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Equation-based modelling is a powerful approach to tame the complexity of large-scale simulation problems.

Equation-based tools automatically translate models into imperative languages. When confronted with

nowadays’ problems, however, well assessed model translation techniques exhibit scalability issues, that are

particularly severe when models contain very large arrays. In fact, such models can be made very compact

by enclosing equations into looping constructs, but reflecting the same compactness into the translated

imperative code is not trivial. In this paper, we face this issue by concentrating on a key step of equations-

to-code translation, the equation/variable matching. We first show that an efficient translation of models

with (large) arrays needs awareness of their presence, by defining a figure of merit to measure how much

the looping constructs are preserved along the translation. We then show that the said figure of merit allows

to define an optimal array-aware matching, and as our main result, that the so stated optimal array-aware

matching problem is NP-complete. As an additional result, we propose a heuristic algorithm capable of

performing array-aware matching in polynomial time. The proposed algorithm can be proficiently used by

model translator developers in the implementation of efficient tools for large-scale system simulation.

CCS Concepts: • Computing methodologies→ Modeling and simulation; • Theory of computation
→ Network flows; Complexity classes; • Software and its engineering→ Compilers.

1 INTRODUCTION
Inmodern engineering, dynamicmodelling and simulation are ubiquitous [16, 64]. Besides providing

“virtual prototypes” [52] to streamline plant and control design activities [76, 77], “Digital Twins” –

significantly based on simulation [9] – are nowadays the backbone of advanced controls [6, 55],

predictive, condition-based and autonomous maintenance [10, 24, 43], anomaly detection, forecast

and mitigation [37, 49, 72], continuous integration [54], lifelong asset management [47] and many

other applications, see for example the survey in [25]. As a result, unprecedented challenges need

facing for rapidly creating, modifying and running simulation models of steadily growing size and

complexity [30].

Focusing on simulation models made of Differential and Algebraic Equations (DAE), the scenario
just sketched has boosted the adoption of declarative, Equation-Based (EB) modelling languages
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as opposite to procedural, imperative programming ones [79]. The key feature of EB languages is

the ability of separating the activities of writing a model and of producing its solution algorithms.

This ability stems from the fact that the fundamental statement in EB languages is the equation.
Contrary to the assignment, where an l-value receives the result of computing the expression on

the right hand side, an equation just prescribes that the expressions on the left and the right hand

side must be made equal – within convenient tolerances – at every point in time when the solution

of a model is computed during its simulation.

Said otherwise, while assignments directly compose the algorithm to compute the model solution,

equations just impose constraints to that solution, therefore saying nothing about the solver (in

general, numeric) that will be used to compute it. To synthetically express this separation between

describing the model and computing its solution, EB models are called declarative.
In synthesis, then, EB languages relieve the analyst from the task of turning equations into

imperative code to perform their numerical integration, significantly helping to tame the complexity

and rapid evolution of modern simulation problems [23]. It is the task of a translator to automatically

turn a declarative model into an equivalent code in some imperative programming language [34],

which is then fed to a compiler.

This translator-compiler workflow was devised at the outset of EB languages, with the aim of

decoupling the generation of imperative code (translation) from its optimised compilation into

machine code—a task for which e.g. C compilers are very well suited. However, today’s modelling

and simulation problems exhibit new characteristics, that require to re-discuss the above translation

workflow. A prominent such characteristic, on which we focus in this paper, is the presence of

large (and possibly multi-dimensional) array variables and equations. This feature is distinctive of

“large-scale” models. Think for example of a 3D thermal model for a solid body with fine-grained

spatial discretisation: the model will contain energy dynamic balance equations for each of the

many subvolumes into which the solid will be partitioned, and these equations will account for

thermal exchanges with the adjacent volumes. It is quite natural to write such a model compactly

in EB form by defining suitable array variables and equations, in the latter case by means of looping

constructs (examples follow starting from Section 4).

In such cases, as we will show, a trade-off is easily observed. Writing the model directly as

imperative code is far more complex, error prone and hard to maintain than adopting an EB

declarative framework and obtaining the imperative code by automatic translation. But on the other

hand, the code obtained by automatic EB-to-imperative translation is significantly less efficient

than the one manually written as imperative.

We argue that the origin of this inefficiency mainly resides in the way EB translators manage

array variables and equations. Current production-grade EB translators just treat each component

of an array variable or equation as an individual scalar one, which results in a loss of structural

information that imperative language compilers cannot efficiently recover [7]. As such, we argue

that to improve both the translation time and the efficiency of the produced imperative code, it is

necessary to make the translation process “array-aware”.

In this paper we offer a contribution to this end, aiming both for an efficient translation and an

efficient imperative code. In detail,

(1) we define a figure of merit to quantify how much the looping constructs that make an

equation model compact carry over to its imperative translation; building on this figure of

merit, we consequently define as optimal an array-aware matching that maximally preserves

the said looping constructs;
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(2) we prove that the optimal array-aware matching problem is NP-complete – contrary to scalar

matching, which can be solved in polynomial time and where no such optimality makes

sense;

(3) we propose a heuristic algorithm to approximate optimal array-aware matching in polynomial

time.

To the best of our knowledge, we are the first to introduce an idea of matching optimality tied to

the efficiency of the obtained imperative code, as well as to propose a heuristics that aims for that

optimality besides for a fast matching process.

Organisation of the paper. The rest of the paper is organised as follows. In Section 2 we briefly

introduce some definitions and the architecture of state-of-the-art approaches. Then, we discuss the

history of EB model translators and other array-aware approaches in Section 3. We delineate the

scope and purpose of our contribution in Section 4. In Section 5, we define array-aware matching
and its optimality metric, while we prove its NP-completeness in Section 6. Finally, in Section 7,

we show an approximate algorithm for array-aware matching, and in Section 8 we draw some

conclusions and highlight future research directions.

2 BACKGROUND ONMODEL TRANSLATION
In this sectionwe outline the foundations of automatic EB-to-imperative translation and compilation.

To avoid confusion between scalar and array problems, we first provide a few definitions.

Definition 2.1 (scalar variable). A scalar variable is an instance of a system property, identified

by a name, whose value at every instant is fully defined by a scalar number and – possibly – a unit

of measurement.

Definition 2.2 (array variable). An array variable is a collection, identified by a name, of one or

more scalar variables, each one referenceable through one or more integer indices.

Definition 2.3 (array equation). An array equation is a collection of one or more scalar equations,

expressed compactly as a single parametric equation that references by index one or more scalar

components of one or more array variables.

Definition 2.4 (array dimensionality and size vector). The dimensionality of an array is the number

of dimensions of that array, that is, the number of integer indices needed to reference a single

scalar component in it. We assume by convention that the said indices are 1-based. Their maximum

values collectively form the array size vector.

It follows that, in EB modelling languages, array variables are akin to the concept of ordinary

multidimensional arrays, commonly found in many programming languages. Also, in EB modelling

languages, an array equation is obtained by encasing a scalar one in one or more nested looping

constructs, that define the indices of the contained scalar variables within the arrays of which they

are part, as well as the ranges for the said indices.

It is important to highlight that the mentioned looping constructs – differently from those of

imperative programming languages – allows the user to predicate on array equations, such as

𝑥 [𝑖] = 𝑦 [𝑖] ∀𝑖 ∈ [1, 3]; (1)

to be intended as an abbreviation of

𝑥 [1] = 𝑦 [1]; 𝑥 [2] = 𝑦 [2]; 𝑥 [3] = 𝑦 [3]; (2)

This noted, the translation-compilation process – as per the current state of the art in both

research and production tools, see e.g. [23, 33] and [1, 2, 4, 5] respectively – can be divided into the

following steps.
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Flattening The model equations, independently of the way they were input by the user – e.g.

as a single set, by hierarchically instantiating and interconnecting subsystems, or anyhow

else – are brought to be one set of scalar DAEs. This step contains a sub-step named loop
unrolling, in which each expression in the form shown in Eq. (1) is replaced by its set of scalar

components, as shown in Eq. (2). The outcome of flattening is thus a DAE system with scalar

equations and variables.

Matching This step (hereinafter denoted as scalar matching when confusion may occur) consists

of coupling each (scalar) equation to one (scalar) variable, meaning that the equation is the

initial candidate for computing the variable at simulation time. A failure in matching indicates

a model inconsistency (e.g. and most typically, an equations/variables imbalance). In the

general case, matching may also require an index reduction sub-process, implemented by

methods such as the Pantelides algorithm [58]. Our paper does not address index reduction.

Scheduling This step determines the order in which the equations are solved. The (scalar) equa-

tions of the system are ordered accordingly to their mutual dependencies, as established

by the matching process. For example, the equation matched with variable 𝑣 – that is, the

candidate one to compute 𝑣 – is scheduled before all other equations in which 𝑣 appears. The

ideal result would allow to compute the solution variable by variable, in sequence. This is

hardly ever obtained, however. During the scheduling step, some cyclic dependency among

variables may arise, and as a result the one-to-one relationship established by the matching

process between those variables and their candidate equations cannot be maintained. Cyclic

dependencies indicate the existence of a so-called Strongly Connected Component (SCC): the
involved variables will need computing all together, most often numerically. The Tarjan

algorithm [73] is a commonly used means to determine the equation solution order and to

identify SCCs.

