards frequent REs leading to smaller vocabulary and deficiencies in the gener-

ated word distribution. To address these issues the use of minimum risk training

(MRT) (84) is proposed as an alternative way of optimizing REG systems on se-

quence level. Minimum risk training aims at minimizing the expected loss over

training data by taking automatic evaluation metrics into consideration. The MRT

objective has the following advantages over MLE. First, it can directly optimize

sequence level objectives that are not necessarily differentiable. Second, while

MLE maximizes the likelihood of the training data, MRT introduces a notion

of ranking amongst candidate sequences by discriminating between sequences.

Thus, by minimizing the risk, we expect to find a distribution that approximates

well the ground-truth distribution. Furthermore, the MRT objective is similar to

the REINFORCE algorithm in a sense that both maximize an expected reward or

cost. However, there are two fundamental advantages of the MRT over RL: (1) the

REINFORCE algorithm typically utilizes one sample in order to approximate the

expectation, whereas the MRT objective considers multiple sequences making it

sample and data sufficient; and (2) the MRT objective intuitively estimates the ex-

pected risk over a set of candidate sequences, whereas the REINFORCE algorithm

5



CHAPTER 1. INTRODUCTION

typically relies on the baseline reward to determine effectively the sign of the

gradient. Finally, a detailed analysis shows that when a REG model is trained with

the proposed approach, it uses a larger vocabulary, produces longer referring

expressions and generates more uni-grams and bi-grams.

• RQ3 To what extent do decoding methods affect the ambiguity, naturalness and

diversity of the referring expressions?

To overcome the lack of diversity it is proposed to extend the investigation in

generating sets of referring expressions. Specifically, the effect of different decod-

ing strategies is investigated by comparing their performance along the entire

quality-diversity space. The importance that NLG systems place on these two

criteria, is application dependent. For example, the goal of an open domain dia-

logue generation system is to be able to converse for a variety of topics and thus

places more weight in the diversity of the output (51). However, in REG the most

important attribute of the output is to successfully identify the target object. Thus,

generating a set of expressions is useful only if it does not come on the expense

of the quality. Therefore, the first large-scale human evaluation is presented in

order to measure how the hyperparameters of each decoding algorithm, affect

the diversity and the quality of sets of referring expressions.

1.2 Publications

The work presented in this thesis has been originally published in:

• Nikolaos Panagiaris, Emma Hart, and Dimitra Gkatzia. 2021. Generating unam-

biguous and diverse referring expressions. Computer Speech Language

• Nikolaos Panagiaris, Emma Hart, and Dimitra Gkatzia. Improving the naturalness

and diversity of referring expression generation models using minimum risk train-

ing. In Proceedings of the 13th International Conference on Natural Language

Generation, pages 41–51, Dublin, Ireland, 2020. Association for Computational

Linguist.
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1.3 Thesis Overview

The remainder of the thesis is organised as follows:

• Chapter 2 discusses the background; First, a review of traditional approaches

in REG is given. Traditional approaches that accounts for diversity are also dis-

cussed. Second, a review of Neural REG approaches is given. Third, an overview

of different ways to implement inference in conditional language models is given.

Fourth, a survey of works that leveraging methods from reinforcement learning is

presented. Fifth, the evolution of attention mechanisms is presented. Finally, the

chapter concludes with a critical analysis of current practices

• Chapter 3 develops and compares two language models for REG. The first model

incorporates a novel object attention mechanism to the standard RNN network.

The second model is transformer based architecture with a novel layer configur-

ation in that connects each layer of the encoder with the respective layer of the

decoder. The benefits and limitations of each approach are elaborated.

• Chapter 4 develops and compares two sequence level objectives for REG. The

first approach is a novel optimization approach to REG based on the REINFORCE

algorithm. The second approach, is a novel strategy for training REG models

using minimum risk training. The benefits and limitations of each approach are

elaborated.

• Chapter 5 investigates the generation of sets of referring expressions and the

effect of different decoding strategies by comparing their performance along the

entire quality-diversity space.

• Chapter 6 summarises the main findings and contributions of this thesis and

suggests possible avenues for future work.

7



; Second Chapter <

Literature Review

This chapter presents an overview of related work to this thesis. Specifically, the chapter

begins by presenting traditional content selection approaches in Section 2.1. Section

2.1.1 describes traditional approaches that accounts for diversity. Next, Section 2.2

describes Neural REG approaches that is the focus of this thesis. Section 2.3 provides

an overview of the different ways of implementing decoding on top of neural network-

based generation models. Section 2.4 presents a survey of works that leveraging meth-

ods from reinforcement learning. Section 2.5 presents the evolution of attention mech-

anisms. Finally, Section 2.6 concludes the chapter by critically discussing the different

approaches.

2.1 Traditional REG approaches

Traditionally, REG systems have been seen as a multi-step process that includes a

number of choices in order to transform the input to a natural language description.

The first choice is which form a referring expression will assume, i.e. whether the target

object will be referred to with a proper name, a definite description or a pronoun. If the

chosen form is a description, the second step is the determination of the content, that

is the selection of properties that distinguish the target object from potential distractors

(i.e. objects similar to the target) in a given context. The last step is the linguistic

realisation of all the properties to a fully-fledged description. The large body of existing

work in REG, focuses on the determination of content for definite descriptions (48).
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Content selection algorithms search for a combination of properties that distinguishes

the target object univocally. The termination criterion of the search depends on the

modeler’s interpretation of what constitutes a “good” referring expression. A large

body of literature defines that a “good” referring expression is that which does not

violate the Maxim of Quantity (15). In other words, a referring expression should

convey just enough information to unambiguously identify the referent but no more.

What constitutes “enough information” has lead to a number of algorithmic definitions.

Since such approaches are not the scope of this thesis the most studied algorithms are

described.

First, the full brevity algorithm (14) exhaustively searches the space of possible

properties of the referent in order to produce the smallest set that unambiguously

identifies the referent. Specifically, the brevity algorithm first checks whether a target

object can be identified by using only one attribute and if not, the algorithm searches

for all possible combinations of two attributes and checks if any combination facilitates

the identification of the target object and so on. However, (16) showed that finding

the shortest distinguishing description is a NP-Hard problem. Thus, a greedy heuristic

approach was proposed by Dale [14], which incrementally chooses the properties that

rule out the most distractors in the domain, and thus minimising the possibility of

including ambiguous information about the target object.

In order to address the computational complexity of finding the shortest possible

distinguishing description the incremental algorithm (IA) was introduced (16). Like

greedy search, the incremental algorithm selects properties one by one until the dis-

tinguishing description is formed. The main difference between the two approaches,

is that the incremental algorithm instead of checking through the complete list of the

truthful properties for the target object in each iteration and identify which one excludes

the most distractors, it chooses a property that rules at least one potential distractor. In

other words, the order in which the properties are added to the description is not based

on their discriminatory power but is based on a predefined preference order which

dictates in which order these properties need to be considered. The preference order

drives its inspiration from psycholinguistics studies (e.g. (75)) that support the notion
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CHAPTER 2. LITERATURE REVIEW

of prominence of particular attributes compared to others, and are likely to be included

in the descriptions.

2.1.1 Account for diversity in traditional approaches

This section describes early work in traditional approaches that strives for human-

likeness and diversity. Specifically, with the introduction of the data oriented methods

an observation that was made is that each human speaker or writer prefers distinct

properties, syntax and lexical units while building referring expressions. The existence

of corpora allowed modelers to use corpus frequencies to find an algorithm that outputs

expressions that mimic those produced by humans. Such approaches are either based

on hand crafted rules or based on machine learning (ML) algorithms. Typically learning

algorithms use as features, for example, the number of distractors, the number of

objects having the same type, and so on. However, those features do not convey speaker-

related information. To address this issue, the use of the speaker’s identity (or speaker

demographic features) as additional features that account for diversity was proposed.

Bohnet [5] presents a variation full brevity that uses a Nearest-Neighbor (13) learning

technique to build an individual referring expression model for each speaker. They

achieve that by selecting expressions that are similar to expressions produced previously

by the same speaker. 6 proposes a variation of the incremental algorithm that uses

corpus frequencies for each speaker to create individual preference lists, i.e. unlike

the classical approach that creates domain specific preference lists, their approach

orders the attributes by how frequently were used by each speaker. They showed that

this ordering strategy improves the accuracy (i.e. the similarity at string level with the

ground truth reference) of the selected attributes by 0.02 compared to the use of a global

attribute list that is ordered based on the frequency of the complete training set. In

terms of variation in lexicalization choices, different models of vocabulary and syntactic

expressions are created for different speakers. Information concerning frequent choices

made by speakers in the use of determiners, and syntactic patterns that are mostly

preferred are considered.
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A similar approach has been followed by Di Fabbrizio, Stent and Bangalore [18] in

which extensions of full brevity and incremental algorithm are proposed. However, in

the case of Full brevity algorithm this approach uses the attribute set that is used most

often and most recently by each speaker. The extension of incremental algorithm is

similar to that proposed by Bohnet [7] since it uses a speaker-specific ordered attribute

list. They showed that incorporating speaker traits matters greatly in terms of accuracy.

In order to capture the diversity in the choice of words and structures different samples

that exist in the corpus are considered as templates. A problem that stems from this

approach is that, if a set of attributes has never been used in the corpus, the system is

unable to find a suitable template.

Viethen and Dale [98] presents a decision tree approach for the content selection of

referring expressions. In particular, the C4.5 decision tree learning algorithm (77) was

used. The decision tree that was learned (i.e the content pattern that can be predicted by

that tree) can be expressed as the following rule: “ If there are a few distractors that share

the same size as the entity in question, choose the content pattern R else use the pattern

D”. The pattern D contains two attributes, the type and color, while R contains the size.

However, those two rules proved to result in significant low accuracy, which is defined

as the number of instances predicted correctly divided by the total number of instances

in the test or training set (98). When authors introduced as a feature the identity of the

participants, the resulting speaker-sensitive decision trees become much more complex

but resulted in much higher accuracy scores. In fact, it was shown that even excluding

all the scenes features and using speakers identity as the only feature, the accuracy

of the resulting decision tree can be roughly compared with those learned with only

the scene features. Tantalizingly, authors argued that future research should explore:

(1) automatic clustering techniques for grouping people that use the same pattern in

reference production, aiming to construct separate algorithms for each profile and (2)

whether the use of non-linguistic characteristics of speakers (e.g. demographic features

or cultural background), can account for some of the between participant variation in

reference behavior.

The former was explored by (99) where an extension of a graph based algorithm was
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introduced. In a nutshell, what differentiates this algorithm from the classical approach

is that instead of searching for the cheapest distinguishing subgraph its searches for the

longest of all the cheapest subgraphs. Furthermore, instead of using using the speaker’s

identity as an input parameter to the system, authors proposed to automatically find

clusters of speakers with the same referential behavior. In order to achieve that, they

used K-means clustering which resulted into two speaker profiles. Specifically, the first

profile contains descriptions from speakers that produce relatively long descriptions,

while the second is consisted of speakers that produce short description. Furthermore,

they trained the search algorithms with separate cost functions and preference orders

for the different clusters. This setting resulted in significantly better results compared

to a setting that does taking into consideration speaker groups characteristics. How-

ever, it would have been interesting if it has been explored whether grouping speakers

outperforms the use of speaker identity features. This work was further extended by

Liu, Wang and Yang [60] in order the model to take learned attributes for objects as an

extra input to the LSTM model, so that the generated expression bears high similarity in

terms of attributes with those contained in the training samples. To model differences

between objects, the MMI objective (67) was used.

More recently, classifiers have been used for content selection to decide whether

an attribute should be added in the referring expression. Ferreira and Paraboni [20]

casts the problem of REG as a classification problem. Specifically, individual binary

classifiers are used to decide whether each referential attribute (atomic or relational) of

a given target object should be selected to appear in the final description by combining

the output of each classifier. In order to take the issue of human diversity into account,

authors admitted two kind of features: (1) enriched personal information about the

speakers; they included not only speaker’s identity but also the gender and age bracket

of each speaker as suggested by Viethen and Dale [98]; and (2) speaker’s referential

behavior features (i.e. lists of attribute frequencies). Once again, they found that

classifiers that include speakers personal information outperforms those that don’t in

terms of accuracy.

Hervas, Francisco and GerváS [32] presents an analysis for TUNA corpus (17, 22) as
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a case-based reasoning in order to demonstrate that the performance of a lexicalization

algorithm that emulates the human-generated referring expressions can be improved

greatly if takes into consideration the particular choices made by each speaker. In

particular, a lexicalization algorithm was tested following two different approaches: one

that considered the lexical choices of the person who had contributed referring expres-

sion in the corpus, and another that did not. The latter approach followed a general

corpus based modeling for lexicalization preferences while the former considered only

lexicalization choices of different speaker in the corpus. It was found that speakers tend

to be consistent with their own set of choices. Hervás et al. [33] extended this idea by

arguing that sets of choices can be shared by different groups of people.

2.2 Neural REG approaches

The Section 2.1 described work in computational models of referring expressions for

objects in artificially generated scenes. Yet how people refer to objects in real-world

cluttered scenes is a relatively unexplored area. Neural REG approaches (64, 67, 115,

116, 119), have seen a surge of interest due to the availability of larger and more complex

REG datasets such as RefCOCO (+) (116) and RefCOCOg (67). As mentioned earlier,

such approaches follow the encoder-decoder paradigm. The underlying idea of the

encoder-decoder is the following: a convolutional neural network processes the image

region in order to extract a vector representation that is used to initialize the decoder

(e.g. a recurrent neural network). Given the previous generated words, the next word in

the sentence is predicted sequentially.

Mao et al. [67] were the first to apply the encoder-decoder architecture in REG. In

particular, they use a convolutional neural network to extract visual features and an

LSTM network (35) to generate the expressions. Three kind of visuals features were

used: (1) features from the bounding box around the target object; (2) features from the

whole image to serve as context; and (3) the relative location and the size of the region

were target object is placed within the image. The relative location and size of the region

were encoded using a 5 dimensional vector as follows: [ xt l
W , yt l

H , xbr
W , ybr

H , Sbbox
Si mag e

], where
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(xt l , yt l ) and (xbr , ybr ) are the coordinates of the top left and bottom right corners of the

object bounding box, H and W are height and width of the image, and Sbbox and Si mag e

are the sizes of the bounding box and image respectively. Their final representation

was the concatenation of region, image, and location/size features, which resulted

in a 2005-dimensional vector. Instead of training the with the maximum likelihood

objective the proposed the used of the maximum mutual information (MMI) objective

in order to reduce the ambiguity of the output. The underlying idea of this objective is

to capture whether a listener would deference a referring expression. They enforced

this intuition by penalizing the model if a generated expression is likely to be generated

for other objects within the image. To further reduce the ambiguity of the produced

expression they introduced a comprehension model that can re-ranked them in the

post-process. The referring expressions were decoded with beam search with a width

of three. Furthermore, in order to evaluate their approaches they conducted human

evaluation. Specifically, for their best performing model they reported that the produced

referring expressions have task success of 65.32% in RefCOCOg dataset (67).

