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Anterior cingulate and medial prefrontal cortex
oscillations underlie learning alterations in trait
anxiety in humans
Thomas P. Hein1,4, Zheng Gong2, Marina Ivanova 2, Tommaso Fedele2, Vadim Nikulin3 &

Maria Herrojo Ruiz 1,4✉

Anxiety has been linked to altered belief formation and uncertainty estimation, impacting

learning. Identifying the neural processes underlying these changes is important for under-

standing brain pathology. Here, we show that oscillatory activity in the medial prefrontal,

anterior cingulate and orbitofrontal cortex (mPFC, ACC, OFC) explains anxiety-related

learning alterations. In a magnetoencephalography experiment, two groups of human parti-

cipants pre-screened with high and low trait anxiety (HTA, LTA: 39) performed a probabilistic

reward-based learning task. HTA undermined learning through an overestimation of volatility,

leading to faster belief updating, more stochastic decisions and pronounced lose-shift ten-

dencies. On a neural level, we observed increased gamma activity in the ACC, dmPFC, and

OFC during encoding of precision-weighted prediction errors in HTA, accompanied by sup-

pressed ACC alpha/beta activity. Our findings support the association between altered

learning and belief updating in anxiety and changes in gamma and alpha/beta activity in the

ACC, dmPFC, and OFC.
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Anxiety is a psychological, physiological, and behavioural
state characterised by worry about undetermined events
with potentially adverse outcomes1–3. A central feature in

clinical and subclinical anxiety is difficulty dealing with uncer-
tainty, playing a role in diagnosis and treatment4–7 as well as in
the modelling of anxious responses8–10. Computational model-
ling work has revealed that anxiety impairs learning and decision
making when the associations between responses and their out-
comes change due to environmental uncertainty or volatility11–14.
Misestimation of other forms of uncertainty can also account for
attenuated learning in anxiety, as shown in temporary anxiety
states and in the somatic (physiological) component of trait
anxiety14–16. These empirical findings converge with proposals
that associate affective disorders with misestimation of
uncertainty12. Despite the potential benefits of using modelling
results to improve the treatment and diagnosis of pathological
anxiety, a major challenge remains due to the limited under-
standing of the neural processes underlying the computational
alterations associated with anxiety.

Here, we build on recent progress in rhythm-based formula-
tions of Bayesian predictive coding (PC) to identify sources of
oscillatory modulations associated with altered learning in a
volatile environment in subclinical trait anxiety. In a Bayesian PC
framework, belief updates are informed by the discrepancy
between predictions and outcomes—represented as prediction
errors (PEs)—and weighted by precision (inverse variance or
uncertainty of a belief distribution17–19). The normative hier-
archical updating policy of PC is thought to be orchestrated by
distinct neural frequencies at particular cortical layers19,20. Evi-
dence from human MEG/EEG and monkey local field potential
(LFP) studies suggest that feedforward PE signals are encoded by
faster gamma oscillations (>30 Hz), while backward descending
predictions are expressed in lower alpha (8–12 Hz) and beta-band
(13–30 Hz) oscillations19,21–25. Animal studies provide further
evidence of this spectral dissociation, with alpha/beta activity in
infragranular layers functionally inhibiting the processing of
sensory input spiking, suppressing gamma oscillations in supra-
granular layers26–29. Precision is also encoded in alpha and beta
oscillations20,30. As precision values weight the transmission of
PEs31, the composite precision-weighted PE (pwPE) signal may,
as recent work suggests, be represented in antithetical modulation
of gamma and alpha/beta power23.

Crucially, although the oscillatory correlates of PC have been
primarily investigated in the sensory domain, a similar mechan-
ism in the medial prefrontal cortex (mPFC) has been shown to
explain decision-making processes during exploration-
exploitation32. In a reward-based learning task, we recently
found that beta oscillations were atypically increased in state
anxiety during the encoding of relevant pwPE signals33,34. In
ref. 34. there was also preliminary evidence for amplified beta
activity maintaining (biased) predictions about the tendency of a
stimulus-reward mapping in state anxiety. The role of gamma
oscillations in mediating altered learning in anxiety through PE
signalling remains, however, speculative. Due to the antithetic
nature of gamma and alpha/beta activity in the human and non-
human primate cortex25,35–37, we predict that anxiety-related
changes in alpha and beta activity during encoding pwPE should
be accompanied by opposite effects in gamma. Moreover, given
the relevance of precision weighting signals in explaining a
manifold of psychiatric conditions38–42, we expect that dimin-
ished or amplified precision weighting in anxiety during learning
will be associated with changes in 8–30 Hz activity. This would
result in biased predictions in this condition, possibly reflected in
changes in alpha and beta oscillations.

The contribution of different brain regions to the frequency-
domain expression of computational learning alterations in

anxiety remains largely unknown. We hypothesise that neural
sources that overlap with the neural circuitry of anxiety, decision
making under uncertainty and reward-based learning, including
the ventromedial, dorsomedial PFC (vmPFC, dmPFC), orbito-
frontal cortex (OFC), and anterior cingulate cortex (ACC), will
play a crucial role in the expression of altered oscillatory corre-
lates of Bayesian PC during decision making in anxiety1,32,43–48.

Here we test these hypotheses using computational modelling
and source-level analysis of oscillatory responses in MEG. We
investigated a low and high trait anxious group (LTA, HTA) on a
binary probabilistic reward-based learning task under volatility.
To assess whether trait anxiety interferes with reward-based
learning performance through biased estimates of different forms
of uncertainty, we modelled behavioural responses using a vali-
dated hierarchical Bayesian model, the Hierarchical Gaussian
Filter (HGF49,50). This model was recently used to identify the
sensor-level oscillatory correlates of Bayesian predictive coding in
temporary anxiety states34. In the current work, we showed that
HTA interferes with overall reward-based learning performance
associated with more stochastic decisions and more pronounced
lose-shift tendencies. These behavioural effects were explained by
an overestimation of volatility and faster belief updating in HTA
when compared to LTA.

We then extracted HGF estimates of unsigned pwPEs about
stimulus outcomes, representing precision-weighted surprise
about new information, and separately, the precision terms with
which the PEs are weighted. These trajectories were used as input
to a convolution model to estimate the time-frequency responses
modulated by these computational learning quantities51. The
convolution model was solved in the reconstructed source space
using beamforming52. Our main finding is that HTA enhanced
gamma responses in the ACC, dmPFC and lateral OFC during
the encoding of unsigned pwPEs relative to LTA. The ACC
additionally exhibited alpha/beta suppression during the encod-
ing of pwPEs and precision weights in HTA. Our study thus
identifies key brain regions expressing rhythm-based signatures of
altered Bayesian PC during reward-based learning in anxiety.

Results
Initial learning adaptation in trait anxiety. Thirty-nine parti-
cipants (24 female, 15 male) completed a probabilistic binary
reward-based learning task in a volatile learning setting53–55

(reversal learning task), while we recorded their neural activity
with MEG. Similarly to ref. 14, participants had to learn the
probability that a blue or orange image in a given trial was
rewarding (outcome win, 5 points reward; outcome lose, 0 points;
complementary probabilities for both stimuli, P, 1-P; Fig. 1a).
Participants expressed their choice by pressing the right or left
button on a response box, corresponding with the position of
the image they predicted to be rewarding on the current trial. The
blue and orange stimuli were randomly presented to either the
left or right of the screen. Participants were informed that
the total sum of all their points would translate into a monetary
reward at the end of the experiment. The task consisted of two
task blocks with a total of 320 trials, 160 trials each. The stimulus-
outcome contingency mapping changed four times across the 160
trials in each block (every 26-38 trials), and the five possible
contingencies each block were 0.9/0.1, 0.1/0.9, 0.7/0.3, 0.3/0.7, and
0.5/0.5, as in refs. 14,54. The order of contingency mappings
within each block was generated pseudorandomly and separately
for each participant (see example in Fig. 1b).

To assess our hypotheses that trait anxiety modulates belief
updating during decision making in a volatile environment, we
pre-screened the participants to form two experimental groups:
low trait anxiety (LTA, which we defined as score below 36 in the
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trait subscale of the Spielberger State Trait Anxiety Inventory56,
STAI, range 0–80; “Methods”) and high trait anxiety (HTA,
defined as a STAI trait score above 45; “Methods”). Both LTA and
HTA samples were matched in age and the proportion of males
and females (LTA, N= 20, 22.1 yrs [standard error of the mean

or SEM, 0.4 yrs], 12 female; HTA, N= 19, 21.7 [0.4] yrs, 12
female).

There were no systematic differences between groups in the
order of contingency mappings (Supplementary Fig. 1). In 4/20
LTA and 3/19 HTA participants, however, the probabilistic

Fig. 1 Trait anxiety modulates the win rate and the win-stay/lose-shift rates during reward-based learning. a Behavioural task structure. The task was a
standard reversal learning task. Participants were instructed to predict which of two images was the rewarding stimulus (win= 5 pence or 5p) on the current
trial. The stimuli (blue or orange fractal) were randomly presented to either the left or right of the screen. They remained on the screen until a response was
provided or the trial timed out (1300ms ± 125ms)—recorded as no-response. After they provided a left or right-side response, they immediately saw their
chosen image highlighted in bright green, which remained on screen for 1000ms (± 200ms) before the outcome was displayed. The outcome, either win or
lose, was shown in the middle of the screen for 1900ms (± 100ms) in green and red, respectively. Each trial ended with a fixation cross and an inter-trial
interval (ITI) of 1750 ms (± 250ms). b The probability governing the likelihood of the orange stimulus being rewarded, p(win|orange), is displayed in one
example participant. The probability values p(win|orange) and p(blue|orange) in one trial were reciprocal: p(blue|orange) = 1 – p(win|orange). Probability
mappings changed pseudorandomly every 26-38 trials and took the values 0.9/0.1, 0.7/0.3, 0.1/0.9, 0.3/0.7, and 0.5/0.5 in each block of 160 trials. See
individual traces of contingency changes in Supplementary Fig. 1a. c High trait anxiety (HTA, yellow; N= 19 participants), and low trait anxiety (LTA, purple,
N= 20 participants) modulated win rates differently as a function of the Block factor (significant interaction, P= 0.0114, 2 × 2 factorial analysis with
synchronised rearrangements). There were also significant main effects of Block and Group. Post-hoc analyses demonstrated a significantly lower win rate in
HTA relative to LTA in the first task block (Block 1, PFDR= 0.015 < 0.05, permutation tests; denoted by the black bar at the bottom), but not in block 2.
Within-group analyses further revealed that HTA participants significantly improved their win rate from block 1 to 2 (PFDR= 0.0036 < 0.05, paired
permutation test), whereas the win rate did not change significantly in LTA (PFDR > 0.05). Data in each group are represented using the average (large dot)
with SEM bars. To the right are individual data points to display dispersion. dWin-stay (blue) and lose-shift (magenta) rates in each anxiety group. The rates
were estimated as the number of trials in that category relative to the total number of trials in the outcome type (e.g., lose-shift rate: number of lose-shift
trials divided by the total number of lose events). High trait anxiety was associated with greater lose-shift rates relative to LTA (PFDR= 0.0034 < 0.05,
permutation tests), while win-stay rates did not significantly change as a function of anxiety (PFDR > 0.05). Between-group differences are marked by the
bottom (lose-shift) bars.
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mapping did not change from block 1 to 2, and thus these
participants encountered a total of eight contingency mapping
changes across the 320 trials, while 16/20 LTA and 16/19 HTA
individuals encountered nine probabilistic changes overall.
Control analyses provided strong evidence in support of the null
hypothesis that both groups were exposed to the same
probabilistic mapping over time. There was also moderate
evidence that both groups experienced on average an equal
amount of true volatility (Supplementary Results: Validation
analyses). Additional control analyses further supported that the
main behavioural and computational group results were not
confounded by individual differences in the pseudorandomised
order of contingency mappings (Supplementary Results: Valida-
tion analyses). In addition, both samples did not differ during
task completion in physiological changes in heart-rate variability
(HRV and high-frequency HRV) previously associated with
temporary states of anxiety57 (“Methods”, Supplementary Results:
Measures of Anxiety, Supplementary Fig. 2).