Code generation The last step is the generation of imperative simulation code for a specific

choice of the numerical integration algorithm. The simulation code can be self-contained for

certain numerical integration algorithms, such as explicit ones, or can rely on external solver

libraries, such as those in the SUNDIALS suite [38].

After the translation and compilation process is complete, the obtained executable code is run

to produce the simulation output, in the form of a table with the value of the model variables as

a function of simulation time. This process is often part of a graphical modelling environment

for rapid prototyping. Once the modeller decides to perform a simulation, all the translation,

compilation and execution steps are on the critical path toward getting the simulation results.

Consequently, the shortening of compilation and simulation times is especially important for this

kind of use-cases.

3 RELATEDWORK
In this section we spend some words to relate our proposal to the research scenario on EB modelling

in general, and to neighbouring research on EB-to-imperative translation in particular.

In the landscape of simulation languages, EB ones appeared and gained visibility in the 80s/90s

of the last century; notable examples are Omola [11], Dymola [28] and gPROMS [15]. A taxonomy

would stray from the scope of this paper; the reader interested in the historical panorama can

refer e.g. to [22]. Worth noticing, however, is the common ancestor for the boost of the declarative

approach stemming from studies such as [13] and [29], where the idea that simulation languages

had to abandon the imperative setting was set forth and preliminarily exploited. Research on the

matter thus focused at first on the model manipulation [41, 50] required by going declarative, and



Array-Aware Matching: Taming the Complexity of Large-Scale Simulation Models 5

after a long systematisation process, this resulted in the birth of the Modelica language [51] to

which we refer herein (though all the ideas we propose are general to the OOM context).

The engineering use of EB languages and tools sustainably spread out in various domains, ranging

from the chemical [12] and process industry [35] to power generation [21] and transmission [71],

mechatronics [75] and robotics [39], automotive [42], and vehicles at large [26], aerospace [53],

buildings [68] and more, including control design [20] and diagnostics [17]; the papers in the

necessarily limited list above also contain interesting bibliographies for the reader willing to

investigate further.

Together with testifying the success of the EB approach, however, the expansion just mentioned

also shed light on some relevant limitations of the existing EB tools [62] – not of EB languages by

themselves, it is worth stressing – especially when dealing with large-size models [19, 46]. This was

themotivation for a first wave of tool optimisation, having as amajor point the introduction of sparse

solvers, a well-treated and long-lasting matter in domain-specific tools – see e.g. [32, 45, 69, 70] –

but a source of challenges in the inherently multi-domain EB one [57, 78]. Examples of this research

– with specific reference to Modelica given our scope – are [18, 63].

The possibility of solving large models fast enough to widen the EB applicability perimeter

evidenced however a second type of tool limitation, concerning the translation rather than the

solution of such models [66, 67]. The matter became critical in recent years, together with the

emergence of problems that require model-based prototyping [48] and can scale up to the order

of 10
5
equations. When such models become part of the inherently iterative engineering process,

the time spent in translating and compiling them can be comparable to that spent in running

simulations, if not even dominant [14]. For the sake of clarity it is worth noticing that the million

equation barrier was already approached in the past [74] and in some domains nowadays well

trespassed [61] by simulation tools, but these tools are not of the EB type, and most notably, do not

separate model description and solution—which is a primary goal of the EB approach.

As a result, EB tools are nowadays undergoing a second wave of optimisation, directed to efficient

translation. Open-source parsers [59] for EB languages such as Modelica are available providing

some degree of array preservation, thereby enabling the research community to experiment with

making the translation pipeline array-aware. In this relatively new effort, a primary objective

is to achieve an O(1) scaling of the translation time with the size of the model arrays, that as

already noted are the main cause for the inefficiency of scalar-only model manipulation. In this

context, the nearest neighbouring work to our research is the paper by Zimmermann et al. [80],
who introduce the concept of “set-based graph” as a means to re-state the matching problem

(originally scalar) in such a way to achieve an O(1) translation, together with proposing algorithms

for other manipulation steps related to matching, such as the management of strongly connected

components and scheduling.

The main difference of our research with respect to [80] is a twofold instead of a single goal. More

precisely, we do not aim just for an efficient translation, but also for an efficient simulation code. If

the efficiency of the simulation code is taken into account, the number of looping constructs in the

EB model that are preserved in the imperative one comes to matter a lot. The set-based approach of

[80] is not designed to take this aspect into account. Aiming at loop preservation straightforwardly

entails the introduction of an idea of optimality. This moves the focus from array-aware matching

to optimal array-aware matching, and owing to its NP completeness, to the need for heuristics.

Other works have addressed the array-aware-matching problem, such as [65] which correctly

noticed that preserving looping constructs can positively impact both translation and simulation

time. They also present a prototype translator that is limited to handling systems without algebraic

loops and resorts to flattening the model completely in cases where their array-aware-matching

algorithm does not produce a solution. The paper [56] addresses array-aware index reduction, and
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the corresponding Modia implementation [3] also includes an array-aware-matching algorithm that

however is very simple and cannot split variable and equation nodes, thus requiring the modeller

to pre-process the input model so as to make sure that every array variable can be matched to

exactly one array equation. Compared to the two previously quoted works, our paper introduces

the concept of optimal array-aware-matching and proves that achieving such optimality is an NP

complete problem, as well as presenting a more complete array-aware-matching algorithm.

4 RESEARCH MOTIVATION
In this section, we discuss the inefficiencies that arise from a non array-aware model translation. To

ground the discussion on an example, consider the model of a thermally insulated metal wire with

prescribed temperatures at its ends. The evolution of this system is ruled by the one-dimensional

Fourier equation. Carrying out a uniform spatial discretisation with the finite-volume approach

results in the following system of differential equations:

𝑐 ¤𝑇𝑖 =


𝑔(2𝑇left − 3𝑇𝑖 +𝑇𝑖+1) 𝑖 = 1

𝑔(𝑇𝑖−1 − 2𝑇𝑖 +𝑇𝑖+1) ∀ 𝑖 ∈ [2, 𝑁 − 1]
𝑔(𝑇𝑖−1 − 3𝑇𝑖 + 2𝑇right) 𝑖 = 𝑁

(3)

where 𝑁 > 3 is the number of finite volumes, 𝑐 is the thermal capacity of a volume, 𝑔 the thermal

conductance between the centres of two adjacent volumes,𝑇𝑖 is the temperature of volume 𝑖 , with𝑇1
being the leftmost and 𝑇𝑁 being the rightmost volume, and finally 𝑇left and 𝑇right are the prescribed

side temperatures.

When expressed in Modelica, the wire model reads as follows.

model Thermal1D

parameter Integer N = 5;

parameter Real g = 0.00314785; // W/K

parameter Real c = 0.2707936; // J/K

parameter Real Tleft = 400 + 273.15; // K

parameter Real Tright = 20 + 273.15; // K

Real T[N](each start=Tright); // array variable

equation

c*der(T[1]) = g*(2*Tleft - 3*T[1] + T[2]);

for i in 2:N-1 loop // looping construct to express

c*der(T[i]) = g*(T[i-1] - 2*T[i] + T[i+1]); // an array equation

end for;

c*der(T[N]) = g*(T[N-1] - 3*T[N] + 2*Tright);

end Thermal1D;

Listing 1. The model of a wire, as shown in Eq. (3), as expressed in Modelica code.

The remarkable similarity between the Modelica model and original system of equations is

apparent; the der operator is used for expressing the derivative with time.

It is evident that the availability of array equations make EB models assume a compact and easily

readable form. However, present state-of-the-art translators provide looping constructs only as a

convenience for the modeller, and do not take advantage of this structural information to improve

the translation efficiency, nor that of the generated simulation code. As a consequence, some

inefficiencies arise that would be completely unexpected in the world of imperative programming

languages.

A first such inefficiency is that the amount of both time and memory needed for the translation

scale superlinearly with the size of array equations, rather than exhibiting the expectedO(1) scaling
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typical of imperative languages. In fact, the compilation of imperative programming languages

treats looping constructs explicitly. The instructions inside a loop are represented in the compiler

data structures just once, irrespective of the loop iteration count, and all subsequent compilation

steps are performed on this compact data structure.

On the contrary, state-of-the-art EB translation algorithms are designed to only work in terms

of scalar equations (see Flattening in Section 2), which are stored in the translator data structures

individually. These scalar equations are then passed on to subsequent translation steps, some of

which scale superlinearly. It is not uncommon for models exceeding the 10
5
equations mark to

require translation times in the order of hours, and working memory in the order of hundreds of

gigabytes [14].

