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Abstract 

The planet's reserves are encountering vital challenges and suffer inequitable 

consumption. The outcomes of the prostration of natural reserves have started 

affecting every single organism on the globe. Energy is a critical key factor in this aspect 

because a considerable part of the destruction is triggered by utilising the planet 

reserves to produce power in diverse forms. The increasing environmental awareness 

in humans' minds, and the rapid development of smart concepts, home automation 

technologies in both hardware and software fields, played an essential role in speeding 

up the progress to apply smart energy management which is needed to revert the 

situation to its appropriate track by focusing on two main divisions: firstly, producing 

clean and renewable energy and secondly, reducing the loss of the total generated 

energy. This research will concentrate on the second approach by proposing, 

implementing and evaluating a contemporary integrated, scalable, smart energy 

management framework that assists in reducing the energy consumption in the 

household sector, covering a range of single households till huge communities and big 

organisations with thousands of appliances. A number of correspondent strategies and 

policies which utilise a set of observed and predicted system entities are applied to keep 

meetings the most relevant quality attributes such as integrability, scalability, 

interoperability and availability. IoT concepts are applied in this context to connect 

conventional household appliances to a farm of microservices that implement 

predictive analytics techniques to reduce energy consumption by applying two main 

strategies; appliance substitution based on the energy consumption and creating 

automatic schedules to run appliances based on predictions. A case study is presented 

on two sample appliances within the household to illustrate the framework validity and 

deliver percentage figures of the saved energy. Additionally, the framework offers a 

number of possibilities to provide relevant third parties such as local energy providers, 

apparatuses' manufacturers, or pertinent government offices with various appliances’ 

operational behaviours under real-life conditions. 
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1. Introduction and Background 

1.1. Overview and Background 

Our modern civilisation is highly dependent on all types of energy to sustain and grow 

further. The solid direct proportional relationship between the modern lifestyle and 

the amount of consumed energy had begun when earlier human beings started burning 

woods to produce fire for heating and cooking purposes and ended up constructing a 

state-of-art, sophisticated and most technologically advanced nuclear power stations 

to obtain kinetic energy and electricity. This energy gluttony has brought the mostly 

consumed fossil-based energy resources to its limits and put the environments and 

surroundings under tremendous pressure that can be observed in the rapid decrease 

of the forest spaces, the extinction of many organisms, the pollution and dramatic 

change of the expected climate patterns. Unfortunately, due to the rapid increase of 

our planet's populations, the rising of living standards, and the slow-moving 

development in the renewable energy resources sector led to putting more pressure on 

our traditional resources in the way that according to scientific researches our 

civilisation may suffer from massive challenges soon.  

 

Delivering a solution to this problem can be done by following two approaches; firstly, 

accelerating the efforts to solve all problems that prevent the maximum production of 

clean and renewable energy. Secondly, using the available energy in the way to achieve 

the golden rule to consume the energy most efficiently while still matching the desired 

comfort levels. This thesis will concentrate on the second approach by proposing an 

integrated, scalable framework for smart energy management that targets reducing the 

energy consumption at the households, buildings and organisations levels.  

 

The research topic of this thesis is evolving around the reduction of the amount of the 

energy consumed in the household sector by applying a number of smart technologies, 

namely Internet of Things (IoT), Machine Learning (ML), Artificial Intelligence (AI), 

and cloud-based Microservices. This topic is addressed by designing and implementing 

an integrated, scalable system for smart energy management engineered using IoT and 

cloud-based microservices, assisted by machine learning analytics to gather, process, 

analyse and predict energy usage habits for an extended period to optimise energy 

consumption in household sector.  
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Research questions:  

1. What are the mechanisms that can be utilised to manage the energy 

consumption in household sector?  

2. What are the most relevant strategies/policies that should be applied to achieve 

the maximum energy savings in this field? 

 

1.2. Problem Description and Challenges 

Achieving a satisfying level of energy savings by applying smart energy management 

systems is a very challenging mission [1]. The reason resides in the nature of this highly 

complex and continuously aggregated environment. There are numerous challenges. 

firstly, the majority of currently used appliances are legacy appliances that do not 

support any smart technology and do not allow adding any built-in modules to convert 

them into smart ones. This problem necessitates applying additional external adapters 

and actuators to deal with these kinds of appliances, which ultimately adds more 

complexity and additional costs. Secondly, the lack of standards among the newly built 

smart devices. Too many different protocols, developed by different vendors, are used 

in this field, such as ZigBee, Z-Wave and EnOcean [2]. Since direct compatibility 

among them does not exist, smart home systems must be built around one protocol, or 

customised communication bridges must be built between the controllers to ensure 

having two different hardware farms interacting efficiently and adequately. Thirdly, 

Since the whole concept is relatively new, it is observed that the acceptance and the 

contribution of people to these kinds of approaches are still not enough. As a result, 

the willingness to invest in establishing such smart management systems still did not 

reach acceptable and encouraging levels. The people's consciousness of the necessity 

of such systems plays a crucial role in the improvement and growth of the whole 

industry. Fourthly, like any new technology, the average prices of all related hardware 

and services are still not affordable by most consumers.  This adds an obstacle towards 

establishing the system in the majority of middle-class consumers' facilities. Fifthly, 

the accuracy of the data collected from some smart home sensors is still not reliable 

and have the potential for improvement. Finally, in the market, there is a lack of 

reliable open-source platforms that support the smart home concept. Open-source 

concept opens great avenues for all developers and manufacturers to closely work 

together, which may lead to having common standards, cheaper products and services, 

and finally a friendly environment that is suitable for further development. 
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1.3. Energy Management Systems' Purpose and Importance 

The continuously increasing costs, the need for more energy and the negative influence 

of energy generation processes on the environment has led to the development and 

application of energy management systems to monitor, control, decrease energy 

consumption in many aspects. The desired management systems must prove their 

ability to reduce energy consumption while maintaining equal levels of consumers' 

comfort and meeting energy demand. Moreover, on a global scale, there is an urgent 

demand to save energy in order to decrease and possibly revert the environmental 

destruction that occurred to the planet [3] [4]. However, it is not only the 

environmental impact that has led to using energy management rather the limited 

fossil fuels dependency. Since human civilisation cannot be sustained without having 

enough energy, and due to the fact that the energy obtained from fossils will not remain 

forever, the need to replace this energy resource with another, unlimited resource 

becomes mandatory. Due to many technological challenges, the energy obtained from 

renewable resources is still significantly below the required levels. For instance, 

according to Pineda and Tardieu [5] by the end of 2017, only 11.6% of the EU's required 

electricity has been covered by wind power generation. Here comes the role of the 

energy management systems to make it possible to reach the same level of comfort 

using less energy, which can be obtained from renewable resources. The next section 

summarises the aims and objectives, which are intended to be achieved in this work. 

 

1.4. Aim and Objectives 

This work mainly aims to propose an integrated and scalable system for smart energy 

management, using IoT and cloud-based microservices, assisted by big data analytics 

capable of gathering, processing, analysing and predicting energy usage habits in order 

to optimise energy consumption. 

 

The previous bird's-eye view might be broken down into these objectives: 

 

1. Research and analyse current solutions related to smart energy management 

frameworks. 

2. Review and compare machine learning algorithms and techniques to assess 

their capacity to support the solution being proposed. 

3. Propose a new integration system architecture for smart energy management 
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4. Provide a detailed description of an implementation of the proposed framework, 

in a selected household environment which consists of a combination of 

conventional and smart equipment.  

5. Using a real-life case study, apply various testing and validation techniques to 

ensure the correctness, robustness and suitability of the proposed system  

 

1.5. Background, Analysis, Costs and Environmental Impact 

The first step to solving any problem is to describe it adequately. Delivering a proper 

description can only be obtained by measuring, observing, monitoring and recording 

all related constants, facts and statistics.  This approach is illustrated in the next sub-

sections delivering some global statistics, followed by national figures from the 

European Union, UK, China and the USA. 

 

1.5.1. Worldwide Energy Consumption 

The total worldwide energy consumption shown in Terawatt per hour (TWh) per year 

is explained in Figure 1.1 [6] which illustrates the source of energy divided into 

different sections, including traditional biofuels, coal, crude oil, natural gas, nuclear 

and other renewables. The picture carries alarming and shocking figures because it 

illustrates a rapidly increasing energy demand and shows a small percentage of the 

energy obtained from renewable and clean resources. Starting from the 1950s, the 

energy demand started progressively getting bigger and bigger until it reached very 

high levels by the end of 2019. This sudden explosion in the energy demand has been 

confronted with producing energy from traditional, unclean resources such as fossil 

fuel and coal, which can have a devastating impact on the environment.  
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Figure 1.1: Worldwide primary energy sources. [6] 

In the next section, we will see that the picture is not different in the EU compared to 

the global one. 

 

1.5.2. Electricity Generation in Europe 

In Europe, the situation was not different compared to worldwide statistics. Figure 1.2 

Obtained from the Eurostat  [7] illustrates this fact. The figure covers the EU electricity 

production and consumption in 2020 and shows that the total energy generation 

increased to compensate for the increased demand. 4.4% of electricity was generated 

from solar, 13.3% from wind, and 42.8% comes from conventional thermal sources. 

 

Figure 1.2: EU electricity production by source, 2020. [7] 
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1.5.3. China's Electricity Mix 

In China, unfortunately, the picture is a bit darker in both dimensions: energy 

consumption increased dramatically, and renewables did not develop at the same rate. 

Figure 1.3 [8] shows some features illustrating these facts. 

 

Figure 1.3: China's energy consumption in 2016 with a prognosis of 2040 [8] 

Still, an encouraging trend is seen in the reduction of using unclean energy sources 

such as coal and replacing it with another clean resource such as solar and wind [9].  

Completing the scene requires having a look at the power usage percentage in different 

sections, particularly the residential one. The following section shows some figures 

from different countries worldwide. 

 

1.5.4. Worldwide Household Electricity Consumption  

The differences in energy consumption worldwide are shown in Figure 1.4 [10] which 

undoubtedly reveals that there is a massive difference in energy consumption between 

countries. For instance, an average household in a country like Canada consumes about 

20 times more than the energy consumed in an average household in India. These 

figures make it clear that any energy management system should concentrate on the 

household occupants of countries with high energy consumption rates, considering 

them as a central element of the system and taking their behaviours and habits under 

the loupe.  
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Figure 1.4: Selected Household Electricity Consumption Rates (in kWh per Year) [10] 

 

1.5.5. Residential Power Usage Percentage in the USA and UK  

In order to fully understand the residential section power usage, two countries, namely 

the US and UK, are considered. The power usage is illustrated in Figure 1.5 [11], from 

both countries, which shows that entertainment, heating and lighting are the most 

consuming energy in the household. It gives an indicator on which direction should be 

the efforts concentrated while developing and designing energy management systems. 

 

 

Figure 1.5: The USA and the United Kingdom Household Electricity Usage. [11] 

 

A quick look at the percentages of energy consumption in household, transportation 

and manufacturing segments in the U.S. (Figure 1.6) [12], reveals that these sectors are 

occupying the highest energy consumption successively; 36% for industrial section, 
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35% for the transportation from all kinds, 17% for the residential uses and 12% for the 

commercial activities. 

 

Figure 1.6: U.S. energy consumption by source and sector, 2020 [12] 

After considering some figures related to energy consumption, in the next section, 

some facts related to the costs and the environmental impact of the energy will be 

presented. This should give an idea about the tremendous amount of money wasted, 

and the degree of environmental damage. 

 

1.5.6. Electricity Prices Worldwide 

Measuring electricity prices in countries is essential for energy management systems. 

This is because implementing these systems requires investment. In countries where 

the electricity price is low, it could be that the invested budget to establish and maintain 

an energy management system may be higher than the saved costs, however, in some 

countries, this investment will return its benefits during a short amount of time. A 

quick look at Figure 1.7 [13] gives an idea about the electricity price for the household 

sector worldwide. According to this chart, Italy has the highest rate (21 US Dollar Cents 

Per kWh); however, in Sweden, this rate is only 8 Cents per Kwh. So, we can read that 

implementing energy management systems in countries such as Italy and Germany, 
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where the case study takes place as we’ll be seen in the implementation chapters 5 and 

6, may be profitable and worthwhile. 

 

 

Figure 1.7: Electricity rates around the world [13] 

 

1.5.7. Electricity Power and CO2 Emissions 

Now let us look at some figures related to the environmental aspect. The numbers 

illustrated in Figure 1.8 [14] shows the countries highlighted according to their Carbon 

Dioxide emissions resulting from the production of electricity and heat measured by % 

of the total fuel combustion. 

 

Figure 1.8: CO2 emissions resulted from the production of electricity and heat [14] 
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So, from the environmental point of view, implementing and maintaining energy 

management systems must be considered mandatory in those countries which are dark 

highlighted on the map. Despite the remarkable challenge to switch from using 

conventional energy sources to renewable and clean ones, there is a considerable 

movement towards this type of energy in the last decades. 

 

1.5.8. Renewable Energy Production 

According to [15] the global renewable energy generation over the long-term illustrated 

in Figure 1.9 [16] shows that starting from 1965 till nearly 2020, hydropower was 

dominating the renewable energy market. However, starting from the year 2000 the 

graph begins showing an increase in the total amount of energy generated by different 

renewables such as solar PV, wind, and other renewables. 

 

 

Figure 1.9: Global renewable energy generation [16] 

 

The previously mentioned facts and figures draw a sharp illustration of the negative 

impact of the energy segment on the global environmental and financial situation. This 

has motivated and urged governments and organisations to establish, sharpen and 

promulgate a variety of laws and regulations to regulate the energy sector in order to 

decrease consumption, and ultimately reduce CO2 emissions and make further steps 

toward restoring a clean and sustainable environment. 
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1.6. Law and Regulations 

The importance of the issues related to energy efficiency forced countries and 

organisations to provide a statutory and legal cover to organise and control most of the 

actions taken in this area. All law materials aim at one thing: increasing energy 

efficiency. This section will cover some of these laws and regulations 

 

1.6.1. ISO 50001 - Energy Management Standard 

Undoubtedly the proper and efficient energy consumption assists countries and 

organisations to save money, protect resources and reduce the climate change speed, 

or even stop it. The International Organisation of Standards has offered a dedicated 

standard called ISO 50001 to assist and support organisations to develop energy 

management systems properly and effectively. Organisations that already make use of 

existing, famous standards such as IOS 9001 and ISO 14001 [17], could easily integrate 

this new standard into their existing efforts to enhance and maintain high quality and 

improve their environmental management because ISO 50001 is already implicitly 

integrated and used in those standards.  According to [17], the ISO 50001:2018 

standard offers a framework to: 

• Grow and maintain strategies and policies to achieve higher degrees of using 

energy efficiently.  

• Meet the strategies and policies by fixing targets and objectives. 

• Use the data to increase the degree of understanding of used energy so that 

proper decisions can be made. 

• Properly track and record results 

• Evaluate how far policies and strategies work 

• Repeatedly enhance and upgrade energy management outlines. 
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1.6.2. Energy Labelling 

An energy consumption labelling sticker was established by 

the European Union. It should be available on all white 

goods and lighting bulbs when sold or rented. EU's Energy 

Labelling Directive contains a detailed description of how to 

use it and what should it contain. These labels give a clear 

picture of the energy efficiency on a scale from D (least) to 

A+++ (highest) energy efficiency, so it is easy for customers 

to distinguish between high-energy-demanding and low-

energy-demanding appliances. Figure 1.10 [18] shows an 

example of labelling. 

 

In Europe, almost every device carries this labelling that 

matches at least the minimum energy level (D). However, 

those kinds of devices are not achieving any economic profit, 

so they are gradually disappearing from the market. Due to 

using this labelling, it is expected to achieve a total saving of 175 MT of oil by 2020, 

which is equivalent to approximately €465 per household. Energy labels can be created 

via designated online tools [18]. 

1.6.3. Ecodesign 

Ecodesign guidelines mean that all goods produced by manufacturers and companies 

need to match customers' needs while consuming the lowest amount of resources and 

having the lowest negative environmental and social impact. All EU Ecodesign 

Directives are offered and managed by the EU commission. All newly designed, or 

already existing systems, products, services or processes are entitled to apply these 

directives to ensure its compatibility with surrounding environments and reduce its 

possible damage. Some of its principles include the following: 

•  Use materials that have the lowest negative environmental impact.  

• Minimise the number of used materials during the production process.  

• Minimise the number of used resources during the production process.  

• Minimise pollution and waste.  

Although Ecodesign has too many advantages, it may suffer from some shortages, such 

as the implementation costs, the risk resulting from dealing with new materials and 

processes.  

Figure 1.10: Example EU Label 
[18]  
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1.6.4. Energy Star 

According to [19], the Energy Star can be defined as a U.S. 

environmental protection agency voluntary program that assists 

organisations, industry and persons financially by saving money and 

protecting the environment by enhancing energy efficiency. Energy 

Star's (Figure 1.11 [19]) primary purpose is providing easy, simple and 

trustworthy sources to make the right decision to choose the most 

energy-efficient and environmentally friendly products when buying or renting them. 

American citizens have purchased over 300 million products carrying this label in 

2107. 

 

1.7. Thesis’s Structure 

This thesis consists of seven chapters. The following is a summary : 

Introduction and background – All information related to the background of the 

research, the description of the problem and the motivation behind initiating this work 

can be found in this section. Numbers and statistics are included to illustrate the size 

of the problem. It also contains a list of aims and objectives intended to be achieved. A 

sub-section is included to mention the contribution of lawmakers and legislators to 

assist in solving this issue. Finally, it contains this summary overview of all sections. 

Energy Management Systems (EnMS) – A literature review chapter reviews a 

number of researches accomplished in this field. It describes and categorises a number 

of existing conventional, smart and modelling based energy management frameworks, 

and addresses the list of challenges faced in this field. 

Technologies and Techniques – It provides a literature review related to all 

technologies and techniques that exist in this field and used to implement the related 

framework, including microservices, cloud computing, IoT concepts, data analytics 

and mining technologies, with a detailed description of various modelling analysis such 

as classification, regression, association, clustering, time series and their 

correspondent algorithms. 

Integrated Scalable Smart Energy Management Framework – The proposed 

framework is illustrated and explained in detail. Components’ overview is included, 

and some data workflows are demonstrated. All related functional requirements and 

quality factors or non-functional requirements are presented in this chapter. 

Figure 1.11: EU 
Energy Star Label 

[19] 
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Implementation and Evaluation – This chapter provides a detailed description of 

the implementation of the proposed I3SEM integrated framework in a selected 

household environment, including all experimental settings and assembled sensing 

and cameras systems. Various applications, software and algorithms and a data subset 

are evaluated in this chapter to provide a proof-of-concept for the fully implemented 

system, which is presented in the next chapter using the entire dataset. 

Case Study – This chapter consists of a detailed explanation of two main experiments 

designed to implement the proposed framework on two sample household appliances: 

the refrigerator and the immersion water heater. It contains also the final results 

achieved to reduce energy consumption. 

Conclusion and Future Plan – A conclusion, including the future work plan, is 

presented in this chapter. 

 

1.8. Summary 

As seen from previous figures and statistics, the world is moving towards reducing the 

use of the traditional resources to generate energy, and is attempting to answer the 

demand for energy by investing in renewables of all types; wind, solar PV, geothermal 

or hydropower. It has been recorded that this approach is moving faster in some 

countries, such as the UK, USA and Germany, but goes a bit slower in other countries 

such as China.  

As shown in previous statistics figures, the household is considered one of the sectors 

where energy is consumed at the most. Statistics also reveal that efforts should be 

concentrated in these main directions: 1) encourage obtaining energy from renewable 

resources and 2), use the available energy most efficiently. Both directions have been 

supported by governments and governmental organisations by establishing and 

promulgating different laws and regulations to control the energy sector aiming at 

minimising the harms and negative effects on the environment, and by encouraging 

stakeholders to switch to renewable resources.  

Due to the increasing energy awareness among the household occupants regarding the 

energy consumption impact on the environment and their budget. Moreover, the 

rapidly developing smart techniques which can be utilised almost in all environments. 

The opportunity to invent new systems to deal with this situation has arisen as never 

before, due to the massive efforts being taken to build, design and propose a number 
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of Energy management EnMS systems which have a substantial influence on the 

energy efficiency, environment and economy. 

As discussed in next chapter, all the reviewed frameworks cover different aspects of 

smart home management systems. They are pivoted around the same repeated idea of 

establishing a mesh network by adding hardware devices that have networking 

capabilities, together with having sensors and actuators, and finally designing a core 

management system to deal with the various network's nodes and data. Some of the 

proposed architectures and frameworks added more off-the-shelf units, such as 

microservices, simulation techniques, cloud solutions, emerging new techniques and 

technologies. However, all of them share a set of drawbacks and challenges; including 

lack of integrated architecture, lack of scalability, restrictions of the applicability on 

legacy and modern and smart environments, besides side issues related to the security, 

mobility management and proper stakeholders engagement and management. 

The framework proposed in chapter 4, provides a comprehensive and solid 

architecture to bypass these downsides by offering a unique structure that divides the 

framework into three main zones, and presenting a number of relevant generic 

components, moreover, utilising appropriate state-of-art and modern paradigms, 

besides offering essential approaches related to the context-sensitive analysis, 

detection and probability generation, predictive analysis and the alerting messaging. 

The division of the framework into two main zones combined with a gate zone,  

improves several quality-driven aspects related to scalability, enhanced encapsulation, 

performance and interoperability. The client zone is implemented and physically 

resides in the household site, and external APIs providers. This approach shifts a 

remarkable part of processing power from the central processing units in the cloud to 

the client and offer more privacy and enhanced security to deal with sensitive data 

within the correspondent household without the need to transfer it to the cloud, where 

only filtered, anonymous constraints are processed centrally. The cloud gate stands in 

front of the cloud zone to facilitate a number of relevant characteristics related to 

security and performance, by authorising, load-balancing incoming requests and 

caching responses. The cloud zone is the core and central unit of the architecture 

comprised of all necessary components to process and analyse the gathered data and 

deliver responses to all upcoming requests. Shifting shared units from the client zone 

to the cloud has a direct impact on enhancing scalability, modularity and performance.  
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2. Energy Management Systems (EnMS) 

 

2.1. Introduction 

Energy Management System is a set of systematic procedures that aims to persistently 

improve energy management and reach higher energy efficiency degrees [20]. One of 

the major aims of any energy management system is reducing the amount of consumed 

energy while still offering the same or even an increased level of service and comfort, 

by providing a set of fully and semi-automatic tools, processes and techniques to 

maximise the consumers' engagement to continuously control the consumed energy. 

This approach can also be defined as energy efficiency. Reducing the amount of 

consumed energy lead not only to a decrease in cost, also to the reduction of 

greenhouse gas (GHG) emissions. In the industrial sector, applying energy 

management systems has the possibility to decrease energy consumption by 20% [21]. 

This percentage has a substantial environmental impact as it is known that the industry 

causes 26% of the global carbon dioxide emissions [21]. 

 

This chapter starts with a review of some meta operating systems and middleware 

designed and currently running in this field. This is followed by a description of the 

characteristics of large systems since the proposed SEMS is considered a large, 

extendable sophisticated platform capable of managing an unlimited number of 

devices, sensors, protocols, components and off-the-shelf modules, which matches 

certain characteristics such as compatibility, expandability, interoperability, 

integration and standardisation. The answer to the basic question related to the 

advantages of developing and maintaining an energy management system architecture 

is emphasised in section 2.4. Going a bit deeper and touching some data-related 

aspects including data challenge, data acquisition and data storage have been done in 

section 2.5. Having done all these pre-sections, a detailed review and grouping of a 

number of existing energy management frameworks designed in the field of energy 

management systems will be introduced in section 2.6. Groups are split into three main 

categories: high-level frameworks, low-level frameworks and modelling and data 

predictions frameworks. Then it will be followed by a review of a number of smart 

energy management systems frameworks which were grouped into four main 

categories:  smart homes frameworks, IoT integration in smart buildings management 

systems, analytics-based approaches and modelling, simulation and forecasting 
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concepts. Important to mention that reviewing EMS followed by SEMS was done for 

many reasons; firstly, to show the historical evolution of energy management systems 

by integrating the smart technologies, which provides an indirect justification why to 

design and propose a new smart framework, rather than proposing an ordinary EMS 

without smart technology. Secondly, to provide a base of comparison to mention the 

advantages and disadvantages so the newly proposed framework can attempt to avoid 

the disadvantages and concentrate on the positive parts of these systems and enhance 

them. Finally, to provide a reference for potential comparison between the proposed 

framework and the frameworks done so far, which assists in emphasising the 

uniqueness and the added-value of the proposed framework illustrated in chapter 4. 