Participants in each anxiety group exhibited different win rates
(percentage of rewarded trials) depending on the task block
(significant interaction effect of Block and Anxiety, P= 0.0114;
non-parametric 2 × 2 factorial test with synchronised
rearrangements58, 5000 permutations). In addition, we observed
a significant main effect of Block (P= 0.0036), and a significant
Group effect (P= 0.0280, Fig. 1c). Follow-up post-hoc analysis
with pair-wise permutation tests revealed a significantly smaller
win rate in HTA during block 1 relative to LTA (P= 0.015,
significant after control of the false discovery rate across multiple
post-hoc tests, hereafter denoted by PFDR < 0.05; non-parametric
effect size estimator, Δ= 0.73, CI= [0.64, 0.89]; “Methods”). By
contrast, during the second block there was no significant
between-group difference (PFDR > 0.05, Fig. 1c). In addition, HTA
individuals exhibited a pronounced increase of the win rate from
block 1 to 2 (PFDR= 0.0036 < 0.05, paired permutation test;
paired-samples effect size Δsup= 0.74, CI= [0.65, 0.87]), while
this effect was not observed in LTA (PFDR > 0.05). The individual
and group average win rates were well below the ceiling win rate
(mean 0.74 [SEM 0.001], maximum 0.76, measured from the true
reward contingency settings). These results demonstrate that
HTA exhibited poorer reward-based learning performance
relative to LTA mainly due to differences in block 1, suggesting
an initial adaptation deficit. HTA individuals, however, improved
considerably during block 2 leading to higher win rates that failed
to differ significantly from rates in LTA.

High win rates in a fast-changing environment could be
associated with a tendency to express win-stay/lose-shift
behaviour more13,59,60. To assess this, we calculated the win-
stay and lose-shift rates, which were normalised separately for
each outcome type: win or lose61. In HTA we found a
significantly higher lose-shift rate when compared with LTA
(PFDR= 0.0034 < 0.05, Δ= 0.76, CI= [0.58, 0.89], Fig. 1d), but no
significant differences in the win-stay rate (PFDR > 0.05). The
higher lose-shift rate in HTA relative to LTA was strikingly
similar across contingency phases (Supplementary Fig. 3). Thus,
across the experiment, HTA individuals consistently switched
more than LTA individuals after losing in a trial. This effect
carried over to the total switch rate, which was significantly
higher in HTA than LTA (PFDR= 0.0134 < 0.05, Δ= 0.71,
CI= [0.55, 0.82]; mean switch rate in each group and SEM:
0.24 [0.02] in HTA, 0.16 [0.02] in LTA). This result was, however,
mainly accounted for by group differences in lose-shift rates, as
shown above. Post-hoc analyses demonstrated that the increased
tendency to shift following lose outcomes in HTA relative to LTA,
like for the general switch tendency, did not change throughout
the experiment, despite HTA exhibiting an initial adaptation

deficit (expressed in lower win rates) that was overcome towards
second block (Supplementary Results).

Differential effects of trait anxiety on learning are best
described by a hierarchical Bayesian model wherein decisions
are driven by volatility estimates. We next aimed to determine
whether learning differences in our anxiety groups could be
accounted for by changes in estimates of different forms of
uncertainty. Overestimating uncertainty in the environment may
lead to anxious avoidance responses and individuals missing out
on invaluable safety signals and rewarding feedback10,12,62.
Alternatively, higher levels of estimated environmental uncer-
tainty may inflate the degree to which new outcomes update
beliefs63,64. Learning can also be influenced by a different form of
uncertainty, related to our imperfect knowledge about the true
states in the environment (informational uncertainty50).

To assess different forms of uncertainty in our task, we
modelled decision-making behaviour with the Hierarchical
Gaussian Filter (HGF)49,50. This model allowed us to characterise
individuals’ trial-by-trial learning of the probabilistic stimulus-
outcome mapping and its volatility. Volatility here represents the
rate of change of the tendency towards a contingency
mapping14,50. In the HGF, higher levels of volatility are associated
with faster learning about the probabilistic relationships, whereas
a stable environment would attenuate learning about the reward
contingencies. The rationale for choosing the HGF as a
hierarchical Bayesian modelling framework was based on its
suitability to identify alterations in different types of uncertainty
during decision-making behaviour in a very similar task in
temporary anxiety states14,34.

In the HGF, the individual trial-wise trajectories of the beliefs
about the probabilistic mapping (HGF level i= 2) and log-
volatility (i= 3) are represented by their sufficient statistics: μi
(mean, commensurate to a participant’s expectation) and σi
(variance, termed informational or estimation uncertainty for
level 2; uncertainty about volatility for level 3; inverse of
precision, Fig. 2b). The inverse variance is termed precision, πi.
Belief updating on each level i (i= 2 and 3) and trial k is driven
by PEs modulated by precision ratios, weighting the influence of
precision or uncertainty in the current level and the level below:

4μki ¼ μ kð Þ
i � μ k�1ð Þ

i / π̂ kð Þ
i�1

π kð Þ
i

δ kð Þ
i�1 ð1Þ

Following Eq. (1), the expectation of the posterior mean on level i,
μi(k-1), is updated to its current level μi(k) proportionally to the
prediction error of the level below, δi-1(k). The influence of PEs is
weighted by the ratio of precision values, with the prediction
(denoted by “^”) of the precision of the level below in the
numerator, and the precision of the current level (inverse
uncertainty, σi) in the denominator. In the HGF for binary
outcomes, the precision ratio updating beliefs on level 2 in Eq. (1)
is reduced to σ2(k). Accordingly, the posterior mean of the belief
about the stimulus-reward contingencies is updated via PE about
stimulus outcomes and scaled by the degree of informational
uncertainty. For level 3, the precision ratio is proportional to the
uncertainty about volatility, σ3(k) (inverse precision on level 3:
1/ π3(k)). In the HGF update equations, the precision-weighted PE
term updating level i is typically labelled εi. We use this term
hereafter.

The coupling function between levels 2 and 3 is as follows
(dropping index k for simplicity):

f 2 x3
� �¼def exp κx3 þ ω2

� � ð2Þ
In Eq. (2), ω2 represents the invariant (tonic) portion of the log-
volatility of x2 and captures the size of each individual’s stimulus-
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Fig. 2 Hierarchical Gaussian Filter: Winning model and results. a Representation of the three-level Hierarchical Gaussian Filter for binary outcomes with
inverse decision noise being a function of the log-volatility prediction (estimate on the previous trial, k-1), μ3(k-1). b Associated trajectories of relevant HGF
outputs the total 320 trials in a representative participant. At the lowest level, the inputs correspond to the rewarded outcome of each trial (1 = blue, 0 =
orange; shown as purple dots). The participant’s responses y are shown in green dots tracking those trial outcomes. The black line indicates the series of
prediction errors (PE) about the stimulus outcome, and the salmon pink line the precision weight on level 2. The middle layer of (b) shows the trial-wise
HGF estimate of pwPE about stimulus outcomes (pwPE updating level 2, simply termed pwPE in the graphic; deep blue). For our main GLM convolution
analysis, we used unsigned values of pwPE updating level 2 as one of the parametric regressors. The precision ratio included in the pwPE term weights the
influence of prediction errors about stimulus outcomes on the expectation of beliefs on level 2. Predictions about the tendency towards a stimulus-reward
contingency on level 2ðμ̂2Þ are displayed on the top level (yellow). We took the absolute values of this quantity as our main parametric regressor (labelled
simply Predictions in the graphic) in a separate exploratory GLM analysis. c, d Bayesian model selection (BMS). The panels show the model frequency (c)
and exceedance probability (d) for each of the HGF models we tested: the 2-level HGF (HGF2), the 3-level HGF (HGF3), and the 3-level HGF informed by
trial-wise estimates of volatility (HGFμ3) given in black. The HGFμ3 model best explained the data (exceedance probability = 1; expected frequency =
0.95). e HTA individuals (yellow; N= 19 participants) had a greater initial expectation or prior on log-volatility than LTA (purple, N= 20 participants;
PFDR= 0.024 < 0.05; group effects denoted by the black line at the bottom). Data in each group are represented by the mean (large dot) with SEM bars.
Individual data points are illustrated to the right. f Over time, the posterior mean on log-volatility (μ3) in HTA remained significantly higher relative to LTA
(PFDR= 0.019 < 0.05). g Informational (estimation) belief uncertainty about the stimulus outcome tendency was greater in HTA compared with LTA
(PFDR= 0.0138 < 0.05). h The HTA individuals were also significantly more uncertain about the environment (PFDR= 0.0052 < 0.05). No significant
differences were found in uncertainty about volatility (σ3) or the tonic learning rates at levels 2 (ω2) and 3 (ω3).
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outcome belief update independent of x3. The κ (Kappa)
parameter establishes the strength of the coupling between x2
and x3, and thus the degree to which estimated environmental
volatility impacts the learning rate about the stimulus-outcome
probabilities—here κ was fixed to one as in previous work14,54.
On level 3, the step size of x3 depends on the exponential of a
positive constant parameter ω3 (the lower ω3 the slower
participants update their beliefs about volatility). Further details
are provided in “Methods”.