A second and consequent inefficiency is that the size of the produced imperative code scales

linearly with the size of array variables and equations. Since the original EB model is scalarised,

the simulation consists of procedures containing repetitive code instead of looping constructs,

often amounting to several gigabytes for large-scale models. Although imperative compilers are

very efficient and can achieve O(1) scaling in compilation with respect to array sizes, this is only

possible if they are given a source code with loops, not long lists of repetitive statements.

The last inefficiency regards the performance of the machine code produced by the compiler

when fed with the automatically generated imperative code. Modern computer architectures are

built upon assumptions such as the locality principle for both data and code, which are the theo-

retical foundations for caches [27] and other microarchitectural optimisations. However, the code

produced by current-generation model translators is not able to exploit these optimisations. First,

the execution of large blocks of straight-line code requires frequent instruction cache invalidation.

Furthermore, the loss of structural information about arrays leads to the generation of code that

exhibits irregular data access patterns. Therefore, repetitive machine code is not only large, but

runs significantly slower than equivalent hand-written code, in some cases 100 times or more [8].

Both translators and compilers can in principle infer looping constructs and improve access

locality, but their ability to perform this kind of optimisation is limited [44]. Additionally, such

inferences require to repetitively scan the list of flattened statements, making O(1) scaling appar-

ently impossible. We thus argue that a far better approach would be to preserve array-awareness

throughout the translation process, rather than try to regain it a posteriori.
Summing up, all the presented inefficiencies share their root cause in the fact that existing model

translation algorithms are not array-aware. In this paper, we begin an effort to fill this gap. Since the

flattening step is trivial to extend for array-awareness – it suffices to not unroll looping constructs

– we focus on the second and first truly key step, i.e., the matching problem.

5 GRAPH REPRESENTATION AND PROBLEM STATEMENT
In this section, we introduce the notation to describe array-aware algorithms, and present the

formal statement of the array-aware matching, the algorithm we focus on in this paper.

We denote with 𝐺 = (𝑁, 𝐷) a generic graph having set of nodes 𝑁 and set of arcs 𝐷 . Any set of

scalar equations 𝐸 in the scalar variables 𝑉 can be represented with a bipartite graph in which

• 𝑁 = 𝑉 ∪ 𝐸,
• 𝑉 ∩ 𝐸 = ∅,
• 𝐷 ⊆ 𝑉 × 𝐸,
• the presence of an arc (𝑣𝑖 , 𝑒 𝑗 ) indicates that variable 𝑣𝑖 appears in equation 𝑒 𝑗 .

In this context, the set of arcs 𝐷 represents dependencies between variable and equation nodes.

To include array variables and equations – including multidimensional ones – we extend the

above notation as follows. We indicate with 𝑣
𝑖
the generic multidimensional array variable, whose
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c*der(T[1]) = g*(2*Tleft - 3*T[1] + T[2]); // e1

for i in 2:N-1 loop

c*der(T[i]) = g*(T[i-1] - 2*T[i] + T[i+1]); // e2

end for;

c*der(T[N]) = g*(T[N-1] - 3*T[N] + 2*Tright); // e3

 

Fig. 1. The array equations of theModelicamodel of a wire previously shown in Listing 1, and its corresponding
array graph. Variable 𝑣

1
is ¤𝑇 , the only non-state array variable in the model. Thus the columns of the 𝑢

matrices correspond to ¤𝑇1, ¤𝑇2, ¤𝑇3 and so on.

scalar components in the physical problems we target are invariantly real numbers. We denote

by Z𝑖 the dimensionality of 𝑣
𝑖
. We denote with 𝐾 = {𝑘1, . . . , 𝑘𝛿 , . . . , 𝑘Z𝑖 } the sequence of positive

integers needed to reference a scalar component within the array variable 𝑣
𝑖
. Each generic index

𝑘𝛿 ranges from 1 to the size of the corresponding dimension 𝛿 , with 1 ≤ 𝛿 ≤ Z𝑖 . For compactness,

we synthetically write 𝑣𝑖,𝐾 to indicate the scalar component in 𝑣
𝑖
of indices {𝑘1 . . . 𝑘Z𝑖 }.

Consistently with the above notation, we define the following.

• 𝑉 is the set of array variables {𝑣
𝑖
}, 𝑖 = 1, . . . , |𝑉 | in the model; if the model contains scalar

variables, these are considered array variables of unitary dimensionality and size;

• 𝐸 is the set of array equations {𝑒
𝑗
}, 𝑗 = 1, . . . , |𝐸 | in the model; if the model contains scalar

equations, they are considered array equations of unitary dimensionality and size.

A model containing both scalar and array variables and equations can thus be represented with

any of the two equivalent bipartite graphs defined as follows.

(1) The first one is obtained by just setting 𝑁 = {𝑣𝑖,𝐾 } ∪ {𝑒 𝑗,𝐿}, and 𝐷 ⊆ 𝑉 × 𝐸 as the scalar

dependencies. The presence of an arc (𝑣𝑖,𝐾 , 𝑒 𝑗,𝐿) indicates that the scalar variable 𝑣𝑖,𝐾 appears

in the scalar equation 𝑒 𝑗,𝐿 . Observe that in the topology of such a graph any information

concerning the existence of array variables and equations is lost. We name this the flattened
graph.

(2) The second one is obtained by setting 𝑁 = 𝑉 ∪𝐸, and 𝐷 ⊆ 𝑉 ×𝐸 as the array dependencies. In

this case the presence of an arc (𝑣
𝑖
, 𝑒
𝑗
) indicates that at least one scalar variable in 𝑣

𝑖
appears

in at least one scalar equation in 𝑒
𝑗
. We name this the array graph.

The above definitions imply that the array graph is homomorphic to the flattened one. However,

for the two graphs to be equivalent, each arc in the array one needs to carry information about

which components of the connected array variable and equation it refers to — a matter that does

not pertain to the scalar case. Therefore, the arcs of the array graph must be endowed with the

information needed to reconstruct the arcs of the flattened graph. To formalise this, we introduce

the concept of local multidimensional incidence matrix. Given an array equation 𝑒
𝑖
and an array

variable 𝑣
𝑗
of dimensionality Z𝑖 and Z 𝑗 respectively, let 𝐾𝑖 = {𝑘𝑖,1, ...𝑘𝑖,Z𝑖 } be the sequence of indices

for 𝑒
𝑖
, and 𝐿 𝑗 = {𝑙 𝑗,1, ...𝑙 𝑗,Z 𝑗 } be the sequence of indices for 𝑣 𝑗 . The multidimensional local incidence

matrix 𝑢𝑖, 𝑗 has dimensionality Z𝑖 𝑗 = Z𝑖 + Z 𝑗 , and its sequence of indices 𝑄𝑖 𝑗 is the concatenation of

𝐾𝑖 and 𝐿 𝑗 . Its generic element is 1 iff the scalar variable 𝑣 𝑗,𝐾 appears in the scalar equation 𝑒𝑖,𝐿 , else

it is 0. We name𝑈 the set of local multidimensional incidence matrices. An example of a Modelica

model and the corresponding array graph can be found in Fig. 1.

The notation we just provided is capable of representing arbitrary multidimensional incidence

matrices. However, it should be noted that those produced by EB models coming from equations of

physics are significantly structured, and present patterns that arise out of the looping constructs
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and expressions used for accessing array variables within array equations. It follows that, although

from a theoretical standpoint it is convenient to reason in terms of multidimensional incidence

matrices, an industry-grade implementation would rely on an efficient pattern-based data structure

to achieve O(1) scaling. This important matter is discussed in Section 7.4.

5.1 The array-aware-matching problem
The array-aware-matching is an operation that takes as input an array graph 𝐺 = (𝑉 ∪ 𝐸, 𝐷),
where we recall that 𝐷 is the set of dependencies between array variables 𝑉 and array equations 𝐸.

Additionally, every dependence 𝐷 has an associated local multidimensional incidence matrix 𝑢𝑖, 𝑗 .

The array-aware-matching produces as output an array graph 𝐺 ′ = (𝑉 ∪ 𝐸, 𝐷 ′) with the following

properties.

(1) 𝐷 ′ ⊆ 𝐷
(2) Each arc (𝑣

𝑖
, 𝑒
𝑗
) ∈ 𝐷 ′ has an associated local multidimensional incidence matrix𝑚𝑖, 𝑗 , where

𝑚𝑖, 𝑗 (𝑣𝑖,𝐾 , 𝑒 𝑗,𝐿) ∈ {0, 1}. We call𝑀 the set of𝑚𝑖, 𝑗 .