 

2.2. Review of Meta Operating Systems for Context-Aware Systems 

Meta operating systems are established on top of an operating system allowing 

coordinating heterogeneous systems, devices, applications, processes and nodes to 

communicate with each other in real-time [22]. This section contains a brief overview 

of some well-known meta operating systems that may be considered to build large 

systems consisting of different nodes. By nature, smart energy management systems 

may vary in scale from a specific, capsulated system designed to serve a particular aim, 

to comprehensive systems serving multi-purposes, and offering a wide range of 

services. This large type of SEMS consists of different nodes and systems that work 

together and interact mutually based on the middleware architecture that manages the 

dependencies and organise the interactions among different nodes. In the literature, 

there are several middleware approaches for energy management systems used for 

distributed environments which include: The power-aware middleware  - used for 

exchanging data on Mobile Ad hoc Networks called Transhumance [23] [24] [25]. The 

hierarchical framework – called Global Resource Adaptation through 

CoopEration (GRACE), offers integrations on different levels [26],  as illustrated in 

Figure 2.1 [26]. Middleware for Energy-awareness in Mobile Devices – that 

consists of six different components aiming to manage the energy in mobile devices: 

resource manager, ML application classifier, power estimator, policy manager, 

messaging service, and processing engine. 
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Figure 2.1: The GRACE system. [26] 

CasCap – context-aware power management system which consists of three major 

components: mobiles, internet, and clones (cloud services that can be used by mobiles 

to offload processing) [27]. DYNAMO – As illustrated in Figure 2.2 [28], a multi-layer 

architecture that aims to optimise energy consumption in mobile devices. It consists of 

four different levels: hardware, operating system, middleware and an application [28]. 

 

 

Figure 2.2: Architecture of the End-to-End Cross-Layer Adaptation Framework [28] 

 

Power-Aware Reconfigurable Middleware (PARM) – assists in saving energy 

in low-power devices by reconfiguring the distribution of components and migrating 

them. The architecture is illustrated in Figure 2.3 [29] 
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Figure 2.3: PARM Example Architecture [29] 

Energy Centric Operating System (ECOSystem) – is a framework based on a 

new abstraction level of the energy currency that aims to manage the energy 

consumption on the operating system level by following three dimensions: time, tasks 

and devices. The framework is illustrated in Figure 2.4 [30]. SANDMAN 

Middleware – is an energy-efficient middleware based on the BASE platform which 

is a minimal communication middleware that follows the peer-to-peer principles. 

SleepServer approach – allows managing energy on the desktop personal 

computers by using various proxy servers and virtual local area networks.  

 

 

Figure 2.4: ECOSystem Framework [30] 

GAIA – Meta-operating system [22] is an approach designed to support developing 

and running mobile software which runs in environments where users have the ability 

to interact with various devices concurrently. It consists of three main components: (1) 

Kernel: which contains all major management modules and a set of services such as 

context service, space repository. (2) Main application module. (3) All applications that 

run in the active space. The adding of the knowledge base has expanded the system in 

the way to describe entities and maintain cumulative ontologies. All different 

information related to the system nodes is stored in the central repository. The context 

is offered easily for both users and applications. Furthermore, the potential update of 
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the system can be separated from the application itself. GAIA suffers from security 

issues because it does not have any basic modules dealing with security issues. 

 

2.3. Characteristics of Successful Large Systems 

Energy Management Systems are considered complex and large systems which are 

identified by the relationship among their various internal components. In this context, 

the architecture of the system plays an essential role when it comes to identifying the 

complexity and implementing related solutions. The environment where EnMS is 

implemented defines the exact deployment steps, which may vary from an 

environment to another. Every environment has its unique key factors and knowledge 

which should be considered during the design and implementation phases. Since the 

system is constructed in dynamically evolving and changing environments, continuous 

improvements, integrations, changing of functionalities and services are necessary to 

meet the evolving system needs. For this purpose, a large complex system should meet 

some essential characteristics to enable them to perform effectively, these are: being 

compatible, expandable or extendable, interoperable, integrable and standardissable, 

performant, reliable, scalable [31]. In the next sections, some of these characteristics 

are described in more details 

 

2.3.1. Compatibility 

This quality factor defines the ability of a system, application, module or component to 

continue functioning properly after updating any part (hardware or software) of the 

system. This goal can be achieved by defining the exact specification, functionality and 

boundaries of the software entity. Relying on interfaces and predefined standards may 

increase the compatibility of any software or architecture. 

 

2.3.2. Expandability 

Software is considered expandable when new functions can be added to the application 

without the need to re-implement all or a huge part of the software. Expanding the 

software may be needed to match changes in the type of use or user numbers. Also, it 

is maybe needed to match new functional or legal requirements. In the SEMS several 

changes may require a system to be expandable, for example: having new technologies, 

protocols, devices. Also, increasing the volume of the collected data from sensors, and 

increasing the number of connected devices. 
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2.3.3. Interoperability 

This factor defines the capability of a system operating on different platforms, together 

with different external systems without suffering from any functional or performance 

restrictions. As indicated by the European Commission [32], ensuring the 

interoperability of energy management systems while integrating the demand 

response leads to activating the public-private partnership and increasing the 

effectiveness of implemented EMS. This factor plays an essential role in the SEMS 

approach because of the evolving systems and continuously changing platforms, 

techniques, and technologies in the field. Continuously new devices, applications, 

systems, products are invented, so the need for any entity to be interoperable is 

growing rapidly. Serving this purpose can be achieved by providing standardised 

architectures, applying interfaces, and providing clear boundaries with well-defined 

input/output interfaces. 

 

2.3.4. Integration 

The next step after ensuring the proper grade of interoperability is the ability of 

integration. This means how far applications or components are ready to perform 

collectively when deployed together within one system, or different systems within a 

larger system via predefined Application Programming Interfaces (APIs). Due to the 

nature of the EMS architectures which consist of a variety of systems, components, 

devices and modules, the integration is considered a must feature, where different 

layers of entities communicate with each other via APIs. Usually, the first layer consists 

of hardware (sensors, actuators, devices etc.), these have a direct connection via a 

middleware with gateway nodes, which is considered a master entity for further 

communication with services and entities in the cloud. Using middleware for 

communication is the main difference between integration and interoperability 

because integration requires using a middleware of any kind, however, interoperability 

requires data being exchanged among entities (components or systems) possibly in 

real-time. Moreover, interoperable systems do not only share data, they also processes 

and present those as their own data.  
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2.3.5. Standardisation 

The major prerequisite to implementing and maintaining large EMS systems is 

following predefined standards. The need for standardisation comes from the fact that 

several software and hardware vendors deliver independent products that need to work 

together to deliver the desired system functionality. So, these vendors, who develop 

their products separated from each other must follow a set of rules and standards to 

allow integrability and interoperability. The absence of such standardisation may be 

considered as the main obstacle towards the rapid and effective development of any 

EMS. Commercial systems such as EMS will be deployed to a real-time platform, must 

match predefined characteristics because it is required to fulfil functional and non-

functional requirements obligated by the market where it should be implemented. 

Mainly commercial systems must fulfil particular criteria; such as compatibility, 

flexibility, interoperability, data accuracy, and illustrates a high degree of 

expandability to enhance the scalability with proper resources management. 

 

2.4. Advantages of Energy Management Systems Architectures 

Previous sections described what criteria should be considered while designing a large 

and complex architecture for an EMS. However, designing a framework for EMS brings 

several additional advantages, such as;  

- allowing decision-taking mechanisms and organisation services to consider the 

amount of energy consumed by various assets, or by different processes, to 

enable energy optimization on both local and global levels [33]. 

- Incorporating standards for exchanging, analysing and displaying energy data, 

and measuring the performance. 

- Meeting the requirements of compatibility, expandability and interoperability 

to support further future developments and extensions. 

 

2.5. General Data Challenges 

According to Statista.com [34], the data and information volume which have been 

generated, caught, replicated and used worldwide in 2021 reached 79 Zettabytes (79 x 

1021 Bytes). According to the latest forecasting scenarios, this number is subject to 

increase up to 181 Zettabytes (181 x 1021 Bytes) in 2025. Moreover, with developing and 

using new devices, sensors, and smart appliances, data volume and data variety and 

format is likely to accelerate even further. According to Heiss [35], several challenges 
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came up with this enormous amount of data, in many fields such as business and 

industry, and science. In business, the challenge resides in merging data from various 

resources and protocols to extract useful information. This can be clearly seen while 

collecting and analysing customer data retrieved from social networks to derive some 

marketing strategies. In science, gathering the enormous amount of data in intense 

amounts, and ensuring the availability of this data for a limitless number of scientists 

all over the world is also considered a typical challenge for today. According to Heiss 

[35] in Germany, there are many platforms dedicated to dealing with the enormous 

amount of data obtained from various scientific fields, such as Data Life Cycle Labs 

(DLCL) [36] and Helmholtz Data Federation (HDF) [37]. Another challenge in the 

science field is archiving scientific data, or what is so-called (data preservation). This 

aspect becomes very important for that kind of data that cannot be repeatable, such as 

weather, or some geological measurements. In the next section data acquisition and 

data storage including the referencing to some data mining and machine learning 

techniques, will be discussed in detail. 

 

2.5.1. Data Acquisition 

Gathering data has moved from just collecting valuable data that is matching and 

serving the organisations objectives, towards gathering all kinds of data that represents 

the stakeholders’ interactions with an organisation. Enhancing user experience 

positively, and achieving reliable, robust and realistic strategic decisions in any 

business requires building a comprehensive knowledge generated by collecting and 

merging data from different origins; such as data collected from tracking users’ 

behaviours, the feedback which is given on the offered services, the mutual interactions 

and discussion occurred among users related to the given services or products, and 

finally, the users’ profile which fulfils the whole picture. Obviously, the huge amount 

of gathered data requires another scale of data mining techniques and algorithms to 

meet the rapidly increasing demand. These algorithms must be scalable and should be 

able to handle the rapidly changing variety and velocity, so they can accomplish the 

data transformation properly and efficiently before it can be processed by analytical 

tools. Many different techniques are used to acquire data from scalable household units 

where the energy consumption may vary continuously. Data is collected from the 

energy consumption and appliances’ status (ON/OFF), also it comes from different 

motion sensors, and heat sensors, also external data signals coming from weather 

forecasting, traffic and energy providers. Lately, together with the cloud-based 
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Platform-as-a-Service (PaaS) some methods and systems are developed to analyse 

real-time information sent by various sensors [38]. 

 

2.5.2. Data Storage 

After acquiring and gathering the data, a platform for storing the data must be set up. 

This is an essential step before starting to process the data. There are too many storage 

platforms mentioned in the literature, however, this section will discuss and illustrate 

a comparative elaboration of them, pointing to the most suitable storage strategy for 

the proposed I3SEM framework. The industry offers many types of databases types; 

such as centralised databases, relational databases, cloud-based databases, NoSQL-

databases, Object-Oriented (OO) databases, distributed-databases, graph-databases 

and operational databases, however, in this research, the focus will be on the most 

relevant types; relational and non-relational databases. 

 

PostgreSQL, Oracle, MySQL, Microsoft SQL Server are among the list of relational 

database management systems available in the market. Per definition, relational 

databases are designed to deal with pre-defined data structures and schemed data. So 

based on this fact, storing structure-free or unstructured data, retrieved from different 

sources, in relational databases, is not appropriate. Relational databases perform 

efficiently and performantly due to pre-defined relationships and indexes. Lately, the 

shifting of such databases to the cloud has offered better scalability, availability and 

reliability, however, the lack of handling unstructured data put some restrictions on 

using this kind of database in the smart energy management systems field.  

 

The alternative candidate is using non-relational databases [39]. This kind of database 

is known also as NoSQL databases or scheme-free databases. Basically, it saves the data 

as documents without a pre-defined structure which makes it perfect to deal with the 

various structure of data collected from different resources and hardware vendors, 

such as sensors, measurement meters, smart appliances, external data providers 

(weather forecasting, traffic, energy providers, …). CouchDB, MongoDB and InfluxDB 

are among the list of the most known non-relational databases [40], [41]. Closer to the 

IoT hardware industry reveals that new types of equipment are developed and added 

at a very rapid rate, also the same type of hardware is developed and enhanced by 

adding new functions and evolving the existing ones. For instance, a sensor that 

collects and sends coordination were only sending latitude and longitude, however, 
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recently the same sensor was enhanced to send further information along with Lat and 

Lon, such as the altitude, speed, or even the amount of covering satellites (affects the 

measurement's accuracy). 

 

Besides the fact that non-relational databases can store unstructured data, research 

carried out by [42] has held a comparison between a relational database called 

PostgreSQL and non-relational database InfluxDB, has concluded that using both 

databases is equally performant when inserting the data, however, the disk usage 

overhead was significantly higher (58%) when using PostgreSQL database, same time 

InfluxDB has shown a reduction of the disk-usage size of 75%, which make it a more 

suitable candidate to deal with the enormous data volume expected in this field. The 

same research supports the conclusion that a non-relational database should be used 

for the proposed I3SEM framework. 

 

2.6. Review of Selected Energy Management Systems Frameworks 

Due to the fact that the primary energy resources, for instance, fossil fuels, are infinite 

supply and are harmful to the environment, and the fact that nuclear has raised a threat 

particularly after the Fukushima Daiichi disaster in Japan in 2011 [43], different and 

more sustainable solutions have been considered including the use of solar and wind 

energy. However, the required immense amount of base-load solar and wind energy 

harvesters stands as an obstacle to switching the efforts to obtain energy from primary 

resources to renewable ones. Therefore, the initial target of energy management is 

using the energy in both home and industrial sectors efficiently. To achieve this aim, 

many attempts have been made to design, implement and evaluate various energy 

management frameworks. These range from high-level frameworks to low levels 

detailed ones, some of which are considered in the following subsections [44]. 

 

2.6.1. High-Level Energy Management Frameworks 

High-level frameworks give overall ideas about how energy should be managed without 

going into specific details of the implementation. These include an early integrated 

framework, which was introduced by Asare-Bediako et. al [45]. The framework's main 

characteristics are concentrated in three main aspects: Firstly – reviewing the energy 

management systems' concepts for housing customers. Secondly – inspecting the 

background of smart home energy management system technologies. Thirdly – 
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highlight the significant off-the-shelf components and provide a comparative analysis 

of different technological approaches. Moreover, it brings some light to some of the 

apprehensions and challenges represented in costs, confidentiality and deployment of 

smart technologies and future systems. 

 

The proposed framework explains many issues that should be taken into consideration 

while building sustainable home energy management systems and how they interact. 

The first approach is built upon providing an overview of a network of interconnected 

items which can be modified according to needs. Figure 2.5 [45] illustrates a joined 

framework for developing upcoming home energy management systems. The 

building's main characteristics, such as building's type, construction year and 

orientation, are considered by the framework. Moreover, the nature of the building's 

occupants is also essential; they may be families, single persons or even students or 

older people. Secondly, the way how the home energy management system is deployed 

and installed defines its integration's grade and being sustainable. Thirdly, any 

previous installations, the existence of sensors [46], smart appliances, distribution 

sensors and the way how they are connected and integrated into the entire facility. 

Finally, the interoperability, in other words, the ICT software must support various 

devices, technologies produced by different manufacturers. 

 

Figure 2.5: Integrated framework for future HEMS [45] 

In addition, such frameworks provide a high-level view; they are highly descriptive, i.e. 

they show what to do, not how to do it. 

 

Building and establishing an effective framework is the first step towards achieving the 

goals of an Energy Management System (EnMS). The main focus of such a framework 

is to manage ongoing energy consumption, identifying the chances to implement 
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energy management technologies, especially the choices that do not necessitate 

massive investments. EnMS assists in establishing continuously running processes. To 

obtain the required results, all energy efficiency improvements efforts must not be 

made on a one-time basis, rather they must be figured and applied in the process of 

persistent enhancement and perfection. Moreover, even the recently optimised 

systems may become outdated because of the rapidly changing constants in this field, 

represented by the continuously improving technology, changing political situations 

and variety of the supply-and-demand forces in the energy field [47]. 

 

The implementation of an EnMS may follow either an 

established standard or may be derived from a custom 

approach. One of the well-known and accepted standards 

in this field is the ISO 50001 (This has been explained in a 

bit more detail in section Law and Regulations). 

Regardless of the applied approach, the key focus of any 

EnMS is the involvement and the continued commitment 

of all participants, including management, consumers and 

system users. The continued involvement of all 

participants in the EnMS increases the motivation and 

ultimately lead to the effective functioning of the EnMS. 

Regardless of the chosen standard, ISO 50001 or a customised one, the elementary 

EnMS progression always follows the (Plan → Do → Check → Act) approach (see 

Figure 2.6) [48]. 

 

2.6.2. Low-Level Frameworks 

Most of the current modern management systems are built on embedded systems with 

interfaces interacting with various smart home components, different heating and 

energy systems, demand-side management systems, and at the same time to cloud-

based services such as weather forecast portals and electricity price engines. These 

kinds of systems do face some challenges, such as: To achieve a high grade of 

integration, these systems must be adjustable and can be easily installed in the industry 

or home sectors. It also should consume a low amount of energy and has low 

installation and integration costs. In reality, it is observed that interoperability among 

developed systems is very poor; this is due to the lack of common standards. Moreover, 

unfortunately, the future picture does not look promising; the incompatibility grade 

Figure 2.6: Plan-Do-Check-Act 
framework [48] 
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will become worse with all those newly developed proprietary devices. Some attempts 

have been made to address some of the above issues such as the open-source solution 

of a framework which is proposed by a group of researchers belonging to the 

Fraunhofer Institute in Germany [49]. 

 

This is intended to be available for a personal and organisational level. There is a 

similarity between this approach and other existing frameworks, such as Niagara 

Frameworks, Quivicon Framework, HomeOS, Apache Cocoon, OpenHAB  [49]. 

However, the main difference resides in the fact that those frameworks are not fully 

open-sourced and are mostly concentrated on the smart home area.  

 

The target of the proposed framework Open Gateway for Energy Management Alliance 

(OGEMA 2.0) is providing software and hardware-independent platform to form a 

basis for various units and interfaces in a high modularity structure. The framework's 

user’s interaction is granted by offering several interactive interfaces and GUIs. It 

consists mainly of a JAVA-based middleware operating in a VM, and some 

fundamental components including an operating system, data storage and interfaces 

support. OGEMA 2.0 offers different security levels, user management modules and 

permission management as off-shelf components. Figure 2.7 [49] illustrates the 

proposed software architecture of the Energy Management Gateway (EMG) utilising 

OGEMA 2.0 

 

Figure 2.7: Energy Management Gateway (EMG) Architecture using OGEMA 2.0 [49] 
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Another low-level framework is the improved energy management framework, used to  

raise energy consciousness (Figure 2.8 [50]). It is designed to be used in advanced and 

innovative Industrial Energy Management Systems (IEMS). Energy-related data will 

be collected from various locations of the factory; then it gets combined with the 

enterprise dataset to sharpen the overall image, and ultimately enable further 

optimisations and emendations [50]. 

 

 

Figure 2.8: Industrial Energy Management Systems (IEMS) [50] 

This framework can be used by the manufacturers who use a manufacturing execution 

system (MES), which is responsible for delivering real-time monitoring and 

production plans, however it does not deliver any output related to the energy 

consumption during the production's various processes. The framework enables 

integrating the consumed energy's data in the overall scene by defining energy data 

standards and integrating some existing communication interfaces such as process 

field bus (Profibus) which is a master-slave structured protocol invented in the '90s to 

respond to the industrial communication requirements. Moreover, the Open Platform 

Communications (OPC), which is a set of specifications and standards applied in 

industrial communications to establish a communication bridge among devices of 

different vendors [51]. The data stream analysis makes a real-time data streaming, 

which is usually combined with a massive amount of data, possible by standardising 
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the transferred data format and applying data reduction to extract the targeted figures 

from the vast data set, fast and effectively.  

 

The complex event processing (CEP) engine, which analyses events all the time trying 

to find patterns in real-time and suggests a response to them as soon as possible. An 

incident is classified as a data instance with a changed status, such as a machine that 

started or stopped running. Moreover, it offers some other features, such as 

standardised energy data, which increase the reliability and consistency of most of the 

current energy data sets. The CEP system is provided with three primary feedback 

resources: First, the industry's energy key performance indicators (KPIs) such as 

energy cuts, and the duration average, maximum allowable costs. Second, the rules 

cover all related production rules such as quality, speed, involved workers, and third 

the metrics which are similar to the KPIs, however, they differ in the way that it covers 

all business areas, whereas KPI is specific for one business field. Metrics example is 

sales revenue, customer loyalty, productivity ratios etc.  

 

The proposed framework intends to deliver performance metrics and energy 

consumption figures visualised on a daily and hourly basis, to allow decision-makers 

to adjust their production processes in a way to avoid high-energy demanding 

production activities during the peak load, or taking advantage of the energy generated 

solar plants during the day-light. In the same way, some production processes that 

generate heat can be aligned before other processes which require heat building an 

optimal energy cascading approach.  

 

2.6.3. Modelling and Data Prediction Frameworks 

According to Kucuksari [52], many studies have been presented using modelling 

renewable energy systems and their simulations with and without grid connections. 

Some of the studies focused on various control algorithms and some others 

concentrated on capacity planning and optimisation of system sizing by using different 

simulation approaches. There was some work done on operational cost minimisation 

of Photovoltaic (PV)-wind-grid connected system by forecasting generation amount 

and heuristic optimisation. Mathematical models of each system and are employed 

linear programming along with heuristics. The amount of daily power generation is 

estimated, and energy allocation is performed based on cost minimisation. A policy-
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based two-level distributed simulation for energy management has never been 

explicitly addressed. 

 

The described framework is illustrated in Figure 2.9 [52]; it presents two levels of 

modelling layers which illustrate an average household with a PV panel, storage unit 

and a grid connection. The framework's primary goal is providing the household units 

with the required direct current (DC) without suffering interruptions and with keeping 

the operational costs at their minimum level. Both levels are called high-level and low-

level. 

 

System dynamics (SD) is used to develop a high-level simulation model. SD is a 

computer-based approach that assists in understanding the irregular behaviour of 

complicated systems. This high-level, which is implemented by AnyLogic software, is 

designed to provide the system with operational decisions while involving policies, 

rules or restrictions to control all the components of the low-level. The taken decisions 

could be for instance when to supply the load from PV, or when to start charging or 

discharging the storage unit (battery), or even when to start buying energy from the 

grid to face any possible increasing demand. The low level is a representation of 

electrical circuits including PV, storage unit (battery), some household energy-

consuming appliances, and grid. It is implemented using Matlab Simulink. The 

communication and interaction between both levels is performed via a set of SOAP-

based Web-Services technologies. 

 

 

Figure 2.9: The proposed two-level modelling framework [52] 
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Another framework that is based on data prediction and modelling is called model 

predictive control (MPC). It is an enhanced technique of process control (PC) that is 

used to steer a process while fulfilling a set of rules and limitations. This approach has 

been applied widely in chemical plants and oil refineries starting from the '80s of the 

last century. A proposed (MPC) framework [53] which is shown in Figure 2.10 [53], 

consists of several parts such as a virtual building that simulates the real one, a 

predicted set of data using the MPC framework, savings and control variables. All these 

parts are connected to the outside world via an external interface. 