To describe how participants updated their beliefs about the
reward contingencies, we first used two types of Bayesian
perceptual models: the 3-level HGF and a reduced 2-level HGF
with fixed volatility14 (“Methods”). Next, to explain the trial-by-
trial response data in our participants, we combined the 3-level
HGF with two alternative forms of response model (one
alternative response model for the 2-level HGF), describing
different ways in which participants’ beliefs are mapped to
decisions. The mapping was governed by a unit-square sigmoid
function: (i) with a fixed parameter ζ that can be interpreted as
inverse decision noise that shapes choice probability49,50

(“Methods”); (ii) where the inverse decision noise is a function

of the prediction of log-volatility65: e�μ k�1ð Þ
3 , thus depending on the

participant’s trial-wise beliefs on volatility—termed HGFμ3.
Response model (i) is useful because it captures how determinis-
tically a response is associated with the predictive probability of
the next outcome. Individuals with higher ζ values are more likely
to choose the response in agreement with their outcome
prediction on the current trial. On the other hand, participants
could exhibit changes over time in how they map beliefs to
choices, and these changes could be a function of the estimated
level of volatility, μ3. For instance, when individuals estimate the
environment to be more stable, their responses could follow more
deterministically the outcome predictions for the current trial. Yet
if their volatility estimate increases over the course of the session,
their mapping could be more stochastic. This scenario was
captured by response model (ii), introduced in ref. 65. This
resulted in three types of Bayesian perceptual+response models
(3-level HGF with [i] and [ii], termed HGFμ3; 2 level HGF with
[i]). Details on the fixed and estimated model parameters are
provided in “Methods”, and the prior settings are listed in
Table S1.

While previous HGF studies23,54,55, including our own work14,
also considered widely used and relatively simple reinforcement
learning models, the model comparison approaches consistently
demonstrated that the HGF models described the data best.
Accordingly, we limited our model space to three HGF models. In
future work, it would be important to assess the performance of
alternative Bayesian models that were designed—as the HGF—to
characterise learning in volatile environments. One such model is
the one proposed by Piray and Daw to jointly estimate volatility
and stochasticity66. A direct comparison between these different
Bayesian models is not straightforward at this point as model
inversion for the HGF uses variational Bayes, while the
probabilistic model by Piray and Daw uses Monte Carlo sampling
to estimate belief distributions66. Reformulating models to the
same Bayesian inference framework to allow for model
comparison is challenging67, and not feasible in the current study.

As in previous work with the HGF54,55,65, we evaluated the
model space using random effects Bayesian model selection68,69

(BMS, “Methods”). This approach uses the log-model evidence
obtained for each participant and model to obtain two quantities:
(i) Exceedance probability, as the probability that one model
explains the data better than other models; (ii) Expected
frequency, i.e., conditional estimate of how frequently one model
wins against the other models. It is standard in HGF papers to

obtain both quantities and choose the model that outperforms
other models in both parameters. Here, the model that was more
likely to explain the behavioural data among participants was the
3-level HGF coupled with a response model where decisions are
informed by trial-wise estimates of volatility65 (HGFμ3; BMS
results: exceedance probability = 1; expected frequency = 0.95;
Fig. 2c, d; similar results were observed when assessing BMS in
each group separately; Supplementary Results).

In the winning HGFμ3 response model a greater expectation on
log-volatility for the current trial is associated with higher
decision noise (lower inverse decision noise parameter), leading
to a noisier mapping between beliefs and responses. On the other
hand, when a participant has a lower expectation on volatility
governing the stimulus-reward contingencies, she will exhibit a
more deterministic coupling between her current belief and
subsequent response65. In the context of trait anxiety, the BMS
result demonstrates that inferring the underlying environmental
statistics and deciding upon responses is best described by a
hierarchical model in which the mapping from beliefs to
responses is a function of the prediction of volatility.

Overestimation of environmental volatility in high trait anxi-
ety. HTA individuals had a greater initial estimate on volatility
(free parameter μ3(0)) than LTA participants (PFDR= 0.024 <
0.05, Δ= 0.72, CI= [0.54, 0.87]; Fig. 2e). Over trials, we observed
that the posterior mean on log-volatility estimates, μ3, remained
higher in the HTA group relative to the LTA group (PFDR=
0.019 < 0.05, Δ= 0.74, CI= [0.55, 0.87]; Fig. 2f). No between-
group difference was found in the associated third-level model
parameter ω3 (P > 0.05). In the HGFμ3, an estimated greater level
of task environmental change HTA relative to the LTA group
suggests that choice probability in HTA individuals is more sto-
chastic. In other words, compared to LTA, HTA participants
chose more often responses that were less likely to be rewarded
based on their predictions for the trial.

The increased response stochasticity in HTA converges with
our findings on lose-shift rates, which demonstrated an overall
higher tendency to switch in HTA following lose trials—even if
this goes against the current belief on the tendency of the
stimulus-reward contingency. It is also aligned with the related
finding of a higher overall switch rate (change independently of
the outcome) in HTA individuals. As a post-hoc analysis, we
conducted a non-parametric correlation across all participants
between the overall switch rate and the average estimate of log-
volatility, μ3. We found a significant association between both
variables, as expected (non-parametric Spearman rank correlation
ρ= 0.89, P < 0.00001; N= 39). Our behavioural findings thus
concur with the modelling results showing that HTA individuals
exhibit an overestimation of volatility, which in the HGFμ3 leads
to more ‘stochastic’ switching responses. This outcome is mainly
driven by switching following a lose outcome.

Misestimation of different types of uncertainty in trait anxiety
can promote learning despite an initial adaptation deficit.
Informational uncertainty about the stimulus-outcome con-
tingency, σ2, drives the pwPEs updating level 2, with larger σ2
values contributing to greater update steps. Participants with
HTA overestimated informational uncertainty relative to LTA
individuals (PFDR= 0.0138 < 0.05, Δ= 0.72, CI= [0.55, 0.86],
Fig. 2g). This result suggests that new information has a greater
impact on the update of beliefs about the tendency towards a
stimulus-reward contingency (level 2), promoting faster learning
on that level.

An additional important type of uncertainty governing
learning in our task is uncertainty about the task environment,
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termed environmental uncertainty50: exp(κμ3(k−1) + ω2). Here
μ3(k−1) denotes the mean estimate on log-volatility in the
previous trial, k−1, which is the mean expectation for trial k.
This type of uncertainty is also a function of the tonic volatility,
ω2. We found that the HTA group had greater environmental
uncertainty when compared with LTA participants (PFDR=
0.0052 < 0.05, Δ= 0.74, CI= [0.55, 0.88], Fig. 2h). There was,
however, no significant between-group difference in the related
parameter ω2, or in uncertainty about the volatility estimate, σ3
(P > 0.05 in both cases). The latter outcome suggests that trait
anxiety had no significant effect on the speed of updates about
volatility (σ3 weights prediction errors updating level 3). Rather,
trait anxiety led individuals to overestimate the level of volatility
in the environment already from the start, and this estimate
remained high throughout the task.

Source analysis results. Having established that HTA is asso-
ciated with a relative faster update of beliefs about the tendency of
the stimulus-outcome contingency through enhanced informa-
tional uncertainty and more stochastic behaviour due to higher
expectation on volatility, we next aimed to identify the source-
level neural oscillatory processes accompanying these computa-
tional effects. Accordingly, we assessed the source-reconstructed
neural oscillatory representations of pwPEs and precision weights
during reward-based learning in our anxiety groups. Similarly to
ref. 34, this was achieved using linear convolution models for
oscillatory responses51. This approach is an adaptation of the
classical general linear model (GLM) used in fMRI analysis to
time-frequency (TF) data and has been successfully used in
previous EEG and MEG research23,70. It allows assessing the
modulation of TF responses on a trial-by-trial basis by one spe-
cific explanatory regressor while controlling for the effect of the
remaining regressors included in the model (“Methods”).

To relate precision terms and pwPEs to oscillatory neural
activity, as well as to explore the effect of predictions, we selected
the individual HGF trajectories of the relevant parameters as
parametric regressors in a GLM. According to Eq. (1), the weights
on the PEs are updated proportionally to the uncertainty σi on
each level, i= 2, 3. In other words, greater uncertainty (lower
precision) about beliefs on level 2 or 3 enhances the impact that
PEs have on updating that level. We therefore included
informational uncertainty, σ2, and uncertainty on level 3, σ3, as
the relevant (inverse) precision terms for the GLM. We also chose
the unsigned pwPE on level 2 (termed |ε2 | ), following previous
work23,71, while the pwPE regressor on level 3 was excluded due
to multicollinearity34,72 (“Methods”). To additionally explore the
effect of predictions, we selected the unsigned predictions on level
2 μ̂2
�� ��� �

about the tendency towards a certain stimulus-reward
contingency (henceforth: ‘predictions’; “Methods”). The absolute
correlation values between each pair of chosen regressors was
below 0.2, which allowed us to include them as independent
predictors in the GLM.

Based on prior work23,34, we hypothesised that the neural
responses correlated with pwPEs and precision terms would be
observed in a time interval following the outcome presentation,
whereas the effect of predictions before observing the outcome
could be determined by analysing the post-stimulus (pre-
outcome) interval23,34,42. A scheme of the hypothesised timeline
of effects is presented in Supplementary Fig. 4.

A GLM on the continuous time series could include these
parametric regressors, along with discrete regressors representing
behavioural events at their respective time onsets: stimulus cues,
responses, and outcome cues. However, given that convolution
modelling for oscillatory responses is computationally expensive
and we hypothesised dissociable temporal effects of pwPEs and

predictions—which was observed in refs. 23,34—we opted to run
two separate GLMs in different non-overlapping time windows:
an outcome-locked and a stimulus-locked GLM.

The main outcome-locked GLM evaluated the effect of
parametric regressors |ε2|, σ2, and σ3, on the TF responses, while
it controlled for the effect of discrete outcome events (win, lose,
no response). Next, in an exploratory analysis, we implemented a
stimulus-locked GLM to assess the neural oscillatory processes
correlated with the parametric regressor μ̂2

�� ��. This model
additionally included discrete regressors denoting the stimuli
presentation (blue image on the left or right side), the
participant’s response (left, right, no response), and outcome
cues (win, lose, no response) at their respective onset
(“Methods”).