Yu et al. [117], extended the visual representation proposed by Mao et al. [67] by

hypothesizing that a general feature over the entire image may not be sufficient to

capture visual comparisons between the target object and other objects of the same

object category within the image. In order to address this issue, they proposed two types

of features for visual comparison. The first type is concerned of capturing similarities

and differences in appearance between the target object and its distractors. They

experimented with selecting different subsets of comparison objects and different

strategies for computing an aggregate vector to represent the visual difference between

the target object and the surrounding objects. The second type of comparison features

represents the relative location and size differences between the target object and

neighboring objects of the same object category (unlike (67) that calculated the size and

location of the region). They chose up to five comparison objects that are close and of

the same category as target object. Their final representation is the concatenation of the

above features. Furthermore, they proposed an encoder-decoder method that ties the

language generation process together for all depicted objects that share the same type as
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the target object within the image in order to reduce ambiguity. In order to evaluate their

approach the performed human evaluation. Specifically, they reported that the 73.77%

of the produced referring expressions for RefCOCO successfully identify the target

object, while for RefCOCO+ 51% of the produced referring expressions successfully

identified the target object.

Yu et al. [114] proposes a unified model that jointly learns both the speaker and an

embedding-based listener model. For the speaker they followed the classical encoder-

decoder paradigm. In particular, they proposed a new objective function that gen-

eralizes the idea underlying the MMI proposed by Mao et al. [67]. In particular, the

constraint that encourages the generated expression to describe the target object un-

ambiguously was the incorporation of two triplet hinge losses composed of a positive

match and two negative matches. In other words, given a positive match they sampled

the contrastive pair which is an expression that describes another object within the

image. Additionally, they added a discriminative reward-based reinforcer to guide the

sampling of more discriminative expressions and further increasing the discriminat-

ory power of the produced REs. Rather than working independently, they allowed the

speaker, listener, and reinforcer to interact with each other. In order to evaluate the

effectiveness of the produced referring expressions they performed human evaluation.

Specifically, for their best performing model they reported that the 77.52% of the pro-

duced referring expressions for RefCOCO images were successful in identifying the

target object correctly, while they reported that the 58.58% of referring expressions

successfully identified the target objects in RefCOCO+ images.

Luo and Shakhnarovich [63] departed from the encoder-decoder paradigm, and

drew inspiration from the generator-discriminator structure in Generative Adversarial

Networks (GANs) (24). In particular, the generator produces the expressions, while the

discriminator plays the role of the comprehension model since it tries to identify if the

expression can be dereferenced. Instead of the adversarial relationship between the two

modules, the authors chose a collaborative one. They assigned to the discriminator the

role of a "guide" in order to improve the output of their system. Specifically, they utilized

the discriminator in two ways. The first is the generate-and-rerank method which
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uses comprehension on the fly. In other words, candidate expressions are generated

by the generator and then are passed to the comprehension model which picks the

expressions with highest generation comprehension score. The second one, it is training

by proxy. The generation and comprehension model are connected and the generation

model is optimized to lower the discriminative comprehension loss (in addition to the

cross-entropy loss). In order to evaluate the effectiveness of the produced referring

expressions they performed human evaluation. Specifically, they reported that 70.5%

of the produced referring expressions for RefCOCO were successful, while the 45% of

the produced referring expressions for RefCOCO+ images successfully unidentified the

target object.

2.3 Inference for conditional language models

Despite recent efforts in modeling context and learning, decoding has received little

attention, with the notable exception of, for example, (119). During inference all pro-

posed methods in REG utilize a standard decoding algorithm, e.g. greedy search or

beam search. Specifically, words that maximize the likelihood are drawn sequentially.

However, what is the best decoding strategy for NLG models still remains an open

challenge. Although the maximization of the likelihood as training objective produces

high quality models, the maximization-based decoding algorithms produce text that

is repetitive (37, 40, 100). A number of diversity promoting variants of beam search

have been proposed for different NLG tasks. Specifically, the noisy parallel approximate

decoding was proposed by Cho [10] for machine translation. Random noise is added to

the hidden state of the decoder at each generation step. Specifically, noisy parallel ap-

proximate decoding is a meta-algorithm that runs in parallel multiple noisy versions of

a traditional decoding algorithm, such as beam search. The final sequence candidate is

the one with the highest score. Authors compared their proposed approach against the

greedy search, beam search as well as stochastic sampling in an attention-based neural

machine translation model trained on 12m sentence pairs, available from WMT’15

corpus. As their primary evaluation metric they used the negative conditional log prob-
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ability (NLL) of a decoded sequence and as secondary the BLEU metric. They reported

a reduction of 0.8 in NLL against greedy decoding and a reduction of 0.2 against beam

search. Diverse beam search (100) was proposed for image captioning as it promotes di-

versity by penalizing new hypotheses that share same tokens with previously generated

hypotheses. In order to achieve that, they partitioned the candidates into groups and

they augmented the log probabilities of each word with a dissimilarity term. Empirically

they found that the best performing dissimilarity factor is hamming diversity which

penalises the word selection based on the frequency each word appears in previous

groups. They tested their model on the MSCOCO dataset (59). In order to evaluate their

approached they used the number of distinct n-grams where they showed an increase

int he production of unique 4-grams against traditional beam of 300%. For machine

translation and open dialog generation, top-g capping beam search was proposed by Li

and Jurafsky [52], where only the top-g hypotheses from the same ancestor hypothesis

are kept. They trained their models on the WMT German/English and French/English

tasks. Furthermore, they evaluated the diversity of their systems by calculating the aver-

age number of distinct unigrams and bigrams. They found that their proposed diverse

decoding produces 0.40% more distinct unigrams compared to beam search and 1.44%

more unique bigrams for both for English-German translations and English-French

translations. The iterative beam search, that was originally proposed for dialog genera-

tion, runs multiple iterations of beam search while excludes any previously explored

space. To evaluate the diversity of the output of their proposed model they compute

distinct n-grams over the set of the produced responses. They found that the output

of their proposed method performs similarly with the traditional beam search. Finally,

all the aforementioned share the same core idea of promoting diversity. Specifically, as

shown such approaches include an additional factor in order to promote the expansion

of diverse candidate expressions.

A strand of research investigates the augmentation of beam’s search objective by

training an additional network that provides a supplementary score to the likelihood.

Specifically, Li, Monroe and Jurafsky [53] train an additional neural network to predict

a reward for each partial hypothesis. Their model can be seen as a variation of the
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actor-critic model that uses the language model as the actor and the trained model

that estimates the future values of the candidate sequences plays the role of the critic.

The used the OpenSubtitles (OSDb) dataset (93) to train their models. They reported

an increase in the production of unigrams and bigrams compared to beam search.

Similarly, Zarrieß and Schlangen [119] treats the decoder as small actor networks that

is trained to manipulate the hidden state of the underlying REG system. Furthermore,

they explored a number of beam search variants proposed for machine translation that

controll the length of the produce expressions. They trained their models on RefCOCO

and RefCOCO+ (116). They used three metrics to evaluate their models: (1) BLEU for

unigrams, CIDEr, and length ratio. They reported that their trainable decoder improves

over greedy decoding on almost test sets, models and measures. Finally, a potential

advantage of approaches that train an additional module to handle the decoding of the

sequences is that any objective or communication goal can be directly optimized by the

additional module.

Another approach to the decoding step, is to sample from the model’s learned

distribution. Such approaches instead of framing the decoding problem as search

problem they formulate it as a sampling problem. Specifically, under this scheme, at

each time step, sampling-based decoding algorithms sample the next word by drawing a

word from the conditional language model. While text generated by this method shows

significant diversity, it can easily become incoherent because words from the model’s

less robust confidence areas can be drawn (36). To the best of our knowledge, three

different ways have been proposed to address this issue: (1) the use of temperature to

reduce the entropy of the distribution leading to a more skewed distribution towards the

high confidence zones; (2) top-k sampling (19), where a fixed number of k tokens is kept

and the next word is sampled from this truncated vocabulary; (3) nucleus sampling (37),

that keeps those tokens whose cumulative probability exceeds a pre-defined threshold.

Such approaches alleviate the problem of drawing words from the model’s less robust

confidence areas by truncating the learned distribution in different ways.

18



CHAPTER 2. LITERATURE REVIEW

(a) Training without teacher
forcing.

(b) Training with teacher forcing.

2.4 Reinforcement Learning in NLG

The models presented in Section 2.2 are trained using a ground-truth sequence via

a mechanism known as “Teacher-Forcing” (4), where the teacher is the ground-truth

sequence. A limitation that stems from this approach is that the model is never exposed

to its own predictions during training, while during generation the model uses its own

predictions to generate the next word. Furthermore, there is a loss-evaluation metric

mismatch coined as exposure bias (79). During training the model utilizes a word-

level loss, while during generation its goal is to generate an expression that improves

sequence-level metrics. Recently, utilizing methods from reinforcement learning (RL)

has emerged as a solution for the two problems. This section aims to summarize such

research in NLG relevant to this work.

The concept of improving the generation by exposing the model to its own predic-

tions during training was first proposed by He et al. [29]. Specifically, they argued that

the structured prediction problems can be cast as reinforcement learning problems.

The underlying idea is to use the model’s predictions during training in order to pro-

duce sequences of actions (i.e. words). Then, a greedy search is used to determine the

optimal action at each time step, and the policy is trained to predict that action. Ross,

Gordon and Bagnell [82] proposes DAGGER an imitation learning approach, where

actions given by an expert are required for each predicted word. A limitation that stems

from this approach is that having actions given by an expert might not be feasible due to

the large action space. Thus, Venkatraman, Hebert and Bagnell [96] proposes the “DAD”
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model where the target action for each step is given by the optimal policy. A limitation

that stems from this approach is that if the generated output is shorter in length that

the ground truth sequence, the model will repeat previously generated actions.

The REINFORCE algorithm was proposed as solution to the two aforementioned

problems. One of the earliest adoptions of REINFORCE algorithm was proposed by

Ranzato et al. [79]. In this method, first the language model is trained with the cross-

entropy loss for N epochs utilizing the ground truth sequences. They argued that

pretraining guides the model to focus on promising regions of the search and thus it

results in a better policy. Then, they proposed “MIXER” an annealing schedule algorithm

in order to gradually switched from the cross-entropy loss to REINFORCE loss to train

the model. Later work that utilizes the REINFORCE algorithm is mostly focused on the

calculation of the reward. Specifically, Ren et al. [80] compute a visual-semantic based

similarity score that is used as reward. Liu et al. [62] proposes to use as a reward a linear

combination of the SPICE (2) and CIDEr (95) metrics, called SPIDEr.

A major limitation that stems from the REINFORCE algorithm is that, the expected

gradient exhibits high variance and without careful normalization is often unstable (81).

An extension to the REINFORCE algorithm includes the reduction of the variance by

subtracting a quantity from the learning signal called a baseline (83, 118). However, how

to best calculate the baseline is not trivial and thus it led to a thread of research that

investigates different ways to calculate the baseline. As one for the early attempts to

effectively calculate the reward is the use of Actor-Critic models. Specifically, He et al.

[27] utilizes a semantic matching and a context-coverage module to estimate the value

function. However, in order the value network to be trained, a fully trained language

model is required. Then, they utilize the trained language model and the trained value

network during inference. Therefore, the value network is not used during the training

of the language model. Similarly, Li, Monroe and Jurafsky [54] trains a value function

approximator which estimates the future outcome of taking an action in the present and

it incorporates it at each decoding step. Li, Bing and Lam [56] proposes an Actor-Critic

based model where a binary classifier plays the role of the Critic. The role of the Critic in

this model is to distinguish the generated output from that proposed by human writers.
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During the training of the Actor-Citric model, the score from the binary classifier is used

as a surrogate for the value function.

A limitation that stems from the Actor-Critic methods is that there is a need to

estimate both action-depend and action-independent rewards functions which usually

involves the training of at least one more model. To overcome these problems, Rennie

et al. [81] proposes a new approach called self-critical sequence training (SCST). In

this model, rather than estimating the reward signal, or how the reward signal should

be normalized, it utilizes the output of the model obtained by a greedy-search (the

output at the time of inference). As a result, samples that outperform the current system

are given positive scores, while infrerior samples are penalised. In other words, SCTS

elegantly avoids to estimate the reward signal ( as Actor-Critic methods must do) and to

estimate the reward normalization (as REINFORCE algorithms must do) while at the

same time is harmonizing the model with its test-time output (81).

2.5 The evolution of attention mechanisms

This section presents the evolution of the attention mechanisms used in Vision to

Language tasks (e.g. image captioning). Recent neural REG approaches (63, 67, 116)

have studied the effect of different visual features in the quality of the produced referring

expressions. Specifically, such approaches extract the visual features from the last layers

of a pretrained CNN and then those features are used as a conditioning element for

the language model. The main advantage of this approach is that it extracts a compact

representation of the whole context of image. However, the features extracted with

this approach lack in granularity since all the salient objects or regions are compressed

into a single vector. Furthermore, a global representation may result in sub-optimal

solutions due to the fact that the probability of a word may be affected by noisy context

or irrelevant parts of the image. The attention mechanism tries to overcome these

problems by connecting the hidden states of the language model with a set of fine-

grained visual features.

Xu et al. [109] introduced the first model that utilizes attention over the spatial
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output grid of a convolutional layer. This mechanism enables the model to focus

on different parts of the of the grid by selecting a subset of features relevant to each

generated word. In more detail, the activation of the last convolution layer of the VGG

network are extracted. Then the attention score is computed for each grid element. The

attention score defines the relative importance of that part of the grid for the generation

of the next word.

Chen et al. [9] proposes a model that considers both spatial and channel-wise

attention to compute an attention score. They argued that the attention mechanism

proposed by Xu et al. [109] loses spatial information gradually due to the fact that it

calculates the attention for a subset of visual features and utilizes the activations only of

the last layer. Therefore, they calculate the attention score from different channels and

multiple layers of the CNN.

Another line of research investigates whether information about human gaze can

be beneficial for language models. Sugano and Bulling [86] presents a new perspective

on gaze-assisted image captioning by studying the interplay between human gaze and

the attention mechanism. Specifically, their model integrates human gaze information

input to the attention mechanism proposed by Xu et al. [109]. The attention score for

each image region is weighted based on whether they are fixated or not. Subsequent

research replaces gaze information with saliency information predicted by human

written descriptions (78, 92).

Human attention can be focused spontaneously by top-down signals that are guided

by the objective of the task at hand (e.g., looking for something). The models described

so far exploit attention mechanisms driven by task-specific context and thus can been

seen as top down systems (1). In other words, a word is predicted while the language

model attends a subset of a feature grid the geometry of whom is irrespective of the

image content. However, little consideration is given to how the attended image regions

are determined. To address this issue Anderson et al. [1] proposes the addition of a

bottom-up path guided by an object detector responsible for proposing image regions.