 

Figure 2.10: Model Predictive Control Framework [53] 

 

2.6.4. Summary 

It is clear that all previous energy management frameworks are aiming at one main 

target: achieving the highest level of energy efficiency. Frameworks attempt to achieve 

this goal by following different approaches. However, every one of these follows a set 

of rules which are specific to the framework itself. Moreover, it acts either as a stand-

alone island by not communicating with the outside world, and thus not benefiting 

from the vast capabilities offered by available technologies, or lacks having proper 

sensors and actuators to gather, process and make proper decisions. To overcome this 

shortage, these frameworks and systems have been evolved by making them smart. The 

following section will discuss some of these smart frameworks and systems.  

 

2.7. Intelligent Energy Management Systems 

The continuous increase in energy cost and the rapidly growing energy demand, as well 

as the negative environmental impact, have created an urgent need to go to the next 

level of managing energy resources and consumption by applying smart energy 
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management approaches and technologies. Such approaches enable the measuring, 

monitoring, controlling and ultimately saving energy by making real-time decisions 

based on the collected data while still being able to maintain the same level of quality 

of life and energy demand. The newly developed technologies such as IoT, Big Data 

concepts, cloud computing and ML techniques have played a massive role to switch 

from traditional energy management systems to smart ones. Moreover, the rapid 

development of communication protocols such as ZigBee and Z-Wave, and their 

related advanced metering infrastructures such as sensors and hardware have also 

pushed the use of smart EMS forward and brought it to the next level in residential, 

industrial and commercial areas. This section will explore some applied areas by 

reviewing recent research work in order to analyse the nature of these smart systems 

and their direct and indirect impact on the surrounding zones. 

  

2.7.1. Smart Home Frameworks 

As discussed in section 1.2.4, worldwide household electricity consumption has 

reached unprecedented levels. The illustration in Figure 1.6 shows that the energy 

consumption rate within the residential area is very high, for instance in the U.S. this 

rate reaches a total of 20% of the total energy consumption recorded in 2017, in 

numbers, this means approximately 19,54 quadrillion British thermal units. 

Considering this fact, any effort invested in reducing the consumed energy will 

significantly affect the overall energy consumption and bring society one step closer 

toward efficient energy usage. Furthermore, the evolving communication protocols, 

infrastructure, storage units and home area networks, led toward building smart home 

energy management systems which mainly consist of advanced technological 

infrastructures coupled with renewable energy sources and storage units. Figure 2.11 

[54] illustrates an example of such systems. 
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Figure 2.11: Home Energy Management System Architecture [54] 

 

As proposed by [54] a smart home energy management system (SHEMS), as illustrated 

in Figure 2.11, consists of many units; the controller is centralised and has the task to 

provide the control possibilities and monitoring facilities. In the system, the energy 

consumption figures consumed by both appliance types; schedulable and none-

schedulable appliances, can be tracked and recorded to offer an overview of the 

consumption rates and to deliver needed electricity optimally. The smart-meter is 

playing a gateway role between power utilities and smart home appliances; it is capable 

of receiving the demand response signal sent by the local power utility to inform the 

customer about possible modifications of the price or electricity consumption rates. 

Also, it assists in controlling home appliances to implement the residential demand 

response which is a new method that aims to improve the energy consumption 

efficiency by time-shifting the appliances running phases based on the local utility’s 

condition. The electrical car is considered a schedulable energy consumer in the 

system; thus, it brings a high degree of stability to the energy system by avoiding 

consuming energy on peak loads. Having a solar source of energy, mainly obtained 

from photovoltaic PV, and proper storage facilities decreases the dependence of the 

system on the local utility and enhance the management capabilities of the HEMS due 

to having various energy sources. The proposed framework offers various 

functionalities such as controlling, monitoring, logging, alarming and management. 

 

The previous framework was built on the assumption that local utilities do support 

smart meters devices and are capable of dealing with demand response signals. It also 

requires financial investment in the deployment of smart HEMS by purchasing and 
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installing additional appliances. The security aspects are not mentioned in the design, 

so it does consider the strategies applied to protect and regulate the access of the local 

mesh network from outside. Moreover, there is no detailed explanation of the required 

solar PV technologies, or the storage units' limitations and the amount of lost energy 

during operating phases. 

 

As a result, several new energy management frameworks have appeared recently in 

literature such as the Sense-Think-Act Framework introduced by [55]. The framework 

includes a number of core concepts of smart building management systems which 

observes, measure and collect data from the mesh network's various component, and 

then it delivers the collected data selectively to a central data management unit, where 

it gets processed and analysed to produce the required rule-based decisions. Finally, 

perform a suitable action on the controllable building appliances [55]. In fact, the paper 

introduced a streamlined framework to implement the Sense-Think-Act design 

concept, in which the middleware represents the Sense (S) part, the model-based 

optimisation methodology represents the Think (T) part, and finally, the Action (A) is 

made by the actuation and evaluation components. Thus, three main components are 

considered: (Sense) The data flow collected from different end-units (sensors, weather 

forecasts, traffic stations, …). (Think) Represents the rules-set-based methodology to 

produce effective decisions — finally, the (Act) which represents the assessment and 

operating units. The hosting platform middleware is considered one of the most critical 

components of the framework (Figure 2.12 [55]). This middleware plays an essential 

role to reduce deployment costs, streamlining the data flow across building appliances, 

sensors and actuators. 
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Figure 2.12: The proposed STA framework [55] 

According to this framework, the (T)hink task is addressed using the following 

mathematical equation: 

𝑥𝑘+1 = 𝑚(𝑥𝑘 , 𝑢𝑘 , 𝑑𝑘) 

 

where m is a vector function, 𝑥𝑘 contains observable system states at the time 𝑘, 𝑢𝑘 

represent the control actions at time 𝑘, and 𝑑𝑘  is contains the measured disturbances 

influencing the system (e.g., weather circumstances) at 𝑘 time. Thus, an accuracy 

future states 𝑥𝑘+1can be estimated. 

 

The experimental verification has been performed on the AC appliance installed in the 

offices of the Technical University of Crete. The building suffers from poor isolation 

and low airtightness. Prior to the project, every AC was managed manually in solo 

mode. The experiment started by adding sensors to measure the current energy 

consumption rates and the actual parameters, including ambient temperature, 

humidity, presence detection, windows and doors contact. Moreover, actuation 

capabilities were installed to control the AC units by switching them on/off, setting the 

temperature between [18 – 29] ° C, running mode (hot or cold) and fan speed [zero -  

hundred] %. 
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The conventional Building Energy Management Systems (BEMS) depend on a pre-

configured rules-set that consider pre-defined and assumed constraints and act 

according to it. For instance, the expected total and the average number of occupants 

in the building, the average value of various weather elements such as temperature, 

humidity, or the price of energy in the region, will be fed to the system once or updated 

on regular basis to allow the system to make decisions that mostly achieve the 

challenging equation: how to reach the most efficient energy consumption while 

providing the targeted user's comfort. However, according to the concept of STA, 

reaching this golden rule requires applying the following ways. Firstly, the separation 

of energy-saving from user comfort is untimely. In other words, performance indexes, 

smooth building operation should be considered while taking the user comfort into 

account. Increasing user comfort may result in consuming more energy after 

establishing a BEMS system. Second, fully exploiting the intelligent BEMS design 

requires having a set of fault detections and assessments units to react instantly to 

users' disturbances. Finally, it is essential to have a hosting platform within the scene 

to allow mutual communication among sensors, appliances and various control units 

to ensure the proper flow of data in both directions. In addition, this approach does 

not achieve the maximum benefit during the edge-cases, for instance, when the 

weather suddenly changes, or several occupants leave the building, or even when new 

energy providers reach the region offering better or clean-energy-based energy plans. 

Substitutable, there is a need for a system that continuously measures, detects and 

make assumptions to decide for the best operational conditions to achieve the golden 

rule efficient energy consumption while matching the desired comfort. 

 

A number of industrial and commercial online services such as If This Then That 

(IFTTT), Capterra, Automate.io, Zapier were invented in the latest decades to offer 

platforms for mutual communication among services that exist on the Internet. It is an 

automation platform for busy people because it allows automatically moves 

information between web applications letting individuals or businesses focus on more 

important work. IFTTT utilises five different concepts: Services or Channels, Triggers, 

Actions, Applets and Ingredients. Services are the basic blocks; they mainly describe a 

series of data from a certain web service such as YouTube or eBay. Services can also 

describe actions controlled with certain APIs, like SMS. Sometimes, they can represent 

information in terms of weather or stocks. Each service has a particular set of triggers 

and actions. Triggers are the (this) part of an applet. In other words, they are the items 
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that trigger the action. For example, receiving a notification based on a keyword or 

phrase from an RSS feed. Actions are the (that) part of an applet that represents the 

output resulting from the input of the trigger. Applets or recipes are the predicates 

made from Triggers and Actions. For example, if the user likes a picture on Instagram 

(trigger), an IFTTT app can send the photo to his/her Dropbox account (action). 

Finally, Ingredients are basic data available from a trigger—from the email trigger, for 

example, subject, body, attachment, received date, and sender’s address. 

 

This approach sounds promising and offers endless opportunities to connect unlimited 

numbers of communication among providers on the Internet, however, it suffers from 

a number of drawbacks; firstly, it requires having pre-defined, and pre-negotiated 

agreements and protocols with the services providers to implement the required API 

functions and pre-defined data nodes, which brings some restrictions and efforts to 

add new bridges from new service providers, or modify the current APIs if necessary. 

Secondly, it does not define standard and unified data structures that should be 

followed by service providers, on contrary, these online services, are consuming what 

other service providers offer. Thirdly, it misses an overall security concept to deal with 

potential threats. Fourthly, it lacks the scalability and expandability to be rolled out 

covering micro solutions not related to known service providers, such as integrating 

self-developed components residing in a private network. Services must be public and 

reachable over the World Wide Web. 

 

As will be seen in chapter 4, the proposed framework attempts to address these 

drawbacks by offering standard and unified data structures units to transmit data 

among various components, without a need for additional programming efforts, and 

without a need for previous negotiations or shake-hands agreements. It also offers on-

the-spot solutions to deal with the most relevant security issues such as mobility 

management, bundle-node-of-attack to deal with the fact that nodes inside the mesh 

network can be exposed and be part of other networks, such as a mobile phone which 

can be part of the mesh network and same time part of the cellular network. Moreover, 

it can be physically stolen or hijacked. Finally, the fact that service providers must be 

public and reachable via WWW does not support the nature of energy management 

systems implemented within the household sector, because this kind of system 

depends on having micro and specific solutions located within a private network. 
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2.7.2. IoT Integration in Smart Buildings Management Systems 

Integrating IoT based applications in all kinds of smart things such as buildings, 

organisations, cities, e-health, asset management, considered a major characteristic of 

the modern industrial witnessed today. The proper implementation of IoT based smart 

buildings' systems requires fulfilling some crucial non-functional requirements such 

as maintaining the same level of comfort, achieving a high level of usability and user-

friendliness, matching the standard security standards. However, many technical 

challenges come up with applying IoT applications in the smart home area. A paper 

introduced by [56] provides a review of these benefits and challenges. The idea is to 

apply IoT concepts taken from different smart cities areas, namely, energy, water, 

mobility, constructions and authority, as a down-sized version in commercial 

buildings. In fact, not all the parts/units of a commercial building are suitable to apply 

IoT concepts, only those areas with high energy consumptions rates should be 

considered, such as server rooms, office spaces with the considerable need of lighting, 

HVAC rooms, cooling and heating appliances. Figure 2.13 [56] illustrates a pictorial 

view of an IoT environment with sensors farm, Building Management Systems (BMS), 

networks and various cloud services. As indicated in the picture, the main focus 

currently is on electrical energy consuming appliances; however, in the future, all other 

kinds of energy such as renewables and natural gas will be considered. 

 

A transformation process to convert a conventional BMS into an IoT-enabled BMS 

should cover all existing BMS aspects or features. Starting from the Scope – which 

should be extended to support aggregated systems (e.g., energy, surveillance, alarm 

systems, etc.). Sensors – change the current specific sensors to more detailed ones 

measuring and tracking humidity, CO2, temperature and motions. Protocols – play an 

essential role in establishing the core communication. Thus, these should be converted 

from Plethora to IP/IoT based protocols. Architecture – transforming the architecture 

from standalone and closed to open and networked shape. Also changing the access 

type from closed/local to open and remotely.  Finally, the security must be enhanced 

to match the new changes by moving it from the basic level to an advanced level 

covering all known security aspects. 
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Figure 2.13: Sensors, BMSs, Networks, and Cloud Services in an IoT Environment [56] 

The paper introduced the usage of Power over Ethernet (PoE) technology to fulfil most 

of the previously mentioned changes and enhancements. The basic idea of PoE is 

transmitting DC power among data conductors by applying a specific voltage on unit 

pairs, without having any interference between data packets and the applied power 

signals. This technology consists of two main components: First, Power Sourcing 

Equipment (PSE) – which is a device that injects power into the PoE environment. 

Second, Power Device (PD) – which represents any device operated by a PSE device.  

 

2.7.3. Analytics-Based Approaches 

Smart home energy management approaches which are applying Big Data analytics 

and IoT, were lately considered in a vast number of researches.  The aim is to build a 

smart HEMS to achieve the previously mentioned sensitive and challenging equation 

by cutting the costs while still meeting energy demand [3]. The proposed system is 

utilised by interfacing each home appliance with a data acquisition module addressed 

by a unique IP-Address within the established mesh network. It collects the data and 

transfers it to central storage equipped with off-the-rack Business Intelligence and Big 

Data technologies. IoT, Big Data and Business Intelligence platform (BI) technologies 

offer a solution to address the challenges represented by the sheer quantity of collected 

data and the efforts to process and analyse it while applying the smart HEMS in various 

scales from one household to an entire community. 

 

As seen in Figure 2.14, the system is prototyped in the lab for Heating Ventilation and 

Air Conditioning (HVAC) appliances as a case study. The proposed architecture 

consists of several subsystems: first, hardware architecture such as sensors and 
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actuators, high-end microcontrollers, servers.  Second, software architecture, which 

includes data acquisition modules, client application modules and the middleware 

module. The middleware module consists of a messaging protocol server based on the 

publish-subscribe approach called Message Queuing Telemetry Transport (MQTT) 

server, a database server, an analytics engine, and a webserver. 

 

 

Figure 2.14: Analytics-based HEMS Architecture 

 

Constructing the proposed Wireless Sensor Network (WSN) using the client-server 

paradigm via one of the commonly used smart home protocols such as ZigBee brings 

some limitations. These can be summarized in two points: First, the shortage of 

reliability because of the use of the client-server paradigm, which raises the possibility 

of losing the data in case of any system failure.  Second, the need to build a data 

integration bridge between the smart home protocol, in this case, ZigBee, and the TCP-

IP when integrating the stand-alone household smart HEMS with other units to build 

a community of homes. Moreover, utilising the GSM/GPRS networks in the WSN 

networks may offer more possibilities to control, monitor and schedule IoT appliances 

within the household. Collecting the massive amount of data from WSN centrally is a 

known approach that has been done many times, however analysing and managing this 

data efficiently by applying Big Data concepts, and obtaining comprehensive 

understandings remains a challenging mission. 

 



 
 
Integrated Scalable System for Smart Energy Management 

64 
 

2.7.4. Modelling, Simulation and Forecasting Concepts 

Over the years, modelling, simulation and forecasting techniques have been used in 

many different applications. Recently, these have been applied for efficient energy 

management systems. [57] has proposed a simulation-driven and IoT-based smart 

home application. The purpose is to demonstrate the energy efficient IoT based smart 

home using kitchen appliances, heating and cooling devices, motion sensors with 

surveillance cameras, and coupled lighting and HVAC control systems. The whole 

proposed system will be managed via a mobile App from anywhere; in other words, it 

should offer a high degree of mobility. The Multiphysics simulations were carried out 

using ANSYS kitchen products. Figure 2.15 [57] illustrates a scenario that begins when 

the motion detector recognises a human being entering the kitchen, this information 

is transmitted to the home energy management system to perform some actions, such 

as turning the light on and switching the HVAC device ON/OFF. 

 

Using ANSYS gives a vast opportunity to simulate the system as a whole or some parts 

of it under various circumstances and operational conditions, such as thermal changes, 

fluid forces, and even electromagnetic radiation. This ability has been accomplished in 

this case study by adding some stress testing for the antenna used in the smart LED 

and different other IoT devices. 

 

 

Figure 2.15: Simulated Smart Home Model using ANSYS products [57] 

 

Other systems such as SHEMS introduced by [58] are based on the Bluetooth Low 

Energy (BLE) which is improved by offering an Artificial Neural Network (ANN) to 
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overcome the limitations faced by customers who are not able to use some incentives 

provided by smart metering systems such as time-of-use, real-time pricing and 

demand response programs, to decrease the consumption of energy within peak-hours. 

The proposed mechanism focuses on forecasting and predicting the energy 

consumption at various times during the day and on different days during the week 

and provide a necessary ANN configuration to accomplish the required target. 

Basically, a combination of ANN and BLE will be used to predict energy consumption; 

this approach allows taking decisions not only based on the actual situation. moreover 

takes the likely short-term energy consumption progress. Figure 2.16 [58]  depicts the 

core concept of the system. 

 

 

Figure 2.16: Proposed EMS Architecture [58] 

The fact that the evaluation has been performed using a simulation campaign done via 

the Network Simulation Version-2 (NS-2), without real-time data taken from a real-

world experiment, opens avenues for possible future work to apply the proposed 

architecture in a real-world example for a period of time to ensure getting realistic 

results.  

 

2.7.5. Summary 

All the reviewed frameworks cover different aspects of smart home management 

systems. They are pivoted around the main repeated idea of establishing a mesh 

network by adding hardware devices that have networking capabilities, together with 

having sensors and actuators, and finally designing a core management system to deal 

with the various network's nodes and data. Some of the proposed architectures and 

frameworks added more off-the-shelf units, such as microservices, simulation 

techniques, cloud solutions, emerging new techniques, and technologies. However, all 

of them share a set of drawbacks and challenges; these can be summarized as follows: 

Firstly, lack of integrated architectures – Most of the reviewed architectures lack the 

integrated nature that enables combing several functions, areas and sub-systems 

usually considered separately under one umbrella to achieve one main goal and acting 

as one entity. Secondly, the lack of standards and unified data structures; most of the 
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provided solutions are following their own vendor's standards and data architecture. 

This has resulted in complicating the overall collaboration and interworking in the 

industry and prevent small vendors from contributing to the industry by developing 

specific aggregable units by following a certain standard and unified data architecture. 

Thirdly, the inconsistencies between the applicability on legacy and modern and smart 

environments; Implementing IoT-based BMS may not always be successful in all 

environments. It is not guaranteed that it works in every legacy or new BMSs during 

some shortages related to the lack of core components, the nature of the BMS and the 

level of the stakeholder contribution to make it happen. Fourthly, the lack of overall 

security concepts including general IoT security, and protection against potential 

bundled points attacks. An aggregated network, such as the energy management 

systems, brings enormous challenges to protect the network nodes in hardware and 

software terms. The protection must be extended to cover the physical stealing of 

devices and use it as a bridge to access the rest of the mesh network. Fifthly, lack of 

mobility management – some sensing, controlling or monitoring nodes (for example, 

mobile phones) may physically be located inside another foreign network; this may 

bring serious threat to the whole system and open severe security holes. And finally, 

the lack of appeal to stakeholders – The stakeholders in this field can be divided into 

four groups: governmental agencies, energy providers, home appliances’ 

manufacturers and household occupants. None of the reviewed frameworks addresses 

proper communication channels to ensure a high degree of involvement of these 

stakeholders’ groups. The organisational stakeholders represented by governmental 

agencies, energy providers or appliances’ manufacturers may not feel the need to adopt 

this approach because of having other priorities or having some political conflicts and 

different points of view, or they are missing the motivation to invest in this area. 

Moreover, the individual stakeholders - the household occupants - may not be 

interested in applying and operating the system, especially those who are renting the 

property with an all-bills-included model, or the kids in the family who are not required 

to pay the bills, that kind of stakeholders either just do not care, or they don’t want to 

sacrifice any comfort.  
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3. Techniques and Technologies  

3.1. Introduction 

Any appliance, regardless of whether it is smart or conventional, can be plugged in into 

smart nodes, which are compatible with any home automation protocol, such as Z-

Wave, ZigBee, etc. This results in having a network called Wireless Mesh Network 

(WMN), which is a local network topology where controllers, nodes, switches and any 

other devices have a direct connection in a non-hierarchically way, where each point in 

the network can be either master and/or slave at the same time [59]. Appliances can 

be operated by functions offered by home-automation-protocols based nodes such as 

switching appliances ON/OFF, measuring energy consumption, recording behaviour 

based on the consumed energy. This chapter will briefly discuss the technologies and 

techniques used to implement a case study based on the proposed framework [59]. 

 

In the previous chapter, a detailed review of various smart and ordinary energy 

management systems was introduced. The literature review continues in this chapter 

in a more detailed way to review the technologies and techniques used to develop and 

implement these frameworks and will be also used to implement the proposed 

framework described in chapter 4. the chapter began by describing the microservices 

approach [60], then continues with describing various big data and data mining 

techniques including different machine learning techniques such as supervised, 

unsupervised and semi-supervised, tracking patterns, classification, association, 

anomaly detection, clustering, regression and time series algorithms. As an illustration 

of the usage of these technologies and techniques several energy management 

architectures introduced by several researchers such as Building Energy Efficiency 

Management Services (BEEMS) [61], Learning-based Demand Response and HVAC 

EMS [62], Residential Energy Management System (REMS) [63], were introduced. 

Cloud computing and all different types of services play an essential role in the 

proposed framework, so it was described in detail in this chapter. The Internet of 

Things concept [64], and different factors should be taken into consideration while 

implementing any IoT system, such as complexity, security, privacy, safety and 

standardisation. A glance at the efforts introduced to prevent buggy behaviour of IoT 

systems which were introduced by Nguyen et al. [65], is part of this section. This 

literature review chapter is followed by the proposed framework chapter where most 

of the reviewed techniques and technologies are implemented.  
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3.2. Microservices 

The Microservices approach for the IoT means splitting up a monolithic application, in 

a top-down manner, into a set of distributed small size, self-contained services, to 

overcome the traditional monolithic software limitations and disadvantages, mainly 

the maintainability and scalability issues [60]. To make the best use of the IoT 

heterogeneity, it is required to bundle different small services, from different vendors, 

running on different platforms and developed using different technologies as one 

application to serve a specific goal, communicating together via lightweight 

mechanisms, Dragon et al. [66]. This is precisely the primary benefit of the 

microservice topology. For the planned project, several goals can be achieved when 

running a microservice on the cloud; this includes discarding the need to have local 

hardware to deliver the microservices bundle. Also, increasing the maintainability, 

scalability and flexibility. Moreover, cloud platforms running with green energy can be 

chosen, so the project's main idea of managing energy will be more assisted and 

highlighted. However, moving to the cloud will implicitly lead to investing more efforts 

in security and privacy. Besides that, the initial costs will be very high, and the ability 

to develop own services and customise the running ones may get reduced to keep the 

initial costs within the acceptable and viable level [67].  

 

Moreover, microservices approach stands on the contrary to the monolithic 

architecture approach which offers a single unified unit with less scalability and 

changeability, where changes require rebuilding the whole application code and 

redeployment. It is important to mention that monolithic approach may be considered 

more suitable for developing and deploying lightweight applications due to many 

reasons related to the speed-to-market, compact and easiness of deployment via 

almost single package, moreover the problems of network latency and security are 

relatively less in comparison to microservices architecture. However, for a complex, 

evolving application with clear domains, the microservices architecture will be the 

better choice. 

 

According to Dragoni et al. [66], although there are huge similarities between 

microservices and the paradigm SOA, still there are major differences in size, bounded 

context, independence. Following is an overview of these differences: 
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Size – According to the microservices approach service size must be kept small. In 

some organisations covering some processes with small services could be a challenging 

task. The main focus should be always on providing a single business value while still 

preserving the granularity. The benefit is seen in the increased degree of 

maintainability and extendibility. 