The GLM analyses were conducted in the source space after
applying linearly constrained minimum norm variance (LCMV)
beamformers52 to the time series of concatenated epochs of MEG
data (“Methods”). To reduce the data dimensionality, the
convolution models were estimated in a set of brain regions
previously associated with anxiety, decision making and reward
processing: (1) ACC, (2) OFC and related vmPFC, and (3)
dmPFC. The ACC and medial PFC have been consistently shown
to be involved in pathological and adaptive/induced anxiety, but
also in emotional and reward processing and decision
making1,43,46,73. Within the medial PFC, the vmPFC represents
reward probability, as well as magnitude, and outcome
expectations32,47. The dmPFC, on the other hand, has been
shown to elicit gamma activity that correlates with unsigned
reward prediction errors during exploration-exploitation32. The
OFC is also particularly relevant in our study, as it has been
associated with emotional processing, reward and punishment
processing48. In particular, the medial OFC (mOFC) encodes
reward value, whereas the lateral OFC (lOFC) encodes nonreward
and punishment48,74. The vmPFC and OFC are also considered
to play a central role in the “uncertainty and anticipation model
of anxiety” (ref. 1). These regions of interest (ROIs) corresponded
to five bilateral labels (10 in total) in the neuroanatomical
Desikan-Killiany–Tourville atlas75 (DKT), which we chose to
parcellate each participant’s cerebral cortex using the individual
T1-weighted MRI (Fig. 3a, b; “Methods”).

We tested the hypothesis that high levels of trait anxiety are
associated with changes in gamma and concomitant alpha/beta
activity during encoding pwPE signals. In addition, we hypothe-
sised that trait anxiety modulates alpha/beta oscillatory activity
during the representation of precision weights.

Unsigned precision-weighted prediction errors about stimulus
outcomes. A between-subject independent sample cluster-based
permutation test between 8–100 Hz on the TF responses to |ε2 |
revealed a significant decrease at 10–16 Hz in the HTA group
relative to LTA in the caudal portion of the ACC (cACC, two
negative spectral-temporal clusters, P= 0.01 and 0.008, two-sided
test, FWER-controlled, 3D data: 10 labels × samples × frequency
bins). The latency of the significant effect was 450–550 ms and
1200–1400 ms post-outcome (Fig. 3c, d). A second significant
effect in the low-frequency range was found in the lateral OFC,
due to relative increased 10–22 Hz activity in HTA (positive
cluster within 1450–1700 s, P= 0.008, two-sided test, FWER-
controlled; Fig. 3e, f). Crucially, the latency of these effects
extended for at least two full cycles of the central cluster frequency.
In the gamma range, we observed prominent increases in TF
responses in HTA as compared to LTA participants in the cACC,
lOFG and dmPFC (positive clusters, P= 0.001, 0.005, and 0.001,
two-sided test, FWER-controlled; Fig. 3c–h; the dmPFC is repre-
sented by the anatomical label ‘superior frontal gyrus’, SFG;
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“Methods”). The enhanced gamma modulation in HTA relative to
LTA had a similar latency across these regions: it emerged at
around 1000ms within 60–80 Hz and at 1600 ms within
80–100 Hz. The gamma effects extended for at least 5 cycles at the
central cluster frequency. No other effects were found. Impor-
tantly, a control analysis demonstrated that a different choice of
the Fourier basis set to increase the temporal resolution on the
GLM analysis of high-frequency gamma modulations revealed
very similar results (“Methods”; Supplementary Fig. 5). Moreover,
including the pwPE regressor on level 3 ε3 instead of our choice of
|ε2| also demonstrated similar results (Supplementary Fig. 6), as

expected, given the high correlations between both regressors
(“Methods”).

Next, we reasoned that the greater gamma activity observed in
HTA in the cACC, dmPFC (SFG) and lOFC during encoding |ε2|
could reflect an association between larger |ε2| values and a
greater likelihood of switching responses in HTA. In the ACC,
reward and value estimates guide choices, with higher ACC
activity observed in trials leading to choices76. In addition,
activity in the dmPFC represents value difference signals
modulating motor responses77. We therefore asked whether trials
leading to a response shift had larger |ε2| values, due faster belief
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Fig. 3 Gamma activity is modulated by unsigned precision-weighted prediction errors about stimulus outcomes and is enhanced with high trait
anxiety. a, b Source reconstruction of MEG signals was carried out with linearly constrained minimum norm variance (LCMV) beamforming. The statistical
analysis of the convolution GLM results focused on brain regions that overlap with the circuitry of anxiety and decision making under uncertainty: ACC,
OFC (lateral and medial portions: lOFC, mOFC), SFG. Panels a and b illustrate the corresponding anatomical labels in the neuroanatomical Desikan-
Killiany–Tourville atlas (DKT), which we chose to parcellate each participant’s cerebral cortex using the individual T1-weighted MRI. Panels c, e, f display
between-group differences in the time-frequency (TF) images that summarise the individual oscillatory responses to the unsigned precision-weighted PEs
about stimulus outcomes. TF images are shown in the 8–100 Hz range, including alpha (8–12 Hz), beta (14–30Hz) and gamma (32–100 Hz) activity. TF
images were normalised with the mean and standard deviation (SD) of the activity in a [−300, −50] ms pre-outcome interval, and thus are given in SD
units. Convolution modelling and TF transformation were conducted in the range 8–120 Hz in frequency bands of 2 Hz, following LCMV beamforming. c In
the cACC, high relative to low trait anxiety was associated with greater gamma responses at ~1 and 1.6 s during outcome feedback processing (cluster-
based permutation testing, two clusters, P= 0.001, FWER-controlled; N= 19 HTA and 20 LTA independent samples). Significant between-group effects
are denoted by the black and white contour lines in the TF images. The gamma-band effects were accompanied by a decrease in alpha-beta activity
(10–16 Hz) in HTA as compared to LTA individuals, and at ~0.5 and 1.3 s (cluster-based permutation testing, P= 0.01 and 0.008, FWER-controlled). d The
relative gamma increase in HTA shown in c) was due to more positive gamma activity during encoding unsigned pwPE in HTA than in LTA. On the other
hand, HTA individuals exhibited a negative change in 10–16 Hz responses, in contrast to the positive alpha and beta activity observed in LTA individuals.
This resulted in the negative between-group effect in 10–16 Hz activity in (c). The large circles represent the mean (and SEM) TF response in the significant
spectrotemporal clusters in c), shown separately for low frequency (alpha, beta) and gamma activity, and for each group (LTA: purple; HTA: yellow).
Individual dots represent individual participant average values. e, f Same as c, d but in the lOFC. Significant clusters in 10–22 Hz and gamma (P= 0.008
and 0.005, respectively, FWER-controlled). g, h Same as c, d but in the SFG. Significant clusters in gamma frequencies (P= 0.001, FWER-controlled).
rACC, rostral anterior cingulate cortex; cACC, caudal ACC; PCC, posterior CC; iCC, isthmus of the CC; SFG, superior frontal gyrus; lOFC, lateral
orbitofrontal cortex; HTA, high trait anxiety; LTA, low trait anxiety.
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updating; we also assessed whether this effect was modulated by
the Group factor. A 2 × 2 Group x Shift (trial followed by a
response shift / no shift) analysis of unsigned pwPE values on
level 2 demonstrated a significant main effect of the Group and
Shift factors (P= 0.0068, 0.0012 respectively; Fig. 4). A significant
interaction effect was also observed (P= 0.0200). These results
demonstrate that |ε2| was larger in trials followed by a shift in the
choice made by participants; |ε2| was also greater in HTA
participants overall. Moreover, the modulation of |ε2| values by
the Shift factor was more pronounced in HTA. Complementing
these results, we observed that individuals with a greater gamma
modulation by |ε2| in the cACC and dmPFC had larger |ε2| values
(non-parametric Spearman correlation: ρ= 0.6028, P= 0.0001 in
the cACC; ρ= 0.5166, P= 0.0009 in the dmPFC; Fig. 4). Gamma
responses in the lOFC were not associated with |ε2| values
(ρ= 0.21, P= 0.1396).

Modulation of informational uncertainty and uncertainty
about volatility by anxiety. The precision weight term scaling the
influence that PEs have on updating beliefs on level 2 corresponds
to the informational uncertainty estimate, σ2. This regressor was
correlated with an attenuation of low frequency activity in the

cACC in high relative to low trait anxiety individuals (two
negative clusters, P= 0.01, two-sided test, FWER-controlled
Fig. 5a). The between-group effect was observed at 14–16 Hz
and with a latency of 1050–1170 ms, corresponding to the latency
of the gamma effect of |ε2| (Fig. 3) and extending for 1–2 oscil-
lation cycles. An additional relative TF suppresion was found at
8–10 Hz around ~1.6 s. In both clusters, LTA participants had
predominantly a positive alpha/beta activity response to the
precision-weight regressor, whereas HTA individuals exhibited
mainly an attenuation of this response (Fig. 5b).

By contrast, a relative HTA minus LTA increase in 10–16 Hz
and 12 Hz activity was observed for σ2 in the lateral OFC in both
hemispheres (at ~0.4 and 1.5 s; P= 0.02 in each case, two-sided
test, FWER-controlled; Fig. 5c, d). Exploratory analyses in
anatomical labels outside of our ROIs showed a between-group
effect of precision weights on level 2, σ2, in alpha/beta activity
exclusively in the posterior cingulate cortex (negative cluster,
P= 0.02, two-sided test, uncorrected).