In more detail, the object detector detects objects in two stages. The first stage predicts

object proposals by sliding over intermediate CNN features. The second stage employs
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regions of interest pooling to extract a small feature map for each proposal. In order the

object detector to predict a dense and rich set of detections, attribute classes alongside

object classes are predicted. Although utilizing pooled vectors from image regions has

been the de-facto attention approach in image captioning and has been followed by

many models in the recent years Huang et al. [38] attention only fixes on a single visual

region at each step. In order to enable the attention mechanism to attend multiple

regions Zha et al. [122] introduces a sub-policy network that explicitly considers the

previous visual attentions as context and decides whether the context is used for the

current word/sentence generation given the current visual attention. Similarly Pedersoli

et al. [76] proposes an attention mechanism that models the interplay between the RNN

state, image regions, and word embeddings through pairwise interactions. The image-

specific attention areas are proposed with the use of a spatial transformer. Specifically,

they use a localization network to locally regress an affine transformation of each

position of the feature map. Then, the feature vector for each region is bilinearly

interpolated with respect to the anchor boxes.

To further improve the expressively of images region and their spatial relationships,

another line of research constructs graphs over the detected objects in an image to

better represent their spatial and semantic connections. The first to incorporate graphs

is Yao et al. [112] that proposes to use a graph convolution network in order to integrate

semantic and spatial object relationships into the image encoder. They build the

semantic graphs by learning a semantic relation classifier that predicts either an action

or the relationship between every two regions within the image. Furthermore, the

spatial relationships of the objects are represented by the relative geometrical position

of the bounding boxes of the object pairs. Yang et al. [111] proposes the Graph Auto-

Encoder (SGAE) that exploits a graph based representation (i.e. scene graph) of both

images and sentences. The scene graph is a direct graph that connects objects, their

attributes, and their relations. Yao et al. [113] proposes a model that integrates the

hierarchical structure of the image to the image encoder. The key idea of this method is

to build a hierarchical tree, where the root is the whole image, the intermediate nodes

represent image regions and the leafs represent detected objects in the regions. Then, a
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Tree-LSTM (90) is employed to interpret the hierarchical structure and extract the final

image encoding.

Although graph encoding enables the model to leverage spatial and semantic re-

lationships between objects within an image, the manual construction of the graph

structures limits the interactions between visual concepts. As a solution to this problem

the self-attention is proposed by Vaswani et al. [94]. Within this framework each ele-

ment of a set is connected with all the others and a refined representation of the set of

elements can be computed through residual connections. The self-attention mechan-

ism was originally proposed for machine translation by 94 and since has dominated

many natural language processing fields. Yang, Zhang and Cai [110] is amongst the first

attempts that utilize a self-attentive mechanism in order to encode semantic and spatial

relationships between objects within the image. Li et al. [50] proposes a transformer

based model that exploits semantic and visual information simultaneously through a

semantic and visual encoder. Each encoder is build with self-attention and feed-forward

layers. Then a gating mechanism regulates the fusion of the output of each encoder

into the decoder. Herdade et al. [31] introduced a geometric self attention mechanism

that explicitly accounts for the spatial relationships between detected objects within

the image. Specifically, the attention weights are scaled through a geometric weight

that is computed for every object pair. This idea is extended by Guo et al. [26] that

proposes a self attention mechanism that dynamically computes the relative geometry

relationships between objects in the image.

Huang et al. [39] proposes a new attention mechanism called “Attention on Atten-

tion”, where the attended regions are weighted by a context gate. Specifically, they

first generate an information vector and an attention gate using the attention result

and the current context, and the final attention score is computed by element-wise

multiplication of those vectors.
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2.6 Conclusions

This chapter presented an overview of related work to this thesis. Specifically, previ-

ous work on neural REG rely on incorporating contextual information by using visual

features, appearance attributes (61), location features (116) and global image features

as target object representation and complex architectural set-ups that utilize a com-

prehension module (61, 63, 115) to decrease the ambiguity of the produced referring

expressions. However, they do not investigate the effect that the language model archi-

tecture, the decoding algorithm and the learning strategy has on the produced referring

expressions. Furthermore, the aim of those systems is to reduce the ambiguity of the

produced referring expressions, while other essential natural language attributes such

as diversity and naturalness have received less attention. Therefore, this thesis explores

how the choices of the language model architecture, the decoding algorithm and the

learning strategy affect the produced referring expressions w.r.t diversity, ambiguity and

naturalness.

Furthermore, in Section 2.4 it was discussed how RL provides a better solution

than traditional methods. However, leveraging RL methods creates its own training

challenges. First, in REG the action space is a high-dimensional discrete space that is

massive comparing to the size of actions in a robotic or game-playing problems. Hence,

sample efficiency and high variance are two of the main issues in applying RL in REG.

Although REINFORCE-based models such as SCST (81) are preferred in most of the

current approaches, sampling only one prediction is sample-inefficient. Therefore,

this thesis will be concerned with the development of a REINFORCE-based model is

sample-efficient.
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Language Models

Recent neural approaches in REG follow the encoder-decoder model architecture (8,

115, 116, 119). Originally the encoder-decoder architecture was proposed for machine

translation (11), where the task is to translate a sentence written in a source language

into a sentence to the target language. Within the machine translation framework, an

encoder RNN encodes the source sentence into a fixed length vectorial representation

which in turn is used to initialize the hidden state of a decoder RNN that is responsible

to generate the translation. The first to adapt this elegant recipe into Vision to Lan-

guage tasks were Vinyals et al. [102] that proposed to replace the encoder RNN with

a deep convolutional neural network. They argued that a pretrained CNN in an im-

age classification task is capable of producing rich image representations. Specifically,

those representations are usually the output the output of last convolutional layers of a

network. Many different CNNs has been used in the literature as image decoders, e.g.

VGG (85), Resnet (28) or Inception (89). As a decoder, a plethora of early works used a

vanilla RNN. While early approaches were effective, there is a number of limitations that

stem from those approaches. First, older information tends to fade from the context

as new information is integrated into the context. Second, the context is likely to be

dominated by recent information so when an error is made it will result in a cascade of

errors through the rest of the sequence. Third, the visual stimuli is static, i.e. does not

change during the generation of a referring expression. The visual representation is only

fed to the model at the start of the generation. However, as the generation progresses,
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this paradigm may result in sub-optimal expressions due to noisy contexts or irrelevant

regions while generating a specific word. Finally, such approaches describe the target

object as a whole instead of focusing on fine-grained details of the target object that

will reduce the ambiguity of the description.

Attention mechanisms can address the aforementioned limitations by dynamically

focusing on different parts of the visual stimuli as referring expressions are generated.

Such mechanisms are effective for a variety of sequential prediction tasks, suchs as

storytelling (19, 36), summarization (25, 91), dialogue systems (55, 103), and image

captioning (102, 108). In this thesis, a novel object attention model is proposed that

allows the attention mechanism to be calculated at the level of the target object. The

object attention mechanism aims at connecting the encoder and decoder, thus aligning

better object visual features-to-word interactions.

Despite the success that RNN based attention models have achieved, there are two

limitations that stem from such models. First, the attention mechanism only models

the relationship between visual features and words, while neglecting the word-to-words

interactions. Secondly, the LSTM based models are shallow, thus may fail to capture

semantic attributes that are kindred to language. The transformer model was proposed

to fill this gap, by simultaneously capturing the intra and inter modal interactions in

a self-attention fashion through a deep stack of attention blocks. Transformers have

revolutionized NLG fields such as machine translation, where the machine generated

translations surpass the performance of those produced by human experts (94). There-

fore, in order to further prove the benefits of attention in REG, this thesis investigates

the effectiveness of the original architecture and proposes a novel architecture that

follows a different layer configuration in order to provide the network with a global

“context” signal by connecting each layer of the encoder with the respective layer of the

decoder.

3.1 Contributions

The contributions of this chapter are the following:
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• A novel attention language model is proposed. They key novelty of this model

is the incorporation of an object attention mechanism that assists the model

in determining both the relationship between objects, but also determine fine

appearance details of the target object. This is due to the fact that the proposed

approach is able to consider all the information pertaining to an object simultan-

eously. It is shown that it leads to significant improvements over the non-attentive

LSTM that has exclusively been used in recent works. This contribution is de-

scribed by Panagiaris, Hart and Gkatzia [73].

• A novel transformer-based language model for REG that injects a form of context

to the architecture by connecting each layer of the encoder to the respective

decoder layer. The main benefit of the proposed approach is that it encodes the

visual stimuli in a multi-level fashion. Consequently, both low and high level

relationships are exploited.It is shown that it leads to significant improvements

over the standard transformer architecture. This contribution is described by 73.

3.1.1 LSTM-based language model

This section presents a description of the standard LSTM-model that has been used in

recent works in neural REG. Specifically, within this framework the representation of

the target object is extracted with the use of a pre-trained CNN network and then this

representation is embedded through a linear projection WI . Each word xt is represented

as one-hot vector, mapped to the same space as the object representation through a

linear embedding. The start of each sequence is denoted by a special BOS token, while

the special stop token EOS denotes the end of the sequence. For the generation of the

sequence of words, an LSTM model is used. The image features are only used as an

input to t = 0 in order to initialize the LSTM with visual features. Then, at each time step

t , its output depends on the previously generated words and the hidden units, which

encode the knowledge of the observed input up to this time step. More formally, the

model is defined by the following update rules:
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it = σ(Wi x xt +Wi mmt−1 +bi ) (Input g ate)(3.1)

ft = σ(W f x xt +W f mmt−1 +b f ) (For g et g ate)(3.2)

ot = σ(Wox xt +Wommt−1 +bo) (out put g ate)(3.3)

ct = ft ⊙ ct−1 + it ⊙σ(Wcx xt +Wcmmt−1 +bc ) (memor y cel l )(3.4)

mt = ot ⊙ t anh(ct ) (hi dden st ate)(3.5)

pt+1 = softmax(mt )(3.6)

where σ is the sigmoid function and pt+1 is the probability distribution over all

words. The W , b matrices are learnable parameters and biases.

3.1.2 Object attention language model

Most neural REG approaches in literature are based on a translational approach, with a

visual encoder and a linguistic decoder. A fundamental challenge in machine translation

is that the generation of each word is not independent of the previous generated words.

The generated words influence the meaning therefore the translation. This challenge

is even more important when translating across modalities, i.e. from images to text,

where the model has to decide how the target object should be uniquely described. A

common solution for this challenge is the incorporation of attention mechanisms. For

instance, recent models in image captioning try to solve where to look in the image

during the encoding stage (1).

Attention models instead of utilizing a static visual representation, as the model

described in Section 3.1.1, they dynamically re-weight the spatial visual features to

“attent” on specific visual regions at each time step. The definition of spatial image

features is generic. However, in this thesis the models are leveraging the spatial output

grid of the last convolutional layer of a pre-trained CNN model as spatial visual features.

Therefore, this thesis proposes a novel object attention mechanism for REG. Specifically,

given a set spatial object features the proposed model uses an attention mechanism

to weight each feature during the generation process. Conceptually, the model is
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Figure 3.1: Overview of the proposed object attention language model.

composed of two LSTM layers, where the attention mechanism is implemented in the

first layer and the second layer plays the role of the language model and follows the

update rules described in Section 3.1.1. The overall architecture is depicted in Figure

3.1.

The input vector to the LSTM attention layer at each time step is comprised of

the output of the language LSTM concatenated with the mean-pooled object features.

Formally, the input to the LSTM attention layer is the following:

vi = [r, ō, Ī ,hL
t−1](3.7)

where ō is the concatenation of the mean-pooled object region features (i.e. ō =
1
k

∑
i oi ); r , I are the CNN extracted features for the target object and image respectively

and hL
t−1 is the previous hidden state of the language LSTM. It is assumed that this

input representation is expressive enough for the context of the image and the state

of language model in order to steer the model to information that is important for the

target object.

The attention weighted annotation vector ai ,t for the uniform grid of the object

region is computed as follows:
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ai ,t = w T
a tanh(Woa vi +Whah1

t )(3.8)

αt = softmax(a t )(3.9)

where Woa vi ∈ RA×D , wa ∈ RA and Wha ∈ RA×d are learnable parameters and A

indicates the dimensions of the attention layer. Finally, the attention derived object

visual features that will be used as input to the language LSTM are given by:

ôt =
K∑

i=1
αi ,t oi(3.10)

Specifically, the input to the language LSTM is the combination of the attended

object features and the hidden state of the attention LSTM ha
t . Formally the input i l

t is

the following:

i l
t = [ôt ,ha

t ](3.11)

Using the notation y1:T to refer to a sequence of words (y1, ..., yT ), at each time step

t the conditional distribution over possible output words is given by:

p(xt | x1:t−1) = softmax(Wp
2
t +p )(3.12)

where Wp ∈ R|Σ|×M and p ∈ R|Σ| are learned weights and biases. The distribution of a

complete output sequences is the product of the conditional distributions:

p(x1:T ) =
T∏

t=1
p(xt | x1:t−1)(3.13)

3.1.3 Transformer

The transformer model can be conceptually divided into an image encoder and a

decoder module. The encoder learns in a self-attention fashion visual representations,

while the decoder makes use of the attention-derived visual representations to generate

the output. In order to handle variable-length inputs, such as image regions and text
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Figure 3.2: Overview of the transformer architecture (94). The red arrows illustrate the original
connectivity between the encoder and decoder, while the green arrows illustrate the proposed
connectivity.

sequences, the transformer employs two attention mechanisms: (1) the scaled dot-

product attention; and (2) the multi-head attention. The former type of attention is first

introduced since it is the most important function of the transformer model.

The scale-dot product function receives as an input: a query q ∈ Rd , a set of keys

kt ∈ Rd and values vt ∈ Rd , where t ∈ {1,2, ...,n}. It outputs the weighted sum of value

vectors vt . For practical reasons, all the keys and values are packed into matrices

K = [k1, ...,kn] ∈Rn×d and V = [v1, ..., vn] ∈Rn×d respectively. More formally, given a set

of queries Q = [q1, ..., qm] ∈Rm×d the scaled dot-product attention operator is defined

by:

(3.14) At tenti on(Q,K ,V ) = softmax(
QK T

p
d

)V

where d is a scaling factor. In this thesis the implementation of Vaswani et al. [94] was

followed and a scaling factor of d = 64 is used. The scaling factor indicates the cardinality

of the value, key, and queries vectors. In order to attend different representation sub-

spaces, the multi-head attention is introduced. It consists of h independent scaled

dot-product operators named as “heads”. Each attention head first calculates the

queries, keys, and values that are projected into h sub-spaces as follows:
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(3.15) Mul ti Head(Q,K ,V ) = Concat(h1, ...,hh)W o

(3.16) Hi = At tenti on(QW Q
i ,K W K

i ,V W V
i )

where W Q
i ,W K

i ,W V
i ∈Rd×dh are the projection matrices for the h independent heads,

while W O ∈ Rh∗dh×d is the output projection matrix that aggregates the information

from h heads. In this thesis the optimal number of heads for a REG model was explored.

In particular a number of models were trained ranging the number of heads from one

to twenty. Hence, empirically was found that the optimal number of heads is eight.

Therefore, all of the transformer-based architectures presented in this work employ

eight heads.