(3) ∀𝑚𝑖, 𝑗 ∈ 𝑀 ,𝑚𝑖, 𝑗 has the same size and dimensionality of 𝑢𝑖, 𝑗 ∈ 𝑈
(4) �(𝑣

𝑖
, 𝑒
𝑗
) ∈ 𝐷 ′ :𝑚𝑖, 𝑗 is a zero matrix

(5) 𝑢𝑖, 𝑗 (𝑣𝑖,𝐾 , 𝑒 𝑗,𝐿) = 0 =⇒ 𝑚𝑖, 𝑗 (𝑣𝑖,𝐾 , 𝑒 𝑗,𝐿) = 0

(6) ∀𝑣
𝑖,𝐾
∈ 𝑉 : ∃!𝑚𝑖, 𝑗 (𝑣𝑖,𝐾 , 𝑒 𝑗,𝐿) = 1

Property (1) states that no new arcs are added to the graph, (2–3) denote as “matching matrices”𝑚

the local incidence matrices of the output graph, (4) states that – consistently – arcs fully unmatched

are removed, (5) ensures that a scalar equation is matched only with a scalar variable it contains,

and (6) that each scalar equation is matched to one and only one scalar variable.

Definition 5.1 (optimal array-aware matching). Let us define the expansion function 𝑓𝑒 (𝑚), which
maps a local incidence matrix𝑚 to the number of looping constructs required to implement the

matching it expresses. 𝑓𝑒 (𝑚) has a value of zero if and only if𝑚 is a zero matrix, otherwise 𝑓𝑒 (𝑚) ≥ 1.

We say that a matching (𝐺 ′, 𝑀) is optimal if it minimizes the following:

Ω(𝐺,𝑀) =
∑︁
𝑚∈𝑀

𝑓𝑒 (𝑚) (4)

For the purpose of this work, it is not necessary to fully specify the expansion function, because

different model translators may be able to “efficiently” handle only a subset of all possible matching

matrices. In this discussion, the metric of “efficiency” is therefore the ability to represent the

matching described by 𝑚𝑖, 𝑗 as a single looping construct consisting of the scalar equations of

the node adjacent to the corresponding arc 𝑑𝑖, 𝑗 . Without loss of generality we can consider the

ideal case in which every matching matrix maintains its correspondence with exactly one looping

construct. In this case, the 𝑓𝑒 function takes this form:

𝑓𝑒 (𝑚) =
{
0 iff𝑚 is a zero matrix

1 otherwise

(5)

In this case, the optimality metric Ω is equal to the number of arcs where at least one equation

is matched. Intuitively, the more arcs have a matching, the higher the number of times the same

array equation has been matched with multiple variables, and for each variable matched with the

same array equation a separate looping construct must be introduced. Therefore, minimizing Ω
means minimizing the number of looping constructs.

5.1.1 Just enough, but not too much. It is important to stress that the optimality metric Ω is but a

proxy for identifying the matching that best improves both translation and simulation time. With

the definition we gave of array equation in this paper (Definition 2.3 in Section 2) where individual
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scalar equations in an array equation differ only by the array indices, reducing the number of

looping constructs does indeed result in more efficient code. Other works however, such as [56]

and the corresponding Modia implementation [3] allow if statements in array equations thereby

allowing to merge in a single array equation also scalar equations that are structurally different.

For example, the wire model written with such an extended definition of array equations would

read as

for i in 1:N loop

c*der(T[i]) = if(i == 1) then g*(2*Tleft - 3*T[1] + T[2])

else if(i == N) then g*(T[N-1] - 3*T[N] + 2*Tright)

else g*(T[i-1] - 2*T[i] + T[i+1]);

end for;

Although it would appear that such an array equation could improve the optimality metric by

requiring a single looping construct that handles all the wire finite volumes instead of requiring

one looping construct plus two scalar equations for the first and last volume, this would not result
in efficient code. Indeed, if such an array equation were brought as-is till code generation, the

imperative code would need if statements in the loop to handle the differences in the equation

structure, and the cost at run-time of the if statements would need to be paid multiplied by every

loop iteration and additionally multiplied by every simulated time step. This is a strong point in

favour of our definition of array equations, that explicitly disallows grouping structurally different

scalar equations in a single array equation. Moreover, to achieve the best efficiency, a translator

would need to perform symbolic manipulations to transform inefficient code such as the one above

by moving the structurally dissimilar equations outside of the loop before the matching step, should

the modeller decide to write the model in that form.

6 COMPLEXITY OF OPTIMAL ARRAY-AWARE-MATCHING
In this section we show that for what concerns the matching problem, preserving the array structure

of both equations and variables results in NP-completeness. This theoretical result motivates the

need for heuristic algorithms, that will be presented in Section 7.

Theorem 6.1 (Complexity of optimal array-aware-matching). The problem of producing an
optimal array-aware-matching is NP-complete.

Proof. We prove Theorem 6.1 by reducing the max-2-sat problem to optimal array-aware-

matching. Max-2-sat was proven NP-complete by Garey, Johnson and Stockmeyer [36], and reads

as follows: given a Boolean formula in conjunctive normal form, where each clause contains at

most two literals, find a literal assignment such that the maximum number of clauses is satisfied.

First of all, we establish a procedure that allows to represent a max-2-sat problem in terms of

array-aware-matching. To this end we introduce three formal modifications to the way max-2-sat

is expressed in order to simplify the reduction process.

(1) Every clause in the form (𝑎) is rewritten as (𝑎 ∨ 𝑎). It is evident that this rewriting does not

change the value of that clause for any literal assignment.

(2) Instead of considering the input to max-2-sat as a conjunction of clauses, we consider it as

an ordered list. This is legitimate, as maximising the number of satisfied clauses does not

require knowing if the entire formula is satisfied.

(3) We assume that, when traversing the list of clauses, the first encountered occurrence of each

literal is not negated. Should this be false, one would simply have to replace that literal with

another one defined as its complement.
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(a) (b) (c)

Fig. 2. Subgraphs used by the procedure for building the intermediate graph 𝐺 from a list of AND clauses.

The above said, to encode a max-2-sat instance into a array-aware-matching one, we start by

recalling that

(𝑎 ∨ 𝑏) = (𝑎 ∧ ¬𝑏) ∨ (¬𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑏)
and we replace each OR clause in the list with the above defined equivalent triple of AND ones.

Observe that only one of the three AND clauses can be true, hence maximising the number of

satisfied AND clauses in the reformulated list is equivalent to the original problem.

Let us start with two empty sets of nodes 𝐴 = ∅, 𝐵 = ∅. Then, we build an intermediate flattened

bipartite graph𝐺 = (𝐴∪𝐵, 𝐿) by traversing the list of AND clauses. By construction, we will retain

the invariant 𝐴 ∩ 𝐵 = ∅. For each clause 𝑐 we operate as follows.

First, we consider the first literal ℓ in the clause. If this is the first occurrence of ℓ , we add to 𝐺

the subgraph shown in Fig. 2 (a). In doing so, 𝛼 nodes should be considered belonging to the 𝐴

set while 𝛽 nodes should be considered part of the 𝐵 set. We name 𝑒ℓ,1 the first edge associated to

literal ℓ . We name 𝛼ℓ,1 and 𝛽ℓ,2, respectively the start and the end node for that literal.
If ℓ was already encountered and appears here in non-negated form, we add to 𝐺 the subgraph

shown in Fig. 2 (b), and we connect 𝛼ℓ,𝑖 to the end node of the literal. The start node of the literal

does not change, while its end node becomes 𝛽ℓ,𝑖 .

If ℓ was already encountered and appears here in negated form, we add to𝐺 the subgraph shown

in Fig. 2 (c), and we connect 𝛼ℓ,𝑖 to the end node of the literal. The start node of the literal does not

change, while its end node becomes 𝛽ℓ,𝑖 .

We repeat the subgraph insertion process for the second literal in the clause.

For each clause 𝑐 , we define a set of four nodes – taken from the two subgraphs just added – as

the union of nodes highlighted in red in Fig. 2. We name this set clause nodes of 𝑐 and we name it

𝑁𝑐 .

We repeat the above for all clauses. When the end of the list is reached, we connect the end node

of each literal with its start one. Doing so, we create for each literal a simple cycle 𝛼ℓ,1, 𝛽ℓ,1, . . .,

𝛼ℓ,𝑛ℓ , 𝛼ℓ,1 of even cardinality 𝑛ℓ , ordered as just indicated. We number the edges of each cycle as 𝑙ℓ,1
through 𝑙ℓ,𝑛ℓ . This concludes the construction of graph 𝐺 .

Graph 𝐺 is a flattened graph and as such does not have the form required by array-aware-

matching, thus we need to construct a different graph 𝐺 = (𝐸 ∪ 𝑉 , 𝐷) homomorphic to 𝐺 , and

expressed in terms of array equations and variables. Therefore, 𝐺 will satisfy the following proper-

ties:

• For each node 𝛼ℓ,𝑖 ∈ 𝐴 not part of a clause node 𝑁𝑐 , there exists a variable 𝑣
𝑛
∈ 𝑉 with

dimensionality 1 and size 1.