Uncertainty about volatility, σ3, which weights the updates of
beliefs on level 3, was associated with a significant between-group
statistical effect in the dmPFC at 12–20 Hz with a latency of
0.27–0.5 and later at 1.55–1.8 s (P= 0.007 and P= 0.004 in each
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Fig. 4 Trials leading to a shift in response choice are associated with larger unsigned pwPE values. a The values of unsigned pwPE updating beliefs
about stimulus-reward contingencies (denoted by |ε2|) were larger in trials that were followed by a response shift (significant main effect of factor Shift,
2 × 2 synchronised rearrangements, P= 0.0012; denoted by the black line on top and the asterisk). High relative to low trait anxiety individuals also had
larger |ε2| overall (main effect of Group, P= 0.0068; denoted by the black lines at the bottom) and a more pronounced dissociation between the |ε2| values
in trials followed by a response shift or repetition (significant interaction, P= 0.0200). Data in each group are represented using the average (large dot)
with SEM bars. To the right are individual data points to display dispersion. HTA, high trait anxiety (yellow; N= 19 participants); LTA, low trait anxiety
(purple; N= 20 participants). b Non-parametric correlation between the average gamma response to the unsigned pwPE regressor in the cACC and the |
ε2| values in trials followed by a response shift (Spearman ρ= 0.6028, P= 0.0001; the gamma average was estimated in the significant cluster of between-
group differences, Fig. 3). c Same as (b) but for the dmPFC (ρ= 0.5166, P= 0.0009).
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case, two-sided test, FWER-controlled; Fig. 5e, f). The effect
demonstrated that greater beta activity emerged in HTA relative
to LTA participants in this brain region during encoding of
uncertainty about volatility.

Regarding the discrete win and lose regressors in this main
GLM, the TF images revealed between-group beta and gamma
effects in brain regions that overlapped with those associated with
the pwPE regressor, in line with predictive coding proposals18,
albeit with some polarity changes (Supplementary Fig. 7). Last, in
an exploratory analysis, we assessed the modulation of theta
(4–7 Hz) activity by the pwPE, as theta activity can facilitate
encoding of unpredictable stimuli (akin to PE), driving gamma
activity25. Convolution modelling revealed a general increase in
the amplitude of theta activity to the unsigned pwPE regressor in
HTA when compared to LTA (Supplementary Fig. 8; P= 0.034,
uncorrected, rostral ACC and isthmus CC; note the reverse
polarity effect for the Lose regressor; P= 0.041, uncorrected:
Supplementary Fig. 9).

Stimulus-locked predictions about reward tendency. In a
separate exploratory analysis, we tested the hypothesis that
anxiety modulates alpha/beta oscillatory activity during the
maintainance of predictions about the tendency of the stimulus-

outcome contingency14, μ̂2. In this stimulus-locked GLM, we
observed a significant between-group difference in the beta-band
TF responses to μ̂2

�� ��, due to greater beta activity in participants
with high relative to low trait anxiety (Supplementary Fig. 10a,
b; significant positive clusters at 100–200 ms and 600–680 ms
post-stimulus, P= 0.005, FWER-controlled). This effect was
limited to the cACC (right and left hemisphere) and contrasted
with the pronounced drop in beta activity observed in HTA
relative to LTA with the discrete stimulus regressor (Supple-
mentary Fig. 10c, d; several significant clusters from 100 to
~700 ms post-stimulus; P= 0.001, FWER-controlled; These
effects emerged before the feedback presentation at around
~1550 ms on average across participants). All significant
between-group effects extended for at least one cycle at the
relevant cluster frequency.

Last, the discrete response regressors (left, right) induced in
each group a prominent alpha reduction prior to and during the
button press, and a classic subsequent beta rebound (Supple-
mentary Fig. 10e, f). There were no significant between-group
differences in the TF images of these regressors. Neither in our
ROIs (Supplementary Fig. 11; P > 0.05), nor in the additional
DKT anatomical labels (P > 0.05).
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Fig. 5 Modulation of alpha and beta activity during the representation of uncertainty in high trait anxiety. a To investigate the effect of trait anxiety on
the neural oscillatory correlates of precision weights modulating the influence that PEs have on updating predictions on each level, we included σ2 and σ3 as
additional parametric regressors in our main GLM. Informational uncertainty, σ2, is the precision ratio updating beliefs on level 2. For level 3, the precision
ratio is proportional to the uncertainty about volatility, σ3 (inverse precision on level 3: 1/ π3; Eq. 1) The model also included continuous regressor |ε2| and
discrete regressors coding for outcome events (win, lose, no response). TF images were normalised with the mean and standard deviation (SD) of the
activity from −300 to −50 ms before the outcome feedback, and thus are given in SD units. In the caudal ACC (cACC), the representation of precision
weights σ2 was associated with a relative reduction of higher alpha and low beta activity in high trait anxiety, at latencies that were aligned with the gamma
effects in Fig. 3 (~1.1 and 1.6 s; P= 0.01, FWER-controlled). b Average activity in the significant spectrotemporal clusters in a) separately for each group
(LTA: purple, N= 20 participants; HTA: yellow, N= 19 participants). The large dot denotes mean and SEM as error bars. Individual dots represent
individual participant average values. c In the lateral OFC (lOFC), we observed an increase in 12–16 Hz activity in HTA relative to LTA at 0.3–0.4 and
1.35–1.55 s (P= 0.02, FWER-controlled). d Average activity in the significant spectrotemporal clusters in (c) separately for each group. e Uncertainty about
volatility, σ3, which weights the updates of beliefs on level 3, was associated with a significant between-group statistical effect in the SFG at similar
latencies than the σ2 effects observed the lateral OFC (P= 0.007 and P= 0.004 for early and later cluster effects, respectively; FWER-controlled). HTA
individuals exhibited increased beta activity to the σ3 regressor relative to LTA participants. f The individual and group beta activity average in the
significant clusters in (e) is displayed for each group separately.
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Discussion
Our study revealed that key brain regions of the anxiety and
decision-making circuitry exhibit changes in oscillatory activity
that can account for behavioural and computational effects of
anxiety within a Bayesian predictive coding framework. We
showed that HTA interferes with overall reward-based learning
performance, which was associated with biased estimates of dif-
ferent forms of uncertainty. Inflated estimates of environmental
volatility drove these changes, in line with previous reports that
anxious learners overestimate volatility in all environments78.
Noisier decisions and more pronounced lose-shift tendencies
accompanied higher volatility estimates for HTA participants.

Recent proposals conceptualise some of the psychiatric symp-
toms in affective disorders as divergent hierarchical Bayesian
inference, described by difficulties estimating uncertainty and
balancing the influence of sensory input on belief updating12,79.
These proposals extend to subclinical anxiety, given the con-
siderable overlap of behavioural and neural effects in pathological
and subclinical populations1,46,73. Our results are in line with
these predictions, demonstrating a greater degree of informa-
tional uncertainty, σ2, in HTA. HTA participants also over-
estimated environmental uncertainty and environmental
volatility, μ3, already from the start (μ3(0)). Greater informational
uncertainty (smaller precision) drives faster update steps on the
beliefs on the tendency of the stimulus-reward contingency50.
Larger μ3 values also influence lower-level pwPEs, inflating the
degree to which new outcomes update beliefs63,64. Thus, our
results associate subclinical trait anxiety with faster updating of
beliefs about stimulus-reward contingencies through an over-
estimation of informational uncertainty and environmental
volatility.

Our trait anxiety results converge with findings from ref. 13,
who described in clinical anxiety an inflexible adjustment of
learning rates—remaining suboptimaly large—to volatility, as
well as an inflated lose-shift rate. Induced anxiety states, by
contrast, attenuate belief updating about the reward contingencies
governing the environment14. In ref. 14, state-anxious individuals
underestimated informational and environmental uncertainty.
Similar to the state anxiety results, the somatic (physiological)
component of trait anxiety has been linked to the under-
estimation of uncertainty and relative uncertainty between choi-
ces during exploration15,16.

Here, biased estimates of uncertainty in HTA were associated
with suboptimal switching behaviour, such as a pronounced lose-
shift tendency. A hierarchical Bayesian model in which the
mapping from beliefs to responses was a function of volatility best
described the participants’ behaviour in our task. As HTA indi-
viduals had a consistently larger prediction of volatility
throughout the task, this model implied that, compared to LTA,
the HTA group chose more often responses that were less likely
to be rewarded based on their predictions for the trial. Increased
response stochasticity in HTA agrees with its larger lose-shift rate
and overall switch rate. This may explain the initially poorer task
performance of this group, as higher levels of response switching
combined with a high learning rate would make it difficult to
infer the true probabilistic contingencies. In this scenario, dis-
tinguishing between meaningful environmental changes and
outcome randomness would be more challenging. By modelling
unpredictability, volatility66, and subjective uncertainty (con-
fidence ratings16) separately, follow-up work could determine
whether a subjective misattribution of the causes of loss
outcomes80 could account for the increased choice stochasticity in
anxiety.

By applying convolution models to explain amplitude mod-
ulations in time-frequency MEG responses51,70, we were able to
determine the effect of trait anxiety on the source-reconstructed

neural oscillatory correlates of unsigned pwPE, informational
uncertainty and uncertainty about volatility—while controlling
for the simultaneous effect of discrete behavioural
regressors23,32,51. Our analysis identified the cACC, dmPFC, and
lOFC as brain regions accounting for computational alterations in
reward-based learning in anxiety through changes in oscillatory
activity. The results extend time-domain EEG and fMRI studies
of Bayesian inference and predictive coding55,65,81–84, providing
important insights into rhythm-based formulations of Bayesian
PC22,25,28 and their use in affective disorders.

Encoding of unsigned pwPEs about stimulus outcomes was
associated with dampened alpha/beta oscillations (10–16 Hz) in
the cACC in HTA relative to LTA. This effect emerged at 500 and
between 1200 and 1400 ms, converging with the latency of beta
modulations during pwPE encoding in our previous studies of
decision making and motor learning in state anxiety33,34. Tem-
porary anxiety states, however, enhance the amplitude of beta
oscillations33,34. The different direction of the alpha/beta mod-
ulation by pwPEs in trait and state34 anxiety can be explained by
the opposing patterns of computational results in both condi-
tions: in ref. 34. state anxiety was associated with a slower
updating of beliefs about stimulus-outcome contingencies, which
converges with the observed greater alpha/beta activity during
encoding |ε2|. Here, trait anxiety speeded belief updating on level
2 with corresponding suppression of 10–16 Hz activity. Impor-
tantly, in the present study, the alpha/beta attenuation effect was
accompanied by a pronounced phasic increase in the amplitude
of gamma responses in HTA at ~1 and 1.6 s. The relative gamma
increase in HTA was identified across the cACC, lOFC, and
dmPFC (label SFG in the DKT atlas85). The results are consistent
with the notion that bottom-up PEs are encoded in gamma fre-
quency oscillations and paralleled by downregulation of alpha/
beta activity19,22,25,29. In the context of trait anxiety, the results
align with the computational findings on uncertainty estimates,
suggesting that trait anxiety promotes outcome-driven proces-
sing, enhancing the role of PEs in updating predictions20,24.