Bounded context – A microservice should have a clear and single responsibility 

within a predefined frame. No mutual responsibilities are allowed. 

Independency – Every microservice should be able to perform independently. Of 

course, mutual communication with other services in the environment is still needed, 

however, this should be performed via its interfaces which are communicating via a 

lightweight communication channel.  

 

The microservice environment has some unique characteristics such as; Flexibility – 

being competitive and delivering responses to all emerging changes within the 

business environment is a key factor for any business to survive, this type of business 

flexibility must be accompanied and served by the microservices platform when it is 

needed. Modularity – The whole system is divided into small, isolated services that are 

concentrated in one business process. There is no single service or component which 

cover all different aspects inside the organization. Evolution – being maintainable 

while still allowing adding new features is the golden feature of a microservice that 

keeps it living and appropriately responding to the evolving needs of the business 

environment. 

 

Microservices were covered in the literature from various aspects, one of these is using 

microservices for smart buildings. According to Khanda et al. [68], the buildings smart 

systems were designed to serve particular goals, offering a limited degree of flexibility. 

However, the rapidly evolving and maturation of various related technologies in almost 

every field has brought pervasive changes. Besides having the sensing technology, 

microprocessor-based appliances, and networking possibilities affordable and easy to 

use to be distributed everywhere, recently a microservices terminology began to be 

widely used. It has started with developing new programming languages and software 

topologies to handle the direct development of distributed applications, Dragoni et al. 

[66]. Recently the open-source Jolie-Programming language was built to support the 



 
 
Integrated Scalable System for Smart Energy Management 

70 
 

microservices paradigm, jolie-lang.org [69]. The proposed architecture by Khanda et 

al. [68], was constructed over three steps: Step-one: Sensors are connected and 

configured. CC2650 SensorTags sensors were used to collect the heat, humidity and 

brightness. Because of its simplicity and effectiveness, data exchange was done using 

the Bluetooth Low Energy (BLE) network. A Z-Wave [70] protocol-based Aeon Labs 

device combined with the Operating System HomeOS were implemented. Figure 3.1 

[68] illustrates the overall architecture 

with further details. Step-two: Using the 

programming language Jolie to build 

microservices that connect to sensors. A 

high degree of reusability and scalability 

among the targeted advantages, brings 

several implicit improvements, such as 

the reduction of bugs, decreasing the 

budget and achieving higher quality 

levels. Microservices farms can deal with 

various types of sensors because most of 

them share similar properties and 

configurations. Step three: Collect the data from different sensors and external API, 

then format it as CSV and pass it to MATLAB for further processing and graphics 

generation. Various data were collected: humidity, inside and outside temperature, 

light, pressure, number of opening and closing the doors, tracking persons in numbers 

and identity using MiBand2 fitness-trackers and device mac address. The need to 

configure the system to make it applicable with ZigBee protocol based devices, and 

distributing the system in other classrooms inside the organisation (Innopolis 

University), and improving the people-detection techniques, are some of the 

drawbacks which need to be considered in the next versions of the architecture. 

 

A slightly different approach has been introduced by Jarwar [61]. The focus of the 

research was concentrated on dealing with the collected data and enhancing its 

availability in real-time using different visualization’s methods. Figure 3.2 [61] 

illustrates the proposed architecture. It consists of several layers; Building Energy 

Efficiency Management Services (BEEMS), Web of Objects (WoO), Composite Virtual 

Objects (CVOs) and Virtual Objects (VOs). The journey of the data begins in the sensors 

farm located in a real-world environment. Sensors are connected with a gateway which 

         Figure 3.1: The framework of used hardware [68] 
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is passing the data to the VO layer. The VO layer consists of an API, some data tagging, 

cleaning, caching and failure detection components. The second layer is called CVO 

and is responsible for aggregating and analysing the data. It has different components 

such as CVO life cycle monitoring functions, energy-related data processing. The third 

layer is dedicated to service and microservices. As part of the future work, there is a 

need to evaluate the results deeply, attempt to investigate the Semantic Web Agent. 

 

Figure 3.2: BEEMS Architecture [61] 

 

Dragoni et al. [66] have mentioned some issues and challenges facing the 

microservices paradigm. The idea of being able to develop microservices using 

different programming languages is attractive, however, it brings some challenges 

because some languages do not support any specification language, such as Node.js. 

Others use different specifications such as WSDL in Web Services and interfaces in 

JAVA. This makes the contracting approach among microservices difficult to 

implement and maintain. Trust and security are the other aspects. Microservices are 
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spread over a huge surface where services are communicating via API definitions, this 

makes the possible attackable area huge and hard to control. Moreover, the whole idea 

of microservices is built upon the fact that services trust each other, so any stranger 

can place himself within the services farm once he manages to be part of it. 

 

 

3.3. Data Analytics and Mining Techniques 

Several data mining techniques extracted from the literature are reviewed in this 

section, by highlighting the related techniques applied for this Thesis. According to 

Eldén [71], during the data collection phase, it is often unknown which part of the data 

will be requested and used. The science to obtain beneficial information from the 

massive -usually- unstructured data, is called Data Mining or Knowledge Discovery. 

Eldén [71] also mentioned the terminology Pattern Recognition which is considered as 

a different technique than data mining, however, both have a related definition; “the 

act of taking in raw data and making an action based on the ‘category’ of the pattern” 

Duda [72]. The data mining techniques can be defined as a collection of algorithms that 

aim to identify, classify and group the patterns from the data being analysed, so it can 

be transformed into ‘knowledge’ and used for further decision-making and analysis. 

 

Applying big data analytics techniques becomes a must when the volume of the 

generated and recorded data per second keeps overgrowing, reaching tremendous 

dimensions, moving from Megabytes (MB) the whole way till reaching Petabytes (1 

trillion Terabyte) levels. Also, it is needed when the data's variety consists of structured 

and unstructured different types, such as text, photos, videos, emails, etc. It does offer 

the possibility to draw a full picture by gathering pieces of information of various kinds, 

at the same time, predicting the missing parts through data fusion. Keeping data 

accessible in real-time and making it useful by turning it into a value is one of the 

robust features of big data. Thus, velocity is measured when the output of the 

proceeded data is available shortly after processing to meet the growing demand. As a 

result of gathering data from different sources, with different formats, running on 

different platforms under different circumstances, it is required to apply techniques to 

reduce the invalid data sets (called Data Noise) this is measured and handled under 

the term big data veracity [73]. Figure 3.3 illustrates the 5V’s of Big Data, variety, 

veracity, value, volume and velocity [74]. 
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Figure 3.3: 5V's of Big Data [74] 

 

3.3.1. Supervised-, Unsupervised- and Semi-Supervised ML Techniques 

Data mining techniques are split up primarily into three categories: supervised, 

unsupervised, and semi-supervised. 

Supervised Machine Learning – According to Schrider and Kern [75] the 

supervised ML is a machine learning task depends on previous knowledge driven from 

training datasets to make predictions about new datasets. It is responsible for 

predicting the response variable based on the input variables. Important to mention 

that most machine learning projects tend to utilise the supervised learning approach. 

Supervised learning is based on the fact that there is an input variable (x), and an 

output variable (Y), and an algorithm is applied to predict the output based on the 

input using a matching function (𝑌 = 𝑓(𝑥)). The target adjusts this matching function 

in the way that the output (Y) can be predicted based on the given input variable (x). 

This type of learning is called Supervised Learning because of the similarity between 

the situation where an algorithm is learning from training-data, and a session where a 

teacher is administering a learning process. Correct answers are known, the algorithm 

repeatedly delivers predictions using the trainings-dataset, till it reaches a satisfactory 

degree of performance and accuracy with a minimum degree of error. Linear 

regression, random forest and support vector machines are some examples of 

supervised machine learning. Supervised ML is applied in different areas, one of these 

is presented by Berral et al. [76], showing how this approach can be used to offer the 

desired Green IT in data centres.  

Unsupervised Machine Learning – In contrary to the previously described 

supervised machine learning, neither correct answers nor a teacher exists. Its main 

interest is revealing the data structure without previous experience of the way how data 
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are arranged, Schrider and Kern [75]. The algorithms are self-organised, attempt to 

analyse and predict the data’s overall structure and the relationships among items. In 

this approach only input data (X) are available and known, output variables (Y) do not 

exist, and there is no defined matching function. The main target of this kind of 

machine learning is modelling the basic data structure and its relationships. K-Means 

clustering and the Apriori algorithm are examples of this kind. 

Semi-Supervised Machine Learning – The world is not always perfect, so are the 

datasets. It is not always the case that data are 100% classified and labelled, or 100% 

unlabelled. In many cases, datasets are a combination of both. Therefore, neither 

supervised, nor unsupervised ML algorithms alone can deliver required responses, 

rather a combination of these methods. This combination is called semi-supervised, or 

hybrid supervised ML. An example of such a case is the photo album. In the album, the 

minority of photos are labelled according to location, dates, objects or persons, and the 

majority are not. In reality, many scenarios follow this approach, because in most cases 

it is an expensive, difficult and very time-consuming mission to get all data annotated 

as it may involve specific domain specialists. On the other side, collecting unlabelled 

data is considered relatively cheap, easy and painless. In the semi-supervised 

approach, supervised algorithms will be used to handle the annotated data, whereas 

unsupervised approaches will be applied to the unlabelled data to discover the 

structure residing in the input variables. Current improvements in machine learning 

have revealed that semi-supervised ML, compared to the classic supervised ML, has 

the possibility to resolve classification issues with fewer labelled data, Huo et al. [77]. 

 

In summary, the key difference between supervised and unsupervised machine 

learning approaches is data-labelling. When data are labelled, supervised ML will be 

applied to predict the output, however when labels are missing unsupervised 

algorithms will be utilised to inherit the structure from data. Having a mix of both types 

require applying semi-supervised or hybrid-supervised techniques. 
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Figure 3.4: Data Science (DS), Big Data, Artificial Intelligence (AI), Deep Learning (DL), Data Mining (DM) and 
Machine Learning(ML) [78] 

According to [79] and [78], machine learning involves studying algorithms that can 

retrieve information automatically, and continuously keep improving itself by gaining 

more and more experience when examining further data. It can predict the future by 

building models that represent what is currently happening, using data mining 

techniques. In fact, data mining is considered the technical basis for machine learning, 

where the whole thing begins with data mining by first collecting the data in a database, 

then applying data mining techniques to extract knowledge from the data, after that 

applying the machine learning techniques that propose algorithms based on the data 

and previous experience. Besides the differences of the historical roots between data 

mining and machine learning, they differ in their responsibility; where data mining is 

responsible for getting rules (knowledge or information) from the data, machine 

learning concentrates on teaching the system how to learn and understand these rules. 

Moreover, they differ in the implementation areas, data mining can be implemented 

on databases includes big data, however, machine learning can be implemented in 

artificial intelligence, decision trees, and neural networks. Inspecting the nature of 

each one reveals an important difference where data mining requires human 

interference, however, machine learning follows an automatic path, once installed it 

runs in stand-alone mode without further human effort. Cluster analysis is one of the 

major applications where data mining is used, however, machine learning is used in 

many applications such as spam filters, web search engines, fraud and fake detection. 
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Figure 3.5: Machine Learning Algorithms Mind Map [80] 

 

In most cases, it is difficult to define clear borders between machine learning and deep 

learning. Figure 3.4 illustrates a general picture of key terminologies and techniques 

and their mutual relationships in this field, however, figure 3.5 shows an overview of a 

mind-map of all available Machine Learning Algorithms (ML) [80]. Both machine 

learning and deep learning are subsections of artificial intelligence, and both rely on 

algorithms that can modify themselves and also can feed themselves with structured 

data. Deep learning differs in the way that these algorithms have several layers of 

algorithms- everyone offering a unique analysis to the fed on data. These kinds of 

algorithms are called an Artificial Neural Network, this naming emphasizes the 

similarity with the function of the human neural networks in the humans’ brain. For 

example, if there is a set of dogs and cats’ pictures, and we need to distinguish between 

cats and dogs’ pictures. The machine learning approach requires having these pictures 

labelled. 
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a variety of energy management systems were developed in this area. 1) An energy 

consumption management controller and thermal comfort management were 

introduced by Gao [81] and Althaher [82]. They aim to reduce the electricity bills while 

keeping the consumer's comfort within acceptable levels by controlling the thermal 

and deferrable and curtailable devices according to the retrieved dynamic price input. 

2) Another EMS developed by Dittawit and Aagesen [83] aimed to reduce electricity 

costs in a controlled increase of offered comfort using JAVA based environment. 3) A 

Home Area Network (HAN) which includes a smart-meter, smart socket, a wireless 

communication interface [84] introduced by Saira and Ikram in 2014. It aims to reduce 

the overall costs and attempt to make it attractive and encourage consumers to 

implement it. 4) Another EMS was introduced by [85], which gives household 

consumers control over their devices based on their location, however, they need to 

update the database in case the devices’ locations change. 5) Another ANN-based EMS 

was implemented to forecast consumption habits based on the training data sets. As a 

result of applying the ANN, a pattern is provided for the consumer for every device, 

allowing him/her to perform energy management [86]. 

 

Another research done in the household energy management area has been carried on 

by Zhang et al. [62]. The purpose of the research is to determine the most efficient 

Demand Response (DR) algorithm used to run an HVAC within the household sector. 

It also presents a way to design a system that can learn the energy consumption model 

of regulatable load appliances such as HVAC. Moreover, it suggests designs for the data 

structure to save and collect various appliances behaviours within the household area. 

The paper explains two different approaches to handle the DR within a smart grid 

framework: 1) Direct Load Control (DLC), and 2) Price-based Control (PbC). DLC 

approach enables power companies to switch ON/OFF the appliances according to 

available electricity levels. Its main disadvantage is the negative impact on the comfort 

level on the consumers' side. Meanwhile, the PBC approach offers the possibility to 

regulate the energy consumption based on the energy prices published every 15 or 5 

minutes, or one day ahead. To achieve a better and efficient long-term energy 

management, and to overcome the disadvantages related to the power uncertainties 

which was presented during the 2015 IEEE PES General Meeting, the day-ahead 

approach is considered as the correct choice. Figure 3.6 [62] illustrates the proposed 

high-level architecture that consists of an optimization routine unit, Intelligent 
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Learning Routine (ILR), and a set of receivers that get some parameters such as 

outdoor temperature, HVAC energy, indoor temperature and the thermostat setting. 

 

 

Figure 3.6: Learning-based Demand Response and HVAC EMS [62] 

 

Basically, the system consists of two functional blocks: 1) A control block, 2) a Next-

Day Demand Response (DR) block. The control block takes the DR policy generated 

from the previous day, then uses it to control the various wireless command receivers 

that are in charge of dealing with appliances distributed among the household. 

However, the Next-Day DR Block determines the DR policy for the HVAC for the next 

day based on the energy usage information obtained from the local receivers, and the 

predicted weather and electricity prices. The main purpose is to determine the 

maximum benefit for HVAC users. The evolved energy consumption is a comparison 

done among: (1) Results obtained from the simulator software eQuest, (2) Results from 

the equivalent temperature parameters ETP model, (3) Learned data from the neural 

network and (4) learned data obtained from regression models. The results of the 

comparison illustrate the fact that the learning-based demand response is the most 

efficient among all tested algorithms. 

 

One of the proposed approaches is presented by Prakash and Vandana [63]. The paper 

illustrates a Residential Energy Management System (REMS) that switches between 

local storage charged by renewable energy sources, and the energy grids. The 

switchover automation (decisions) are based on two different machine learning 

approaches Artificial Neural Network (ANN) and Support Vector Machine (SVM). The 

paper suggests that SVM has a higher classification accuracy. The framework is 

illustrated in Figure 3.7 [63] 
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Figure 3.7: The layout of a domestic consumer [63] 

 

[87] have introduced a system that uses the Non-Intrusive Load Monitoring (NILM) 

which is a method to find out the consumed energy amount for different devices 

centrally. Every appliance within the tested environment is equipped with a sub-

metering unit to predict its upcoming consumption by applying the Bin Packing (BP) 

algorithm. The main goal is to provide the most suitable approach to figure the load 

disaggregation within a household environment. The paper uses MATLAB to predict 

the energy consumption of each appliance and show this information to consumers. In 

general, the system offers users energy usage predictions, send notifications if daily 

usage exceeds the set budget when maintenance or replacement is needed. Figure 3.8 

[87] shows the overall block diagram. 

 

 

Figure 3.8: Overall Block Diagram [87] 

 

To predict the futuristic energy consumption several machine learning algorithms, 

such as Logistic Regression, Decision Trees, Association Rules and Time Series, were 
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inspected. Both the Nearest Neighbour Algorithm and Markov Chain were considered 

in this research because they offer the exact solution for the studied case. 

 

According to [88], eight different regression models were inspected and tested to figure 

out the most suitable one for predicting short-term energy consumption in the 

household sector. Many other researchers have used different machine learning 

models such as Extreme Learning Machine Neural Network (ELMNN) [89], 

Generalized Regression Neural Network (GRNN) [90] and Support Vector Machine 

(SVM) done by [91]. Applying ANN showed that further other techniques such as 

weather categorization [92], parameter selection [93] [94] [95] and decorrelation [96] 

should be carried on. The result of the simulations done revealed that the Radial Basis 

Function (RBF) machine learning kernel is delivering the most reliable predictions in 

this field. The prediction of household energy consumption and the amount of 

generated energy from green energy resources is a challenging task due to the high 

grades of uncertainty and unpredictability. The proposed framework where the 

prediction takes place is illustrated in Figure 3.9. 

 

In this approach the Artificial Neural Network (ANN) was utilised to enhance the data 

set and deliver behaviour predictions in many fields such as weather forecasting, 

energy consumption forecasting locally and on Grid level. This allows having an insight 

in the future to properly execute a set of pre-actions instructions to optimize the 

systems and enhance its ability to react properly. The same approach will be seen in 

the proposed framework explained in chapter 4, where it suggests utilising a number 

of machine learning techniques, including ANN, to predict a number of relevant data 

nodes related to the temperatures, operating hours, occupants behaviours, etc. The 

main advantage of this approach is enhancing the overall dataset and maintain a pre-

reaction possibility to deal with appliances in the way to achieve the highest energy 

saving while keep offering similar comfort levels.  
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Figure 3.9: The Framework for the Smart Grid [91] 

 

 

Koolen et al. [97] have introduced a different approach based on setting a natural 

experiment illustrated in Figure 3.10 with real-world customers and utility companies. 

The main aim is to ensure a high degree of demand flexibility and load reduction during 

peaks because it is seen that introducing a proper and right dynamic price tariff, may 

enhance the stabilization of the grid load [98]. A comprehensive and detailed analysis 

of the end-customers behaviours, preferences and household settings were carried out 

proving the effect of household on the energy management systems. In other words, 

this study proves that smart energy management systems do not perform equally on 

all segments and types of consumers, and therefore the extent of their success is not 

highly related to the consumers as well [99]. Machine learning techniques were applied 

to illustrate how smart management systems can recommend various tariffs schemes 

based on household occupants’ attributes. 
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Figure 3.10: Natural Experiment Introduced by Koolen et al. with Real-World Customers and Utility Company 
[97] 

 

Another approach is done using real-world data was accomplished in [100], an attempt 

to analyse and evaluate data-driven household energy models which are based on 

machine learning. Prediction models are explained and evaluated to make them easier 

to be understood and used by building professionals. Both advanced data analytics, 

which is divided into two main categories; supervised and unsupervised [101] [102], 

and BMS have a knowledge gap which was the focus on several efforts carried out by 

researchers and building professionals to overcome it [103]. Several previous studies 

focused on the potential of supervised machine learning to handle and analyse 

buildings data [104] and [105]. Mainly heating and building loads [106] and [107], and 

total energy consumption [108] and [109], indoor environment [110] and [111] were 

predicted by different machine learning techniques. On the other hand, supervised 

machine learning techniques are considered as high complex algorithms, such as 

Artificial Neural Network (ANN) [112] and [113], Support Vector Machines (SVM), 

Decision-Tree based methods [114] and [115]. These methods are the most used ones 

in the building energy management and prediction field [116] and [117] and [118]. 

Figure 3.11 shows the main flowchart. Most researches  in this field focus on reaching 

high prediction accuracy levels, without paying much attention to the proper and easy 

interpretability, which negatively affect the proper applicability chances in practice. 

According to [119], there are two main ways to enhance the interpretability of predicted 

figures; First, using algorithms with high transparency. 2) Inject and adapt model-

agnostic interpretability methods. The research work was accomplished by using the 

programming language R [120] 
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Figure 3.11: Research main Flow-Chart using Building Automation Systems [119] 

 

Due to the enormous data volume expected in this work, and the need to have real-

time results, also the need to formulate patterns to predict the future behaviour of 

appliances, applying data mining techniques are not an option rather a must. In this 

section, several data mining algorithms, including related techniques and methods, 

have been reviewed as part of the literature, while keeping the focuse on the particular 

techniques applicable to this work. Data mining or Knowledge Discovery is the 

terminology that describes the science used to obtain relevant and beneficial 

knowledge from a massive amount of data collected and stored in databases in an 

unstructured way [71]. Important to mention that Data mining does not imply pulling 

out new knowledge or information; instead, it is about estimating patterns and 

knowledge from collected data [121]. Data Mining techniques are a group of algorithms 

that offer the needed assistance to group and classify the collected and analysed data 

into information patterns; this ultimately allows a better understanding and treatment. 

The separation of data instances has the advantage of deriving pieces of unknown 

information from the collected patterns, which offers excellent help to take more 

accurate decisions. Data mining techniques are the only avenue towards getting the 

benefit of the data mining concept; these are:  

 

3.3.2. Tracking patterns 

This technique is considered among the very fundamental methods in the data-mining 

field. It is natural and intuitive for many users. It begins with recognising irregularity 

in the collected data sets over a period. In our context, for instance, energy 
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consumption increases during low-temperature days. Identifying anomalies occur 

when data sets contain data elements that do not fit anywhere. For instance, when 

energy consumption usually increases during weekends, then suddenly it drops 

dramatically during the weekend within holiday seasons, this is considered a new 

situation that may need to be re-evaluated. 

 

Aggarwal and Bhatia [122] have introduced research with a detailed analysis on 

different techniques to discover patterns in online data mining. Four different 

algorithms were analysed; Apriori, FP-Tree, Category based, and fuzzy logic-based. 

The comparison revealed that the Apriori algorithm can be used for searching large 

item sets, however it suffers from drawbacks because it requires a full scan even for a 

single itemset. Moreover, the FP-Tree technique is complex, however, it supports the 

frequent scan. The category-based approach can benefit from having similarities in 

users’ interests. Finally, the fuzzy-based algorithm can better deal with uncertain and 

ambiguous situations. 

   

3.3.3. Classification 

Compared to the tracking patterns, classification is considered more complex. 

Classifying data requires defining distinct characteristics and attributes of the collected 

data putting them in categories in order to draw conclusions or futuristic predictions. 

An example of such technique is describing individuals’ financial backgrounds 

according to their daily, weekly and monthly purchases by classifying them into three 

main credit risks: low-risk, intermediate-risk or elevated-risk. Having such a 

classification opens avenues towards learning further knowledge about these 

individuals in other fields, such as their ability to buy certain brands. Several 

classification algorithms are reviewed in the next sub-sections. 

3.3.3.1. K Nearest Neighbour (KNN) 

According to Fan et al. [123], K-NN is considered as a stable theoretical and easily 

implemented algorithm [124] used to provide solutions for nonlinear issues, for 

instance; credit-related and customer-related rankings. This algorithm is offering 

much assistance in cases when the gathered data do not adhere to the linear theory. In 

other words when there is little previous knowledge about the data. Moreover, while 

dealing with experimental processes it reduces the variables impact on the data [125]. 