• For each node 𝛽ℓ, 𝑗 ∈ 𝐵 not part of a clause node 𝑁𝑐 , there exists an equation 𝑒
𝑚
∈ 𝐸 with

dimensionality 1 and size 1.

• For each clause node 𝑁𝑐 there exists a variable 𝑣𝑛 ∈ 𝑉 and an equation 𝑒
𝑚
∈ 𝐸, both with

dimensionality 1 and size 2.
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• The local incidence matrix 𝑢𝑛,𝑚 is a square identity matrix in order to represent the original

relationship found in the scalar graph.

• No other variables nor equations exist in 𝐺 .

• Dependencies arcs 𝐷 are constructed so as to make 𝐺 homomorphic to 𝐺 .

In other words, all the 𝛼 nodes are considered variables, all the 𝛽 nodes are considered equations,

and each labelled set of four nodes 𝑁𝑐 forms an array equation of size 2, and a corresponding array

variable of size 2, while unlabelled nodes translate to scalars.

To carry on, we now need the following lemma.

Lemma 6.2 (Complexity of the construction of𝐺). The graphs𝐺 and𝐺 can be constructed in
polynomial time.

Proof. The construction process which defines 𝐺 is linear with the number of clauses and the

creation of 𝐺 can be done by simply enumerating the nodes and edges of 𝐺 . □

Back to the main proof, once we obtained the matched graph by executing array-aware-matching

on𝐺 , we assign to each literal ℓ the boolean value true if arc 𝑙ℓ,1 has been selected for the matching,

false otherwise. This last step can also be performed in polynomial time.

Given the definition of optimal array-aware-matching of Definition 5.1, an algorithm capable

of solving the problem will maximise the number of (𝑙ℓ1,𝑖 , 𝑙ℓ2, 𝑗 ) arc pairs between nodes belonging

to the clause node sets 𝑁𝑐 . In fact, each pair contributes only an unitary weight to the optimality

metric Ω, while two non-paired arcs will contribute a weight of two.

By construction of the bipartite graph 𝐺 , each node, be it an equation or a variable, has exactly

two adjacent edges. Thus, the matching choice is binary. Since we have built a simple cycle for

each literal, there are only two matching solutions for each cycle, one selecting 𝑙ℓ,1 and all the odd

numbered arcs, the other one selecting all the even numbered ones.

Additionally, due to how we constructed each cycle, the arc connecting the nodes belonging to a

clause node set 𝑁𝑐 for cases (a) and (b) of Fig. 2 is odd, while in case (c) it is even. Thus if the arc

in the red box of Fig. 2 (a) is selected, then all the arcs in boxes of subgraph type (b) will also be

selected, the arcs in boxes of subgraph type (c) will not be selected, and vice versa.
It follows that an arc pair inside a labelled node set can be selected if and only if the literal

assignment – as read from the graph – satisfies the corresponding clause. As such, the objective

functions of max-2-sat and array-aware-matching, given the proposed graph construction and

interpretation, are equivalent. This implies that array-aware-matching is NP-complete. □

Example. For the convenience of the reader, we complement the formal proof with an example

of how the intermediate bipartite graph can be built from the following list of AND clauses:

{𝑎 ∧ 𝑏, ¬𝑎 ∧ 𝑐, 𝑐 ∧ 𝑑} (6)

The list of clauses is scanned left to right. The first clause encountered is (𝑎 ∧ 𝑏), and both 𝑎 and

𝑏 are literals being encountered for the first time. As a result, in the graph we add two structures of

type (a) shown in Fig. 2. The start node of 𝑎 is 𝛼𝑎,1, the end node of 𝑎 is 𝛽𝑎,2. In the same way, the

start node of 𝑏 is 𝛼𝑏,1, the end node of 𝑏 is 𝛽𝑏,2.

Now, the second clause (¬𝑎 ∧ 𝑐) is processed. The literal 𝑎 was already encountered, and appears
in negated form; as a result, a structure of type (c) from Fig. 2 is inserted, and the 𝛽𝑎,2 end node is

connected with 𝛼𝑎,3. The end node of 𝑎 is changed to the newly inserted 𝛽𝑎,3. Instead, the literal 𝑐

is newly encountered, and therefore we insert a structure of type (a) from Fig. 2. The start node of

𝑐 is 𝛼𝑐,1, and the end node of 𝑐 is 𝛽𝑐,2.

The process has now arrived at the third and last clause (𝑐∧𝑑). The literal 𝑐 makes a reappearance

in positive form, and therefore a structure of type (b) is inserted. The end node 𝛽𝑐,2 is connected to
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Clause 1 Clause 2 Clause 3

(a)

(b)

Fig. 3. Bipartite graphs representing the list of AND literals shown in Eq. (6). Graph (a) shows the corre-
spondence between each clause and literal and the nodes and arcs in the graph. Graph (b) shows an optimal
matching for this graph. Solid lines represent matched arcs, dashed lines represent non-matched arcs.

the new node 𝛼𝑐,3, and 𝛽𝑐,3 becomes the new end node of 𝑐 . Finally, the literal 𝑑 is encountered for

the first time, and a structure of type (a) is inserted. At this point the list of clauses is exhausted.

The last step for constructing the scalar graph consists in connecting the end node of each literal

with its corresponding start node. For literal 𝑎, we connect 𝛼𝑎,1 with 𝛽𝑎,3. For literal 𝑏, we connect

𝛼𝑏,1 with 𝛽𝑏,2. For literal 𝑐 , we connect 𝛼𝑐,1 with 𝛽𝑐,3. Finally, for literal 𝑑 , we connect 𝛼𝑑,1 with 𝛽𝑑,2.

Figure 3 (a) shows the bipartite graph generated through the steps we have just outlined. Addi-

tionally, the figure outlines in red each clause node, and highlights the first arc of each cycle, which

is used to determine the value of each literal from the matching.

Figure 3 (b) highlights the optimal matching of the same graph, alongside with the value of

each clause and each literal. Since arc 𝑙𝑎,1 has not been used in the matching, 𝑎 is assigned value

0. Instead, literals 𝑏, 𝑐 and 𝑑 are assigned a value of 1, since the arcs 𝑙𝑏,1, 𝑙𝑐,1, and 𝑙𝑑,1 are all used

in the matching. This matching maximises the number of array equations and variables matched,

and therefore also minimizes Ω: two arrays are matched, out of the three arrays in the input graph.

Each array corresponds to a clause, and the matched arrays represent clauses whose value is one.

In fact, the literal assignment makes the second and third clause true, and the first clause false.

7 ARRAY-AWARE MATCHING ALGORITHM
The NP-completeness proof of optimal matching highlights how, in order to efficiently handle

large-scale problems, there is a need to introduce suitable heuristics. In this section, we propose an

algorithm of reduced complexity.

Our proposal is a partially heuristic two-step procedure. The first step identifies obligatory

matching choices and removes them from the problem, thereby reducing its size. We call this first

step, presented in Section 7.2, the simplification step. No heuristics are involved in it.
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For the second step, that we call the matching step, we propose an extension of the Hopcroft-

Karp [40] algorithm to array graphs, which allows to exploit local incidence matrices in such a way

to preserve the existing looping constructs. The matching step, described in Section 7.3, terminates

at the first solution found, whence its heuristic nature.

Before presenting the simplification and matching algorithms, it is necessary to define some

operations on local incidence matrices that are used throughout the said algorithms. This is done

in Section 7.1, but requires an important preliminary remark.When dealing with matching problems

that contain multidimensional arrays, incidence matrices become multidimensional as well. To

lighten the treatise, in this work we nonetheless stick to talking about “rows” and “columns”. This

notation does not cause any generality loss, however. All the proposed algorithms can work in

the case of multidimensional incidence matrices by simply interpreting “rows” and “columns” as

sets of dimensions, referring respectively to equations and variables. We also talk about “row” and

“column vectors”, that generalize to matrices having only one of the two sets of dimensions.

7.1 Operations on local incidence matrices
Since incidence matrices are boolean, it is trivial to define the logical operators conjunction (and, ∧),
disjunction (or,∨) as well as negation (not,¬) onmatrices of the same dimensions as the element-wise

operations. Additionally, for convenience, we define the operation 𝑎 \ 𝑏 (subtraction) as 𝑎 ∧ ¬𝑏.
We also define the ∧ and \ operator where the first argument is a matrix and the second is a

row vector. The behaviour in this case is equivalent to replacing the vector with a matrix where

every element in each row is equal to the corresponding element in the vector. Equivalently, these

operations are also defined with column vectors.

We further define the flattenRows and flattenColumns operations, each taking a matrix and

producing, respectively, a column and row vector. Each element of these vectors is 1 iff there is at

least a 1 in the corresponding row or column, respectively.

The last operation that we need to define is solveLocalMatchingProblem, which given a local

incidence matrix 𝑢 returns a list of possible match matrices, called match options. More in detail,

each of the returned options is a valid match, that satisfies the following properties:

(1) 𝑚𝑖, 𝑗 = 1 =⇒ 𝑢𝑖, 𝑗 = 1,

(2) Each option has at most one element at 1 for each row and column.