The transformer leverages stacks of identical layers to mimic the encoder-decoder

architecture. The overall architecture of a transformer-based model, is illustrated

in Figure 3.2. Specifically, the encoder is a stack of N identical layers. Each layer is

comprised of a multi-head attention mechanism given by the Equation 3.15. The second

component is a position-wise feed-forward network that is applied to the output of the

multi-head attention layer as follows:

(3.17) FFN(x) = max(0, xW1 +b1)W2 +b2

where W1,b1,W2,b2 are the weights and biases of the two fully connected layers. Fi-

nally, residual-connections (30) that are followed by layer-normalization (3) are applied

to the outputs of the self-attention and the feed-forward layer. The decoder’s first layer

receives as input the output of encoder’s last layer. Similarly to the encoder, the decoder

is a stack of N identical layers. However, in addition to the two sub-layers in each

encoder layers, a third module is added to the decoder layers to perform multi-head

attention over the encoder’s output.

The transformer architecture was originally designed and proposed for automatic

text translation. In automatic text translation, a word is either to the left or right of
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another word with different distances. However, images are two-dimensional, and thus

the relative relationship between images regions has a larger degree of freedom than

the semantic units of a sentence. In other words, an image region can contain or be

contained in another region. Secondly, in machine translation a word is mapped to

a word of another language (one to one decoding), whereas for an image or an image

region its content can be described with different ways given that its content,attributes

and relationships are depended with other regions of the image (one to many decoding).

To overcome the aforementioned shortcomings, this thesis proposes a modification

of the transformer’s internal architecture. Specifically, a different connectivity pattern

between the encoder and the decoder is proposed. Each layer of the encoder is con-

nected with the respective decoding layer. The proposed connectivity is illustrated

in Figure 3.2 with the green arrows, while the original connectivity is shown with red

arrows. Specifically, in order for a word to be predicted there should be a form of visual

information that influences the likelihood. The original configuration utilizes a fixed

representation throughout the network. However, fixed visual representations might

be unable to capture the transitioning dynamics between the visual focus and words.

Therefore, visual features with different degrees of modification are incorporated at

each layer, to better model the interdependencies of different visual elements and

words. Finally, a number of different connectivity patterns were explored. Specifically,

connecting every layer with every layer of the decoder resulted in a reduction of 0.17

in CIDEr scores compared to the original configuration. Howevever, combining the

output of each layer and then feed it in each layer of the decoder resulted in an increase

of 0.009 CIDEr score compared to the original architecture.

3.1.4 Training objective

Let θ denote the parameters of the language models described in Sections 3.1.1, 3.1.2

and 3.1.3. Let
{

x∗
1 , x∗

2 , ..., x∗
T

}
be a ground-truth referring expression, the model parame-

ters θ are trained to minimize the cross entropy loss as follows:

(3.18) L (θ) =−
T∑

t=1
log

(
πθ

(
x∗

t

∣∣x∗
1:t−1, I ,r

))
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where πθ (xt |x1:t−1, I ,r ) is the probability distribution of the token xt given all the

previous generated tokens {x1, x2, ..., xt−1} and the visual features I ,r . T denotes the

length of the sequence.

3.2 Experimental design and results

3.2.1 Implementation Details

Visual Features The visual representation that was used is a 4096-dimensional vector

that is a concatenation of: (1) a 2048-dimensional vector of the target object region; (2)

a 2048-dimensional vector representation of the whole image that serves as context

features. As main feature extractor we used ResNet-152 (29). In more detail, for the

object region features, the aspect ratio of the region was kept constant and was scaled

to 224×224 resolution. The margins were padded with the mean pixel value, following

(66). The attention features were extracted as follows. First, each target region was

encoded with the final convolutional layer of ResNet-152. Then, bilinear interpolation

was applied to resize the output to a fixed size representation of 7×7, 10×10 and 14×14.

However, empirically was found that the 14×14 performs best. Both the object region

and image features are pre-extracted and no fine-tuning was performed. The input

visual representation was kept fixed across all the experiments.

Training For the best performing LSTM and LSTM+ATT, the dimensions of the LSTM’s

hidden state, image feature embeddings, and word embeddings was set to 512. The

batch size is set to 128 objects. The learning rate is initialized to be 5×10−4, and decays

by a factor of 0.8 every three epochs.

The best transformer model consists of 3 fully connected encoding and decoding

layers. The dimensionality of each layer was set to 512 and 8 attention-heads were used.

Every feed-forward layer is followed by a dropout with a rate of 0.1. The learning rate is

initialized to be 5×10−4 and decays by a factor of 0.8 every three epochs, with 20000

warmup steps. The batch size was set to 10 objects.
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3.2.2 Evaluation

Evaluation of one-shot referring expressions: For the evaluation of the models

presented in this thesis both intrinsic and extrinsic evaluation is performed. For the

former, standard automatic metrics that have been used in REG (67, 116, 119) are used.

Automatic metrics compare the generated referring expression with the human ones.

The models are evaluated with the use of the following metrics:

• BLEU: It is a precision-based metric that computes the n-gram overlap between

the machine generated text and the human written text. BLUE is the ratio of the

number of overlapping n-grams to the total number of n-grams in the human

written text. In other words, it measures the similarity of a machine generated text

with the human generated text. Given the short length of referring expressions

the models are evaluated on BLEU1 for uni-grams.

• CIDEr: It was first proposed in the context of image captioning where each image

is accompanied by multiple human written descriptions. The underlying idea of

CIDEr is that n-grams that are relevant to an image would occur frequently in its

set of human written descriptions captions. Therefore, it weighs every n-gram in

a sentence based on its frequency in the corpus and in the set of human written

descriptions for a particular image, using TF-IDF (term-frequency and inverse-

document-frequency).Furthermore, for n-grams that appear frequently in the

entire corpus of human written descriptions a lower weight is assigned.

Previous work has shown that automatic evaluation metrics do not correlate well

with human judgments (44, 115, 116, 120). Unlike other generation tasks such as

image captioning, here a referring expression is successful if it describes the target

object unambiguously. Thus, human evaluation was conducted in order to measure

the task success of the systems. Specifically, all human evaluation experiments were

conducted at Amazon Mechanical Turk. An Amazon Mechanical Turk worker was able

to participate in this human evaluation experiment only if the worker was a native

speaker of the English language, was located in English- speaking countries, had an
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approval rate of 99% and had successfully completed 1000 tasks. Each worker was only

allowed to participate in a task only once. In each task the workers were presented

with an image and an expression and were asked to draw a box around the object that

they believe is best described by that expression. If two workers chose the correct

object, then the expression was considered successful. For each test set 60 objects were

randomly selected. For each test set 180 unique ratings were collected, at a cost of 1

USD per rating. In addition to the evaluation of the success of referring expressions,

annotators were asked to rate (in a typical Likert scale from 1 to 5) the statements below

following Mitchell et al. [69]:

• Q1-Grammaticallity: The description is grammatically correct.

• Q2-Main aspects: The description does not describe the main attributes correctly.

• Q3-Correctness: This description does not include extraneous or incorrect in-

formation.

• Q4-Naturalness: It sounds like a person wrote that description (Yes/No)

3.2.3 Datasets

The models presented in this thesis are trained on RefCOCO and RefCOCO+ (116) which

are built on MSCOCO dataset (58). Specifically, the collection of the expressions of

RefCOCO(+) was based on the ReferIt Game (43), an interactive setting where two

players alternate between two roles: (1) speaker: generating referring expressions; (2)

listener: identifying the described object within an image. The ReFCOCO(+) images

contain on average 3.9 objects of the same category within an image and they contain

approximately 150k referring expressions for 50k objects. Although both datasets

contain similar images, the referring expressions for each dataset are quite different

due to different data collection instructions. In particular, for ReFCOCO+, the use of

absolute location words (e.g. top right, bottom left, etc.) was not allowed and thus

the RE are appearance focused, while for the RefCOCO the use of location is essential
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Figure 3.3: Human written referring expression for one target object (green box) for each of the
test sets of RefCOCO and RefCOCO+.

in order for the target object to be successfully individualized. Furthermore, for each

dataset different test splits are provided. The predefined test splits for both datasets are

divided between person vs object splits. In particular, images containing people are in

“TestA” and images that contain all other object categories are in “TestB”.

3.2.4 Attention-based REG results

In order to demonstrate the advantages of the proposed object attention, a detailed

comparison between the attention model and the standard LSTM was performed.

Furthermore, in order to determine whether the difference caused by incorporating

the object attention was statistically significant a two-tailed t-test with paired samples

was performed. The results for the two considered datasets are shown in Table 3.1.

Specifically, the proposed attention model results in higher scores than the standard

LSTM. The difference in scores was found statistically significant (using a significance

level α = 0.05). The significant improvements in CIDEr and BLEU1 are in line with the

assumption made in this thesis that adding the object attention mechanism would assist
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RefCOCO RefCOCO+

testA testB testA+ testB+

Model

Type

Decoding

Method
BLEU1 CIDEr BLEU1 CIDEr BLEU1 CIDEr BLEU1 CIDEr

LSTM
Greedy 0.490 0.762 0.523 1.332 0.444 0.633 0.373 0.710

Beam 0.477 0.758 0.510 1.340 0.429 0.656 0.384 0.837

LSTM +ATT
Greedy 0.594 1.033 0.609 1.552 0.512 0.884 0.424 0.858

Beam 0.577 1.013 0.599 1.573 0.491 0.881 0.424 0.857

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Table 3.1: Comparison of different automatic metrics for the attention model (denoted as “LSTM-
ATT”) and the standard LSTM model. The proposed attention model results in significantly
higher CIDEr and BLEU1 scores in both datasets. The p-values are the result of two-tailed t-tests
using paired samples.

the model in determining both the relationship between objects, but also determine

fine appearance details of the target object. This is due to the fact that the proposed

approach is able to consider all the information pertaining to an object simultaneously.

To illustrate the advantages of the proposed approach, examples of objects with the

corresponding referring expressions generated by each model are presented (see Figure

3.4 and Figure 3.5 ). The referring expressions presented here were generated using the

following steps: both models were trained with MLE and were greedily decoded. For

the chosen examples there was a significant improvement between the CIDEr scores of

the expressions generated by the attention model and those generated by the standard

LSTM. The collection of objects and expressions for RefCOCO and RefCOCO+ is shown

in Figure 3.4 and Figure 3.5 respectively. It should be noted that, during the collection

of RefCOCO dataset, no restrictions were placed on the type of language that can be

used in the referring expressions, while in RefCOCO+ dataset location words were not

allowed. Thus, this dataset contains referring expressions that are based on appearance

attributes. Specifically, the images in testA that are presented in Figure 3.4, illustrate an

improvement in determining when a relationship between objects should be expressed,

as well as in determining what that relationship should be. In addition, the images in

testB presented in Figure 3.4, illustrate an improvement in including appearance and

location attributes. The improvement in including appearance attributes can be further

noticed in the referring expressions of RefCOCO+ dataset presented in Figure 3.5.

39



CHAPTER 3. LANGUAGE MODELS

Figure 3.4: Examples of objects and expressions drawn from RefCOCO dataset, for which the
CIDEr scores of the attention model show an improvement over the standard LSTM. The target
object is highlighted with a red box.

Figure 3.5: Examples of objects and expressions drawn from RefCOCO+ dataset, for which the
CIDEr scores of the attention model show an improvement over the standard LSTM. The target
object is highlighted with a red box.

3.2.5 Transformer-based REG results

Table 3.2 shows the results for the ablation study regarding the transformer model

discussed in Section 3.1.4. The original configuration (denoted as Transformer 6 in

Table 3.2) of the transformer (94) serves as the baseline. To determine whether the
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RefCOCO RefCOCO+

Model testA testB testA testB

CIDEr BLEU1 CIDEr BLEU1 CIDEr BLEU1 CIDEr BLEU1

Transformer 6 0.837 0.506 1.340 0.546 0.772 0.460 0.763 0.387

Transformer 6 (OURS) 0.852 0.513 1.355 0.552 0.798 0.467 0.791 0.395

Transformer 3 0.922 0.524 1.442 0.581 0.911 0.515 0.894 0.412

Transformer 3 (OURS) 0.938 0.586 1.464 0.586 0.938 0.529 0.913 0.424

Table 3.2: The impact of depth in the performance of the transformer model. Transformer 6
and 3 indicate that the decoder and the decoder consist of 6 and 3 layers respectively. The layer
configuration follows the one proposed by 94. “Ours” indicates that each layer of the encoder is
connected with the respective layer of the decoder.

changes in the configuration of the model result in statistically significant differences

for each of the considered metrics, we performed a two-tailed t-test with paired samples

as described in Section 3.2.4.

First the effect of the number of layers is investigated. It is hypothesised that, given

the model was initially proposed for machine translation, a task with considerable

longer sentences than REG and larger training sets, a shallower architecture might result

in better performance. Table 3.2 shows that reducing the depth (Transformer 3 in Table

3.2) of the network leads to considerable improvements in both BLEU1 and CIDEr

scores. For instance, in RefCOCO+ testA, decreasing the number of layers leads to an

improvement from 0.772 to 0.911 in CIDEr values. The score difference was statistically

significant (using a significance level α = 0.05). However, decreasing the number of

layers to less than three results in significant reduction in CIDEr scores. Specifically, a

two layer network achieves CIDEr scores of 43.4 and 0.37 for RefCOCO testA and testB

respectively. The same trend applies when the number of layers increases. Specifically,

a eight layers network achieves scores 23.26 and 25.05 for RefCOCO testA and testB

respectively.

The effect of connecting each layer of the encoder to the respective layer of decoder

is investigated. The results are shown in Table 3.2, where “Transformer (OURS)” stands

for the proposed model. Specifically, for all of the considered metrics, the proposed

transformer produces higher scores than the standard transformer.

Examples of generated REs are illustrated in Figure 3.6. The referring expressions
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Figure 3.6: Examples of objects and expressions drawn from both RefCOCO and RefCOCO+
datasets, for which the CIDEr score for the proposed transformer model show an improvement
over the standard transformer. The target object is highlighted with a red box.

presented here were generated using the following steps: both models were trained with

MLE and were decoded using greedy decoding. In all images presented in Figure 3.6, we

observe that the proposed model improves over the standard transformer in inferring

fine appearance (e.g. “number 29” top left image in Figure 3.6) and location attributes

of the target object. This is in line with the expectation that utilizing features with

different degrees of modification at each layer, will better model the interdependencies

of different visual elements and words.