K-NN has proven its ability to achieve high forecasting accuracy. In the real world, this 

algorithm is widely applied; for instance in the analysing process of the stock market 
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[126], in photovoltaic systems to detect and diagnose faults [127], and in social 

networks for facial recognition [128]. Figure 3.12 shows an example of a K-NN 

proximity map, where the new element (X) belongs to four neighbour elements in the 

group (Circles) and two neighbour elements in the group (Squares). 

 

 

Figure 3.12: K-NN proximity algorithm map 

 

Additionally, many improvements were made on the K-NN algorithms, for instance, 

the one introduced by Zhang et al. [129], which is applied to classification, regression. 

Moreover, the Weighted K-Nearest Neighbour (W-K-NN) has been introduced by 

Troncoso et al. [130], which has been followed by many scientists and researchers who 

have added the weight for nearest neighbour. For instance, the research carried on by 

Chen and Hao [131] illustrated a weighted K-NN which is established on the SVM. The 

purpose is to predict the stock market. 

 

3.3.3.2. Neural Networks (NN) and Deep Learning (DL) 

NN was designed to create artificial intelligence by simulating the human being 

nervous system, where artificial units are acting similar to human neurons, Aggarwal 

[132]. Rosenblatt’s perceptron algorithm is considered to be the cornerstone of all 

neural networks that followed. According to Aggarwal [132] NN -theoretically- has the 

capability to learn any mathematical function when enough training data is available. 

Even more, specific variants of NN such as recurrent NN are considered Turing 

complete, this means that NN can simulate any algorithm if it is provided with enough 
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and sufficient training data. Important to mention that a tremendous amount of 

training data, and long processing time, are needed in order to learn a simple task such 

as image recognition, even with using high-performance computers. As illustrated in 

Figure 3.13, the simplest form of NN consists of three tiers; the input tier, an output 

tier and in between a hidden tier. 

 

Figure 3.13: Neural Network Example 

 

Having huge data and the expansion of the computational capacity at the beginning of 

the century has given a suitable environment to reborn a new approach called Deep 

Learning (DL) [132]. Deep Learning is an NN made up of more than three tiers: input-

tier, an output-tier and many hidden tiers. It is a self-teaching and learning system that 

filters sufficient test data in the same way humans do. Comparing typical machine 

learning algorithms with deep learning technology reveals that deep learning can reach 

higher accuracy levels when enough sufficient data and computational power are 

available. In fact, in some fields such as; playing computer games, recognizing image 

or self-driven cars,  deep learning has reached levels close to human performance or 

even exceeded it in some cases, and with a positive future prognosis related to the 

rapidly evolving computational power, sufficient data and intensive experimentation, 

the deep learning will even reach much better levels in new fields, by the end of this 

century it is expected that deep neural networks will be able to train neural networks 

with the same amount of neurons reaching similar levels to the human’s brain. Figure 

3.14 illustrates an example of 4-hidden layers deep learning neural network. 
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Figure 3.14: Example of Deep Learning Neural Network (DLNN) 

 

Regardless of the number of hidden-tiers, both Deep Learning (with several hidden-

tiers) and NN (with one hidden-tier) follow the same approach, the difference lays in 

the granularity level. Both approaches begin with a set of configuration options, such 

as (1) the quantity of hidden-tiers, (2) the nodes’ quantity in every hidden-tier, (3) the 

used activation function, these can be:  

 

Sigmoid: 𝑓(𝑥) =  
1

1+𝑒−𝑥 , 

Tanh: 𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) =  
2

1+𝑒−2𝑥 − 1, or 

Rectified Linear units (ReLu): 𝑓(𝑥) = 𝑀𝑎𝑥(0, 𝑥). 

 

According to Hayou [133], the chosen function affects the performance dramatically 

during the training phase. An improper choice of the function may lead to loss of 

information during the forward propagation and the rampant disappearing/exploding 

of gradients within the back-propagation phase. (4) the learning rate, which means 

how much should this step outcome affect the weight and biases, (5) the momentum, 

which defines how much should past outcomes affect the weights and biases, (6) the 

number of iterations and (7) the desired error level. When training data are fed to the 

NN, both ‘weights’ and ‘biases’ get changed/adjusted till reaching the previously 

defined iterations level, or the allowed error rate. The more test data are used, the 

higher the prediction quality is gained. 
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Training a NN can be reached by utilising several techniques, such as Multi-Layer 

Perceptron (MLPs) (also called Back-Propagated Delta Rule Network), Newton’s 

method, Quasi-Newton, Gradient Descent, Levenberg Marquardt and Conjugate 

Gradient. These techniques are explained in the following section.  

Multi-Layer Perceptron (MLPs) – According to Heidari [134], the MLPs is a 

supervised learning technique developed to mitigate the drawback of the Single Layer 

Perceptron (SLP) related to not being able to efficiently detect and tackle the 

nonlinearly distinguishable patterns [135], by utilising several hidden layers. It 

consists of more than one perceptron with one input layer that gets the signal, and one 

output layer which is responsible for making decisions and an arbitrary amount of 

hidden tiers which are considered the brain of the whole technique where the whole 

magic occurs. The idea is to train the algorithm on a collection of input-output duos 

and extract the relationship from them. This process includes continuous adjustments 

of the used parameters (weights and biases) till reaching the minimum error rate or 

reaching the maximum iteration loops. The whole technique resembles the ping-pong 

game where the ball goes constantly forth and drawbacks, guessing what we think we 

know and as a response, we get the feedback on how wrong we are. MLPs advantages 

can be summarized as having a high potential to learn fast and effective, being robust 

to noise, the nonlinearity and parallelism approach representing a good tolerance 

towards faults, and finally introducing high-level competencies in generalizing 

assignments [136].  

Gradient Descent (GD) – Also called Steepest Descent, considered as one of the 

most straightforward algorithms within the area of the neural networks. Information 

from the gradient vector is used. With every successive iteration, the error function is 

optimized by setting the training rate to one of these modes: fixed value, or one-

dimensional optimization. In every iteration the training direction of gradient descent 

is computed, also a proper training rate is observed. The main goal of this approach is 

defining the local minimum point by applying the Hessian Matrix (HM) which defines 

whether this surface point is a stationary minimum or stationary maximum point 

[137]. Being slow is one of the major disadvantages of this approach, however, when it 

comes to dealing with big neural networks that include thousands of variables, this 

algorithm is recommended because the Hessian matrix does not get saved, rather only 

the gradient vector. 

Newton’s Method (NM) – This method optimizes the training direction by using 

the Hessian matrix to assess the 2. derivatives of the loss function. Similar to the 
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previously described gradient descent, through line optimisation the training rate 

either can be calculated or fixed, however, the measurement -against expectation- may 

reveal maximum values, not minimum ones. This occurs because the Hessian matrix 

is not being positive-definite. Compared to gradient descent, the main advantage of 

such a technique is the fact that it takes fewer steps to locate the lowest possible value 

of the loss function, however, it consumes a high computational power to evaluate the 

Hessian matrix and the related inverse. 

Conjugate Gradient (CG) – Proposed by M. R. Hestenes and E. Stiefel in 1952 

[138]. Mitigating the slowness backward of previously described Gradient descent, and 

the high computational consumption of NM’s algorithm is done by applying the 

conjugate gradient algorithm. In other words, this algorithm is designed to bypass the 

extreme information required by NM’s method to store, evaluate and inverse the HM 

matrix, and also to speed up the GD’s slow convergence. With respecting the HM 

matrix to reduce the required information, a search is done along the conjugate 

directions to speed up the convergence and to conjugate the teaching routes. This 

approach does not need the Hessian matrix inversions, so it is considered a better 

choice to deal with bigger neural networks. Moreover, it is also considered better than 

Gradient descent because of previously mentioned optimisations.  

Quasi-Newton – Also known as the Variable Matrix Method, it is considered as an 

improvement on Newton’s approach because it illustrates better computational 

advantages. During iterations, in every step, instead of performing direct Hessian 

calculations which are followed by inverse measurements, an estimation of the HM 

matrix inverse is calculated. The exact calculation of the Hessian matrix and its inverse 

are not necessary, because using the first partial derivative of the loss function allow 

the direct building of the approximation of the HM matrix inverse, and ultimately an 

improved performance than GD and CG is provided. 

Levenberg-Marquardt Algorithm (LMA) – Also known as Damped Least-

Squares (DLS).  A numerical optimization algorithm named after Kenneth Levenberg 

and Donald Marquardt offers a solution for nonlinear curve fitting. It is a NN training 

algorithm designed to optimize the loss functions which are calculated as a collective 

of squared errors by using gradient vector and Jacobian matrix, which contains the 

derivatives of errors. Compared to both the Gradient descent algorithm and Conjugate 

gradient, LMA is considered a fast alternative to train a NN, however, it is only 

applicable on only a specific type of loss function. Moreover, it is not considered 
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suitable for huge NN, because its memory requirements proportionally grow with the 

NN size. 

 

The available resources and the range of the NN are the deciding factors that define the 

advantages and disadvantages of each algorithm. Compared to the Levenberg-

Marquardt algorithm, Gradient and Conjugate gradients are considered more suitable 

in case NN consists of thousands of parameters. On contrary, Levenberg-Marquardt 

functions best with NN that have a few hundred parameters and a few thousand 

instances. 

 

Evaluating the constructed model is as important as creating the model itself, therefore 

for the classification problems, there are some evaluation metrics taken into 

consideration in this field: 

 

Area Under ROC Curve (AUC) – This metric simply represents the probability to 

rank a randomly chosen positive example higher than a randomly chosen negative 

example. This metric depends on calculating two different values: True Positive Rate 

(TPR), and False Positive Rate (FPR), then plotting these results on an XY dimension. 

AUC is the resulting area beneath the line. 

 

𝑇𝑃𝑅 =
𝑇𝑝

∑ (𝑇𝑝 +𝑛
𝑖=1 𝑇𝑛)

  

𝑇𝑃𝑅 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 

𝑖 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑎𝑠𝑒𝑠 

𝑇𝑝 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 "𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒" 𝑣𝑎𝑙𝑢𝑒𝑠 

𝐹𝑛 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 "𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒" 𝑣𝑎𝑙𝑢𝑒𝑠 

 

And, 

𝐹𝑃𝑅 =
𝐹𝑝

∑ (𝐹𝑝 +𝑛
𝑖=1 𝑇𝑛)

  

𝐹𝑃𝑅 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 

𝑖 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑎𝑠𝑒𝑠 

𝐹𝑝 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 "𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒" 𝑣𝑎𝑙𝑢𝑒𝑠 
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𝑇𝑛 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 "𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒" 𝑣𝑎𝑙𝑢𝑒𝑠 

 

Classification Accuracy (CA) – This is considered the typical metric which is 

calculated by taking the proportion of true outcomes divided by the entire quantity of 

all observed cases. The equation looks like following: 

 

𝐶𝐴 =
1

𝑛
 ∑ 𝑇𝑝 +

𝑛

𝑖=1

𝑇𝑛 

𝐶𝐴 = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

𝑖 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑎𝑠𝑒𝑠 

𝑇𝑝 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 "𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒" 𝑣𝑎𝑙𝑢𝑒𝑠 

𝑇𝑛 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 "𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒" 𝑣𝑎𝑙𝑢𝑒𝑠 

 

 

3.3.4. Association 

It is much like the tracking-patterns approach mentioned in a previous section; 

however, it is specialized in linked variables that share high dependency rates. In other 

words, it attempts to spot the likelihood of the coincidence of elements within a group. 

This approach is specialized in looking at certain events or attributes that have 

something in common with other events or attributes. For example, in some online 

stores, usually, customers get recommendations to buy different items when they 

decide to buy a certain item. Recommendations are made based on the association 

done based on previous purchasing experiences from other customers in the same 

category. 

 

Rules driven from the interconnections among items in the collection are called 

association rules. These rules are extremely important to define the relationships 

among items and therefore to find the hidden information inside the big data 

collections [139]. One of the most famous stories about how strange the relationships 

between items within one collection can be is the Beer & Diapers story. A supermarket 

survey has revealed that young men who purchase diapers tend to purchase an 

alcoholic drink (Beer) as well, this has been represented as the association rule mining  

“Beer and diapers are sold together” [140]. Several algorithms are used to create those 
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rules; for instance: Eclat algorithm, Apriori algorithm, FP-growth algorithm, OPUS 

search and ASSOC. 

Apriori Algorithm – The first and the most popular association rule mining 

technique [141], founded by Agrawal and Srikant in 1994 [142]. It consists of two main 

processing layers: connection and pruning [140]. It uses the Bottom-Up approach, the 

first step is called Candidate Generation where the frequently repeated sub-sets are 

extended step by step using either Hash-Tree or Breadth-First-Search (BFS) approach. 

The second step is examining a group of possible candidates against the database. The 

algorithm keeps running until no further extensions are found. This algorithm suffers 

from two major issues; the frequent scanning of the database, and the generation of 

large results of candidate data sets [141]. The following example illustrates this 

algorithm: Considering the data in table 3.1,  

 

β α γ 

β α δ 

β α γ 

β α δ 

Table 3.1: Example Data used by Apriori Algorithm 

 

following association rules can be extracted: 

• 100% of datasets contain β, also contain α 

• 50% of datasets contain β, also contain γ 

• 50% of datasets contain β, also contain δ 

Eclat Algorithm – One of the famous association rule mining methods, stands for 

Equivalence Class Clustering and bottom-up Lattice Traversal. Its basic idea is 

iterating through the data and using the transaction-id sets (called tidsets) to spot the 

candidate within the dataset. In the first iteration, all items will be assigned to their 

tidset. A recursive call of the function leads to identifying and joining the previously 

identified tidset-pairs. The whole process stops when no further candidates can be 

combined. Compared to the previous Apriori Algorithm, it has better efficiency and 

better scalability. Since it is based on the Depth-First-Search, it is considered faster 

than the Apriori technique and requires less memory. Moreover, it performs a smaller 

number of iterations because it is scanning the whole database repeatedly. Recently, in 

2018 an extended version of the Eclat-Algorithm was introduced by Szathmary [143], 
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it focuses on offering a way to filter the Frequent Closed Item-sets (FCIs) from 

Frequent Item-sets (FIs). 

Frequent Pattern-Growth Algorithm – Introduced by Han et al. in 2000 [144], 

aims to obtain frequent entries which will be later on used to extract association rules. 

The strategy Divide and conquer is used, this implies compressing the database of the 

provided frequent sets using the special data structure FP-Tree, then splitting it into a 

series of conditional databases. In the first iteration, the incidences of items are 

searched and stored in a separate table. In the second stage, attribute-value pairs which 

were saved in the table gets converted into a trie (digital tree). In the tree, each 

transaction is put in descending order. Compared to the Apriori algorithm, the FP-

Growth method requires only 2 scans to go through the whole database, whereas 

Apriori requires n+1 scans. Also, it does not require as expensive computational 

resources as Apriori does. 

 

All previously mentioned algorithms are doing half of the job, they are specialized in 

mining the frequently repeated item-sets. This requires applying further steps after 

defining the mining association rules in the relational databases. As illustrated in Table 

3.1, the extracted rules were made based on the output of the Apriori algorithm. 

 

3.3.5. Anomaly Detection (Outlier detection) 

Anomaly detection is finding patterns that do not correspond to anticipated behaviour. 

In the literature, this approach has been defined using different expressions “Regions 

of the network whose structure differs from that expected under the normal model” 

Savage et al. [145], “Patterns in data that do not conform to a well-defined notion of 

normal behaviour” Chandola et al. [146], “Outliers may be considered as noise points 

lying outside a set of defined clusters or alternatively outliers may be defined as the 

points that lie outside of the set of clusters but are also separated from the noise” [147]. 

Simply identifying the frequently repeated patterns among the dataset cannot always 

provide a straightforward interpretation of the nature of the data. Detecting anomalies 

or outliers might play an essential role to understand and properly interpreting the 

data. For instance, in a shop, when statistics show that the majority of customers are 

male, then suddenly numbers show that in particular time-span customers turned to 

be females, an investigation must be carried out to derive some useful outcomes from 

this sudden change, such as how this can be replicated? Or which products should be 

offered to serve this new transient group and convert them to permanent customers. 
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This kind of detection is usually applied to unsupervised data and divided into two 

different assumptions: 1) It occurs very rarely, 2) and differs significantly from the 

usual instances. It is not unusual that researchers are getting confused sometimes 

when it comes to the exact definition of anomalies and the differences between it and 

other terms such as Noisy Data. As 

proposed by the definition of anomalies 

which is provided by Aggarwal and Yu 

[147], anomalies are seen differently 

than noise, because noise is usually 

considered as a random error or a 

divergence described in a variable. As 

an example, consider the credit-cards 

holders' behaviours during their 

purchasing activities. In one day when 

the somebody buys a larger dinner than he usually does or buys a smaller cup of coffee 

than usually does. This may be seen as a deviation or variance, however, it is in fact 

noisy data. Therefore it should not be considered anomalous. To avoid unnecessary 

and expensive dealing with anomalous, it is recommended to remove the noisy data, 

then apply the anomalies detection techniques. Figure 3.15 [148] illustrates an example 

of an anomaly situation. 

 

The detection of anomalies can be applied in almost every field, Kaur and Singh [149] 

have introduced a survey to apply it in the Online Social Networks (OSNs) to observe 

and fetch the anomalous activities represented by unusual and illegal activities. 

According to Kaur and Singh [149] anomalies can be divided into different types based 

on their nature, based on the availability of information in the graph/network, based 

on the behaviour, and finally based on the interaction patterns, such as; near stars, 

heavy locality and particular dominant links. Kaur and Singh [149] also introduced 

many data-mining methods that aim to identify anomalies which are divided into 3 

major groups: supervised-, semi-supervised- and unsupervised-methods. 

Supervised methods – It considers studying the case as a classification issue, where 

experts label only the normal data, so all other data are considered anomalous. Or the 

way around, which means labelling the abnormal data, and considering any other item 

not corresponding as a normal item. The classifier responsible for implementing the 

classification approach can be established on Neural Network, Support Vector 

   Figure 3.15: Swimming Fish - An example of anomaly 
   situation 
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Machine or Bayesian Network (BN). The major challenge is teaching the classifier 

properly. 

Unsupervised methods – This is applied when labelled data are not available, thus 

the clustering approach is applied. Normal items are expected to form a kind of 

clustered forming groups by following a certain pattern, where anomalies seem not to 

follow these patterns and form their own ones. However, sometimes, anomalies are the 

ones that form patterns, these are called collective anomalies as shown in Figure 3.16. 

In this case, clustering is not efficient, since it generates a huge false alarm overhead, 

where every normal object is considered anomalous. 

 

Figure 3.16: Collective Anomalies Example 

Semi-Supervised methods – It works with 2 different types of data: labelled and 

un-labelled. In this approach, the classifier is trained using the available labelled data, 

so it can discover and classify the unlabelled data. Consequently, a significant model of 

normal data is constructed, which is used to discover the anomalies in the data based 

on the fact that these anomalies do not fit the model. This approach is called the self-

training approach. Another approach is called co-training where more than one 

classifier performs mutual training against each other.   

 

This approach is useful and will be applied to the data collected from the proposed 

I3SEM. Because it is expected to have some energy consumption peaks, due to 

unexpected extreme external effects, such as weather, accidents, catastrophic 

incidents. 

 

3.3.6. Clustering 

Clustering and classification are very similar. Clustering differs because it involves 

grouping items or objects into chunks based on common features, attributes and 
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similarities. For instance, an audience classified based on its demographics can be also 

clustered into different chunks based on its income or shopping habits. According to 

Aggarwal and Reddy [150], clustering approaches are investigated in many fields 

begins with pattern recognition and data mining until reaching databases and 

machine-learning algorithms. To have a comprehensive understanding of clustering 

aspects three main areas must be covered: methods, domain and variations and 

insights [150].  

Methods – the group of methods describe the key techniques used for clustering 

approaches, such as nonnegative matrix factorization, partitional clustering, 

probabilistic clustering, feature selection, grid-based clustering, density-based 

clustering, agglomerative clustering, and spectral clustering.  

Domains – As mentioned before, data clustering almost exists in every data domain, 

such as multimedia, text, stream, biological, big-data, time series, graphs, and 

categorical data.  

Variations and Insights – Clustering have different variations and types, among 

them: cluster ensembles, interactive clustering, cluster validation, Multiview 

clustering, and semi-supervised clustering. 

 

As mentioned before, clustering and classification are very similar, both are considered 

machine learning algorithms that split a collection of items and objects into groups 

based on one or more common features and characteristics, however, there are some 

differences in the data mining’s context. The key difference is the usage domain. 

Classification is used in supervised learning approaches where data has predefined 

labels designated by properties, however, clustering is used with unsupervised learning 

where objects and items are grouped according to their feature and properties. 

Moreover, in classification, training data that are used for teaching purposes must be 

provided, where, in clustering, there is no need for training data. Figure 3.17 illustrates 

the difference between classification (the left-side graph) and clustering (the right-side 

graph). The following sections describe a bunch of clustering types, such as K-Means 

and hierarchical clustering. 
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Figure 3.17: Differences between Classification (Left) and Clustering (Right) 

 

3.3.6.1. K-Means Clustering 

A straightforward, unsupervised machine learning technique aims to group data into 

groups based on similarities, however, it is known for its high sensitivity to the initially 

chosen cluster centres [151]. The determination of the similarity criteria among objects 

within one cluster/group is the key factor in the whole design, where each criterion is 

there to address a specific problem. In our context, the I3SEM, there are many 

similarities; for instance, the fact that appliances consume a certain amount of energy 

that can be divided into groups as low energy consumption, medium and high. Also, a 

similarity can be observed in the appliances’ running periods, some appliances may 

need to run occasionally; a couple of times a week, such as washing machines, some of 

them run seasonally such as AC/Heating appliances, or on daily basis such as bulbs, 

dishwasher machines, or continuously such as sensors and cameras. K is the number 

of groups that will be created by the algorithm based on the provided configuration. 

Generally, it is not possible to determine the exact value of K, however, according to 

Oracle.com [152] an accurate estimation can be gained by a commonly used metric 

which is called the mean distance between data points and their cluster’s centroid. 

This method is based on comparing the results acquired by applying different K values. 

There are several methods to verify the K’s value, for instance: the silhouette method, 

cross-validation, theoretic jump, and the G-means algorithm. Figure 3.18 illustrates an 

example K-Means graph. 
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Figure 3.18: A K-Means Example 

 

According to [153], K-Means has some advantages such as being easy to implement, 

suitable for huge data sets, offering a guarantee for approximation, can be easily getting 

adapted for new data sets. However, it suffers from some disadvantages, such as the 

manual choosing of the K value, the dependency on the initial values.  

 

3.3.6.2. Hierarchical Clustering 

Hierarchical cluster analysis is another name of it which is based on grouping similar 

objects in clusters, in the way that each group (cluster) is unique and objects within 

each cluster are highly similar to its neighbour objects. In other words, according to 

Cohen-Addad et al. [154], it is defined as a repeated separation of the dataset’s chunks 

into clusters at a continuously finer granularity. This kind of clustering is split into two 

kinds: agglomerative and divisive. In the first type Agglomerative (may also be called 

Bottom-Up approach) every object begins as a cluster, then clusters are combined with 

climbing the hierarchy [155]. The second type; divisive, or Top-Down approach where 

objects belong to one cluster that split into further clusters descending within the 
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hierarchy. A comparison mechanism is applied to find out the similarity or distance 

between two clusters, this occurred by weighing the similarity between items from one 

cluster and an item from another cluster, these get clustered when the degree of 

similarity among them is greater than other clusters. However, the top-down approach 

starts by dividing objects in clusters into further levels based on similarity by keeping 

similar data points (objects) in the same cluster. Figure 3.19 illustrates both 

approaches. 

 

 

Figure 3.19: Example of Hierarchical-Clustering: Agglomerative and Divisive  

 

Because of its easy-to-use attribute, hierarchical clustering can be useful for the I3SEM 

framework, if we can pre-process the data obtained from various sensors and 

appliances in a way the data dimensions are not huge. However, it has some 

weaknesses such as (1) not being able to always provide the best solution, (2) a lot of 

arbitrary decisions are involved. In other words, decisions, such as defining both 

distance metric and linkage criteria, are rarely taken based on a theoretical basis. (3) 

Poorly works with datasets containing mixed data types. 