For example, applying solveLocalMatchingProblem to matrix

𝑢 =


1 0 0

1 1 0

1 0 1

 (7)

returns the set of possible match matrices

1 0 0

0 1 0

0 0 1

 ,

0 0 0

0 0 0

1 0 0

 ,

0 0 0

1 0 0

0 0 0

 ,

1 0 0

0 0 0

0 0 0


 (8)

where, depending on the solveLocalMatchingProblem implementation but without any effect on the

proposed algorithms, the last match may or may not be returned as it can be considered part of

the first (larger) one. As an additional constraint, solveLocalMatchingProblem shall try to return

the largest possible match, that is, the one that matches the largest number of equation/variable

pairs. This is not meant as a strong requirement – in other words, it is acceptable to provide an

implementation of solveLocalMatchingProblem that does not return the largest possible match

options in all cases. However, the largest the single options provided by this primitive, the higher

quality the final matching will be.
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Function simplify
Input: 𝐺 = (𝑁 = 𝑉 ∪ 𝐸, 𝐷);
Output: 𝐺 ;
𝐿 ← ∅;
foreach 𝑛 ∈ 𝑁 do

if deg(𝑛) = 1 then 𝐿 ← 𝐿 ∪ {𝑛};
while 𝐿 ≠ ∅ do

𝑛
1
← getElementIn(𝐿);

𝐿 ← 𝐿 \ {𝑛
1
};

𝑛
2
← unmatched node reached from 𝑛

1
;

𝑚𝑎𝑡𝑐ℎ𝑂𝑝𝑡𝑖𝑜𝑛𝑠 ← solveLocalMatchingProblem(𝑢12);
if |𝑚𝑎𝑡𝑐ℎ𝑂𝑝𝑡𝑖𝑜𝑛𝑠 | = 1 then

𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑀𝑎𝑡𝑐ℎ𝑒𝑑1← vector of size |𝑛
1
| where 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑀𝑎𝑡𝑐ℎ𝑒𝑑1𝑗 = 1 iff 𝑛

1, 𝑗 is matched;

𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑀𝑎𝑡𝑐ℎ𝑒𝑑2← vector of size |𝑛
2
| where 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑀𝑎𝑡𝑐ℎ𝑒𝑑2𝑗 = 1 iff 𝑛

2, 𝑗 is matched;

𝑚12 ← getElementIn(𝑚𝑎𝑡𝑐ℎ𝑂𝑝𝑡𝑖𝑜𝑛𝑠) \ 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑀𝑎𝑡𝑐ℎ𝑒𝑑1 \ 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑀𝑎𝑡𝑐ℎ𝑒𝑑2;
if all components of 𝑛

2
are matched then

𝐿 ← 𝐿 \ {𝑛
2
};

foreach 𝑛 𝑖𝑛 𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝑅𝑒𝑎𝑐ℎ𝑒𝑑𝑁𝑜𝑑𝑒𝑠 (𝑛
2
) do

if unmatchedDegree(𝑛) = 1 then 𝐿 ← 𝐿 ∪ {𝑛};

else
if unmatchedDegree(𝑛

2
) = 1 then 𝐿 ← 𝐿 ∪ {𝑛

2
};

ALGORITHM 1: Array matching simplify algorithm.

7.2 Simplification algorithm
The simplification step is dedicated to performing all the obligatory matches. Its importance in

the handling of real-world problems becomes evident when considering that, as explained in [23,

Chapter 7, and more specifically Section 7.2], when matching differential equations, the state
variables of the system are considered to be known and need not be matched. Thus, the variables

to be matched are either non-state variables, or derivatives of state variables. In modelling the

evolution of physical systems over time, it is very common to write equations in the form

¤𝑥𝑖 = f (𝑥,𝑢)
where 𝑥 and 𝑢 are respectively the sets of state variables and inputs. These equations introduce

equation nodes in the bipartite matching graph with a single arc connecting them to the corre-

sponding derivative, and that thus can only be matched with one variable. For example, this applies

to all the three arcs in Fig. 1. The commonplace presence of obligatory matching options motivates

the introduction of an efficient simplification step.

The proposed simplification step is shown in Algorithm 1. It takes as input the array graph 𝐺 ,

and operates as follows. First, it constructs a set 𝐿 from every node in the graph with only one arc,

regardless of it being an equation or a variable.

Then, for every node 𝑛
1
in the set, it uses the solveLocalMatchingProblem procedure to attempt

to match the only arc adjacent to that (array) node.

In the case of multiple matching options, the simplification step skips the considered node,

because at this stage any matching choice would be arbitrary, and may affect the feasibility of the

array-aware-matching problem. Conversely, if only one option is found that that fully matches 𝑛
1
,

that option is included in the solution. Attention then shifts to 𝑛
2
, the only node reached by 𝑛

1
.
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Sincewe have fullymatched one node andmatched some variables from𝑛
2
, the simplify procedure

now checks whether also 𝑛
2
is fully matched. If it is, 𝑛

2
is removed from the set in case it was there,

and since having fully matched 𝑛
2
may result in neighboring nodes with only one unmatched arc,

all such nodes are added to the set. Even if 𝑛
2
is not fully matched, it too may end up having only

one unmatched arc (if it previously had two), and in this case 𝑛
2
is added to the set. The simplify

algorithm thus recursively eliminates all nodes with a constrained match, leaving only irreducible

connected components, as well as nodes where arcs have multiple matching options. After the

simplify step all matches found are removed from the graph, and only the remaining part of the

graph is passed to the subsequent matching algorithm.

7.2.1 Optimal matching in polynomial time. It is evident from the formulation of the simplification

step that its algorithm executes in polynomial time with respect to the number of nodes and arcs

in the array graph and, with a suitable data structures to represent incidence matrices, in O(1) time

with respect to the size of the arrays. We also notice that there is a class of array graphs that can

be completely matched by application of the simplification algorithm alone. The model of a wire

previously shown in Listing 1 is an example of that. By construction of the simplification algorithm,

such graphs must have a single solution to the array-aware-matching problem, and that solution is

therefore optimal. It follows that such models can be optimally matched in polynomial time with

respect to the number of nodes and arcs in the array graph, and in O(1) time with respect to the

size of the arrays.

Finding other classes of graphs which can be optimally matched in polynomial time is an open

research issue.

7.3 Matching algorithm
Now we illustrate the complete array-aware matching algorithm. This algorithm must be able to

match any valid array graph, and additionally it must attempt to approximate the optimal matching

as much as possible. The algorithm we present is based on the well-known Hopcroft-Karp one for

bipartite graph matching, with adaptations to support array graphs. Its main procedure is shown

in Algorithm 2.

Function matching
Input: 𝐺 = (𝑁 = 𝑉 ∪ 𝐸, 𝐷);
Output: 𝐺 ;
P = augmentingPaths(𝐺);

while 𝑃 ≠ ∅ do
foreach 𝑝 ∈ 𝑃 do

applyPath(𝐺 , 𝑝)

𝑃 = augmentingPaths(𝐺);

ALGORITHM 2: Main procedure of the matching algorithm.

As we will see in the following, procedure augmentingPaths computes a list of non-intersecting

augmenting paths in the graph to be applied later by the applyPath procedure. When no augmenting

paths are found, the matching is considered complete.

Each augmenting path 𝑝 , when applied, adds or removes matching from the graph. It consists of a

list of tuples called steps 𝑝𝑖 = (𝑛,𝑑𝑖, 𝑗 ,𝑚′𝑖, 𝑗 ) where 𝑛 ∈ 𝑁 is the starting node of the step, 𝑑
𝑖, 𝑗

is the arc

being traversed, and𝑚′𝑖, 𝑗 is the incidence matrix that specifies which elements of the local matching

incidence matrix𝑚𝑖, 𝑗 are modified by the step. In a similar way to the Hopcroft-Karp algorithm,

steps starting from an equation node (𝑛 ∈ 𝐸) add non-zero matrix entries to the matching, and steps
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Function applyPath
Input: 𝐺, 𝑝;
Output: 𝐺 ;
foreach (𝑛,𝑑𝑖, 𝑗 ,𝑚′𝑖, 𝑗 ) ∈ 𝑝 do

if 𝑛 is the equation 𝑒𝑖 then
𝑚𝑖, 𝑗 ←𝑚𝑖, 𝑗 ∨𝑚′𝑖, 𝑗

else if 𝑛 is the variable 𝑣 𝑗 then
𝑚𝑖, 𝑗 ←𝑚𝑖, 𝑗 \𝑚′𝑖, 𝑗

ALGORITHM 3: Procedure for adding an augmenting path to the matching.

starting from a variable node (𝑛 ∈ 𝑉 ) remove entries from the matching. In other words, in a step

starting from an equation node, the elements set to 1 in𝑚′𝑖, 𝑗 are added to the matching matrix𝑚𝑖, 𝑗 .