Our study is the first to demonstrate that alterations in Baye-
sian belief updating during reward-based learning in trait anxiety
are associated with changes in gamma activity across brain
regions of the anxiety and decision-making networks. The ACC
and medial PFC have been consistently shown to be involved in
pathological and induced anxiety but also decision making and
the processing of rewards1,43,45,46,73. The gamma effects we
observed had very similar latencies in the cACC and the dmPFC,
whereas no effects were found in the mOFC, which is considered
to include the vmPFC in the anatomical parcellations in MEG
studies86,87. In addition, we found that larger gamma activity
across the cACC and dmPFC regions was associated with greater
unsigned pwPEs, and trials with larger |ε2| were more likely to be
followed by a response shift, more prominently in HTA. These
findings are consistent with accounts of ACC and dmPFC func-
tion, suggesting that signals in these brain regions guide response
choices76,77. The gamma effects in the dmPFC are also aligned
with recent work linking gamma oscillations in the human
dmPFC to encoding unsigned reward PEs during exploration-
exploitation32. Our results provide preliminary evidence that
aberrant encoding of pwPE via gamma oscillatory changes in
dmPFC and cACC can account for behavioural alterations in
affective disorders.

The antithetic modulation of alpha/beta and gamma activity by
the unsigned pwPE regressor in the cACC converges with the vast
evidence that increased gamma power in cortex during bottom-
up processing is accompanied by a dampening of alpha/beta
oscillations25,35,88,89. The lOFC, however, elicited a relative
increase both in the gamma band and subsequently at alpha/beta
frequencies (10–22 Hz). The lOFC plays a role in encoding
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punishment value, nonreward and unpleasantness48,90,91. The
relative HTA-LTA increase in alpha/beta activity in the lOFC to
the pwPE regressor was paralleled by a negative amplitude change
in the same time-frequency range to the lose regressor. It is
unclear whether the increase in alpha/beta activity in the lOFC
could be excitatory, contributing to further encoding the
unsigned pwPE regressor. This interpretation remains spec-
ulative, although there is some evidence that beta activity may be
excitatory in some brain regions during encoding unpredicted
inputs, as shown recently in the primate parietal cortex25. The
pwPE results across our ROIs highlight that the anticorrelated
nature of gamma and alpha/beta oscillations during encoding
pwPEs is expressed in specific regions of the decision-making
networks (here the cACC).

The main convolution model additionally demonstrated a
consistent HTA-related attenuation of alpha/beta activity during
encoding precision weights on level 2 in the cACC. In the HGF
for binary outcomes, the precision-weight term scaling the
influence of PEs on the update of beliefs about the stimulus-
reward contingency is simply σ2, the expectation on informa-
tional uncertainty. Given that HTA increased σ2, the GLM results
thus associate greater precision weights driving belief updating in
HTA with a reduction of alpha/beta activity in the cACC. This
outcome could be mediated by increases in synaptic gain, as
proposed for alpha oscillations in attentional tasks24, which
would promote the transmission of PEs, in line with our gamma
results. This interpretation is supported by the latency of the
effects, emerging at 1 and 1.6–1.7 s post-outcome, which closely
matches the latency of the gamma-band effects in the cACC. In
the lateral OFC, σ2 was associated with greater 12–16 Hz activity
around 0.3 and 1.5 s in high relative to low trait anxiety, thus
converging with the relative increases in alpha/beta activity in this
region for the pwPE regressor.

Last, a strong modulation of beta-band TF responses was found
for uncertainty about volatility, σ3, which weights the updates of
beliefs on level 3. This effect emerged in the dmPFC and was
associated with a pronounced relative increase in beta activity
around 0.4 and 1.7 s. Our computational analyses did not find
significant between-group differences concerning the expected
uncertainty about volatility, which contributes to belief updates
on level 3. Rather, the posterior mean on volatility had an initially
higher estimate in HTA and remained high throughout the task.
Accordingly, the GLM results suggest that trait anxiety enhances
beta activity in the dmPFC during encoding uncertainty about
volatility, σ3, potentially inhibiting the regulation of the over-
estimation of volatility over time.

Combined, the neural and computational results on uncer-
tainty estimates σ2 and σ3, and their modulation of precision
weights provide a coherent picture of the relevance of assessing
precision signalling to identify routes through which subclinical
trait anxiety can hinder learning, particularly when learning is
embedded in an environment rich in volatility. Our results build
on the mounting evidence on the role of precision in explaining
altered learning in a whole suite of clinical conditions and
symptoms, such as hallucinations in Parkinson’s disease41,92,
schizophrenia, autism38 and psychosis42. An exciting avenue of
future research in anxiety would be the combination of MEG
recordings with pharmacological interventions, to assess the
modulatory effects of neurotransmitters (dopamine42,55;
acetylcholine93; noradrenaline94) on the neural oscillatory cor-
relates of precision.

Methods
Participants. We recruited 39 participants (24 female, 15 male) aged between 18
and 36 years (mean 22.8, SEM 0.9) who completed the MEG and behavioural
study. We additionally acquired individual T1-weighted anatomical magnetic

resonance images (MRI, details below). All participants reported having normal or
corrected-to-normal vision. Individuals were excluded if they had a history of
psychiatric or neurological disease or head injury, and/or were on medication for
anxiety or depression. Written informed consent was obtained from all participants
before the experiment, and the experimental protocol was approved by the ethics
committee of the Institutional Review Board of the National Research University
Higher School of Economics in Moscow, Russia.

Our sample size was estimated using the behavioural and EEG data from our
recent work on decision making in state anxiety14,34. In ref. 14, we observed a large
effect size of state anxiety on the HGF model parameter ω2 (the low-level tonic log-
volatility estimate; Δ= 0.75, CI= [0.55, 0.90], non-parametric effect size estimator,
range 0–1: “Statistics and Reproducibility”). The size of the effect of temporary
anxiety states on the beta activity modulation to unsigned pwPEs in ref. 34. was
Δ= 0.73, CI= [0.65, 0.81]. Here, MATLAB function sampsizepwr (two-tailed t-
test) was evaluated in those ω2 and beta activity data to estimate the minimum
sample size for a statistical power of 0.80, with an α of 0.05. This analysis resulted
in a minimum of 16 participants in each group (high, low state anxiety). In the
current MEG study, to account for trait anxiety potentially associated with a
smaller effect size than state anxiety, we recruited 20% more participants than the
estimated minimum sample size: 20 and 19 participants in the LTA and HTA
groups, respectively.

Assessment of anxiety. Participants’ trait anxiety level was measured twice using
Spielberger’s State-Trait Anxiety Inventory56 (STAI, trait subscale X2, 20 itemts,
score 0–80): one assessment prior to attending the experiment as a selection
procedure, and one at the beginning of the experimental session (to validate the
pre-screened level). Trait anxiety refers to a relatively stable metric of an indivi-
dual’s anxiety level derived from the self-reported frequency of anxiety from past
experiences1. Trait anxiety in subclinical populations is commonly measured using
the STAI trait subscale, a measure thought to reflect the general risk factor for an
anxiety or affective disorder1. This scale taps into the overall exaggerated per-
spective of the world as threatening, providing a good measure of how frequently a
person has experienced anxiety across their life95.

We used the trait anxiety scores as a selection process to form the two
experimental groups: low trait anxiety (LTA, defined as a STAI score below or
equal to 36) and high trait anxiety (HTA, defined as a STAI score above 45). These
values were selected to include the normative mean value in the working adult
population as upper threshold in the LTA group56 (36, SD 9). In addition, the HTA
threshold value was informed by the cut-off point (>45) used to denote clinically
significant anxiety in treatment studies in anxiety disorder patients96,97. Trait
anxiety scores ranged between 24 and 65. The average anxiety scores for each
group were 30.5 (LTA, SEM 0.8) and 51.7 (HTA, SEM 1.5), comparable to LTA/
HTA group values in recent investigations of reversal learning in trait anxiety59,60.
Importantly, the experimental groups were balanced in terms of age and sex. The
HTA group (mean age 22.6, SEM= 1.1) consisted of 12 females, while the LTA
group (mean age 23.7, SEM= 1.0) consisted of 12 females. In addition to the trait
inventory, measures of self-reported state anxiety using the STAI state subscale
(X1, 20 items, score 0–80) were taken prior to the experiment and after completing
the experiment.

During performance, our participants were monitored for physiological changes
in heart-rate variability (HRV) and high-frequency HRV, to control for potential
confounding factors that could modulate task completion14 (Supplementary
Results). Physiological responses did not vary as a function of the group or task
block, despite a group effect on state anxiety (Supplementary Fig. 2; Supplementary
Results).

Experimental design and task. We used a between-subject experimental design
with two anxiety groups: HTA and LTA. Participants performed a probabilistic
binary reward-based learning task in a volatile learning setting53–55 (Fig. 1). The
session was split between an initial resting state block (R1: baseline) of five minutes
and two experimental reward-learning task blocks consisting of a total 320 trials
(block 1, 160 trials – block 2, 160 trials). During the baseline block we recorded
continuous MEG and electrocardiography (ECG). In this phase, participants were
told to try to relax and fixate on a central point of the screen with their eyes open.

Similarly to ref. 14, participants were informed that the total sum of all their
rewarded points would translate into a monetary reward at the end of the
experiment. The calculation for this remuneration was the total sum of winning
points divided by six plus 400, given in Russian rubles ₽ (for example, 960 points
pays 960/6+ 400= 560₽).

For every trial, a blue and an orange stimulus were shown on the monitor. Their
location was either to the right or left of the centre, randomly generated in each
trial. The maximum time allowed for a response before the trial timed out was
1300 ms ± 125 ms. Responses here were given by pressing a button in a response
box with either the left or right thumb (corresponding to selecting either the left or
right image). After the participant made their choice, the selected image was
outlined in bright green for 1000 ms (± 200 ms) to indicate their response. After,
feedback of the trial outcome was provided (win, green; lose or no response, red) in
the centre of the screen for 1900 ms (± 100 ms). To conclude a trial, a fixation cross
was shown in the centre of the screen (1750 ms [± 250 ms]). Participants were told
to select the image they believed would reward them to maximise reward across the
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320 trials, and also to modify their selections in response to any inferred changes to
their underlying probability. Prior to starting the experimental task blocks (blocks
1, 2), each participant performed 16 practice trials and filled out the first state
anxiety report. Between the two experimental task blocks, participants rested for a
short self-timed interval. After completing the second task block, participants filled
out the second state anxiety report before finishing the experiment.