 

Hierarchical clustering is considered very popular, however, the applied types, such as 

agglomerative, are restricted to the offline setting and therefore needs the whole 

dataset to be available, this brings some restrictions when used on large datasets [156]. 

 

3.3.7. Regression 

One of the supervised machine learning algorithms is used principally as a method of 

modelling and planning. It assists in identifying the likelihood of a variable (target or 
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dependent) based on the relation to other variables (predictor or independent) in the 

same field. The main focus of regression is discovering the precise correlation among 

two or more variables within a collection of variables. For example, a regression could 

be used for projecting the price of a product based on other aspects such as 

competitors, demand or weather forecast. According to Oracle [157] “Regression is a 

data mining function that predicts numeric values along a continuum”. It all begins 

from a data set that contains similar target values, for example, if the regression is 

going to be used to predict house values in a region, a data set with observed houses 

prices over a period of time, together with other attributes (called predictors) such as; 

the number of rooms, proximity to shopping centres and schools, house age, must be 

provided. The regression model is built during a training process, where the 

relationship between predictors and the target value is predicted. The regression can 

be tested by applying known historical statistics and then assessing the difference 

between the forecasted and exact values. Typically, historical statistics are split into 

two groups: one to build the model and one to test it. 

 

Regression functions have different families, and errors are measured in different ways 

such as Linear Regression, Logistic Regression, Polynomial Regression, Stepwise 

Regression, Ridge Regression, Lasso Regression and ElasticNet Regression. Following 

is a brief description of each technique. 

 

Linear Regression – One of the most well-known and most chosen predictive 

modelling techniques. According to this technique, the target (or dependent) is a 

continuous variable, the predictor (or independent) is either continues or discrete 

variable, and the regression’s nature is linear. Important to mention that continuous 

variables are the variables that last forever to count, such as the age of something. It 

will take forever to count, because it may be: 15 years, 3 months, 9 days, 18 hours, 3 

minutes, 31 seconds, 9 milliseconds, 34 nanoseconds, 50 picoseconds…etc. However, 

according to Joshi [158], discrete variables are the ones that are countable within a 

period of time, for example, the money in the bank account. The linear regression is 
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represented using the equation: 𝑓(𝑥) =

𝑌 = 𝑎 + 𝑏 ∗ 𝑋 + 𝑒, where 𝑌 the target 

(dependent variable), 𝑋 the independent 

variable(s), 𝑎 and 𝑏 are considered the 

intercept and the slope respectively and 

can be obtained by the Least Square 

Method. Using this equation target 

variable might be predicted depending 

on the provided predictor variable(s). 

Figure 3.20 illustrates this technique. 

 

In literature, there are two types of 

regressions, simple and multiple. The 

regression is called multiple when there 

is more than one predictor 

(independent variables). However, 

having only one independent variable 

produces a single linear regression. 

Logistic Regression (LR) – A 

statistical model, which is used in case 

the target variable is binary 

(True/False) to find its probability. The 

main equation can be represented as 

follows (Y values can be either zero or 

one): 

 

logit(𝑝) = ln (
𝑝

1 − 𝑝
) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘  

 

where 𝑥𝑘 refers to the predictors, 𝑝 for probability, and 𝛽𝑘 stands for the model 

parameters. The linear relationship between target and predictors is not required, 

therefore a non-linear transformation is applied to handle various types of 

relationships. Estimating the logistic regression can be ensured by using stepwise 

methods, which also avoid over and underfitting. Important to mention that this 

           Figure 3.21: Logistic Regression Example 

Figure 3.20: Example of Linear Regression 
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regression technique requires a large size of training data. Figure 3.21 illustrates an 

example of logistic regression. 

 

Polynomial Regression – A linear 

regression's form, applied when the power of 

the predictors (𝑥) higher than one. The 

relationship between the predictors (𝑥) and 

the target (𝑌) is represented by a polynomial 

curve with the nth degree. An example 

equation looks like this: 

 

𝑌 = 𝑎 + 𝑏 ∗ 𝑥2 

 

The resulted graph shows a curve instead of a straight line. Figure 3.22 shows an 

example of this type of regression. Attempting to get lower error rates by fitting a 

higher polynomial degree, may lead to weird results such as over-or under-fitting. 

Polynomial regression is becoming attractive in case of residuals inspection, or when 

curvilinear relationships will be hypothesized. 

Stepwise Regression – is preferred when having multiple predictive variables. An 

automatic process, without any human’s intervention, is applied to decide on the best 

appropriate predictors’ variables (independent variables). In each iteration, an 

addition or abstraction is done to the variable based on a predetermined criterion. 

However, according to Flom [159], during the regression analysis, often there is a large 

number of independent variables, where researchers attempt to choose the best one to 

build the best regression model. For this purpose, they try to use some automated 

processes such as stepwise, forward, or backward selection. This approach is not 

recommended and should be substituted by other methods such as PROC 

GLMSELECT. This technique is controversial because the test is biased, and the 

created models may not reflect the real data [160]. 

Ridge Regression – This technique is used in two different cases: 1) in the case of 

multicollinearity (when predictor variables are highly correlated). 2) when the 

independent variables’ number goes above the observations’ numbers. Its main 

advantage is avoiding overfitting that appears when the trained model works properly 

on the training data and performs inadequately on the testing datasets. Ridge 

regression works by applying a penalizing term (reducing the weights and biases) to 

Figure 3.22: Polynomial Regression Example 
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overcome overfitting. This may let the model perform a little poor in the training 

datasets, however it will perform consistently well on both the training and testing 

datasets. Figure 3.23 illustrates an example of this regression technique. In the figure, 

we see the least square regression which is drawn to best match the available training 

data , this line is tilled to best match both training data  and testing data . A 

penalty is taken into consideration when tilling the line, to avoid some training data, 

against achieving better results with the testing data.  

 

Figure 3.23: Ridge Regression Example (Salary/Years of Experience) 

As a response to the multicollinearity, most of the researchers suggest the mean-

centring of variables. According to Assaf et al. [161], this approach does not work. Even 

more, it is considered one of the greatest misconception approaches. Assaf et al. [161] 

recommend using the Bayesian ridge regression instead of the mean-centring 

approach. 

Lasso Regression – is very comparable to the ridge regression, however, it differs in 

the way how it uses values of the penalty function. It uses the following equation: 

𝑇ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 + 𝜆 ∗ (𝑠𝑙𝑜𝑝𝑒)2, however, Lasso’s equation looks like 

𝑇ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 + 𝜆 ∗ |𝑠𝑙𝑜𝑝𝑒|. There is an essential difference 

between them. When the 𝜆 = 0 the Lasso Regression line will be the same as Least 

Squares Line, as 𝜆 grows in values the slope gets smaller until it equals zero. In other 

words, it can only drop the slope asymptotically near to Zero, whereas Lasso 

Regression can drop the slope all the way to Zero. 
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Elastic-Net Regression – This type of regression is the combination of both 

previously explained regression types. It is used when there are tons of variables and 

parameters. The equation looks like following 𝑇ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 +

(𝜆1 ∗ |𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒1| + ⋯ + |𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑥|) + (𝜆2 ∗ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒1
2 + ⋯ + 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑥

2) 

 

After reviewing these different regression types, a legitimate question comes up; which 

one to choose? Many approaches suggest different answers, such as if the outcome is 

continuous, then the linear regression should be the right choice. Whereas, if the 

outcome is binary, logistic regression should be considered. In fact, the decision should 

be based on the number of dependent and independent variables, also the data 

dimensionality and characteristics. Following are the steps to choose the most proper 

regression methods: 

1. Proper and detailed data assessment – Data must be investigated and checked 

to determine the nature of variables inside the data and the relationships among 

them. 

2. Checking possible bias in the model – Applying some metrics such as AIC, BIC 

and Mallow’s Cp which check the fit of the estimated model. 

3. Cross-Validation – Occurs by dividing the data into two parties: training’s data 

and testing’s data, then applying it to different methods. A mean squared 

difference between observed and forecasted reveals the accuracy and the 

suitability of the method. 

4. Judge your objective – Own objectives may decide for the most appropriate 

approach. Implementing a less complicated method that outputs less accurate 

however satisfying results may be considered than implementing a 

sophisticated method with higher accuracy rates, accomplished with a high 

implementation difficulty grade. 

5. The last three methods including Ridge, Lasso and Elastic-Net are more suitable 

for datasets with multicollinearity and dimensionality. 

 

Data variance is an important approach that must be considered while dealing with 

regression algorithms. The following deviation equation is used to calculate the 

variance rates among the data columns, where features with low variance rates are 

eliminated and removed from the dataset: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝑉𝐴𝑅(𝑥) =  𝜎2 =
1

𝑛
 ∑ (𝑥𝑖 − 𝜇)2

𝑛

𝑖=1
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𝑖 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖, 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠, 𝑥𝑖 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠, 𝜇 = 𝑀𝑒𝑎𝑛 

 

According to Torabi et. al [162], the error of the consumption can be calculated using 

the following equation: 

𝐸 =
𝐴𝐶 − 𝐹𝐶

𝐴𝐶
 

𝐴𝐶 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

𝐹𝐶 = 𝑓𝑜𝑟𝑐𝑎𝑠𝑡𝑒𝑑 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

 

This gives in percentage the prediction error.  

 

Another common metric is the MSE. A statistical estimation parameter is used to 

measure how good an algorithm is. The MSE is calculated using the following equation: 

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑌𝑖 − Ŷ𝑖)

2
𝑛

𝑖=1

 

𝑀𝑆𝐸 = 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 

𝑌𝑖 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

Ŷ𝑖 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

  

Squaring the difference between both values results in removing the sign, to obtain 

only a positive error value. It also helps to inflate large errors, which leads to punishing 

models with larger errors. Another important metric in this field is the RMSE.  

𝑅𝑀𝑆𝐸 = √∑
(Ŷ𝑖 − 𝑌𝑖)

2

𝑛

𝑛

𝑖=1

 

𝑅𝑀𝑆𝐸 = 𝑟𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 

𝑖 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 

𝑌𝑖 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

Ŷ𝑖 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

 

Because this metric is calculated, it will have the same unit of the predicted value, 

which is kWh. So, it differs from the previous MSE approach because it gives the exact 

unit, not its squared value. Another popular metric is called MAE stands for Mean 

Absolute Error. It shares the same attribute as RMSE because it carries the unit of the 
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predicted variable, however in MAE changes are linear and therefore intuitive. Unlike 

MSE and RMSE, MAE does not punish models with large errors, because it does not 

square them. Errors increase linearly as errors increase. The following equation was 

used to calculate it: 

𝑀𝐴𝐸 =
1

𝑛
 ∑ |𝑌𝑖 − Ŷ𝑖|

𝑛

𝑖=1

 

𝑀𝐴𝐸 = 𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 

𝑖 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 

𝑌𝑖 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

Ŷ𝑖 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

 

3.3.8. Time Series Algorithms 

History events repeatedly reoccur most of the time, therefore events that occurred in 

the past, are probably will occur once again. Time series data are the recorded 

observations done at regular periods. Time Series watches the data continuously to 

estimate and predict events that will take place in the future, based on patterns 

retrieved from prior times. A common basic example is seasonal sales profits. Yearly 

within holiday periods, sales profit increases, however, within periods outside seasons, 

profit decreases. Predicting this situation is not difficult because almost what is to come 

every holiday season can be expected. Also, other time-based trends in the data can be 

obtained, such as a steady growing trend or improvement in a company’s operations, 

or a decreasing trend, where the company consistently falls each year, or month or day. 

According to Chen et al. [163] In the world of Big Data, huge data are continuously 

produced. Data retrieved from meteorological and financial sectors are among the data 

examples that have a periodicity character. finding the possible periodic patterns 

within this huge time-series data, and providing precise predictions, is a critical 

mission. Therefore, Chen et al. [163] have introduced and implemented the 

Periodicity-based Parallel Time Series Prediction (PPTSP) algorithm in a huge 

amount of time-series data, using Apache Spark technology running in a cloud-

computing environment. 

 

The fact that prediction is based on inspecting the sequence of observations in a given 

time, is considered the major difference between this approach and other predictive 

methods. A Time-Series forecast can give a better-estimated figure for how much it 
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could continue. For example, a Time Series model predicts 100,000 people to log in 

online. It might be known there would be a lot of people online, and now it is possible 

to plan for how many further servers and infrastructure are needed for your online 

platform, based on the amount of predicted online users. Or it could be that the model 

predicts a million users in the upcoming years, significantly expanding from last year 

and even more so the year before then. When reaching a point of continuing significant 

growth, a decision might be taken that it is the right time to invest in better 

infrastructure for the year ahead and coming years ahead. Another example is having 

a sensor device recording the number of vehicles that cross an intersection every 20 

minutes. These counts of vehicles can be utilised to predict that in the next 20 minutes, 

traffic at the intersection is likely to spike to a huge amount. So now maybe a trip 

planning App could re-route drivers to avoid this congested, problematic intersection, 

distributing the traffic load more evenly across roads.  

 

It is also possible to model data with no recognizable pattern or trend in Time Series. 

When there is a trend or pattern, inspect the whole history of data and see that pattern 

occurred over time. However, if there is no recognizable pattern, then the best bet is to 

rely more on what is recently happened and less on what has happened far in history. 

What is happened recently is more useful in guiding to what will happen next than to 

look back at the whole of history, which only shows pretty much anything could 

happen. 

 

3.4. Cloud Computing 

Cloud computing simply explained, is having computer resources, storage, networking, 

applications, and analytics available on-demand without being anchored in a physical 

location, offering the ability to scale elastically. This attribute is exactly the suitable one 

for any system or business that support scalability, which is exactly the case for the 

proposed Integrated Scalable System for Smart Energy Management (I3SEM). Cloud 

computing is part of everyone’s life, starting from sending emails, editing online 

documents, streaming films or music to online gaming most of the modern offered 

services are likely based on cloud computing. This approach is not only attractive for 

small entrepreneurs’ companies, also for profit and non-profit organisations. The 

usage of cloud computing can be summarized in several categories such as creating 

cloud-specific applications, storing, backing up and recovering data, streaming music 
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and movies, delivering software, testing and building applications, analysing data and 

finally embedding intelligence.  

 

Cloud computing types are divided into three main categories: public cloud, private 

cloud, and hybrid cloud. Public cloud, such as Microsoft Azure and AWS are clouds 

offered by third-party partners who are responsible for the whole infrastructure 

including hardware, software, and networking. Clients usually access their part via 

client-side applications such as browsers. However, private clouds, are tailored and 

dedicated only for a particular client and exclusively used by this particular client. It 

may physically be on the client’s side or somewhere in the third-party data centres. 

Lastly, hybrid cloud computing is a combination of both described clouds, with a 

special communication software that allows the full integration of them. The possibility 

for data and application to existing in both clouds generates a huge opportunity for 

businesses to be scalable, gets better deployment opportunities, gain more security and 

complicity. An example of such infrastructure is used during the development phase to 

develop and test using the private cloud, then deploy the release to the public cloud. 

The benefit here is having identical environments which increase the likelihood that 

newly developed software will also run in the public domain the same way it runs in 

the private zone.  

 

According to Microsoft Azure [164], cloud computing has massively changed the 

classical way how business deals with IT, this change has been supported by the 

following factors: First – dropping the initial costs to buy hardware and set up the 

software, and getting rid of continuously running costs such as electricity and the costs 

of experts to manage the datacentres. Second – scalability is guaranteed by offering 

more or less componential, storage and networking power tailored according to instant 

needs. Third – Performance is taken seriously in the state-of-art cloud computing 

datacentres which are always equipped with the latest advanced hardware and 

software versions. Fourth – High levels of security are implemented by applying strict 

policies and tools. This approach ensures better protection of both data and 

application. Fifth – Delivering needed resources just with a few mouse clicks and 

within minutes ensure the rapid response to the client needs and minimize the tension 

of resources planning. Sixth – Enhancing productivity by shifting the whole 

infrastructure administration and management from the local IT team to the cloud. 

This approach frees up the local resources to deal with more specific and business-
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related tasks, and ultimately enhance their productivity. Seventh – cloud computing is 

reliable because it always offers additional backup routines, disaster mitigation 

procedures and business recovery and steadiness, moreover the cloud data centres are 

physically distributed on various locations, so when a particular location faces disasters 

(such as hurricanes) other datacentres where the data is replicated can continue to 

serve the business uninterruptedly. 

 

Cloud computing offers different services or stacks, these can be categorized into seven 

main groups: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), 

Software-as-a-Service (SaaS), Functions-as-a-Service (FaaS), integration-Platform-as-

a-Service (iPaaS), Identity-as-s-Service (IDaaS) and Serverless computing. In details: 

Infrastructure as a Service (IaaS) – Considered the most basic and most used 

service. Simply it offers all IT related infrastructure such as componential resources, 

highly scalable databases, private or public networking capabilities, big data 

management, machine learning algorithms software, hardware, operating systems and 

monitoring on a pay-per-use-as-you-go basis. Famous examples of such services are 

offered by Amazon Web Service (AWS), Microsoft Azure, Google Cloud Platform, and 

IBM Cloud. 

Platform as a Service (PaaS) – It offers a collection of services explicitly dedicated 

to the use of developers, who can utilise tools, applications, and APIs to improve the 

development, testing and deployment quality and speed. Salesforce's Heroku and 

Force.com are well known for open cloud PaaS contributions. PaaS can guarantee that 

developers have restricted access to a collection of assets, follow predefined exact 

processes, and utilise just a particular set of instructions. 

Serverless Computing (SC) – On one hand, it is similar to PaaS in many aspects, 

for example, developers are only responsible for writing their code, and there is no 

need to manage the server. However, on the other hand, there are some differences on 

various levels. First – PaaS offers more control over the deployment environment, 

whereas Serverless computing offers less control. Secondly – in PaaS applications must 

be prepared and configured to support the automatic scalability, however, application 

in SC supports the automatic scalability without previous configuration. Third – the 

code in the SC environment will be executed only after invoking. 

Functions as a Service (FaaS) – This is the serverless computing version dedicated 

for use in the cloud. It is an enhancement of the Platform-as-a-Service because it adds 

another abstract layer on top to isolate developers completely from the environment 
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where they run their code. Developers are only required to push their code then trigger 

a process, without having to deal with any VMs, containers, or run-time applications. 

This kind of service is offered by most vendors such as Google Cloud Functions, AWS 

Lambda, Azur Functions, and IBM OpenWhisk. 

Software as a Service (SaaS) – This kind of cloud computing conveys software 

applications over the internet through a browser on demand using their desktop or 

mobile. SaaS applications offer broad configuration possibilities of their development 

platform enabling them to apply their own alternations, while still being responsible 

for applying all necessary updates, patching and maintenance. The most famous SaaS 

applications for business can be found in Google's G Suite and Microsoft's Office 365. 

Integration Platform as a Service (iPaaS) – Adapting SaaS in a business 

environment usually requires using this iPaaS to ensure an appropriate data 

integration through using compatible data connectors. This is widely used in Business-

to-Business environments and e-trade because it allows clients to implement data 

matching and workflows within their integrative process. Dell Boomi, Informatica, 

MuleSoft, and SnapLogic are among the providers of such a service in the market. 

Identity as s Service (IDaaS) – The appropriate recognition of the users' identity 

and assignment of permissions and rights, is considered one of the most challenging 

and difficult tasks. IDaaS is providing a reliable way to deal with such risk. Users’ 

profiles are kept and maintained to provide authentication for users to access various 

applications based on predefined access policies and user groups. These services 

usually offer integration possibilities with directory services such as Active Directory, 

LDAP. Okta, Centrify, IBM, Microsoft, Oracle, and Ping are some examples of such 

service providers. 

 

Both cloud computing and the Internet of Things (IoT) are strongly coupled 

technologies within the wireless communication area, where the growth and 

enhancement of each one lead to support the enhancement of the other. According to 

Stergio et al. [165], this side-by-side development brought some security challenges, 

and this should be solved by applying different encryption algorithms, such as AES and 

RSA. Stergio et al. [165] also suggest the contributions of cloud computing in the IoT 

world by mentioning some examples, such as sensors in building using the cloud 

computing to store data, and to call services, also the computational resources. Where 

the remote monitoring of patients relies on the services and applications retrieved from 

the cloud. Both IoT and Cloud Computing fill gaps in the other part, IoT fills gaps in 
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CC by expanding its limitations and boundaries to enhance the scope, on the other 

hand, CC fills some gaps of IoT related to the limited storage and applications over the 

internet. Moving IoT applications to the cloud requires closing a contract in the form 

of a Service Level Agreement (SLA) to ensure mainly the application’s availability and 

other essential attributes.  

 

However, besides the tremendous advantages of cloud computing platforms, there are 

a number of disadvantages that can be summarized as 1) Network connection is always 

needed – The cloud computing services are all offered only when the client is connected 

to the internet. There is almost no business continuity plan when the connection is cut 

due to an outage or storm. 2) Features depend on the provider and its speciality area. 

Not all providers specialized in all types of services and applications, some of them 

offer excellent storage applications with poor operating systems varieties. A detailed 

look and decision matrix must be put in place to make the right decision. 3) The 

absolute reliance on the provider to maintain the system and the data, the client has 

no control and must trust the provider. In some cases, this may bring hazardous 

consequences. 4) It is a fact that not all providers are secure as they claim. Security is 

an essential aspect and may suffer in the cloud computing environment, compared to 

the closed local data centres. 5) No control in case having technical issues. Clients 

cannot do anything other than call or open a ticket and wait for somebody else to solve 

the problem. Besides all of that, there are some challenging contract and political issues 

[166] [167]. 

 

3.5. Internet of Things (IoT) 

According to AWS Amazon [64], “IoT is a system of ubiquitous devices connecting the 

physical world to the cloud”. IBM [168] defines IoT as “At the heart of IoT are the 

billions of interconnected ‘things or devices with attached sensors and actuators that 

sense and control the physical world”. It can be also defined as “the network of physical 

objects, devices, vehicles, buildings and other items which are embedded with 

electronics, software, sensors, and network connectivity, permitting these objects to 

gather and interchange data” [169], [170]. This type of connection leads to constructing 

smart entities, whether homes, cars, cities, industry fields, and ultimately a smart 

world [171]. A scenario inside a smart home environment can deliver a good example 

to explain this approach; let us consider the ringing alarm in the morning that sends a 
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signal to the coffee machine which begins automatically preparing the coffee without 

the need for any human intervention [171].  

 

Cisco Inc. expects that by 2020 there will be 50 billion connected devices [172], 

therefore it is obligatory to consider a few factors while implementing any IoT system; 

such as complexity, security, privacy and data storage, safety and standardisation [171]. 

Complexity – Having a large number of devices, services, link-layer technologies, etc. 

mutually connected, dramatically increase the complexity grade of the system [171]. 

The complexity’s sources are the management efforts, the frequent maintenance and 

the handling of generated huge data and ensure compatibility. Security – Moreover, 

opening communication gates and channels among devices bring with it some security 

challenges. One of the proposed solutions to address this issue in this project is 

implementing the industry-standard protocol for authorisation OAuth 2.0 [173]. 