On the contrary, in a step starting from a variable node, the elements set to 1 in𝑚′𝑖, 𝑗 are removed
from𝑚𝑖, 𝑗 .

The computation of the augmenting paths is performed through a breadth-first-search in the

residual graph. In contrast to the conventional scalar matching process performed by the Hopcroft-

Karp algorithm, when computing the augmenting path we also need to keep track of the matching

matrices that express the set of equivalent scalar variables and equations that are being matched or

un-matched.

The breadth-first-search procedure must first be seeded with an initial frontier 𝐹 by collecting

the list of array equation nodes with at least one free scalar equation. This initial frontier is then

passed to the bfs procedure, which computes both the initial list of augmenting path candidates 𝐿

and the forest of search trees𝐺𝐵𝐹𝑆 traversed during the search. In𝐺𝐵𝐹𝑆 , 𝐴 is the list of nodes in the

forest, and 𝐵 is the list of arcs. Each node 𝑎 ∈ 𝐴 is a tuple (𝑛, 𝑣) where 𝑛 is a node in the matching

graph, and 𝑣 is a binary vector with size and dimensionality equivalent to the one of 𝑛 specifying

which scalar equations are being traversed in the path. Similarly, each arc 𝑏 ∈ 𝐵 is a triple (𝑎,𝑚, 𝑎′)
where 𝑎 is the parent node, 𝑎′ the child node, and𝑚 is the local incidence matrix that describes the

equivalent traversed path in the homomorphic scalar graph. The augmenting path candidates 𝑙 ∈ 𝐿
are actually just leaves of the 𝐺𝐵𝐹𝑆 forest.

In contrast to the basic Hopcroft-Karp matching algorithm, but similarly to the Ford-Fulkerson

flow maximization algorithm [31], the initial “flow” in the first steps of the path can be different

from the final “flow” at the last step. In this context the “flow” of a given step is simply the number

of scalar equations affected. To perform this operation, each path is traversed backwards – from

the end to the beginning – and it is modified such that the following invariant is respected:

flattenRows(𝑚) = flattenRows(𝑚′) ∀ (𝑎,𝑚, 𝑎′), (𝑎′,𝑚′, 𝑎′′) ∈ 𝐴 : 𝑎′ equation node

flattenColumns(𝑚) = flattenColumns(𝑚′) ∀ (𝑎,𝑚, 𝑎′), (𝑎′,𝑚′, 𝑎′′) ∈ 𝐴 : 𝑎′ variable node

During this process, we build the augmenting path 𝑝 from the nodes, arcs, and matching matrices

traversed.

Additionally, the breadth-first-search does not immediately return a set of paths that respect the

non-intersection condition already present in the Hopcroft-Karp algorithm. An augmenting path

intersects another if the two paths, in at least one point, traverse the same node with intersecting

matching matrices. In order to guarantee this property, each augmenting path is tested against the

others. If two paths are intersecting, one of the two is discarded.

Discarding intersecting paths has the effect of eliminating multiple candidates which are in

mutual exclusion between each other. The specific candidates being discarded at each step influence

the solution Ω, and thus how close the solution is to the optimum. Additionally, they impact the
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Function augmentingPaths
Input: 𝐺 ;
Output: 𝑃 ;

(Calculation of the initial frontier)

𝐹 ← {};
foreach 𝑒𝑖 do

𝑓 ← vector of size |𝑒𝑖 | where 𝑓𝑗 = 1 iff 𝑒𝑖, 𝑗 is not currently matched;

if 𝑓 ≠ ∅ then
𝐹 ← append(𝐹 , {(𝑒𝑖 , 𝑓 )});

(Calculation of the augmenting paths with breadth-first-search)

𝐺𝐵𝐹𝑆 = (𝐴, 𝐵), 𝐿 ← bfs(𝐺, 𝐹 );

(Heuristic sort of the augmenting paths)

𝐿 ← heuristicSort(𝐿)

(Restriction of the flow of each augmenting path and removal of overlapping paths)

𝑃 ← ∅;
foreach 𝑙0 = (𝑛, 𝑠0) ∈ 𝐿 do

𝑝 ← {}, 𝑙 ← 𝑙0, 𝑠 ← 𝑠0;

while ∃(𝑙 ′,𝑚, 𝑙) ∈ 𝐵 do
𝑙 ← 𝑙 ′, 𝑚′ ← 𝑠 ∧𝑚;

if 𝑛′, 𝑛 are equations and variable 𝑒𝑖 , 𝑣 𝑗 then
𝑠 ← flattenRows(𝑚′);
𝑝 ← append(𝑝, {(𝑒𝑖 , 𝑑𝑖, 𝑗 ,𝑚′)})

else if 𝑛′, 𝑛 are variable and equation 𝑣 𝑗 , 𝑒𝑖 then
𝑠 ← flattenColumns(𝑚′);
𝑝 ← append(𝑝, {(𝑣 𝑗 , 𝑑𝑖, 𝑗 ,𝑚′)})

(Scalar arc intersection test between augmenting paths)

if �𝑒𝑖 ∈ 𝐸, 𝑝 ′ ∈ 𝑃 : (𝑒𝑖 , 𝑑𝑖, 𝑗 ,𝑚) ∈ 𝑝, (𝑒𝑖 , 𝑑𝑖, 𝑗 ,𝑚′) ∈ 𝑝 ′, flattenRows(𝑚) ∧ flattenRows(𝑚′) ≠ ∅
∧�𝑣 𝑗 ∈ 𝑉 , 𝑝 ′ ∈ 𝑃 : (𝑣 𝑗 , 𝑑𝑖, 𝑗 ,𝑚) ∈ 𝑝, (𝑣 𝑗 , 𝑑𝑖, 𝑗 ,𝑚′) ∈ 𝑝 ′, flattenColumns(𝑚) ∧ flattenColumns(𝑚′) ≠ ∅
then
𝑃 ← append(𝑃, {𝑝});

ALGORITHM 4: Procedure for computing an augmenting path from a partial state of the matching.

number of steps required by the matching algorithm. In our current implementation, such selection

depends on the ordering of 𝐿. Our heuristic (implemented in the heuristicSort procedure) sorts
𝐿 based on the number of ones in the matching matrices of the path (paths with more ones are

prioritized). Other heuristics could be devised to improve the solution Ω and the number of steps

required to complete the matching, and this could be an interesting direction for future work.

The breadth-first-search procedure is shown in Algorithm 3. It operates in the conventional way,

with three additional constraints:

(1) Each move in the search is associated with a vector of tangent elements 𝑓 to the destination

node 𝑛 of the move. 𝑓 is a vertical vector if 𝑛 is an equation, otherwise 𝑓 is an horizontal

vector.
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Function bfs
Input: 𝐺, 𝐹 ;
Output: 𝐺𝐵𝐹𝑆 = (𝐴, 𝐵), 𝐿;
𝐹 ′ ← {};
𝐿 ← {};
while 𝐹 ≠ {} ∧ 𝑃 = {} do

foreach 𝑎 = (𝑛, 𝑓 ) ∈ 𝐹 do
foreach 𝑑𝑖, 𝑗 adjacent to 𝑛 do

if 𝑛 is the equation 𝑒𝑖 then move from equation to variable

𝑆 ← solveLocalMatchingProblem((𝑢𝑖, 𝑗 \𝑚𝑖, 𝑗 ) ∧ 𝑓 );
foreach 𝑠 ∈ 𝑆 do

𝑡 ← vertical vector of size |𝑣 𝑗 | where 𝑓𝑘 = 1 iff 𝑣 𝑗,𝑘 is not currently matched;

𝑚 ← 𝑠 ∧ 𝑡 ;
if 𝑚 ≠ ∅ then

𝑎′ = (𝑒𝑖 , flattenRows(𝑚));
𝐴← 𝐴 ∪ {𝑎′}, 𝐵 ← 𝐵 ∪ {(𝑎,𝑚, 𝑎′)}, 𝐿 ← append(𝐿, {𝑎′});

else
𝑎′ = (𝑒𝑖 , flattenRows(𝑠));
𝐴← 𝐴 ∪ {𝑎′}, 𝐵 ← 𝐵 ∪ {(𝑎, 𝑠, 𝑎′)}, 𝐹 ′ ← append(𝐹 ′, {𝑎′});

else if 𝑛 is the variable 𝑣 𝑗 then move from variable to equation

𝑆 ← solveLocalMatchingProblem(𝑚𝑖, 𝑗 ∧ 𝑓 );
foreach 𝑠 ∈ 𝑆 do

𝑎′ = (𝑣 𝑗 , flattenColumns(𝑠));
𝐴← 𝐴 ∪ {𝑎′}, 𝐵 ← 𝐵 ∪ {(𝑎, 𝑠, 𝑎′)}, 𝐹 ′ ← append(𝐹 ′, {𝑎′});

𝐹 ← 𝐹 ′, 𝐹 ′ ← {};

ALGORITHM 5: Breadth-first-search of augmenting paths in the matching graph.