3.2.6 Comparison between the proposed language models

This sections compares the two proposed models. Specifically, the results presented in

Table 3.3 demonstrate that the proposed transformer model is more effective in task

success compared to the attention model. Additionally, it is observed that it scores

higher in naturalness of the produced referring expressions across datasets. Further-

more, the referring expressions generated by the proposed model were describing the

main aspects of the target correctly as was judged by the human annotators. Finally, the

proposed transformer model achieves state-of-the-art results in both datasets.
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RefCOCO testA

Task success Naturalness Grammaticality Main Aspects Correctness

LSTM+ATT 71.66% 92.85% 4 (3.41, 0.68) 2 (2.23, 0.92 3 (3.30, 0.77)

Trasnformer 78.33% 96.42% 4 (3.69, 0.62) 3 (2.87, 0.88) 4 (3.64, 0.88)

Best by Yu et al. [115] 76.95% - - - -

RefCOCO testB

Task success Naturalness Grammaticality Main Aspects Correctness

LSTM+ATT 66.66% 98.92% 4 (3.71, 0.83) 2 (2.23, 0.92) 3 (3.30,0.77)

Transformer 73.33% 98.21% 3 (2.78, 0.61) 3 (2.28, 0.79) 3 (2.85, 0.71)

Best by 115 78.10% - - - -

RefCOCO+ testA

Task success Naturalness Grammaticality Main Aspects Correctness

LSTM+ATT 76.66% 93.64% 4 (4.12, 0.92) 2 (1.91, 0.93) 3 (3.25, 0.96)

Transformer 80.00% 95.44% 4 (3.82, 0.38) 3 (2.11, 0.68 ) 4 (3.78, 0.55)

Best by 115 58.85% - - - -

RefCOCO+ testB

Task success Naturalness Grammaticality Main Aspects Correctness

LSTM+ATT 55.00% 71.42% 4 (4.17, 0.92) 2 (1.91, 0.93) 3 (3.25, 0.96)

Transformer 58.33% 92.85% 4 (3.62, 0.51) 3 (2.89, 0.64 ) 3 (3.07, 0.59)

Best by 115 58.20% - - - -

Table 3.3: Human Evaluation results. Median scores for systems, mean and standard deviation
in parentheses.

3.3 Conclusions

In this chapter, the two proposed language models were presented. First, the benefits

of incorporating an object attention mechanism in the language model were presen-

ted. Specifically, the proposed language models allow the attention mechanism to be

calculated at the level of the referent object. It was demonstrated that applying this

approach to REG, results in significant benefits compared to the standard LSTM model.

The results on RefCOCO and RefCOCO+ show an increase, on average, of 0.26 and

0.12 in CIDEr scores respectively. The qualitative analysis showed that the attention

mechanism results in an improvement in determining fine appearance attributes of the

target object as well as an improvement in expressing the absolute and relative location

of the target object. Unlike the standard LSTM, the proposed attention mechanism

allows the language model to consider all the information pertaining the referent object

at once. In other words, instead of letting the language model to hallucinate over the
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attributes of the target object, the attention mechanism enables the language model

to take multiple glimpses of the salient parts of the object’s region during generation.

Furthermore, the human evaluation study showed that the proposed model performs

comparable with the state-of-the art (115). In particular, in RefCOCO+ testA it achieves

an increase from 58.85% to 76.66% in task success.

Furthermore, to demonstrate the benefits of attention in REG, a transformer archi-

tecture was proposed that is noticeably effective in REG. It was shown that reducing the

depth of the network from 6 layers to 3 results in an improvement in automatic metrics.

They key novelty of this this model is different connectivity pattern between the encoder

and the decoder, by connecting each layer of the encoder with the respective decoder

layer. The results on RefCOCO and RefCOCO+ datasets demonstrate significant im-

provements over the standard architecture. Moreover, the qualitative analysis showed

how the proposed connectivity improves the spatial awareness and the inference of fine

appearance attributes. Lastly, the human evaluation study (that follows the protocol

described in Section 3.2.2 ) showed that the proposed transformer produces expres-

sions that are more human-like, accurate and describing the main aspects of the target

object better than the proposed attention LSTM. In addition, our results in task success

improves over the state-of-the-art results in RefCOCO testA from 76.95% to 78.33% and

in RefCOCO+ testA from 58.85% to 80.00%.
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Sequence Level training objectives for REG

The encoder-decoder model is typically trained to maximize the likelihood of a word

given the history of generated words so far (see Section 3.1.4 ). This training approach is

referred to as “Teacher-Forcing” (4). Although intuitive to train a model on token-level,

during generation a model is evaluated based on its ability to optimize towards sequence

level metrics resulting in a discrepancy between training and testing objectives. A

second problem that stems from “Teacher-Forcing” is that during training, the model

uses the ground-truth words to predict the next one, while during testing it uses its own

predictions. This missmatch, coined as exposure bias (79), results in error accumulation

during generation.

There is a large body of work that proposes solutions to the aforementioned expos-

ure bias. Those approaches utilize reinforcement learning techniques (88). For example,

Ranzato et al. [79] propose the use of the REINFORCE algorithm to directly optimize

the non-differential evaluation metrics. A major limitation that stems from this method

is that, the expected gradient exhibits high variance and without careful normalization

is often unstable (81). An extension to the REINFORCE algorithm includes the bias cor-

rection with learned “baselines” (83, 118). Rennie et al. [81] propose an alternative way

to normalize the reward. Specifically, they propose the self-critical sequence training

(SCST), where instead of approximating the reward signal with learned “baselines”, it

uses the output of the current model at test-time to calibrate the observed reward. A

limitation of this approach is that it utilizes only one sample per data point that might be
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insufficiently expressive for an observation. As a result, samples that poorly describe the

observation will be heavily penalized, pushing the model to cover only high-probability

zones. To minimize this effect, in this chapter is proposed a novel way to calculate the

baseline of the REINFORCE algorithm. The proposed approach normalizes the reward

by averaging over multiple-samples per observation.

Beside the high variance of the gradient there is a number of limitations that stems

from RL training: (1) lack of per-token advantage, i.e. the REINFORCE algorithm makes

the assumption that every token contributes equally to the whole sequence (107); and

(2) reward configuration (79). Furthermore, effectively applying RL to REG has not

been explored, with the exception of Yu et al. [115] who incorporate an additional

module to reward discriminative REs by updating the speaker with a policy gradient

algorithm. However, little is reported of how the RL was configured. Therefore, this

chapter thoroughly investigates how to effectively train REG models with RL.

However, optimizing a model with RL leads to repetition of the produced output. To

address the lack of diversity first this chapter proposes to combine RL objective with

MLE. Although, this combined objective improves the output there is a considerable

gap between MLE and RL methods w.r.t. to diversity. Thereofore, this chapter proposes

the use of minimum risk training (MRT) (84) as an alternative way of optimizing REG

systems on sequence level. It further proposes a novel objective that combines both the

MRT and MLE objective.

4.1 Contributions

The contributions of this chapter are the following:

• A novel optimization approach to REG based on the REINFORCE algorithm,

that utilizes multiple samples per input to construct the baseline, rather than

estimating the reward based on one sample. It was found that the proposed RL

objective reduces the variance of the gradient compared to SCST training. This

contribution is described by Panagiaris, Hart and Gkatzia [73].
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• A novel strategy for training REG models using minimum risk training. It was

shown that the proposed approach outperforms RL approaches w.r.t naturalness

and diversity of the output. This contribution is described by 74

• As a complementary contribution, extensive analysis analysis and benchmarking

of RL training strategies for REG was conducted by exploring how different aspects

such as the reward and the baseline reward configuration affect REG models. This

contribution is described by 74.

4.2 Training REG with Reinforcement Learning

The main criticism of the MLE objective is that it does not take into consideration a

task specific reward such as CIDEr. Secondly, it does not introduce a ranking amongst

incorrect output referring expressions, since incorrect referring expressions are never

considered during training. Therefore, the model will not learn to be robust to error ac-

cumulation during test time, since during training it never observed its own prediction.

As mentioned previously, reinforcement learning is used to bridge the gap between

training and generation, by directly optimizing evaluation metrics (e.g., CIDEr) during

training. The generation process can be cast into a reinforcement learning process as

first described by Ranzato et al. [79]. In the classical reinforcement learning paradigm,

the goal of an agent is to maximize the expectation of the reward rt it receives for

each action ŷt when interacting with its environment. More formally, an agent aims to

maximize the following objective:

(4.1) Eŷ1,··· ,ŷT ∼πθ(ŷ1,··· ,ŷT )[r (ŷ1, · · · , ŷT )]

where ŷt is the word (i.e. action) sampled by the model at time t and r (ŷ1, · · · , ŷT )

is the observed reward for the actions ŷ1, · · · , ŷT . Each agent performs an action under

a specific policy πθ. The nature of the policy is application dependent. In the context

of REG, the parameters of the agent (i.e. language model) define a policy. The agent

selects an action, which is a candidate token from the vocabulary under the policy, until

it generates the special token that denotes the end of the sequence. Once the agent
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reaches the end of the sequence, it compares the sequence of actions under the current

policy ŷ against the ground-truth sequence y and calculates a reward based on any task

specific metric (e.g. CIDEr). The goal of the training is to parameterize the agent in

order to maximize the reward. Formally:

(4.2) Lθ =−Eŷ1,··· ,ŷT ∼πθ(ŷ1,··· ,ŷT )[r (ŷ1, · · · , ŷT )]

In practice, however, the expected gradient is computed with only one sample

acquired from the policy πθ as follows:

(4.3) ∇θLθ =− E
ŷ1···T ∼πθ

[∇θ logπθ(ŷ1···T )r (ŷ1···T )]

Applying the chain rule we have:

(4.4) ∇θLθ =
∂Lθ

∂θ
=∑

t

∂Lθ

∂ot

∂ot

∂θ

where ot indicates the input to the softmax function. Thus, the estimate of the

gradient Lθ with respect to ot is given by (118):

(4.5)
∂Lθ

∂ot
=

(
πθ(yt |ŷt−1,ht )−1(ŷt )

)
(r (ŷ1, · · · , ŷT )− rb)

where rb is a baseline reward. The role of the baseline is to guide the model towards

actions with a reward r > rb and penalize those that have a reward r < rb . Furthermore,

subtracting a quantity from the learning signal leads to lower variance, since it reduces

its magnitude. This transformation leaves the gradient estimator unbiased because the

baseline is a quantity that has zero expectation under the policy, since in this case:

(4.6)

Eŷ1···T ∼πθ [∇θ logπθ(ŷ1···T )rb] = rb
∑

ŷ1···T ∇θπθ(ŷ1···T )

= rb∇θ
∑

ŷ1···T πθ(ŷ1···T ) = rb∇θ1 = 0

This shows that the subtraction of the baseline leaves the gradient estimator un-

biased. This algorithm has been coined in literature as the REINFORCE algorithm with
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Figure 4.1: An illustration of the self-critical sequence training approach. In particular, a specific
action ŷ2 is sampled and the greedy action ŷ g

2 is extracted. The difference of the rewards from
sampling and greedy sequence is used to update the loss function.

a baseline (106). The reward, for example, could be calculated as the mean of the N

rewards that are observed.

4.2.1 Self-critical sequence training (SCST)

An alternative way of reducing the variance was proposed by Rennie et al. [81]. In SCST,

the reward is obtained by applying greedy search, the inference algorithm that is used

at test-time . Thus, the following REINFORCE estimator is obtained:

(4.7) Lθ = 1
N

∑N
i=1 logπθ(ŷi )

(
r (ŷi ,1, · · · , ŷi ,T )− r (ŷ g

i ,1, · · · , ŷ g
i ,T )

)
where ŷ g

i ,t is an action sampled with greedy decoding. The central idea of the self-

critical sequence training approach (see Figure 4.1 ) is to utilise the current model

under the inference algorithm used at the test is used as baseline. Hence, samples from

the model that return higher reward than ŷ will be positively rewarded, or increased

in probability, while samples which result in lower reward will be suppressed. The

difference of the rewards from sampling and greedy sequence is used to update the loss

function. In practice, however, only a single sample is used to compute the expectation.

From a classic RL point of view, using a single sample is a reasonable strategy, since it
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might not be feasible to score multiple sampled actions for a state. However, from a

data point of view, this is inefficient. Specifically, multiple samples can be evaluated

without additional computational load. Secondly, optimizing a powerful model using

one sample might have detrimental effects on its capacity. The assumption that one

sample is sufficiently expressive does not always holds. As mentioned before, samples

with higher rewards will be favored, while heavily penalizing samples that explain the

observation poorly, leading to a lower bound of the likelihood. Therefore, the model will

cover only the high-probability zones. An intuitive way to limit this crippling effect is to

average over multiple samples per data point. The use of multiple samples per data point,

provides sophistical information leading to the construction of a more robust local

baseline. Thus, this chapter proposes to use the REINFORCE with multiple-samples per

input. A similar strategy, has been used on the travelling salesman problem presented

by Kool, Hoof and Welling [47] where they use REINFORCE without replacement and in

variational inference presented by Mnih and Rezende [70].

4.2.2 REINFORCE with multiple-samples per data point:

Granted that the samples within the set are independent, a baseline b for the i − th

item of a set can be constructed by averaging over the rest samples. In this thesis,

both the arithmetic mean and the geometric mean bi = 1
K−1

∑
i ̸= j r (ŷ j ) was used and a

slight superiority of the latter was found. Therefore, the estimator in the Equation 4.8

becomes:

(4.8) Lθ = 1
N

∑N
i=1 logπθ(ŷi )

(
r (ŷi )− 1

K−1

∑
i ̸= j r (ŷ j ))

)
One of the advantages of the self-critical sequence training is that the baseline

is based on the inference algorithm that is used at test-time without having to train

an additional “critic” network. In particular, the greedy decoding was used (see sec-

tion 5.1.1.1). However, greedy decoding can only produce one sample. Therefore, for

generating a set of samples we resort to the use of sampling, which produces k inde-
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Algorithm 1 The REINFORCE algorithm with multiple-samples per data point.
Require:

A pre-trained policy (πθ).
Input: Input (X ), ground-truth expressions (Y ),
Output: A fine-tuned policy with REINFORCE with multiple-samples.
Training Steps:
while not converged do

Produce a mini- batch of size N from X and Y .
for each element in N do

Generate K full sequences of actions:
{ŷ1, · · · , ŷT ∼ (ŷRS

1 , · · · , ŷRS
T )}K

1 .

Observe the sequence rewards and calculate the baseline bi = 1
K−1

∑
i ̸= j r (ŷ j ).

end for
Calculate the loss according to Eq. (4.8).
Update the parameters of network θ← θ+α∇θLθ.

end while

pendent samples by sampling from the model’s distribution. Algorithm 1 summarizes

the required steps for the proposed approach.

4.2.3 Reward Configuration

The standard training for REG poses two uncommon challenges for RL. First, the action

space in REG problems is a high-dimensional discrete space that it is intractable, while

in the classic RL paradigm the common scenario is a smaller discrete action space (e.g.

games (71)), or a relatively low dimension continuous space of actions (e.g. robotics

(57)). Hence, the first important factor is the search strategy for generating the sequence

of actions.

For generating sequences and set of sequences two sampling strategies were used.

The first is beam search, that finds the most likely sequence by performing a greedy

breadth-first search over a limited search space. Specifically, each candidate sequence

is expanded from left to right selecting all possible tokens from the vocabulary at a

time. From this set, the top −k candidate sequences with the highest probabilities

are selected, and the beam search process continues until the top −k candidates with

the highest probability are returned. The second strategy is random sampling, which

randomly samples from the model’s distribution at every time-step until the end of the

sequence token is produced.

Balancing between exploration and exploitation is a major challenge in RL. For
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instance, it may be required for an agent to pick an action associated with the highest

expected reward (i.e. exploitation). However, in this scenario it may fail to learn more

rewarding actions. Therefore exploration, that is the choice of new actions and the

visit of new states, may also be beneficial. Beam search focuses on producing high

probability sequences and therefore is considered as an exploitation strategy, while

random sampling introduces more diverse sequences and thus contributes towards

the exploration of the action states. However, due to the fact that the actions are being

sampled from the model being optimized the exploration is de facto limited.