Privacy and data storage – Because sensors are an essential part of any IoT system, 

thinking about handling data storage and privacy is a must. Wireless Sensor Networks 

are proposed as an appropriate solution for this purpose. In these types of networks, 

data gets shared within sensors farms and ultimately sent to distributed systems to 

analyse [174]. Safety – The nature of the topology of IoT requires having event-driven 

smart applications that interact with the connected devices, sensors and actuators, 

however these applications may not always properly function, and can be buggy, or 

perform inappropriate interactions, or suffer from telecommunication deficiencies, all 

of these could cause insecure and risky situations. For example, unlocking the main 

entrance door in an empty house, or even turning off the heating system during 

freezing periods while people sleeping at home. As an attempt to prevent such buggy 

behaviour a novel system called IotSan is introduced by Nguyen et al. [65]. The system 

attempts to identify all possible events, that could bring the system to perform unsafe 

actions, which occurs by revealing the weaknesses on the interaction tiers. A case study 

has been carried on using Samsung SmartThings, this revealed that the IotSan could 

detect 147 vulnerabilities on 76 systems. Standardisation – Similar to any 

technology, where a huge number of vendors, devices, protocols and applications are 

involved, having a set of standards encourages rapid development, simplifies the 

manufacturing process, also advances the manufactured appliances due to specialising 

in building particular modules according to predefined and agreed-upon standards.   
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3.6. Summary 

Most related techniques, technologies and paradigms which are considered the main 

pillars of any smart management system were reviewed in this chapter including 

Microservices’ definition, structure, application fields and the main advantages 

compared to other paradigms. This was followed by a number of data analytics and 

data mining techniques covering supervised, unsupervised and semi-supervised 

machine learning techniques, tracking patterns, classification, association, clustering, 

regression, time series and anomaly detection. Cloud computing was explained due to 

its capabilities of supporting and enhancing the scalability and performance issues 

while implementing any energy management system. Moreover, the chapter covered 

all related issues to the Internet of Things approach because any modern smart energy 

management system should deal with both conventional and smart appliances, where 

IoT entities are considered essential for supporting the integration of these appliances. 

Together with the techniques and technologies, a number of selected smart energy 

management systems were reviewed as illustrations where these technologies are 

applied.  

 

Technologies are described in detail to make the implementation phases faster, easier, 

and more reliable due to the clearness and the deep understanding of each piece and 

its capabilities and drawbacks to achieve the most appropriate choice. It also assists in 

building a sufficient and reliable decision matrix when needed to compare different 

technologies to choose the most suitable and appropriate one, without having a clear 

picture of all available technologies and their attributes, it is not possible to hold any 

reliable comparison. As will be seen later in the case study chapter, not all of them will 

be considered in the implementation, however, these are reviewed to make sure that 

only suitable ones will be chosen and implemented and give clear arguments why some 

technologies were not used in the implementation by describing its capabilities and 

boundaries. 
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4. Integrated Scalable Smart Energy Management 

Framework  

4.1. Introduction 

Both previous literature review chapters reviewed a number of related techniques and 

technologies, conventional and smart energy management systems which are 

proposed and constructed by researchers and industry to achieve the challenging 

question: how to reach the most efficient energy consumption while keep offering the 

targeted user's comfort. A closer look at these systems reveals some drawbacks and 

deficits that have been addressed in detail in section 2.7.5. The framework presented 

in this chapter is an attempt to take a step towards having an integrated system to 

overcome some of these shortcomings and deficiencies by proposing a new 

architecture consisting of new components or remodelling existing ones covering many 

aspects, such as scalability, reusability, pluggability, security, enhanced user 

experience, mobility, more extensive stakeholders’ engagement. Although the lack of 

standards plays an essential role in slowing down the development of any system in 

any field, not only in the energy management sector, this aspect is not addressed and 

considered in other sectors as well..   

 

This chapter presents the  proposed framework in detail. It begins with a detailed 

review of quality factors that must be met in the framework in order to sustain for a 

long time and establish a proper basis for any future enhancement and development. 

Since data plays an essential role, section 4.3 will be dedicated to examining and 

assessing all framework data’s related challenges including data integration and 

processing, handling a huge amount of data, data privacy and protection, and data’s 

real-time evaluation and visualization.  

 

The in-depth explanation of the framework begins with a high-level view and 

mentioning of the functional requirements which should be fulfilled by the framework. 

Then it is followed by an explanation of the components and modules. The followed 

terminology suggests dividing the framework into three main zones: client zone, cloud 

gate and cloud processing zone. Each zone consists of a number of components that 

put all related modules, processes, services or devices under one umbrella to enhance 

modularity, scalability and security. The data flow in the framework is touching nearly 

every module therefore in this chapter three main workflows will be described and 
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explained to illustrate how data is handled and dispatched. Moreover, this chapter 

covers all aspects that will be used in the next implementation and evaluation chapter 

by providing a detailed explanation and definition of boundaries and frames of each 

component, module or service that aims to achieve many goals: Firstly, reducing or 

even eliminating any unexpected issues or deviances during the implementation phase. 

Secondly, assist in deciding on the most appropriate applications, techniques, and 

technologies. Thirdly, reduce the implementation phase duration by fulfilling some 

modules or services by ready-to-use, off-the-shelf software pieces such as security 

modules, alerting management systems, or front—end templates and visualisation 

engines.  

 

One of the expected benefits of the framework is measuring and reporting the amount 

of the consumed energy within certain times during the day, within days during the 

week and within seasons during the year, together with some anonymous data related 

to the occupants, living area size, region, weather and living area's type (apartment, 

house, villa, organisation, …). Processing this data and offering it anonymously to 

stakeholders such as local energy generators may open avenues toward better energy 

generation management and reduce the lost energy during off-peak slots. Moreover, 

governmental agencies may use this data to be more accurate while designing and 

issuing new laws and regulations. It also gives appliances’ manufacturers the chance to 

retrieve various running parameters of their devices while operating under real-life 

conditions. 

 

4.2. Quality Factors 

Energy Management Systems are complex structures in nature, in order to sustain for 

a long time and establish a proper basis for any future enhancement or development 

they should match a variety of quality criteria such as scalability, reusability, security, 

data integrability and interoperability, for instance, different smart home protocols 

such as ZigBee and Z-Wave operate simultaneously. As seen in the previous literature 

review section, none of the reviewed frameworks managed to address all mentioned 

quality factors. The proposed Integrated Scalable Framework (I3SEM) is an attempt to 

consider and address these quality factors during its design and implementation 

phases. 
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Achieving a high level of scalability in any system is not a bonus feature, rather an 

essential quality factor, which determines and maintain its lifetime value and reduce 

needed resources in the long term. In many cases, scalability is ignored or shrank to 

low levels due to many constraints related to budget, time, resources and customer 

requirements. A scalable system is a system that keeps being performant without the 

need to redesign any part of it regardless of the growing workload which is represented 

by anything that goes beyond the system's limitations such as the increase of 

simultaneous user access, number of transactions, storage capacity. Due to the nature 

of the field where the proposed I3SEM framework will be implemented, it must 

consider a high degree of scalability to allow a smooth and cost-efficient deployment 

of the system when applying it in a broader range of facilities. 

 

Performance, in general, is a loose term. It can be concreted by breaking it down into 

three main measurable factors: 1) Response time – is representing the take needed by 

the system to process a given stimulus or event, keeping this time shorter, will decrease 

the performance of the system and improve the overall user experience. 2) Throughput 

– by definition, the throughput represents the amount of data or work-units passed or 

processed by the system. Here it is essential to differentiate between throughput and 

bandwidth; where bandwidth represents the maximum allowed capacity of the system, 

the throughput reflects the currently used amount. 3) Utilisation – A resources 

utilisation unit plays a pivotal role to track and recording the resources' occupation 

level while running a performance test. It helps to figure out the bottle-neck spots in 

the system — the next section, 4.2.2. Component Overview will describe in more detail 

the way how the proposed I3SEM framework is planning to deliver responses to 

enhance the performance factor.  

 

Reusing previously written, fully functioning, tested and debugged a piece of codes, 

components, or modules, does not only enhance the productivity it also increases the 

quality of the whole software by avoiding programming new code, which ultimately 

brings too many advantages related to the development time, budget, resources. 

Basically, a piece of code is considered reusable when it can be used, without any 

changes, to achieve several targets. In fact, the reusability factor relates to the code and 

the used programming language, which cannot be directly influenced by the I3SEM 

framework, however, using a new paradigm such as microservices implicitly indicates 

the necessity to develop code with a high grade of reusability. More details on how 
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microservices might increase the portion of the reusable code within the system will be 

seen in the next sections. 

 

Offering a high grade of integrability and dynamic aggregation possibilities to enlarge 

the system by continuously adding new units, or involving new households, brings 

enormous security challenges to keep the whole system distanced from hijacking and 

undesired attacks. Different security approaches and arrangements must be offered 

within the proposed I3SEM framework to secure both local aggregated mesh networks 

inside the household, and the overall framework because of several reasons. These 

reasons can be summarized as 1) The nature of the proposed framework which is based 

on offering integration and scalability possibilities to enhance one household's network 

by adding an unlimited number of appliances, sensors etc. 2) The fact that the 

framework designed to support managing an unlimited number of households within 

a community. 3) The use of cloud-based solutions adds new tasks to verify upcoming 

requests and apply extra permissions mechanisms. Many security concepts will take 

place in the proposed framework to respond to the possible threats. 

 

One of the significant challenges faced in this area is the lack of standards. This has a 

direct impact on nearly everything, starting from the communication protocols, ending 

up with the transferred data packets. Because many vendors, protocols and devices will 

be used in the local mesh network, the proposed framework must have a Data- 

integrability component to match the different data types resulting in having smooth 

communication among them regardless of the different data format.  Such data- 

integrability components support the interoperability competency of the system. In 

other words, if a new device, sensor, or protocol which supports a different type of data, 

added to the system, all that needs to be done is add a matching data- integrability 

module to match the new format. More specific details will be explained in the coming 

sub-sections. 

 

Designing and developing an attractive, user-friendly system encourages stakeholders 

to interact with the system and use it more frequently. Achieving this goal requires 

following several steps: firstly, analysing the audience – knowing the target audience 

allows offering the proper GUI that match their needs and expectations. Secondly, 

keeping it as simple as possible – simple, clean and minimalistic are the essential 

keywords to describe proper software. All well-known applications have this attribute. 
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Thirdly, minimal interruptions – users do not like being interrupted while using an 

application, therefore some techniques such as implementing self-disappearing 

notifications, or inline error messages must be considered. Fourthly, offering online 

help – no matter how the application is self-explaining and easy to use, there will 

always be users who ask questions, offering an online alternative to get information is 

much better than forcing them to write emails or call support hotlines. Fifthly, studying 

and analysing user behaviours – this is one of the modules running in the user-side to 

collect data resulting from the user usage, behaviour, clicks, to build complete user 

journeys to have an in-depth understanding of how users interact with the system. 

Since the first mentioned four points are application-specific aspects, the proposed 

framework will not have any influence on it; however, the last point can be 

implemented by adding a dedicated component to track users behaviours and log this 

data as a preparation to build complete user journeys. The component is called the 

Logging User Journeys' Module. 

 

4.3. I3SEM Data Challenges 

As discussed in the previous section (2.5.2. Data Storage), the non-relational database 

is considered the most suitable choice to manage the data in the proposed I3SEM. In 

this section, this decision will gain more clearness by illustrating the special data 

challenges associated with this type of research. Challenges can be summarized as: 

1. Data Integration Checking and Processing – Due to the fact that 1) data 

will be retrieved from different types of sensors, and providers. 2) new sensors 

and providers may be added, even the same sensors may get enhanced, or 

external data providers may modify the outputs. 4) data may get corrupted while 

generated or transferred. Various cleaning-up, data integration and 

homogenization steps and routines must be applied to enhance the data quality 

and ensure its robustness and correctness.  

2. The planned huge amount of data – Data will be collected from an 

enormous number of units. Accumulatively, this will generate enormous data 

records which must be transferred to the cloud. This puts enormous pressure 

on the infrastructure and the processing and storage units. 

3. Data privacy and protection – Some data is considered private and 

therefore it should be handled properly and securely. An example is the data 

coming from detection sensors which tells whether if someone is in the house, 

this kind of data can be misused to commit some burglary crimes. 



 
 
Integrated Scalable System for Smart Energy Management 

119 
 

4. Real-time evaluation and visualization – results, predictions, 

visualisations need to be illustrated and updated accordingly. 

 

Data mining is essential for the proposed I3SEM framework. In the literature, several 

techniques and algorithms can be used for processing and predicting purposes. In the 

next section 4.4, together with the other core components and modules, the related 

analytics components, and the way they are connected will be illustrated and 

explained. 

 

 

 

 

 

 



 

 

 

Figure 4.1: The proposed Integrated Scalable System for Smart Energy Management Framework (I3SEM) 
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4.4. Actual Architecture 

4.4.1. High-level view 

The proposed Integrated Scalable System for Smart Energy Management Framework 

(I3SEM) framework is illustrated in Figure 4.1. As seen, the framework consists mainly 

of three main zones: client-side, cloud gate and the central system. All these main zones 

and their components and modules will be described in detail in 4.4.2. Three main 

motivations stand behind designing the framework in this way; firstly, attempt to 

provide answers for the deficits of the reviewed frameworks from literature. Secondly, 

fulfilling a number of non-functional requirements is discussed in section 4.2. Thirdly, 

delivering responses to the following functional requirements: 1) data should be 

gathered periodically, upon need or action. 2) collected data must be processed; the 

outcome will be saved in central storage. 3) sensitive raw data will not be transmitted 

outside the local network (client zone), however, the processed anonymous data can be 

transferred. 4) readings should be used to generate visual charts, graphs. 5) all 

generated graphs should be accessible by end-users via mobile applications. 6) 

stakeholders’ interfaces should interact with the server using web techniques that 

consume web services. 7) user management GUI should allow users to perform 

different tasks based on their privileges.  

 

The next section will provide an in-depth explanation of all components and modules 

that construct the proposed architecture. 

 

4.4.2. Components' View 

This section will highlight the I3SEM Framework different zones, components and 

modules. It consists of three main zones: Client Zone (CZ), Cloud Gate (CG), and 

Cloud Processing Zone (CPZ). Following is a detailed description of these zones and 

their components and modules: 

 

1. Client Zone (CZ) – This zone includes all components, modules and APIs that 

are interacting with the cloud. Some of the components are physically located in the 

smart home side, some of them in the external APIs. It consists mainly of five 

different components as follows: 
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1.1. Clients – Both end-users and devices such as tablets, desktops and mobile 

Apps, are considered clients of the system. Devices contain adjusted versions 

of the graphical user interface used by end-users to interact with the system. 

It is designed to operate within usual platforms such as tablets, desktops and 

mobile phones. A determining differentiation is offered for both users and 

administrators, depending on their contributions and functions. 

 

1.2. Client-Side Processing – Every household consists of an aggregated mesh 

network of unlimited units such as sensors, appliances, gadgets. Additionally, 

the network will have further components and modules to provide necessary 

factors; these can be summarized as follows: 

• Sensor’s Data Processing & Integrability Checker and Validator: This 

checker and validator module plays an essential role in reducing the total 

amount of data sent from the household to the main processing and 

storage system in the cloud, in other words, only relevant data will be 

carried over. This approach helps in decreasing the unnecessary traffic 

and decentralise -partly- the processing efforts. The checker consists of a 

set of rules that can be applied straightforward using the local central 

processor; this rules-set will be managed by another central part called 

Client-Side Rules Set Dispatcher upon need. The biggest winner to this 

extent is scalability and performance. With this approach adding new 

households, implicitly adds new resources to the whole system, by 

reducing the 100% reliance on the central processing. Same time, the 

performance increased because of the reduction of the very expensive 

throughput, which reduces the processing efforts needed to handle it. 

 

• Mesh Network Security Layer: This offers security implementations to 

the household mesh network. The household network can be hijacked by 

stealing any device (outside cameras, for instance), or by registering an 

unauthorized device or sensor. Every single unit in the mesh aggregated 

local network is essential for the whole system; therefore, securing these 

nodes and the flow of data among them is one of the framework's critical 

missions. The security is guaranteed by using the Z-Wave protocol which 

comes with several built-in security features such as AES symmetric 

block Cypher algorithm using 128-bit key length, the End-To-End 
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Security offered on the application level, and the use of Single Network 

Wide Key to offer protection against the physical attacks, creation of 

zombie computers by infecting the system by malware and viruses. 

According to Daser David [175], data cryptography represented by the 

order illustrated in Figure 4.2, Wi-Fi Protected Access (WPA) and WPA2, 

and Advanced Encryption Standard (AES) are examples of the strategies 

and approaches used to enhance the wireless mesh networks inside 

households. 

 

Figure 4.2: Sample of Encryption and decryption process [175] 

 

• User's Journey Logging Module: This is responsible for collecting the 

user's behaviours while using the system as a preparation to build 

complete user journeys. This approach is crucial to judge the suitability 

of the application and see the possible improvement potentials to make 

the system even more friendly and usable. 

• Controller Signals Receiver – All communication between the central 

processing unit in the cloud and all clients are established and performed 

via this receiver unit which is interfering with the signal's sender located 

in the core processing unit in the cloud. 

 

1.3. Appliances and Sensors – The wireless mesh network consists of many 

hardware components such as sensors, appliances, gadgets and some other 

devices as routers, or any additional Network Attached Storage (NAS) 

devices. Devices must support one of the available major smart home 

protocols: ZigBee and Z-Wave. Technically it is not possible to have them 

both communicating with each other due to differences in the frequency. 

 

1.4. External Data APIs – Some decisions will be taken based on additional 

external feedback such as weather forecasts, traffic or energy providers' 
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prices, and the eCommerce external product API which is used by the 

decision-making component in the core processing unit. 

 

1.5. Gateway – This hardware device (router) is a network node that is standing 

between both networks, the local home mesh network and the internet. Its 

main function is enabling the IN and OUT traffic in both directions. 

 

1.6. Local Database – The local system requires a storage medium to keep the 

collected raw data from the local network together as a preparation for 

further processing. The local database will be responsible for saving collected 

parameters, processing results, APIs raw data, and various logs. 

 

2. Cloud Gate (CG) – All traffic going IN and OUT of the cloud must first go through 

this gate from both directions. All requests and responses are managed, secured, 

authenticated and load-balanced through this gate. Such a paradigm allows more 

control and better management to handle and classify the traffic. It consists of the 

following five different modules:  

  

2.1. Session Management Module – This module handles and manages all 

requests coming from a user or entity after the authentication process. It 

plays an essential role to enhance performance, privacy. 

 

2.2. Authentication and Permissions Module – This component resides in 

the cloud entry point to serve two essential goals: firstly, protecting the 

application and the data against any unauthorised access. Secondly, 

managing the access permissions of users based on their privileges and roles. 

All subsequent requests will be validated, checked, and verified. 

 

2.3. System Security Module – This part includes off-the-shelf security 

components such as firewalls, Secure Socket Layer SSL encryption and 

Transport Layer Security (TLS). 
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2.4. Infrastructure and load balancing 

Module – Per definition load balancing aims to 

distribute the tasks on the available resources in 

a way to prevent them from being under or over-

utilised. This concept is considered one of the 

most critical techniques to improve the 

scalability and performance of any system. 

There are many approaches for this purpose, 

such as the Honey Bee Approach done by [176], 

Ant Colony Approach by [177], Genetic 

Algorithm, Biased Random Sampling. However, 

the approach Weighted Biased Random Walk 

(WBRW) recommended by Jain and Kumar 

[178] illustrated in Figure 4.3 will be used in the 

cloud environment in the proposed framework. 

 

2.5. Mobile Management – Together with the mesh network security module 

located in the client-side processing, this module assists to manage and 

securing all physically portable mobile devices to ensure high-security levels 

and prevent potential attacks. Section 5.6.3 proposes an illustration example. 

 

3. Cloud Processing Zone (CPZ) – The main and central zone that consists of 

many components and modules where the data collection and integration, 

predictive analysis, context-sensitive analysis, decision making, visualisation, and 

reporting and alerting take place. A detailed overview of this zone can be found 

below: 

 

3.1. System Control Component – Having a general system resources 

overview and establishing add-on components to react to the rapidly 

changing running environment parameters, leads to better performance and 

higher reliability grades. In the proposed framework, this approach is 

introduced by the following units: 

• Administration – Constants, constraints, rulesets, users and all other pre-

defined parameters can be handled and managed using this module. 

Figure 4.3: Flowchart of Weighted 
Biased Random Walk 
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• Rules-Sets Dispatcher – A central unit to dispatch all rules defined by 

administrators to all clients (households). 

• Resources Utilisation Unit – This is a performance key indicator added to 

the framework to track how busy various resources of a computer system 

are when running a performance test or during the usual operational 

phases. Defining the most used resources allow system administrators to 

take suitable decisions to enhance the performance by adjusting the 

resources accordingly. 

 

3.2. Visualisation and Reporting Component – This component is 

considered one of the framework's core components. Generally, it covers all 

aspects related to the visualisation and reporting of the processed outcomes, 

and selected data portions. It consists of the following modules: 

• Front-End Template Engine – This module represents an additional step 

towards offering more modularity, flexibility and interoperability to the 

framework by separating the data from the layout templates. The idea is 

based on pre-designing templates with a pre-fixed data structure 

represented by XML or JSON formats, and front-end technology, such as 

HTML and CSS. The Engine's primary function is merging both templates 

and data sets to generate the final output (as HTML pages for the browser), 

Figure 4.4 illustrates this principle.  

 

 

Figure 4.4: Frontend Template Engine Principle 

 

• Visualisation Statistics – Statistics are generated and saved as raw data. 

The final view of data may be shown using any common, off-the-shelf 

platforms such as Grafana. 

• Alert generation – The process starts by defining rulesets, it ends up by 

sending out alerts in many shapes, once the predefined rulesets found a 

match among the processed data. 



 
 
Integrated Scalable System for Smart Energy Management 

127 
 

• Reports Generation – Different types of reports for different stakeholder 

types will be produced. Additionally, reports can be provided to local 

energy providers, appliances’ manufacturers, and any interested local 

governmental agencies.  

 

3.3. Data Collection and Integration Component – All collected data 

retrieved from the various hardware units and external services will be 

collected and managed by this component. It has many modules to fulfil this 

purpose: 

• Data collection – Data is collected, validated and stored. 

• Collective Data Processing – Both sensor generated and external API data 

will be checked and validated, then processed to get the most relevant and 

useful part of it. The obtained information then gets saved to the storage 

unit. 

• Data integration – Since data are coming from different resources, there 

is a need to harmonise and offer data integration to allow translating 

different data formats into a standard processable piece of data. This 

approach in the proposed framework enhances the interoperability, 

consistency, and accuracy of data stored in the database, it also allows 

handling different types of data collected from various hardware vendors.  

• Data Transformation – Collected data may have different types, such as 

texts, timestamps, numbers or even images. Therefore, there is a need to 

transform the various data formats into a processable shape. This 

approach supports the strength point of the framework to deal with smart 

and conventional appliances. Where smart appliances can directly 

generate processible data, and images can be taken from conventional 

appliances settings panels then converted to processible ASCII formats 

using these data transformers. This approach can be seen in the case-study 

chapter in section 5.3. 

 

3.4. Core Processing Unit – This is the central unit of the cloud. It is 

responsible for getting, processing, analysing, and storing the incoming data, 

besides making decisions based on the collected and predicted data which is 

retrieved from the Data Analytics Engine. It is divided into three main 
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components: API Services Engine, Data Analytics Engine, and Decision-

Making Module. Following is a detailed description of each. 

 

3.4.1. API Services Engine: Consists of the microservices farm, the 

RESTful API and Controller Signals Sender. 

• Microservices – This module consists of a highly maintainable and 

testable, loosely coupled, independently deployable collection of 

services which will be written in Java as explained in the case study 

chapter and reside behind a RESTful webservice. In the proposed 

I3SEM framework, this module supports several quality factors 

such as scalability by offering Platform-as-a-Service (PaaS), and 

Function-as-a-Service (FaaS). According to [179], microservices 

assists in achieving high grades of performance due to the efficient 

use of available resources, and the performant way of handling 

processes tasks. Moreover, the reusability is highly supported by 

this module because one microservice (for instance; the logging) 

can be re-used in many other microservices. load 

• RESTful API – According to [180]  REST is neither a protocol nor a 

specification; it is an architectural style of networked systems 

focused on exposing the resources on a network, mainly Web. In the 

proposed I3SEM framework it offers all functions needed to 

communicate with all households' networks and the other external 

services. Applying this approach in the framework supports 

scalability and data- integrability by offering a single point of access 

to a scalable microservices farm and offering a set of standardised 

communication verbs and operations. 