Modelling behaviour: The Hierarchical Gaussian Filter. To model behaviour, we
used the Hierarchical Gaussian Filter49,50 (HGF; version 6.0.0, open-source soft-
ware available in TAPAS, http://www.translationalneuromodeling.org/tapas, see
ref. 98). This model describes hierarchically structured learning across various levels
(1,2,…,n) and trials k, corresponding to hidden states of the environment x1(k),
x2(k),…, xn(k) and defined as coupled Gaussian random walks (Fig. 2a). On level 2,
x2(k) denotes the current true probabilistic mapping between stimulus and out-
come. In our modelling approach an agent would also infer the rate of change of
the tendency towards a contingency mapping, that is, the level of environmental
volatility on trial k. This is represented by the hidden state x3(k). In the following we
drop the trial index k for simplicity. The HGF model has been used widely to
describe task responses in multiple learning contexts54,55,65,71,82,84,99. We used
TAPAS in Matlab R2020b.

Variational Bayesian inversion of the model provides the trial-wise trajectories
of the beliefs, which correspond to the posterior distribution of beliefs about xi
(i= 2, 3) and represented by their sufficient statistics: μi (mean) and σi (variance or
uncertainty; inverse of precision, πi see Fig. 2b). Formally, the update equations of
the posterior estimates for level i (i= 2 and 3) take the form given by Eq. (1).
Equation (1) illustrates that updates in the posterior mean on level i, μi, are
proportional to the precision-weighted PE, denoted by εi.

As in our previous work14, we utilised a generative perceptual model for binary
outcomes termed the 3-level HGF49. The input to the model was the series of 320
outcomes and the participant’s responses. Observed outcomes in trial k were either
u(k) = 1 if the blue image was rewarded (orange stimulus unrewarded) or u(k) = 0
if the blue stimulus was unrewarded (orange stimulus rewarded). Trial responses
were defined as y(k) = 1 if participants chose the blue image, while y(k) = 0
corresponded to the choice of the orange image. In the 3-level HGF, the first level
x1(k) represents the true binary outcome in a trial k (either blue or orange wins) and
beliefs on this level feature expected (irreducible) uncertainty due to the
probabilistic nature of the rewarded outcome. In the absence of observation noise,
u(k) = x1(k). The second level x2(k) represents the true tendency for either image
(blue, orange) to be rewarding. And the third level x3(k) represents the log-volatility
or rate of change of reward tendencies. In the HGF update equations, the second
and third level states, x2(k) and x3(k), are modelled as continuous variables evolving
as Gaussian random walks coupled through their variance (inverse precision).

We paired the 3-level HGF perceptual model with two alternative response
models that map participants beliefs to their decisions. Response model (i) from
refs. 50,55. is governed by a unit-square sigmoid function that maps the predictive
probability m(k) for an outcome on trial k onto the probabilities that the individual
will choose response 1 or 0, p(y(k) = 1) and p(y(k) = 0), respectively:

p yjm; ζ
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The trial index k has been dropped from Eq. (3) for clarity. The predictive
probability m(k) depends on the variables that the HGF is inferring. As observed in
(3), choice probability is shaped by a free fixed (time-invariant) parameter ζ that
can be interpreted as inverse decision noise: the sigmoid approaches a step function
as ζ tends to infinity (for further detail see Eq. 18 in ref. 49)

Response model (ii) from ref. 65 also used a sigmoid function to map an agent’s
beliefs to decisions, yet in this case the inverse decision noise in Eq. (3) is a function

of a time-varying quantity: the prediction of log-volatility:65 e�μ k�1ð Þ
3 , thus

depending on the participant’s trial-wise beliefs on volatility—termed HGFμ3.
As in our prior work14, parameters ω2 and ω3 were estimated in each individual

(3-level HGF and HGFμ3; for the 2-level HGF, ω3 was fixed; Table S1). The
response model parameter ζ was also estimated in the 3-level and 2-level HGF
models, while parameters μ3(0) and σ3(0) were estimated in model HGFμ3
(Table S1). Simulations conducted to assess the accuracy of parameter estimation
in the HGF models demonstrated that the most accurate estimation was for
parameters ω2 and μ3(0), while ω3 was poorly recovered (Supplementary Results), as
shown previously14,99.

We direct the reader to the original methods papers for more details on the
derivation of the perceptual model and equations of the HGF quantities used in
this paper49,65. Using the prior parameter values (Table S1) and series of inputs,
maximum-a-posteriori (MAP) estimates of model parameters were then quantified
and optimised using the quasi-Newton optimisation algorithm65,98.

Model comparison at the population level was performed using random-effects
Bayesian model selection68 (BMS), as in previous work14,54,55,65, using code from
the MACS toolbox69. The BMS approach proposed by ref. 68 treats models as
random effects that could vary across participants, but also have a fixed distribution
in the population. Here, BMS was conducted using the individual log-model
evidence (LME) values in each participant and model. The LME of a model is

negative surprise about the data, given the model, and measures the trade-off
between a model’s accuracy (fit) and complexity55. See Fig. 2c, d.

Acquisition and preprocessing of MEG and ECG data. Neuromagnetic brain
activity was recorded using a 306-channel MEG system (102 magnetometers and 204
gradiometers, Elekta Neuromag VectorView, Helsinki, Finland) in sitting position.
We used a head-position indicator to control for head movements, with four coils
affixed to the head, two placed on the top of each side of the forehead, and two on
the mastoid process of each side. Eye movements were controlled using an elec-
trooculogram (EOG): Two horizontal EOG electrodes were placed each side of the
temple, while the two vertical EOG electrodes were placed above and below one eye.
In addition, two electrodes were used for electrocardiography (ECG) recording using
in a two-lead configuration montage100. MEG, EOG, and ECG signals were recorded
with a sampling rate of 1000Hz and a band-pass filter of 0.1–330 Hz. Following the
MEG acquisition phase, we de-noised the signals and corrected head movements
using the Temporally extended Signal-Space Separation (tSSS) method101, built-in in
the Elekta software (MaxfilterTM; Elektra Neuroscience 2010; settings: sliding win-
dow = 10 s, subspace correlation threshold = 0.9).

Further preprocessing of the MEG data (magnetometers and planar
gradiometers) was conducted with the MNE-python toolbox102 (Python version
3.9.4), as well as additional custom Python scripts (uploaded to the Open Science
Framework, https://osf.io/wsjgk/). For the analysis of heart rate variability
(Supplementary Fig. 2), the ECG signal was pre-processed using the FieldTrip
toolbox103 for MATLAB® (v. 2020b, The MathWorks, Natick, MA; Supplementary
Results).

The MEG signals were downsampled to 250 Hz. Next, we removed power-line
noise by applying a zero-phase notch filter at 50 and 100 Hz and removed
biological artefacts (eye movements, blinks, heartbeats) using independent
components analysis (ICA, fastICA algorithm). MEG signals that exceeded a
certain amplitude threshold (5−12 T for magnetometers, 4−10 T/cm for
gradiometers) were excluded from further analysis. We also used the standard
MNE-python algorithm for automatic detection of ICs relating to EOG and ECG
artifacts, which were, however, validated visually in each subject. On average, we
removed 4.5 components (SEM 0.1).

Structural magneto resonance imaging. Structural brain MRIs (1 mm3 T1-
weighted) were obtained for all participants and used for source reconstruction.
The MRI image was derived from a 1.5 T Optima MR 360 system (Spin Echo
sequence, slice thickness 1 mm, field of view 288 × 288, TR= 600, TE= 13.5).

Source analysis. Source localisation of the MEG signals (combined planar gra-
diometers and magnetometers) was performed using Linearly Constrained Mini-
mum Variance beamformers52 in MNE-Python102. First, we used the individual
T1-weighted MRI images to construct automatic surface-based cortical parcella-
tions in each hemisphere with Freesurfer 6.0 software104,105 (http://surfer.nmr.
mgh.harvard.edu/). We chose the label map of the Desikan–Killiany–Tourville
atlas75 (DKT), which parcellates the cerebral cortex into 68 regions of interest
(ROIs). Subcortical parcellations were also generated as default in Freesurfer but
were not used in this study. Coregistration of the MR and MEG coordinate systems
was performed with an automated algorithm in MNE-python available in the MNE
software (mne_analyze: http://www.martinos.org/mne/stable/index.html). The
coregistration step used the HPIs and the digitised points on the head surface
(Fastrak Polhemus). We additionally verified that the coregistration of three ana-
tomical (fiducial) locations (the left and right preauricular points and the nasion)
were correct in both coordinate systems.

For forward model calculations, we used the command-line tool “mne
watershed” to compute boundary element conductivity models (BEM) for each
participant and selected the inner skull surface as volume conductor geometry.
Then, we created a surface-based source space with “oct6” resolution, leading to
4098 locations (vertices) per hemisphere with an average nearest-neighbour
distance of 4.9 mm.

For inverse calculations, LCMV beamformers were used. The adaptive spatial
filters were computed with a data-covariance matrix in the target interval (0–1.8 s
in outcome-locked and stimulus-locked analyses) and a noise-covariance matrix in
a time interval preceding the stimulus (−1 to 0 s pre-stimulus) and outcome events
(−3 to −2 s pre-outcome, thus corresponding to a waiting period before the
stimulus). The regularisation parameter λ was set to 5%. To assess modulations in
alpha (8–12 Hz) and beta (13–30 Hz) activity, the MEG data were band-pass
filtered between 1–40 Hz prior to beamforming; source-level modulation of gamma
activity (32–100 Hz) was evaluated using LCMV after applying a band-pass filter
between 30 and 124 Hz (below the Nyquist rate at 125 Hz).

Last, source estimate time courses for individual vertices were obtained for a set
of cortical labels corresponding to our ROIs: (1) rostral and caudal ACC (rACC,
cACC; Fig. 3a); (2) lateral and medial OFC, which include the vmPFC according to
some MEG studies86,87 (Fig. 3b; but see ref. 106 for a debate on the vmPFC
delineation); (3) superior frontal gyrus (SFG), representing the dmPFC85 (Fig. 3b).
In additional exploratory analyses, however, we conducted the analysis in the other
labels of the DKT atlas to identify effects outside of our ROIs. The representative
time course per label was obtained using the “PCA flip” method in MNE-Python.
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This method consists of applying singular value decomposition to each vertex-
related time course in the label, followed by extraction of the first right singular
vector. Next, each vertex’s time course is scaled and sign flipped. Following this
procedure, we obtained five bilateral (10 in total) time courses corresponding with
our three ROIs. An additional exploratory analysis was carried out in the other
labels of the DKT atlas to identify effects outside of our ROIs.