4.3 Minimum Risk Training for Referring Expression Gen-

eration

Similar to the proposed RL object, minimum risk training is an objective that is com-

puted over a set of sequences. Specifically, MRT minimizes the value of a given task-

specific cost function, i.e. risk, over the training data at sequence level. Let x denote a

fixed-size representation of the input, then the set Y (x(s)) denotes the set of all possible

referring expressions generated by the model with parameters θ. For a given candidate

sequence y′ and ground truth referring expression y, MRT defines a cost function∆(y′,y)

which is the semantic distance between y′ and the standard y. The cost function can

be any function that captures the discrepancy between the model’s prediction and the

ground truth. Formally, the objective function of MRT is the following:

(4.9) LMRT =
N∑

n=1
EY (x)∆(y′,y(n)).

where EY (x) denotes the expectation over the set of all possible candidate sequences

Y (x(n)). However, as previously mentioned enumerating and scoring candidate se-

quences over the entire space is intractable. Instead, we sample a subset S (x) ⊂Y (x)

to approximate the probability distribution, and formalize the objective function as:

(4.10) LMRT =
S∑

s=1

∑
y′∈S (x(s))

p(y′|x(s))∑
y∗∈S (x(s)) p(y∗|x(s))

∆(y′,y(s))
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The MRT objective minimizes the expected value of a cost function which enables

the optimization of REG models with respect to specific evaluation metrics of the

task. In this chapter the use of various REG evaluation metrics such as CIDEr and

BLEU and a combination of those is explore (e.g. CIDER + BLEU). Furthermore, for

the construction of the subset of the candidate sequences both online and offline

generation were considered. However, empirically it was found that offline generation

leads to inferior performance and thus was not included. For the generation of sets of

expressions, random sampling and beam search as search strategies (see Section 4.2.3)

were considered.

4.4 Combined objectives

The motivation of the loss combination is to maintain good token-level accuracy while

optimizing on the sequence-level. In other words, using an evaluation metric as a

reward can suppress the probability of the words that do not increase the metric score,

and thus concentrate the distribution to a single point. Thus, a combined objective

is explored in order to scale the peakiness of the output distribution. Specifically, the

weighted combination of MLE with RL objective is defined as follows:

(4.11) Lwei g hedRL = (1−α)∗Lml e +α∗ L̂r l ,

Equivalently, combing the MRT objective (Equation 4.10 ) with MLE we have:

(4.12) Lwei g hedMRT = (1−α)∗Lml e +α∗ L̂MRT ,

where α is a scaling factor controlling the difference in magnitude between the com-

bined objectives.
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4.5 Experimental design and results

4.5.1 Implementation Details

The visual features, datasets and the implementation details of the language models are

described in Section 3.2.1. Both the RL and MRT models are trained according to the

following scheme: first the language model is pretrained using MLE, optimized with

Adam (45). At each epoch, the model is evaluated on the validation set and the model

with the best CIDEr score is selected as an initialization for RL and MRT training. Then

the model is optimized with either RL or MRT.

4.5.2 Evaluation

The quality of the output is measured by standard automatic metrics that have been

used in REG (67, 116, 119) and they are described in Section 3.2.2. Furthermore, in order

to measure the diversity the following metrics are reported: (1) the average length of

referring expressions (ASL); (2) the number of unique words of the generated corpus;

(Voc) and (3) the average number of unique bigrams per 1000 bigrams (TTR) (68).

4.5.3 Evaluating different RL training configurations

First, a number context-dependent normalization factors that affect the RL training are

explored. Regarding the reward configuration (see Section 4.2.3)the following factors

are explored: (1) which reward function to use to evaluate the sequences; and (2) which

search strategy will be used to sample the actions from the policy.

Reward Function: First various evaluation measures are compared as reward func-

tions, namely CIDEr, BLEU and METEOR as well as metrics combinations. A summary

of the results is given in Table 4.1, where RL stands for the REINFORCE algorithm. The

performance of the MLE model that used for the initialization of the RL training is

also presented. As expected, optimizing towards a particular evaluation metric during

training leads to an increase on that particular metric during testing. However, the
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RefCOCO

testA testB

Training

Metric
CIDEr BLEU1 RL + METEOR CIDEr BLEU1 METEOR

MLE 0.762 0.490 0.177 1.332 0.523 0.208

RL + CIDEr 0.978 0.556 0.211 1.498 0.536 0.229

BLEU1 0.811 0.512 0.190 1.342 0.501 0.211

RL + METEOR 0.762 0.489 0.178 1.331 0.522 0.209

RL + CIDER+BLEU1 0.914 0.534 0.202 1.422 0.527 0.223

RefCOCO+

testA+ testB+

Training

Metric
RL+CIDEr BLEU1 METEOR CIDEr BLEU1 METEOR

MLE 0.633 0.444 0.167 0.710 0.373 0.159

RL + CIDEr 0.847 0.500 0.203 0.980 0.288 0.169

RL+BLEU1 0.760 0.480 0.189 0.914 0.299 0.163

RL + METEOR 0.729 0.442 0.179 0.932 0.321 0.169

RL + CIDER+BLEU1 0.845 0.517 0.207 0.979 0.299 0.171

Table 4.1: Performance of different reward functions for the LSTM model. When the language
model is optimized with the CIDEr metric, a significant increase to all other evaluation metrics
is observed. All models were decoded using greedy decoding. The performance of the seed
model is also reported. The best overall values for each metric are emphasized with bold.

benefits are not comparable with those gained when optimizing CIDEr. Specifically,

CIDEr optimization leads to improvements in scores for all other metrics as opposed to

directly optimize them. A notable exception is the combination of CIDER+BLEU where

BLEU score is higher compared to optimizing only for CIDEr. Therefore, for the rest of

the this, all RL models are based on CIDEr optimization.

testA testB testA+ testB+

Method BLEU METEOR CIDEr BLEU METEOR CIDEr BLEU METEOR CIDEr BLEU METEOR CIDEr

MLE 0.542 0.200 0.841 0.614 0.258 1.507 0.481 0.179 0.715 0.409 0.173 0.829

RL+ RS 0.569 0.222 0.954 0.625 0.277 1.564 0.469 0.185 0.745 0.286 0.163 0.913

RL + BS 0.561 0.217 0.946 0.617 0.270 1.549 0.465 0.184 0.743 0.277 0.160 0.901

SCTS+RS 0.593 0.231 1.012 0.638 0.290 1.607 0.481 0.194 0.809 0.282 0.165 0.942

SCTS+GD 0.583 0.227 0.995 0.635 0.279 1.585 0.461 0.185 0.761 0.276 0.163 0.934

Table 4.2: Results of different search strategies for reward computation and variance reduction
for the LSTM model. “RS” stands for random sampling, while “BS” refers to beam search and
“GD” for greedy decoding. “SCTS” refers to self-critical training. Shaping denotes that we used
reward shaping.

Action sampling strategy: So far the words were sampled using random sampling.

Next, beam search and random sampling are compared as sampling strategies. The

55



CHAPTER 4. SEQUENCE LEVEL TRAINING OBJECTIVES FOR REG

Figure 4.2: Gradient variance of the proposed RL objective compared to the SCST for the
proposed attention and transformer model.

results are shown in Table 4.2. Although beam search (with width of 2) has been the

de facto decoding strategy for neural REG systems, it produces inferior results when

compared to random sampling. Due to the deterministic nature of beam search, the

sampled sequences are often duplicates and thus uninformative for the gradient es-

timation, while the stochasticity of sampling generates sequences with exploratory

usefulness for the gradient estimation and it results in more diverse expressions.

4.5.4 Results of the proposed RL objective

This section evaluates whether the proposed RL objective reduces the variance of the

gradient compared to self-critical sequence training. High variance increases sample

complexity and can impede effective learning, hence the reduction of the variance

introduces better learned models (65). Although both techniques lead to unbiased

estimators of the gradient, the proposed method results in lower gradient variance for

both language models that were tested. Interestingly, SCST has much higher gradient

variance than the proposed RL objective during the first epoch of training. It is hypo-
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RefCOCO RefCOCO+

Model testA testB testA testB

CIDEr BLEU1 CIDEr BLEU1 CIDEr BLEU1 CIDEr BLEU1

LSTM +ATT + MLE 1.033 0.594 1.552 0.609 0.884 0.512 0.858 0.424

LSTM + ATT + SCST 1.089 0.597 1.565 0.570 1.065 0.563 1.054 0.323

LSTM + ATT+ RL(OURS) 1.204 0.636 1.646 0.605 1.077 0.563 1.074 0.323

LSTM + ATT+ MRT 1.054 0.612 1.570 0.615 0.952 0.569 0.987 0.373

Transformer 0.938 0.529 1.464 0.586 0.938 0.529 0.913 0.424

Transformer + SCST 1.255 0.650 1.710 0.650 0.967 0.532 0.974 0.308

Transformer + RL(OURS) 1.261 0.665 1.732 0.656 1.020 0.546 1.003 0.294

Transformer + MRT 1.071 0.608 1.591 0.610 0.965 0.534 0.945 0.395

Table 4.3: Performance of the best attention (denoted as LSTM +ATT) and transformer model
(denoted as Transformer ) trained with maximum likelihood estimation (denoted as MLE),
self-critical sequence training (denoted as SCST) and the proposed RL objective (denoted as RL
(OURS)). The models were greedily decoded.

thesized that the samples drawn fr om the model’s distribution score lower than the

sentences produced by greedy decoding.

Table 4.3 presents the results on RefCOCO and RefCOCO+ for the proposed attention

model and the transformer model optimized with the proposed RL training strategy

and SCST. Both RL based models are fine-tuned from the same pre-trained model.

Again, in order to determine whether the difference in scores between the two RL

methods was statistically significant, a two-tailed t-test was performed. Specifically,

when a model is optimized with the proposed RL objective achieves higher CIDEr scores

than SCST. The score difference was statistically significant. Second, the BLEU1 score

difference was statistically significant in RefCOCO and RefCOCO+ testB. Third, it is

observed that the attention model achieves higher scores when trained with MLE in

both datasets compared to transformer. However, when both models are trained with

RL, the transformer presents higher scores than the attention LSTM in RefCOCO.

4.5.5 Evaluating Minimum Risk Training for REG

Training with MRT requires generating and scoring multiple candidate referring expres-

sions for each input. Thus, two factors are explored: (1) which search strategy should

be used to generate the candidate sequences; (2) and how many sequences should

be generated for one input. It was found that random sampling performs better than
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Figure 4.3: Validation set CIDEr scores for different candidate set sizes for the MRT model. Best
viewed in color.

beam search both in terms of CIDEr scores and is considerably faster. Thus, Figure 4.3

compares different set sizes on the validation set when random sampling is used. For

RefCOCO a set size of 5 was chosen, while for RefCOCO+ 8. Table 4.3 presents the results

on the test set. When optimizing the REG model with MRT consistent improvements

in terms of CIDEr and BLEU1 scores are observed across datasets compared to the

MLE trained model. The difference in scores between the two objectives was found

statistically significant.

4.5.6 Comparison between objectives

Tables 4.4, 4.5 show all sequence level optimization methods used. When analyzing

the effect that different training methods have on diversity of the referring expressions

a few clear patterns can be observed: (1) the proposed RL objective has the lowest

diversity and highest repetition among all models (i.e. TTR scores); (2) out of the 4

different test sets, the proposed objective has the highest CIDEr scores when compared

to MLE and MRT training; (3) combining the proposed RL objective with MLE improves

sightly the accuracy, naturalness and diversity of the produced referring expressions.

Still, however, the diversity is considerably lower than MLE and MRT. (4) Minimum risk

training improves over MLE in all tests sets. (5) MRT has the highest diversity compared

to the other training strategies; (6) combing the MRT loss with MLE further improves

58



CHAPTER 4. SEQUENCE LEVEL TRAINING OBJECTIVES FOR REG

RefCOCO testA

CIDEr BLEU Avg. Length Unique words TTR

MLE 0.938 0.529 2.52 246 0.245

RL(ours) 1.261 0.665 1.40 202 0.173

MRT 1.070 0.608 2.66 243 0.236

MLE+ RL (ours) 1.275 0.669 2.41 227 0.188

MLE+MRT (ours) 1.193 0.642 2.92 275 0.290

RefCOCO testB

MLE 1.464 0.586 2.76 275 0.259

RL(ours) 1.732 0.656 2.41 209 0.201

MRT 1.591 0.610 2.52 277 0.233

MLE + RL (OURS) 1.825 0.658 2.68 230 0.226

MLE + MRT 1.739 0.662 2.80 306 0.286

Table 4.4: System results for RefCOCO : CIDEr and BLEU scores; average sentence length (ASL);
vocabulary size (Voc); mean-segmented bigram ratio (TTR); RL (ours) denotes the proposed RL
objective; MRT denotes minimum risk training.

RefCOCO+ testA

CIDEr BLEU Avg. Length Unique words TTR

MLE 0.938 0.529 2.80 357 0.337

RL(ours) 1.020 0.546 1.92 242 0.193

MRT 0.965 0.534 2.66 324 0.305

MLE+ RL (ours) 1.035 0.548 2.54 306 0.275

MLE+MRT (ours) 0.986 0.563 3.04 368 0.340

RefCOCO+ testB

MLE 0.913 0.424 2.92 428 0.377

RL(ours) 1.003 0.294 1.58 277 0.243

MRT 0.945 0.395 2.86 387 0.340

MLE + RL (OURS) 1.036 0.323 2.55 368 0.336

MLE + MRT 0.952 0.419 3.11 431 0.396

Table 4.5: System results for RefCOCO+ : CIDEr and BLEU scores; average sentence length (ASL);
vocabulary size (Voc); mean-segmented bigram ratio (TTR); RL (ours) denotes the proposed RL
objective; MRT denotes minimum risk training.
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Figure 4.4: Examples of objects and expressions drawn from both RefCOCO and RefCOCO+
datasets. The target object is highlighted with a red box.

the diversity and naturalness of the generated referring expressions.

Examples of generated REs are illustrated in Figure 4.4. In all images presented in

Figure 4.4, we observe that the proposed MLE + MRT model improves over all compared

training objectives in inferring more pragmatically adequate referring expressions by

using, for example, precise appearance and location attributes (e.g. “man with hand on

chin” and “left side of pic brown thing in front”).

4.6 Conclusions

In this chapter the problem of optimizing REG models with sequence level objectives

was investigated. There are two reasons for which it is desired the models to be trained

on sequence level: (1) to avoid the loss-evaluation metric mismatch coined as exposure

bias, that is during training the model utilizes a word-level loss, while during generation

its goal is to generate an expression that improves sequence-level metrics; and (2) to
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expose the model to its own predictions during training, as opposed to let the model be

exposed to its own prediction only during testing. Reinforcement learning have been

proposed to solve the aforementioned problems. However, there two major limitations

in applying RL techniques in REG: (1) the gradient exhibits high variance; (2) applying RL

techniques is not a trivial task since without proper context-dependent normalization

the training is unstable.