(2) Each move in the search must be associated with an incidence matrix 𝑠 called path matrix that
satisfies the same conditions imposed on matching matrices𝑚𝑖, 𝑗 (see Section 5.1, conditions

(3–6)).

(3) The incidence matrix 𝑠 only affects the scalar variables or equations specified by 𝑓 .

These constraints ensure that each path traversed during the search corresponds to a set of one or

more equivalent paths in the scalar graph. As a result, multiple different moves can start at the

same moment from the same node and through the same arc, but with different path matrices.

The computation of the set of possible moves at each iteration is performed by enumerating the

adjacent edges to the current node, and then by using solveLocalMatchingProblem to compute the

set of distinct valid ways to traverse that edge. When a path reaches a variable node, and the path

matrix contains at least one non-zero column not corresponding to any matched scalar variable,

then it allows to augment the matching and the search is stopped. Since the search process is

stopped for the entire frontier, all paths returned by the bfs procedure have the same length in

terms of number of steps.
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7.4 Data representation to achieve O(1) complexity
To guarantee constant-time scaling with the size of array variables and equations, every operation

performed on incidence matrices described in Section 7.1 can be completed in constant time with

respect to the size of the matrices themselves.

However, it can be easily recognised that in reality this is not possible without at least setting an

upper bound on the size of the matrices, and setting such a bound would limit the applicability of

our approach to large equation systems (which is precisely our goal).

As a consequence, while multidimensional incidence matrices and vectors proved useful as a

conceptual tool for explaining our methodology, as a data structure they are not suitable as is for
implementation.

In order to achieve O(1) scaling we thus introduce two data structures to replace multidimen-

sional incidence matrices and vectors, named Multidimensional Compressed Index Set (MCIS) and

Multidimensional Compressed Index Map (MCIM). The first data structure, the MCIS, replaces

multidimensional vectors, and the second (MCIM) replaces multidimensional incidence matrices.

These two data structures are able to represent the entire range of possible vectors and matrices

that can appear in a matching problem, but the operations on them are not constant-time in general.

However, the operations are largely constant-time wherever the arrays in a model come from the

spatial discretisation of partial-derivatives differential equations, which cover virtually the totality

of the modelling cases of engineering interest.

Let us consider the set of multidimensional indices corresponding to the 1-elements of a multidi-

mensional vector. Multidimensional Compressed Index Sets are data structures representing sets of

multidimensional indices as lists of multidimensional intervals or ranges.
Amultidimensional range defined over fieldK = N𝑛 is a list of tuples {(𝑎1, 𝑏1), (𝑎2, 𝑏2), . . . (𝑎𝑛, 𝑏𝑛)},

one tuple for each dimension in K. It represents the set

{𝑎1, 𝑎1 + 1, 𝑎1 + 2, . . . 𝑏1} × {𝑎2, 𝑎2 + 1, 𝑎2 + 2, . . . 𝑏2} × . . .
where × indicates the Cartesian product. For example, the multidimensional range {(1, 3), (2, 4)}
represents the following set of indices:

{(1, 2), (2, 2), (3, 2), (1, 3), (2, 3), (3, 3), (1, 4), (2, 4), (3, 4)}
In other words, a multidimensional range is defined as an hyperrectangle over field K represented

with the coordinates of its vertices.

An MCIS is a list of multidimensional ranges, and it represents the union of the hyperrectangles

represented in turn by each range in the list. Additionally, the ranges do not intersect. A single

multidimensional range of volume greater than 1 can also be represented as multiple adjacent

ranges, and ranges may appear in any order. As a result, the same index set can be represented

with MCISes in multiple ways.

Let us now consider the set of multidimensional indices corresponding to the 1-elements of a

multidimensional incidence matrix. Multidimensional Compressed Index Maps are data structures

representing this set of multidimensional indices, again as lists of intervals.

Each index in the set can be split in two parts: the sub-index corresponding to the first set of

dimensions 𝑘 , and the sub-index corresponding to the second set of dimensions 𝑗 . For brevity we

will represent each multidimensional index in the set as (𝑘, 𝑗). Now, to obtain an MCIM from a set

of indices 𝐴 = {(𝑘1, 𝑗1), (𝑘2, 𝑗2), . . . (𝑘𝑛, 𝑗𝑛)}, first we split 𝐴 in sub-sets 𝐴1, 𝐴2, . . . 𝐴𝑚 where each

index (𝑘𝑖 , 𝑗𝑖 ) satisfies the following identity:
𝑘0 = min1<𝑖≤𝑛 𝑘𝑖
𝛿 = 𝑗0 − 𝑘0
𝑗𝑖 = 𝑘𝑖 + 𝛿 ∀𝑖 : 1 < 𝑖 ≤ 𝑛

(9)
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In other words, the 𝑗 sub-indices in each subset 𝐴𝑖 must be such that they can be obtained just

from the corresponding 𝑘 sub-indices and the 𝛿𝑖 , computed as described in Eq. (9). 𝛿𝑖 must be

constant for all elements of each subset, but may be different between one subset and another. To

make another comparison for the sake of explanation, each subset 𝐴𝑖 represents a diagonal of an

incidence matrix.

At this point, for each sub-set 𝐴𝑖 = {(𝑘𝑖,1, 𝑗𝑖,1), . . . (𝑘𝑖,𝑛, 𝑗𝑖,𝑛)} consider the set 𝐾𝑖 = {𝑘𝑖,0, . . . 𝑘𝑖,𝑛}.
We call a MCIM element the tuple Σ𝑖 = (𝐾𝑖 , 𝛿𝑖 ), where 𝐾𝑖 is represented as a Multidimensional

Compressed Index Set. Finally, an MCIM is the set of MCIM elements {Σ1, Σ2, . . . Σ𝑚}, each of

which corresponds to one of the sub-sets 𝐴𝑖 .

The development of algorithms implementing the operations on the data structures we have

described is largely an engineering problem, and we do not wish to delve into it. Depending

on the specific algorithms being chosen, the complexity of most operations can range from an

upper bound of O(𝑛2), to O(𝑛) in the single-dimensional case if the list of indices in each MCIS is

kept ordered. Better computational costs can be achieved by adopting well-known interval-tree

representations [60], which allow operations on MCISes to reach 𝑂 (log𝑛) complexity in some

specific cases.

However, independently from the implementation we choose for operations on MCISes, we can

straightforwardly state that any operation on sets containing a single range can be implemented in

constant time. The same holds for MCIMs with a single element Σ1 containing a MCIS 𝐾1 with a

single range. This will be the case for any model where the matching heuristic algorithm manages

to preserve all array equations and variables. Therefore, we expect that in such cases – which are

typical in physical models [7] – the compilation process will be performed in constant time with

respect to the size of array equations and variables.

The only operation that can be performed in constant O(1) time on any arbitrary MCIM is

solveLocalMatchingProblem. In fact, it is trivial to prove that each MCIM element Σ𝑖 represents a
matrix that satisfies the properties outlined in Section 7.1 for valid matrices returned by solveLo-
calMatchingProblem. Therefore, solveLocalMatchingProblem can be elided from the simplify and

matching algorithms, and the iteration on the matching options can be replaced with the iteration

of each Σ𝑖 in the input MCIM.

8 CONCLUSIONS AND FUTUREWORK
We discussed the problem of translating declarative EB models into imperative code, concentrating

on the crucial step of equation/variable matching. Relating our work to the research scenario,
we evidenced two issues to address. First, currently established approaches to EB-to-imperative

translation handle array variables and equation looping constructs in an extremely inefficient

manner. Second, array-aware proposals in the literature aim for a fast translation, but not for

obtaining an efficient imperative code.

We showed that to pursue both the objectives above, one needs to translate an EB model in

such a way to maximise the preservation of looping constructs in the imperative code, and we

introduced a metric to measure the said preservation. This led us to define the concept of optimal
array-aware matching, as the one that maximises that metric.

As our main methodological contribution, we proved that the problem of computing an optimal

matching in the sense just stated is NP-complete. Motivated by this completeness, we proposed an

algorithm to compute an array-aware matching in polynomial time, whose rationale is to stop at

the first solution found, privileging however the preservation of looping constructs when choices

need to be taken.

The ideas we presented are currently being put to work within the implementation of an

experimental Modelica compiler [7, 8]. Indeed, based also on the effort that such a realisation
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entails, we do hope that in the next years the developments we described will be adopted in the

EB modelling community at large. In fact, the advantages of an array-aware EB-to-imperative

translation are essential for addressing large-scale models in an industrial context.

In the future, we also plan to extend our approach to the rest of the translation pipeline, addressing

other problems such as equation scheduling and SCC resolution. Additionally, a more precise

characterization of the set of array graphs that can be optimally matched in polynomial time is

also of great interest, as well as better heuristics for the array-aware-matching algorithm.
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