Spectral analysis and convolution modelling. We estimated standard time-
frequency representations of the source-level time series using Morlet wavelets. TF
spectral power was extracted between 8 and 100 Hz. For alpha (8–12 Hz) and beta
(13–30 Hz) frequency ranges we used 5–cycle wavelets shifted every sampled point
in bins of 2 Hz. For gamma-band activity (32–100 Hz), 7-cycle wavelets sampled in
steps of 2 Hz were used.

After transforming the source-level time series to TF representations, we used
linear convolution modelling for oscillatory responses51. This approach is a
frequency-domain version of similar approaches used in time-domain EEG
analysis, such as the massive univariate deconvolution analysis107. Convolution
modelling was implemented in SPM 12 (http://www.fil.ion.ucl.ac.uk/spm/) by
adapting code developed by ref. 70 freely available at https://github.com/bernspitz/
convolution-models-MEEG. This method allowed us to model the pseudo-
continuous TF data resulting from concatenated epochs as a linear combination of
explanatory variables (parametric HGF regressors or discrete stimulus, response
and outcome regressors) and residual noise. The general linear model explains this
linear combination as follows51:

Y ¼ Xβþ ε ð4Þ

here Y 2 Rtxf denotes the measured signal, the TF transformation of the pseudo-
continuous time series, and is defined over t time bins (trials x peri-event bins in
our study) and f frequencies. The linear combination of n explanatory variables or
regressors is defined in matrix X 2 Rt ´ n , and modulated by the regression
coefficients β 2 Rn ´ f . The noise matrix is denoted by ε 2 Rt ´ f . Matrix X is
specified as the convolution of an input function, encoding the presence and value
of discrete or parametric events for each regressor and time bin, and a Fourier basis
function. This problem is solved by finding TF images Ri for a specific type of event
i (e.g., outcome or response event type):

Ri ¼ Bβi ð5Þ
In the expression above, B denotes a family of m basis functions (sines,

cosines) over p peri-event intervals, B 2 Rp ´m . This family is convolved with k
input functions U, representing the events of interest at their onset latencies
(U 2 Rt ´ k), to create the regressor variables X. Thus, X = UB. Using ordinary or
weighted least squares, the predictors βi are estimated over frequencies and basis
functions for each regressor i. The TF response images Ri 2 Rp ´ f have dimensions
p and f, and represent an impulse response function for a specific event. This TF
image has arbitrary units and can be interpreted as deconvolved TF responses to
the event types and associated parametric regressors. The TF images Ri can be used
for standard statistical analysis (see further details in ref. 51). A schematic of the
convolution modelling approach is presented in Fig. 6.

To adhere to the GLM error assumptions51 we first converted the spectral
power to amplitude by applying a square-root transformation. Our trial-wise
explanatory variables included discrete regressors coding for stimuli (blue image
left, blue image right), responses (right, left, no response), outcome (win, lose, no
response) and relevant parametric HGF regressors. For computational efficiency,
we conducted separate GLMs for outcome-locked and (exploratory) stimulus-
locked analyses, inserting the relevant discrete and parametric regressors at the
corresponding latencies in each case (Supplementary Fig. 4).

Our primary convolution model aimed to assess the parametric effect of pwPEs
and precision weight terms (σ2 and σ3, see “Results”) on TF responses in 8–100 Hz
in a relevant time interval following the outcome event. In this GLM, similarly to
ref. 14, we found high linear correlations between the absolute value of the second-
level pwPEs, |ε2|, and the third-level pwPEs about environmental change (ε3; the
Pearson correlation coefficients ranged from 0.67 to 0.95 among all 39
participants). Due to multicollinearity of regressors, pwPEs on level 3 have been
excluded from subsequent analysis14,72. We chose the absolute value of ε2 because
its sign is arbitrary: the quantity x2 is related to the tendency of one choice (e.g.,
blue stimulus) to be rewarding (x1= 1); yet this choice and therefore the sign of ε2
on this level is arbitrary14. This GLM was estimated using a window from −0.5 to
1.8 s relative to the outcome event (outcome-locked analysis; Supplementary
Fig. 4). The subsequent statistical analysis focused on the interval 0.2–1.8 s,
informed by our previous work in state anxiety34.

Last, in an exploratory analysis of the neural correlates of predictions within
8–30 Hz, we choose the absolute values of predictions on level 2 |μ̂2| and excluded
the third level log-volatility predictions μ̂3. This decision was also grounded on
multicollinearity of regressors: There were high linear correlations between |μ̂2| and
log-volatility μ̂3 (Pearson r between −0.95 and 0.37, N= 39). As for pwPEs
updating level 2, the sign of μ̂2 is arbitrary as it represents the tendency of the
stimulus-reward mapping for an arbitrary stimulus (e.g., mapping for the blue
image). The absolute values |μ̂2| represent the strength of a prediction about the
tendency towards a particular stimulus-reward contingency. Accordingly, if a

participant has a greater value of |μ̂2| in one trial, she will have a stronger
expectation that given the correct stimulus choice a reward will be received. In this
GLM we included, as additional discrete regressors, the stimuli (blue right, blue
left), response (press left, press right, no response), and outcome (lose, win, no
response) events. This model was estimated from −0.5 to 1.8 s around the stimulus
event (stimulus-locked analysis Supplementary Fig. 4), yet this interval was refined
in the subsequent statistical analysis (100–700 ms; see below).

In all convolution analyses, each discrete and parametric regressor was
convolved with a 20th-order Fourier basis set (40 basis functions, 20 sines and 20
cosines). This setting allowed the GLM to resolve modulations of TF responses up
to ~8.7 Hz (20 cycles/2.3 s; or ~115 ms). In an additional control analysis, we used a
40th-order Fourier basis set to assess gamma activity modulations by the unsigned
pwPE regressor (Supplementary Fig. 3). This set provided a temporal resolution of
57.5 ms.

Statistics and reproducibility. Details on sample size estimation are provided in
subsection “Participants”. Statistical analysis of standard behavioural and compu-
tational model variables focused on between-group contrasts (LTA, HTA) after
collapsing the block information. However, because ref. 14 demonstrated a large
effect of the task block on behavioural win rates in state anxiety, we assessed this
variable as a function of the Group (LTA, HTA) and Block (1, 2) factors.

Our dependent variables (DVs) were (i) win rates; (ii) win-stay/lose-shift rates,
total switch rates; (iii) HGF trajectories averaged across trials in each task block

Fig. 6 Convolution general linear model. Standard pseudo-continuous
time-frequency (TF) representations of the source-level MEG signal (Y)
were estimated using Morlet wavelets. In GLM, signals Y are explained by a
linear combination of explanatory variables or regressors in matrix X,
modulated by the regression coefficients β, and with an added noise term
(ϵ). The design matrix X shown in this figure was constructed by convolving
Fourier functions (m= 20; 20 sine, 20 cosine functions; left inset at the
bottom) with a set of input functions representing the onsets and value of
relevant discrete or parametric events. In this example, we used k= 6
regressors (columns left to right): Outcome Win, Outcome Lose, Outcome
No Response, absolute pwPE on level 2, informational uncertainty about the
stimulus outcomes (σ2), and uncertainty on level 3 (σ3); all these
regressors were defined over time. Solving a convolution GLM provides
response images (TF estimate in the figure, arbitrary unit) that are the
combination of the basis functions m and the regression coefficients βi for a
particular regressor type i defined over frequencies f and basis functions m.
Thus, convolution GLM effectively estimates deconvolved TF responses (TF
estimate, rightmost image at the bottom) to the event types and associated
parametric regressors.
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separately: (a) informational uncertainty about the stimulus outcomes (σ2); (b)
initial estimate on volatility (μ3(0)), mean of the posterior distribution of beliefs
about volatility (μ3), and the associated posterior uncertainty (variance, σ3); (c)
environmental uncertainty: exp(κμ3(k-1) + ω2), which is greater if the environment
is more volatile; (iv) HGF perceptual model parameter quantities ω2 and ω3.
Between-group comparisons of DVs ii–iv were carried out using pair-wise
permutation tests (5000 permutations). We conducted a 2 × 2 Group × Block
factorial analysis of the win rate (i). This was implemented using non-parametric
factorial synchronised rearrangements58 with 5000 permutations.

To address the multiple comparisons problem, where it arises (e.g., several post-
hoc analyses), we control the false discovery rate (FDR) using an adaptive linear
step-up procedure108 set to a level of q= 0.05 providing an adapted threshold p-
value (PFDR). In the case of pair-wise statistical analyses we provide estimates of the
non-parametric effect sizes for pair-wise comparisons and associated bootstrapped
confidence intervals109,110. The within-group effect sizes are estimated as the
probability of superiority for dependent samples (Δdep), while the between-group
effect sizes are based on the probability of superiority109 (Δ). Our results can be
reproduced using code and data available at deposited in the Open Science
Framework Data Repository under the accession code wsjgk.

Statistical analysis of the source-level TF responses obtained in convolution
modelling was performed with the FieldTrip Toolbox103, after converting the SPM
TF images (in arbitrary units, a.u.) to a Fieldtrip structure. Given the large inter-
individual differences typically observed in the amplitudes of MEG neuromagnetic
responses, the source-level TF images were baseline corrected by subtracting the
average baseline level (−300 to −50 ms) and dividing by the baseline standard
deviation (SD) of the interval. We used a cluster-based permutation
approach103,111 (two-sided t-test, 1000 iterations) to assess between-group
differences in TF responses across 10 anatomical labels, time points, and frequency
bins (8–100 Hz for the outcome-locked GLM model; 8–30 Hz for the exploratory
stimulus-locked prediction GLM model). We did not consider spatial relations
between anatomical labels but focused on spectrotemporal clusters. Based on the
latency of the effects in our previous work34, we chose as the temporal intervals of
interest for the statistical analysis 200–1800 ms for the outcome-locked
convolution models, and 100–700 ms for the stimulus-locked GLM. This analysis
controlled the family-wise error rate (FWER) at level 0.025 (exploratory
uncorrected results will be explicitly stated).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support findings of this study are available from the Open Science
Framework Data Repository under the accession code wsjgk.

Code availability
Code for the source reconstruction analysis (MNE Python) and convolution modelling
(Matlab / SPM) has been deposited in the Open Science Framework Data Repository
under the accession code wsjgk.
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