In order to reduce the variance of the gradient a variation of the popular REIN-

FORCE algorithm that utilizes multiple samples per input to normalize the reward

was proposed. It was showed that the proposed approach reduces the variance of the

gradient more effectively compared to the self-critical sequence training. Furtermore, in

order to evaluate the effectiveness of the proposed approaches human evaluation was

conducted. Specifically, all human evaluation experiments were conducted at Amazon

Mechanical Turk. An Amazon Mechanical Turk worker was able to participate in this

human evaluation experiment only if the worker was a native speaker of the English

language, was located in English- speaking countries, had an approval rate of 99% and

had successfully completed 1000 tasks. Each worker was only allowed to participate in

a task only once. In each task the workers were presented with an image and an expres-

sion and were asked to draw a box around the object that they believe is best described

by that expression. If two workers chose the correct object, then the expression was

considered successful. For each test set 60 objects were randomly selected. For each test

set 180 unique ratings were collected. The human evaluation results on RefCOCO and

RefCOCO+ dataset establish a new state-of-the art. The proposed approach improve

the results in ReFCOCO testA and testB from 76.95% to 81.66% and from 78.10% to

83.33% respectively. While in RefCOCO+ testA it improves the best results from 58.85%

to 83.33%. Furthermore, a comprehensive comparison of different aspects of config-

uring REG models with RL training was presented. It was found that (1) that directly

optimizing the CIDEr metric is highly effective; (2) random sampling is a better search

strategy than beam search to sample actions; and (3) using random sampling with

self-critical training improves CIDEr scores. Another major limitation that stems from

REG models trained with RL is that the generated referring expressions lack in diversity
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and naturalness due to the deficiencies in the generated words distribution, smaller

vocabulary size and the receptiveness of the frequent words. In order to address this

issue two solutions were proposed. First, to combine RL objectives with MLE. It was

showed that combining the two objectives is beneficial to the training, resulting in

higher CIDEr scores and diversity. However, there is a considerable gap between MLE

and RL methods w.r.t. to diversity. Thus, as an alternative method to optimize REG

model in sequence level, a novel objective based on minimum risk training was pro-

posed. It was found that that MRT produces superior results in terms of diversity of the

referring expressions compared to RL training. Furthermore, it was showed that MRT

combined with MLE produces superior results in terms of naturalness and diversity of

the referring expressions compared to MLE.
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Decoding strategies

Existing efforts in neural REG focus on training objectives that promote resemblance

to the ground truth sentences in order to reduce ambiguity. Secondly, due to their

autoregressive nature, exact inference for generating the most likely output is intractable.

Thus, it is necessary to resort to approximate search algorithms such as beam search (46).

However, despite the widespread adaptation of beam search, it has been found that the

output decoded with beam search lacks in diversity (37, 101, 104). As shown in Figure 5.1,

beam search produces near identical expressions, with minor morphological variations

(37, 100). Furthermore, although multiple referring expressions are potentially correct

for one target object, existing efforts produce a single referring expressions.

Therefore, this chapter studies the generation of sets of referring expressions. Spe-

cifically, this chapter investigates the effect of different decoding strategies by comparing

their performance along the entire quality-diversity space. The importance that NLG

systems place on these two criteria, is application dependent. For example, the goal of

an open domain dialogue generation system is to be able to converse for a variety of

topics and thus places more weight in the diversity of the output (51). However, in REG

the most important attribute of the output is to successfully identify the target object.

Thus, generating a set of expressions is useful only if it does not come on the expense of

the quality. Therefore, this chapter presents the first large-scale human evaluation to

measure how the hyperparameters of each decoding algorithm, affect the diversity and

the quality of sets of referring expressions.
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Figure 5.1: An example image associated with the top three referring expressions decoded
with standard beam search and those provided by humans annotators. The target object is
highlighted with the green box.

5.1 Contributions

Therefore the contributions of this chapter are the following:

• Extends the investigation to the generation of sets of referring expressions in order

to reproduce the diversity found in human written referring expressions. In partic-

ular, the first detailed comparison of how the hyperparameters of commonly-used

decoding strategies affect the quality-diversity trade-off is presented. This contri-

bution is described by Panagiaris, Hart and Gkatzia [73].

• Presents the first large-scale human evaluation that measures the impact that

diversity has on the quality of sets of referring expressions. This contribution is

described by 73.

5.1.1 Maximization-based decoding methods

5.1.1.1 Greedy Decoding

Greedy decoding (GD) can be seen as a naive inference method for conditional language

models (121). It chooses the most likely token of the sequence, in a left to right manner,

under the conditional probability:

x̂t = argmax
xt

P (xt |x<t ,, I ,r )
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The process continues until the end symbol is produced. Although it is computa-

tionally efficient, it can often lead to sub-optimal solutions (10). A significant drawback

of this approach is that, the high-probability choices in earlier generation steps, can

lead to an overall low likelihood sequence due to low probabilities choices later on.

5.1.1.2 Beam Search

Beam search (BS) is an inference algorithm that explores in a greedy left-right manner

the search space (121). Instead of extending a single hypothesis, at each time step, it

extends a set of K hypotheses Ht :

H t = {(x1
1 , . . . , x1

t ), . . . , (xK
1 , . . . , xK

t )}.(5.1)

The next set of partial hypotheses is created by expanding all the hypotheses in H t

with each token from the vocabulary V . Then, each candidate hypothesis hi
xi

t
from Ht

is scored as:

s(h̃i
v j ) = s(hi

ỹ i
t
)+ log p(v j |x̃i

≤t ).(5.2)

The K highest ranked hypotheses are selected as the new candidate set to be ex-

panded in the next step. Among the top hypotheses, those whose the last token is the

special EOS token are no longer expanding. The remaining hypotheses continue to

expand, however, with K reduced by the number of complete hypotheses. This process

terminates until K reaches zero, and the best completed hypotheses are returned.

The space that beam search performs is the union of all the current hypotheses

in H k . Thus, the K decoded sequences are from the same high-likelihood subspace.

Consequently, generating a set of notable different expressions for a target object is not

trivial.

5.1.1.3 Diverse Beam search

Diverse Beam Search (DBS) (100) is a variant of beam search that tries to alleviate the

redundancy of the search lists. DBS introduces a dissimilarity term θ that measures the

difference between the current hypotheses with those produced in the previous step. It

65



CHAPTER 5. DECODING STRATEGIES

achieves that by augmenting the log-likelihood before re-ranking. More formally, each

candidate hypothesis h̃i
≤t is scored as:

s(h̃i
≤t ) = s(hi

≤t )+λθ(hi
≤t , Ht−1).

where λ is a factor that regulates the strength of diversity. Another important hy-

perparameter is the dissimilarity function θ. We follow Vijayakumar et al. [101] and as

dissimilarity function we use the Hamming distance that was reported to perform best.

A limitation that stems from this approach is that the fixed diversity strength is

not optimal in every scenario. 100 reported that complex images benefit more from

diversity-promoting inference than simpler images.

5.1.2 Sampling-based decoding methods

An alternative to decoding based on maximization is the introduction of some element

of randomness by sampling from the model’s learned distribution. In this scenario, at

each time step t the next word is randomly drawn from the conditional language model

as:

(5.3) xi ∼ P (x|x1:i−1, Ii ,ri )

While output generated using this process avoids repetitions, it can become inco-

herent by sampling from model’s low confidence zones (37). REG is a low tolerance task;

only one word is enough for an unsuccessful referring expression (e.g. color or location

words). To avoid sampling words from the tail of the distribution, which contains a large

number of tokens assigned with low probability, three solutions have been proposed:

(1) sampling with temperature; (2) top-k sampling; (3) and nucleus sampling.

5.1.2.1 Sampling with temperature

One common approach to control the entropy of the distribution is the use of temperat-

ure (21, 23):

(5.4) p(x =Vl |x1:i−1, I ,r ) = exp(ul /T )∑
l ′ exp(ul /T )

.
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The use of temperature T ∈ [0,1) reduces the risk of sampling words with very low

probability, by skewing it towards high-probability zones (37).

5.1.2.2 Top-k Sampling

Top-k sampling that was proposed by Fan, Lewis and Dauphin [19], is an intuitive

solution that truncates the distribution by maintaining a subset of high-probability

tokens. At each time step a fixed number of k words are selected that maximize p ′ =∑
x∈V (k) P (x|x1:i−1,I ,r ). Then, the next words are drawn from the top-k vocabulary V (k) ⊂

V based on their relative probabilities. Formally, the next words are drawn as follows:

(5.5) P∗(x|x1:i−1, I ,r ) =


P (x|x1:i−1, I ,r )/p ′ if x ∈V (k)

0 otherwise

5.1.2.3 Nucleus Sampling

An alternative to top-k sampling is nucleus sampling proposed by Holtzman et al. [37].

The fundamental difference between those two sampling strategies is that nucleus

sampling instead of having a fixed number of tokens as subspace, it uses those tokens

whose cumulative probability mass surpass a pre-define threshold q . Thus, the next

words are drawn from the vocabulary V (q) ⊂V which is the smallest set that:

(5.6)
∑

x∈V (p)

P (x|x1:i−1, I ,r ) ≥ q.

sectionGeneration of a set of REs

Decoding Method Hyperparameter

Random Sampling (RS) Temperature T

top-k Sampling he number k of tokens to be kept.

Nucleus Sampling (NS) The probability threshold q

Diverse beam search (DBS) The diversity strength parameter λ
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Beam search (BS) Temperature T

Table 5.1: The hyperparameter that controls the quality-diversity trade-off for each of the

decoding strategies used in this work.

5.2 Experimental design and results

5.2.1 Implementation Details

The experiments in this section explore how decoding algorithms affect the accuracy-

diversity trade-off. The language model that was chosen is the transformer model

(see Section 3.1.3) that achieved state-of-the-art results in human evaluation for the

one-shot generation. The visual features, datasets and the implementation details of

the transformer are described in Section 3.2.1. As the focus of this chapter is the how

the decoding parameters affect the generation of sets of referring expressions the cross-

entropy loss (see Section 3.1.4) was used. Table 5.1 shows the diversity parameter that

controls the accuracy-diversity trade-off for each of the employed decoding strategies.

Secondly, most of the published models are trained to generate a single referring

expression, thus the decoding strategies were adapted to generate a set of REs. In

particular, two approaches were used to generate a set: (1) for the randomization-based

algorithms (e.g. random sampling), a set of referring expressions is constructed by

randomly sampling from the model’s learned distribution; and (2) for normal and

diverse beam search the beam width was used to generate the set.

5.2.2 Evaluation

In order to evaluate a set of referring expressions two criteria are required to be taken

into consideration: accuracy and diversity. For the former, the commonly used ap-

proach is to average a similarity score (41), e.g. CIDEr, over the set. Evaluating the

accuracy of a particular system is not sufficient to reflect the overall performance of
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a model; the diversity of the output should also be considered. The diversity of a set

is computed using Self-CIDEr (104), that computes a diversity score by calculating

the eigenvalues of a kernel matrix that contains similarities scores (i.e. CIDEr) for all

sentences pairs within the set (104).

Furthermore, human evaluation was conducted on Amazon Machine Turk and

human judges were asked to rate the diversity and the quality of a set of referring expres-

sions. The human evaluation experiments were conducted at Amazon Mechanical Turk.

An Amazon Mechanical Turk worker was able to participate in this human evaluation

experiment only if the worker was a native speaker of the English language, was loc-

ated in English- speaking countries, had an approval rate of 99% and had successfully

completed 1000 tasks. Each worker was only allowed to participate in a task only once.

In each task the workers were presented with an image and a set of expressions. For

each expression in the set, three workers were asked whether or not the expression

describes the object unambiguously. A referring expression was considered successful

if two workers found that the expression unambiguously describes the object. Then the

workers were required to rate the diversity of the set on a 5-point Likert scale, where 1

indicates that the expressions are identical, and 5 that the expressions are significantly

different with one another. In the instruction given to the workers, diversity was referred

to different words, phrases, sentence structures, semantics or other factors that impact

diversity. The diversity score for each set is the average score given by the 3 workers.

In total 25 target objects were randomly selected and 5 expressions were generated for

each object and ratings form 1275 workers were elicited.

5.2.3 Results for Random Sampling-based Decoding Methods

The aim of the experiments in this sections is to investigate how the temperature affects

the accuracy-diversity trade-off for random sampling. As illustrated in Figures 5.2, 5.3

higher sampling temperatures result in both an increase in Self-CIDEr scores and a

reduction in average CIDEr scores. Interestingly, using CIDEr reward to fine-tune the

model will drastically reduce Self-CIDEr, while will increase the average CIDEr score.
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Figure 5.2: Self-CIDEr and average CIDEr scores for random sampling with different temperature
values for RefCOCO dataset. The language model used is the proposed transformer trained with
cross-entropy (XE) and fine-tuned with the proposed RL objective.

Optimising the CIDEr reward encourages syntactic similarity between the generated ex-

pressions and the ground truth expressions which leads to low diversity. Hence, granted

that the reinforcement learning objective drastically affects the diversity of the produced

expressions, it will no longer be used in the rest of the experiments of this chapter. To

illustrate the differences between the two objectives and how different temperature

values affect the output, example objects with the corresponding expressions generated

by each model are presented in Figure 5.6. First, it is observed that for both objectives

when the sampling temperature is set to 0.1, the text is highly repetitive, mimicking

greedy search. Furthermore, when the temperature is set to 0.9, the model trained with

cross entropy produces output that is less fluent and incoherent (see Figure 5.6).

Top-k and nucleus sampling have become an alternative to random sampling. Both

strategies sample from a truncated distribution. The difference between the two is

how they truncate the distribution; top-k sampling keeps a fixed number of k tokens
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Figure 5.3: Self-CIDEr and average CIDEr scores for random sampling with different temperature
values for RefCOCO+ dataset. The language model used is the proposed transformer trained
with cross-entropy (XE) and fine-tuned with the proposed RL objective.

that have been assigned high-probability, while nucleus sampling keeps those tokens

whose cumulative probability mass exceeds a pre-defined threshold q . Figures 5.4, 5.4

illustrate how the two strategies affect the accuracy-diversity trade-off. It is observed

that nucleus sampling achieves higher avg. CIDEr compared to top-k sampling. It is

hypothesized that the reason for which top-k results in lower avg. CIDEr scores is that,

the distribution is truncated to a fixed number of tokens regardless of the input. There

might be cases that there are too many or too few probably tokens. Thus, the fixed

number of tokens could potentially lead to sub-optimal solutions. On the contrary,

nucleus sampling addresses this issue by dynamically distilling the learned distribution.

5.2.4 Maximization-based Decoding Methods

The cross-entropy loss (see Equation 3.18) is minimized when the learned distribu-

tion concentrates to the correct ground-truth token. This, ideally, leads to a peaked
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Figure 5.4: Self-CIDEr and average CIDEr scores for top-k and nucleus sampling for varying k
and q values for RefCOCO dataset. The temperature was set to T = 1. The language model used
is the proposed transformer trained with cross-entropy.

probability distribution. Hence, the maximization-based decoding methods assume

that the model assigns higher probability to higher quality output, and thus they strive

to find the sequence with the highest probability tokens. However, the model’s high-

confidence over regions of the vocabulary overestimates the use of frequent words

resulting in repetition of common words and phrases. Thus, first is investigated how

the model’s confidence affects the trade-off between diversity and accuracy for beam

search by varying the softmax temperature. Figure 5.7 (top left and right) shows how

the temperature modulates the quality-diversity trade-off for RefCOCO dataset. We first

observe that unlike the random-based methods, lowering the temperature increases

the diversity. As temperature increases (É 1.5), beam search generates sets with higher

average CIDEr. Further increase in temperature (> 2) hurts both accuracy and diversity.

Next it is examined how diverse beam search (see Section 5.1.1.3), a diversity-

promoting variant of beam search modulates the accuracy-diversity trade-off. The
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Figure 5.5: Self-CIDEr and average CIDEr scores for top-k and nucleus sampling for varying
k and q values for RefCOCO+ dataset. The temperature was set to T = 1. The language model
used is the proposed transformer trained with cross-entropy.

trade-off is controlled by the diversity strength parameter λ, which we vary between

[0.1,2]. In Figure 5.7 (bottom left and right) it is observed that as in sampling with

temperature, lowering the λ values decreases the diversity. Comparing the DBS with

BS with temperature, it is observed that for the same average CIDEr values BS achieves

higher diversity.

5.2.5 Human evaluation of sets of Referring Expressions

The analysis performed in the previous sections gave vital insights into how the different

decoding methods move in the accuracy-diversity space. However, human evaluation

is still required to measure the quality and the diversity of the generated expressions.

Thus, human evaluation was conducted in order to evaluate the performance of the

decoding algorithms along the entire quality-diversity space. In other words, the object-

ive of our human evaluation is to measure the effect that diversity has on the quality
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Figure 5.6: Examples of objects and sets of expressions drawn from RefCOCO and RefCOCO+
datasets decoded with random sampling with varying temperature values. Human written
expressions are also presented.

Random Sampling T ∈ [0.3,0.5,0.7,0.9]

top-k Sampling k ∈ [2,5,10,15]

Nucleus Sampling q ∈ [0.3,0.5,0.7,0.9]

Diverse beam Search λ ∈ [0.3,0.6,0.9,1.4]

Beam search T ∈ [0.1,1]

Table 5.2: Hyperparameter configurations used in our human evaluation for each of the decod-
ing strategies.

of sets of referring expressions. The decoding strategies used along with the chosen

hyperparameters are shown in Table 5.2. The human evaluation protocol is the fol-

lowing. First, 25 objects were selected and for each object a set of 5 expressions was

created. Second, each object along with a set of referring expressions was showed to

three human annotators. For each of the expressions within a set, human annotators

were asked to evaluate whether or not the expression describes the referent object
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Figure 5.7: Self-CIDEr and average CIDEr scores for beam search and diverse beam search with
varying temperature and diversity strength values for RefCOCO dataset.

unambiguously. An expression was considered successful if two annotators agreed that

the object is described unambiguously by the expression. The quality score of a set

is the number of successful referring expressions it contains, while the overall quality

score for a hyperparameter configuration is the average number of successful referring

expressions of all sets. Furthermore, human annotators were asked to give a diversity

score (from 1 to 5, the higher the better) for each set. The diversity score of a set is the

average score given by the three human annotators, while the diversity score for each

hyperparameter configuration is the average diversity score of all sets.

Figures 5.8,5.9,5.10 and 5.11 present the results of the human evaluation study.

Specifically, beam search and diverse beam search do not produce sets with the highest

generation quality. Nucleus sampling with q = 0.3 consistently produces sets that

have the highest quality ratings in both datasets. A natural question that arises is why

maximization-based algorithms underperform when it comes to the generation of a
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Figure 5.8: Human judgment scores for quality and diversity for different hyperparameter
configurations for RefCOCO testA.

Figure 5.9: Human judgment scores for quality and diversity for different hyperparameter
configurations for RefCOCO testB.
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Figure 5.10: Human judgment scores for quality and diversity for different hyperparameter
configurations for RefCOCO+ testA.

high quality set. Figure 5.12 shows examples of referent objects and the associated sets

of referring expressions for both decoding strategies for different hyperparameters. It

is observed that both decoding strategies generate duplicate expressions within a set

that contain incorrect or shorter expressions that do not convey enough information to

facilitate the identification of the target object. Thus, reducing the overall quality of the

set. Furthermore, comparing the default softmax temperature for beam search (T = 1)

with a sharper distribution (T = 0.1), it is observed that the latter produces sets that

have higher quality and diversity. One explanation for this behavior is that reducing the

temperature, leads to the exploration and expansion of hypotheses that do not stem

from one predominant root hypothesis. This is consistent with the examples presented

in Figure 5.12.

Furthermore, it is observed that the quality of the sets varies significantly for different

levels of diversity for all decoding algorithms. The diversity of the sets when aligned with
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Figure 5.11: Human judgment scores for quality and diversity for different hyperparameter
configurations for RefCOCO+ testB.

the quality is comparable between all the randomization-based decoding algorithms.

It is at the extremes of their hyperparameters range, where the decoding algorithms

heavily affect sampling that their performance diverges. Based on the results shown in

Figures 5.8,5.9,5.10 and 5.11 the following observations can be made:

• Higher diversity results in lower human judgement scores for quality.

• Nucleus sampling produces sets with higher quality for the same level of diversity

between all the decoding strategies, with random sampling performing second

best, followed closely by top-k sampling.

• Diverse beam search produces consistently sets with the least diversity.

• Beam search produces higher quality and diversity sets when the softmax tem-

perature is set to T = 0.1 compared to the default value. Interestingly, it produces

sets with higher diversity than diverse beam search.
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Figure 5.12: Examples of objects and sets of expressions drawn from RefCOCO and RefCOCO+
datasets. The expressions were decoded with beam search and diverse beam search.

5.3 Conclusions

State-of-the-art systems are evaluated to generated a single referring expression. How-

ever, multiple referring expressions are potentially correct for a target object- a prop-

erty that is found in the human written referring expressions. Thus, in this chapter

it is attempted to reproduce the diversity found in the human written expressions by

generating sets of referring expressions. Specifically, the ability of existing decoding

algorithms to generate sets of referring expressions was evaluated by comparing their

performance along the entire quality-diversity space. Furthermore, the first large-scale

human evaluation study in REG, that compares the quality of sets of referring expres-

sions at the same levels of diversity was introduced. First, it was found that beam search
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produces sets with higher quality and diversity when the softmax temperature is set to

T = 0.1 compared to the default value T = 1. Second, both beam search and diverse

beam search result in less successful expressions per set compared to the rest decoding

algorithms at equal points of diversity. It was showed that duplicate wrong expressions

within the sets reduce the quality significantly. Finally, the findings of this chapter sug-

gest that nucleus sampling, produces higher quality sets at the same levels of diversity

amongst the compared decoding strategies, with random sampling performing second

best, followed by top-k sampling.
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Conclusions and Future Directions

This thesis has developed and evaluated neural REG approaches that aim to produce:

(1) referring expressions that are unambiguous and natural; and (2) sets of diverse

referring expressions. The main contributions and findings are summarized in Section

6.1 and possible avenues for future work are explored in Section 6.2.

6.1 Contributions and Findings

• RQ1: To what extend language models affect the ambiguity and naturalness of

referring expressions?

This thesis initially investigated the effect that language models have on the

generation of unambiguous and natural referring expressions. Specifically, two

novel language models where developed, evaluated and compared. Thus the

following two contributions were made:

– A novel object attention model is proposed that allows the attention mech-

anism to be calculated at the level of the target object. The object attention

mechanism aims at connecting the encoder and decoder, thus aligning

better object visual features-to-word interactions. The produced referring

expressions were compared with the output of a non-attentive LSTM and the

following conclusions can be drawn. First, the expressions produced by the

proposed model show an improvement in determining when a relationship
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between objects should be expressed, and determining what that relation-

ship should be. Furthermore, the produced referring expressions show an

improvement in including appearance and location attributes of the target

object. This observation confirms the claims made in this thesis that the

object attention mechanism would assist the model in determining both the

relationship between objects, but also determine fine appearance details of

the target object. Furthermore, significant improvements were noticed in

CIDEr and BLEU1 scores that serve as indication that the produce referring

expressions describe the target object with less ambiguity and are similar to

those produced by human writers. To validate those claims the output was

given to human judges and its was found that the 69.16% of the referring

expressions was successfully describing objects of ReFCOCO dataset, while

the 95.8% of those were indistinguishable from human written expressions.

– To further demonstrate the benefits of attention in neural REG, a novel

transformer-based architecture is proposed. Specifically, a novel layer con-

figuration is proposed in order to provide the network with a global “context”

signal by connecting each layer of the encoder with the respective layer of

the decoder. The produced referring expressions were compared with the

output of those produced by a model following the original architecture. It

was found that the proposed model improves over the standard transformer

in inferring fine appearance and location attributes of the target object. This

observation is in line with the assumption made in this thesis that utilizing

features with different degree of modification at each layer, better models

the relationships between visual elements and words. Furthermore, for

both CIDEr and BLEU1 the proposed transformer produces higher scores

than the standard transformer. To further evaluate whether the produced

referring expressions are less ambiguous and indistinguishable from those

produced by humans a human evaluation study was conducted. It was

found that in terms of task success the proposed model achieves state-of-
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the-art results in both datasets. Furthermore, the 97.3% and 94.14% of the

expressions generated for objects of ReFCOCO and ReFCOCO+ datasets

were indistinguishable from those produced by humans. Finally, when com-

paring the two proposed models the following conclusions can be drawn:

(1) the proposed transformer model is more effective in task success and (2)

produces expressions that are less distinguishable from those produced by

humans. This is due to the fact that it produces referring expressions that

describe the main aspects of the target object more accurately.

• RQ2 To what extent training objectives affect the ambiguity, naturalness and di-

versity of the referring expressions?

In recent years, encoder-decoder models have gained a lot of popularity and

provide state-of-the-art results in a wide variety of tasks such as machine transla-

tion, image captioning and text summarization. However such models suffer from

two common problems: (1) the exposure bias; and (2) inconsistency between

train/test objectives. Recent works address these two problems by leveraging

methods from reinforcement learning. A major limitation that stems from those

methods is that, the expected gradient exhibits high variance and without proper

normalization it leads to unstable training. Thus, this thesis makes the following

contribution:

– A novel sequence level optimization approach to REG that is based on the

REINFORCE algorithm. The proposed method is compared to the self-

critical sequence training, a state-of-the-art optimization technique. It

was found that the proposed method results in lower gradient variance

for both language models that were tested which indicates the robustness

of the approach. This is in line with the assumption made in this thesis

that using multiple samples to estimate the expectation will reduce the

variance. Furthermore, when a model is optimized with the proposed RL

objective achieves higher CIDEr and BLEU1 scores. To further evaluate

the contribution of the proposed optimization approach human evaluation
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was conducted. Specifically, the proposed approach improve the results

in ReFCOCO testA and testB from 76.95% to 81.66% and from 78.10% to

83.33% respectively, achieving state-of-the-arts results in task success. How-

ever, it reduces the naturalness of the generated output and increases the

repetitiveness of the generated output.

– To alleviate these issues, this thesis makes a another contribution by pro-

posing a novel strategy for training REG models, using minimum risk train-

ing (MRT) with maximum likelihood estimation (MLE). A detailed analysis

shows that when a REG model is trained with the proposed approach, uses

a larger vocabulary, produces longer referring expressions and generates

more uni-grams and bi-grams than a model that is trained with the pro-

posed RL method. Finally, it was shown that combining the RL and MLE

objective improves the naturalness and diversity of the produced referring

expressions.

• RQ3 To what extent decoding methods affect the ambiguity, naturalness and di-

versity of the referring expressions?

Choosing the right decoding algorithm is critical in controlling the trade-off

between generation quality and diversity. However, there presently exists no

consensus on which decoding procedure is best or even the criteria by which to

compare them. As presented in Section 2.2, recent efforts have focused primarily

on altering the model architecture, visual input and training objectives but there

has been significantly less progress towards evaluating improvements in decoder

performance. Furthermore, Neural REG approaches are evaluated to produce

one referring expression. However, multiple referring expressions are correct for

one target object. Thus, this thesis makes a contribution towards this direction

by extending the investigation to sets of referring expressions. Furthermore, it

presents the first large-scale human evaluation to measure how the hyperpara-

meters of each decoding algorithm, affect the diversity and the quality of sets of

referring expressions. Based on the analysis conducted the following conclusion
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can be drawn. First, it was found that reducing the softmax temperature to T = 0.1

results in sets with higher quality and diversity. Secondly, beam search and di-

verse beam search produces sets with lower task success rate due to duplicate

wrong expressions within the sets. Finally, it was found that nucleus sampling

produces higher quality sets at the same levels of diversity, with random sampling

performing second best.

6.2 Limitations and Future Work

The work presented in this thesis can be extended as follows:

• Discriminative attention: In this thesis the attention mechanism was employed

over a set of object features in order to retain richer information that is useful

for a more comprehensive referring expression generation. A limitation that

stems from this approach is that, it does not explicitly penalise information that

is ambiguous. An intuitive extension of this approach is the introduction of a

second attention mechanism that attends to objects that are similar to the target

object. In other words, the two regions are contrastively attended so that they can

be easily discriminated.

• Reinforcement learning: Chapter 4 investigates leveraging RL approaches to

optimize REG models. It relied on well-defined rewards functions such as BLUE

and CIDEr for providing feedback to the model. However, relying on such met-

rics creates a different set of problems. Specifically, using those functions as

reward encourages the model to produce syntactically similar expressions to

those produced by humans. Furthermore, an expression that is semantically cor-

rect but syntactically varies from the ground truth expressions will be penalized.

This problem could be possible addressed by leveraging Inverse Reinforcement

Learning (123) approaches that learn their own reward functions.

• Types of diversity: This thesis investigated decoding methods for generating

diverse sets of referring expressions. The diversity was defined as the difference
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between two or more expressions in terms of different words, phrases, sentence

structures and semantics. Therefore, further analysis is required to identify the

source of diversity.

• Evaluation This thesis presented a large scale evaluation study to measure the

diversity of the produced referring expressions. However, despite the growing

interest in producing diverse output by NLG systems, there is currently no prin-

cipled method of evaluating the diversity of the output of an NLG system. There-

fore, future work should: (1) establish best practices for eliciting diversity human

judgments; and (2) introduce a principled and consensual diversity evaluation

metric to facilitate the comparison of different approaches.
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; Appendix A <

Human evaluation questionnaires

All Human judgements were collected using Amazon Mechanical Turk crowdsourcing

platform by English native-speaking workers that were specifically qualified for this

task. Figure A.1 shows an example question for evaluating the quality of a single refer-

ring expression. Figure A.2 shows an example question for evaluating the quality and

diversity of a set of referring expressions.
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Figure A.1: Amazon mechanical turk example question for evaluating the quality of a single
referring expression.



APPENDIX A. HUMAN EVALUATION QUESTIONNAIRES

Figure A.2: Amazon mechanical turk example question for evaluating the quality and diversity
of a set of referring expressions.
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