• Controller Signals Sender – All communication between the central 

processing unit in the cloud and all clients are established and 

performed via this sender unit. For example, reporting error codes 

to the client to resend a portion of missing data. 

 

3.4.2.  Decision-Making Module (DMM): As will be explained in table 

5.1 in section 5.2, among the six strategies and policies described in 

section 5.2 (Home Appliances Analysis and Energy Saving Strategies), 

the framework follows three main strategies to reduce energy 
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consumption, these are: 1) Measure and predict the consumed energy 

of appliances from any category, to decide to substitute it with a more 

efficient one. 2) Measure and predict the percentage usage of 

appliances from any category to check the possibility to use smaller 

ones. 3) Measure and predict the usage habits and intervals of 

schedulable appliances, belong to the previously mentioned third 

category, to apply automatic running schedules. Based on several 

criteria this module decides which strategy should be applied and 

which action is recommended. 

 

3.4.3.  Data Analytics Engine: The output of this engine will be used in 

many modules such as the aforementioned Visualisation and 

Reporting component. This component is one of the most resources 

consuming parts of the whole system because it deals with a massive 

amount of data. It consists of three main modules, as follows:  

• Context-Sensitive Analysis – As the name suggests it offers the 

possibility to evaluate and analyse the flowing data while 

considering its contexts and the surrounding environmental 

parameters and background to deliver the most relevant, suitable, 

and accurate analysis. Together with the data, several anonymous 

data are sent for instance to define the property type where the 

system is implemented, or to describe the types and quantity of 

appliances. Important to mention that context-sensitivity adds 

demands additional processing power and resources, therefore it is 

considered an expensive approach, however, it adds a valuable 

added value by delivering more accurate and relevant outcomes. 

• Predictive Analysis – One of the most significant modules in the 

framework. It is responsible for making predictions of future 

behaviour. It uses different techniques such as data mining, 

machine learning and big data analytics. Figure 4.5 illustrates this 

approach. Both experiments in chapter 6 are illustrating the 

implementation of this module. 
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Figure 4.5: Predictive Analytics Lifecycle  

 

• Detection Probability Generation – This is one of the most 

important modules of the framework, basically it does calculate the 

probability of an event based on the collected data. The processed 

data consists of the data collected from different sensors, external 

data providers and predicted data. 

• Alerting Mechanism – Alerts will be issued when certain 

circumstances are detected. In the I3SEM framework, there will be 

predefined rules-sets, these will be applied to the proceeded data, 

when a situation that matches the rules-sets, is detected an alert will 

be issued, for instance: sending an alert when an appliance exceeds 

the expected energy consumption levels.  

 

4. Database: In the proposed framework, a choice has been made to operate the 

system using a NoSQL-Database, not an SQL-Database to support the scalability 

and the cloud computing, because NoSQL database is designed to store data 

without structure (as objects), and can be spread across cloud platforms. For 

example, a NoSQL database such as MongoDB has built-in features such as 

replication and sharing. 
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4.4.4. Main Workflows 

 The framework is based on data being collected, processed and analysed, then used 

for visualisation and predictions. In this section, some of the leading dataflows will be 

described. 

 

Sensors' Data Workflow – The data's 

flows start when sensors produce 

measurements data and send it to the local 

controller. Data gets processed first of all 

locally by validating and checking them; 

only valid and processed data goes to the 

central system in the cloud. Over the 

Gateway the RESTful API is the first 

contact point in the cloud, data and sender 

get checked and validated, only data from 

authenticated senders with enough 

permission levels are accepted and 

forwarded for further processing. 

Processing's output is tightly coupled with 

the visualisation module. Processing may 

require having some external data from 

external services such as weather 

forecasts, or traffic situations, which is 

retrieved over the Cloud Gate. This 

workflow is illustrated in Figure 4.6 

 

 

 

Rules-Sets Dispatching Workflow – As described in section 4.4.2 I3SEM 

Framework's Components the client-side checking and validation process requires 

rules. These rules are dynamic and may change according to needs. Due to the fact that 

Figure 4.6: Sensors' data collection, validation 
and processing workflow 
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this framework is scalable and 

may be used with any number 

of households, changing the 

rules manually will be a 

painful process. Substituting 

this manual process with an 

automatic one using the rules-

sets dispatcher will solve the 

problem and add more 

flexibility, dynamicity and 

reduce the running costs 

during the system life cycle. 

The flow starts with an admin 

changing an existing rules-set 

or adding a new one, then 

publishing it, these get 

regularly sent to the clients after performing some tests and validation actions using 

simulations or testing environments. Figure 4.7 illustrates this approach. 

 

External Data Services Data's Workflow – The internal data processing may 

require additional data than the one collected from different clients (households). This 

approach is supported by this framework. Data 

may be retrieved from external resources such as 

weather forecast stations, traffic stations or energy 

providers to get the price and the current load. As 

illustrated in Figure 4.8, this workflow is initiated 

by the processing unit, which invokes a call to one 

of the corresponding microservices over the 

RESTful API. The API performs the necessary 

communication with the external data services and 

return the results to the processing unit after 

applying some validation actions. The combined 

data (household’s data and external data) will be 

used for visualisation or prediction purposes. 

 
Figure 4.8: External Data Services Workflow 

        Figure 4.7: Rules-Sets Creation, Validation and Dispatching Workflow 
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4.5. Conclusion 

The proposed I3SEM framework is an attempt to offer responses to overcome a 

number of shortages, drawbacks that are considered challenges in this field and were 

not fully addressed in the reviewed frameworks, which can be summarized in  

firstly, the lack of integrated architectures. Secondly, the lack of standards and unified 

data structures. Thirdly, the restriction of the applicability on legacy and modern, 

smart environments. Fourthly, the lack of overall security concept – including IoT 

security, and protection against potential bundled points attacks. Fifthly, the lack of 

mobility management, and finally the lack of stakeholders’ involvement. These issues 

were addressed in the proposed framework by providing a number of components and 

modules matching several functional and non-functional requirements. 

 

Quality factors such as scalability, performance, data integrability, interoperability, 

and user-friendliness are the main non-functional requirements where the framework 

is built around. These factors were addressed during the design phase by introducing 

corresponding components. Moreover, the proposed framework is designed to cover 

many functional requirements, such as gathering, validating, processing the energy 

consumption figures periodically and predicting future usage as a result of analytical 

processing. The output of the processed data will be used for visualisation and stats 

purposes as graphs and charts, also will be the input for some prediction calculations 

processes. The framework also offers web-based communication channels which 

follow state-of-art approaches to enable efficient and performant communication 

within the system's units. Finally, visualisation interfaces are introduced to ensure 

proper informative medium, interaction possibilities and efficient contribution of 

stakeholders. 

 

As previously mentioned in the literature review chapter number two, the reviewed 

frameworks suffered from some drawbacks related to the lack of integrated 

architectures, lack of standards and unified data structures, restriction of the 

applicability on legacy and modern and smart environments, lack of overall security 

concept, lack of mobility management, and lack of appeal to stakeholders. Whereas the 

proposed framework attempts to deliver clear answers to those drawbacks by 

incorporating standards for exchanging, analysing and displaying energy data, and 

measuring the performance. Also, by supporting decision-taking mechanisms and 

organisation services to consider the amount of energy consumed by various assets, or 
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by different processes, to enable energy optimization on both local and global levels. 

And meeting the requirements of compatibility, expandability and interoperability to 

support further future developments and extensions. Finally, offering a platform to run 

all together. 

 

I3SEM is divided into three main zones: client zone, cloud gate and cloud processing 

zone. Each zone consists of a number of components and modules and has its 

responsibilities inside the framework. The client zone is implemented inside the 

household or the organisation where occupants live, and its main responsibility is 

gathering, validating, and processing data. Outputs are sent to the cloud processing 

zone via the cloud gateway. Cloud gateway contains a number of modules to ensure a 

high level of security, privacy and enhanced performance; these are session 

management module, authentication & permissions module, load balancing, system 

security and mobile management. The cloud processing zone with its corresponding 

components and modules is responsible for processing, analysing, prediction, 

visualisation, and decision-making activities. The communication and networking 

inside the proposed framework are designed to support a high level of integrability, 

security and scalability. This is also emphasized by integrating several state-of-art 

technologies and paradigms such as microservices, predictive analytics, decision 

making and cloud computing. 
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5. Implementation & Evaluation 

5.1. Introduction 

This chapter provides a detailed description of the implementation of the proposed 

I3SEM integrated framework in a selected household environment which consists of a 

combination of conventional and smart equipment. Beginning with analysing the 

household’s appliances by categorising them into three main groups according to their 

operational behaviour: uninterruptable appliances, instance or run-on-demand 

appliances, and schedulable appliances, which enable deciding to apply the most 

appropriate strategy. Algorithms and a data subset are evaluated in this chapter to 

provide a proof-of-concept for the fully implemented system, which is presented in the 

next chapter using the entire dataset. The data-subset, algorithms and equipment are 

used to evaluate the implementation of selected energy-saving strategies which are 

mainly based on firstly, utilising appropriate appliances’ sizes that match the 

household’s occupants’ needs, secondly systematically running appliances Just-on-

Demand, and finally, offering the possibilities to substitute inefficient appliances with 

more energy-sufficient alternatives.  

 

In this scope, data will be gathered from various resources including the sensing 

devices installed within the household environment, external APIs, administrational 

interfaces, and data mining techniques. Part of the sensing devices will be bought off-

the-shelf, however, the majority of them will be designed, built, or tailored especially 

for this case study as will be introduced in section 5.3 which includes: Energy 

Consumption Recorder, Unique Occupant Detector, Refrigerator Fullness Detector, 

Refrigerator Settings Panel Reader, and the Immersion Heater Inspector. The external 

APIs are providing the system with data related to the weather forecast, traffic and 

general data such as national holidays, etc. System administrators are responsible for 

feeding the system with additional data related to the appliances’ attributes, household 

occupants’ data including working hours, work addresses, etc. Predictive analysis is 

essential in the implementation phase to construct a robust dataset together with 

measured data, covering both historical and future predicted data to allow applying 

various strategies and techniques to reduce energy consumption. This will be 

accomplished by following the Cross Industry Standard Process for Data Mining 

(CRISP-DM) methodology that suggests following a number of steps explained in this 

chapter including understanding the business, then understanding and preparing the 
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data, followed by applying machine learning algorithms to obtain the most suitable 

models by passing them through a number of cross-validation methods. Appropriate 

data mining algorithms will be applied for prediction purposes to deliver the most 

accurate picture for the near future, which adds more reliability and sustainability 

attributes to the system. 

 

A number of applications, paradigms, components will be explained in this chapter in 

detail to accomplish the case study. This includes the Java-based Reduction of Energy 

Consumption in Household Sector (RECHS) dedicated to being the central interface 

among stakeholders, administrators, various system components, APIs. Also explains 

the developed microservices farm and its role to support the scalability and 

performance which is illustrated by simulating simultaneous requests sent by 5000 

users in parallel using a load testing tool called JMeter. The data integrability attribute 

of the framework will be illustrated by introducing a number of data transformers that 

can handle all data collected from different sources having different formats varying 

from images to binaries, or even ASCII with different data structures. The mobility 

management approach and its rules, which is one of the security approaches 

introduced in the framework will be explained in section 5.6.3. 

 

5.2. Home Appliances Analysis and Energy Saving Strategies 

Almost every household in western countries has a number of essential household 

appliances to maintain daily life duties such as cleaning, cooking, food preservation, 

heating and entertainment. These devices can be grouped into different categories 

based on various criteria, such as function and purpose, size, energy consumption, 

operational energy source, operational mode (digital, analogue). For the purpose of 

this research, since it is not possible to dedicate a special experiment for each home 

appliance within the household, a new classification criterion based on the running or 

the operational behaviour, is used to divide home appliances into three main groups, 

where at least two experiments will be designed for two sample appliances from the 

following groups: 

1) Uninterruptable Appliances (UA) – which includes all appliances that 

should not be interrupted by switching it on/off during running periods, they 

have their own built-in management module, because any exterior interfering 

with the running mechanism may lead to disturbing the main function of the 
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device. A clear example is the refrigerator, where running periods are controlled 

internally depending on the internal temperature. 

2) Instant or Run-on-Demand Appliances (IA/RODA) – where a device is 

turned on/off explicitly based on the household wish and upon their needs. 

Appliances keep their status (on or off) as long as it gets changed by the user. 

Most appliances in the household belong to this category, such as TV, washing 

machine and clothes tumble dryer. 

3) Schedulable Appliances (SA) – these appliances can be switched on/off 

upon need additionally they can be pre-programmed to run in certain periods, 

heating systems, air-conditioning, or under-sink immersion heaters are obvious 

examples of such appliances. 

 

Optimizing energy consumption in a household can be accomplished by applying a 

number of strategies: firstly, replacing old and high-energy-consuming appliances with 

new ones, based on particular calculations. Secondly, detect the habits of energy 

consumptions and adjust appliances accordingly. Thirdly, observe the habits of energy 

consumption and send this data to the local Grid companies to adjust and optimize 

their energy generation and supply. Moreover, the energy consumption data from 

specific appliances together with other relevant data recorded from the operational 

environment such as the number of occupants, internal temperatures, times the door 

is opened and for how long, aggregated from different households, offer real-life energy 

consumption measurements, so it assists the manufacturers to identify the weak points 

in their appliances and allow them to produce more efficient appliances. This data 

could be also interesting for relevant government agencies to issue proper and real-life 

regulations. Fourthly, detect the phases when pre-selected appliances are running on 

sleep-mode or standby-mode, and shut it completely off, for example: Under sink 

water heaters (with tank), TV and audio equipment. Fifthly, detecting and calculating 

the probability of forgetting switching off pre-selected appliances. People may forget 

to switch off appliances before going to sleep or before going on holiday, so based on 

several signals (Movement detection, regular habits, weather, etc) the system may 

decide to switch off or switch on an appliance. Sixthly, alerting users upon 

misbehaviours, where user gets notifications, either as mobile notifications, or 

recorded voice alerts, when pre-defined rules take place. For example, when heating or 

AC runs in a room, and when the window is left open, and when the temperature drops 

under predefined level, and the weather forecast is cold. 
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However, in order to achieve the main goal of reducing energy consumption, the 

following three main strategies and policies were chosen for this research, each of them 

is suitable for one or more groups of household appliances as shown in table 5.1,  

 

          

                        Appliance/Categories 

 

 

Strategies/Policies 

 

 

Uninterruptible 

Appliances (Example: 

Refrigerator) 

 

Schedulable Appliances 

(Example: Immersion 

Heater) 

 

Instant or Run-On-

Demand Appliances 

(Example: Tumble 

Dryer) 

Energy Consumption based Appliance 

Substitution Policy (ECASP) 
X X X 

Usage Percentage based Appliance 

Substitution Policy (UPASP) 
X X X 

Automatic Scheduling of Running 

Periods Policy (ASRPP) 
- X - 

Table 5.1: Various household appliance categories and the correspondent strategies/policies that might 
be applied. 

these are:  

 

1) Energy Consumption-based Appliance Substitution Policy (ECASP) 

– according to this strategy the total dataset will be constructed by combining 

historical and predicted wattage data. The historical data is collected from the 

observation of energy consumption of a certain device, where the future 

consumption data is predicted by applying various prediction techniques, as will 

be explained in the next chapter. Combining both sources will offer a more 

accurate basis to take the proper decision to substitute the device with a more 

efficient one. The decision of which device to choose depends on the amount of 

the expected energy saving percentage, which is calculated using the following 

two equations:  

𝑬𝟏 =  𝑴𝑷𝑬(𝒌𝑾𝒉) ∗ 𝑻(𝒉𝒓) 

Where: 

𝑬𝟏: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒′𝑠 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑖𝑙𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑛 𝑘𝑊ℎ, 

𝑴𝑷𝑬: 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑛𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑛 𝑘𝑊ℎ,  

𝑻: 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐻𝑜𝑢𝑟𝑠 𝑅𝑒𝑓𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑜𝑟 𝑅𝑢𝑛𝑠 𝐷𝑎𝑖𝑙𝑦 

 

 

𝑬𝟐 =  𝑵𝑨𝑪(𝒌𝑾𝒉) ∗ 𝑻(𝒉𝒓) 
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Where: 

𝑬𝟐: 𝑁𝑒𝑤 𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒′𝑠 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑖𝑙𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑛 𝑘𝑊ℎ, 

𝑵𝑨𝑬: 𝑁𝑒𝑤 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒′𝑠 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑖𝑙𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑛 𝑘𝑊ℎ,  

𝑻: 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐻𝑜𝑢𝑟𝑠 𝑅𝑒𝑓𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑜𝑟 𝑅𝑢𝑛𝑠 𝐷𝑎𝑖𝑙𝑦 

 

 

𝑨𝒏𝒏𝒖𝒂𝒍 𝑬𝒏𝒆𝒓𝒈𝒚 𝑺𝒂𝒗𝒊𝒏𝒈 =  
(𝑬𝟏 ∗ 365(𝑑𝑎𝑦)) − (𝑬𝟐 ∗ 365(𝑑𝑎𝑦))

𝑬𝟏 ∗ 365(𝑑𝑎𝑦)
∗ 100% 

  

2) Usage Percentage based Appliance Substitution Policy (UPASP)– 

Similar to the previous strategy, with one difference related to the motivation 

behind substituting the device. In the previous strategy, the decision is taken 

based on the consumed energy, however, in this approach, the decision is taken 

based on the percentage usage of the device. For example, when a single person 

uses a device designed for bigger families, the system should make a 

recommendation to substitute this big device with a smaller one, which 

automatically leads to reduce the energy consumption. 

 

3) Automatic Scheduling of Running Periods Policy (ASRPP) – The 

appliance in question will be observed for a certain period, and the dataset 

resulting from this observation together with the data collected from the 

relevant surrounding parameters (such as room temperature) will be analysed 

and used to predict the periods when a device must run, the system will then 

automatically decide whether to switch it on/off accordingly, for example, the 

immersion heater will be switched off during the night. Table 5.1 shows the 

relation between the household appliances group and the correspondent 

applicable strategy. 

 

5.3. Experimental Settings 

The planned experiments aim to evaluate the proposed I3SEM Framework by utilising 

a data subset collected from the installed equipment and different appliances in the 

household where the implementation takes place. Basically, the household will be 

equipped with five different self-developed systems and appliances, as follows:  

 

1) Z-Wave-based Energy Consumption Recorder (ZW-ECR) – As shown in 

Figure 5.1, this recorder consists of three main components: Z-Wave-based, AES-
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128 bit-encrypted, 868.42MHz Z-STICK GEN5 controller [181], Z-wave-based, 

868.42MHz, Smart Switch 6 [182], that delivers a real-time appliance electricity 

consumption with 99% accuracy, and uses 3 different security layers including Z-

Wave S2. Both are produced by AEON LABS. And the local server hub was built 

using Java Spring Boot, with RESTful API support. All operate within a local Wi-Fi 

environment. The main function of this structure is measuring and recording the 

voltage (V), Current (Amps), Usage per hour (kWh) of the connected household 

appliance, over a certain period of time. A timestamped data are saved to the 

database in 3-second intervals. 

 

   

Figure 5.1: ZW-ECR Module mainly consists of a Z-Stick GEN5 controller,  

smart switch 6 from AEON-LABS 

  

2) Arduino Uno-based Unique Occupant Detector (AU-UOD) – The settings 

are a combination of several off-the-shelf and self-designed-and-assembled 

hardware and software components put together to detect the number of unique 

household occupants living in the household. Visitors who stay longer than a 

predefined and adjustable period of time; such as grandparents, or babysitters etc., 

are also counted. The hardware consists of an open-source microcontroller board 

called Arduino Uno, which is based on the Microchip ATmega328P 

microcontroller, developed by Arduino.cc [183], a combination of a camera and Wi-

Fi/Bluetooth module called ESP32-CAM is attached to the board to provide the 

images and send them to the server hub regularly. The component has 802.11b/g/n 

Wi-Fi BT SoC module with support for STA/AP/STA+AP operation mode, 

equipped with Up to 160MHz clock speed, and Built-in 520 KB SRAM, and external 

4MPSRAM [184]. It consists of three main parts: Wi-Fi/Bluetooth module, an 

embedded IP camera with streaming capabilities over Wi-Fi and Bluetooth in two 
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different resolutions; high and low, and a built-in PCB antenna. The ESP32 offers 

support for both cameras OV2640 and OV7670, however, the used camera is an 

OV2640, because it has better resolution. Additionally, a Zigbee 3.0-based 

magnetic door open/close detector with an actuation distance of 15-25 mm, and 

Voltage of 100V and 0.5A current, is implemented to trigger the cam upon 

opening/closing the main house door to capture the occupants when entering or 

leaving the household. The software part consists of a program, called Sketch [185], 

written in Arduino Programming Language, which is based on C/C++ and compiled 

using AVR GCC. A sketch is uploaded to the board via an open-source Arduino IDE 

1.8.13 [186]. The server hub application is developed in Python 3.9.0 supported by 

many libraries such as OpenCV 4.4.0.46, pip 20.2.4, Keras 2.3.1, tensorFlow 2.4.0, 

sklearn. 

 

3) Arduino Uno-based Refrigerator Fullness Detector (AU-RFD) – With 

almost identical settings to the previous AU-UOD, this system consists of an 

Arduino Uno as a board, an ESP32-CAM with Wi-Fi and Bluetooth capabilities, all 

put inside a self-made styrofoam thermal box with appropriate holes for the camera 

and the instant flash (Figure 5.2). The hardware is programmed using a sketch 

which is uploaded to the board via the open-source Arduino IDE 1.8.13. Images will 

be taken from the upper refrigerator shelf from where the camera is located, every 

10 seconds, then it is transmitted via the built-in web server running under the URL 

http://192.168.2.115/ to the hub application developed in Python. This application 

receives the images, process them and determine the approximate percentage of 

the occupied area to ascertain the percentage of the fullness of the refrigerator. Data 

are saved accordingly to MySQL. The main application runs with the support of 

many libraries such as OpenCV 4.4.0.46 and NumPy 1.18.5. 

 

Figure 5.2: The self-made Arduino-Uno based refrigerator fullness detector consists of a cam, flash and Wi-Fi-
enabled ESP32-Cam 
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4) Arduino Uno-based Refrigerator Settings Panel Reader (AU-RSPR) – 

The same hardware which is used in the fullness detector is used in this module, 

however, both positioning of the box and the image processing is different. Figure 

5.3 shows the five different temperature levels of the refrigerator temperature 

settings panel, which is converted into digital numbers using this module. 

 

Figure 5.3: Refrigerator Manual Temperature Settings Panel (5 levels) 

 

5) Arduino Uno-based Immersion Heater Inspector (AU-IHI) – It is 

designed to measure the amount of water, the consumed energy and the periods 

when hot water flows from the hot water cylinder with an immersion heater 

(located under the sink). The previously mentioned ZW-ECR module is used to 

measure the consumed energy. Measuring the consumed hot water is accomplished 

using the open-source microcontroller board called Arduino Uno together with a 

water flow sensor, model YF-S201, with a working range between 1-30L/minute 

and a capability to function under a water pressure of ≤ 1.75MPa, as the lowest-

rated working voltage runs between DC4.5 5V-24V, which requires 15mA (DC 5V) 

to operate with a load capacity of ≤10mA (DC 5V). The flow range must vary 

between 1-30 l/min. Similar to the previous software setting the hardware 

programming is accomplished using Arduino IDE, and the server hub application 

is achieved in Python. The assembled module can be seen in Figure 5.4 

 

 

 

Temperature level-1 

 

 

Temperature level-2 

 

 

Temperature level-3 

 

 

Temperature level-4 

 

 

Temperature level-5 
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Figure 5.4: The self-made Arduino-Uno based immersion heater inspector consists of a YF-S201 water flow sensor 
and Wi-Fi- and Bluetooth-Modul NodeMCU ESP32 

 

As indicated in section 2.5.2, the decision was made to use the InfluxDB NoSQL 

database, however, due to the tiny feature differences between InfluxDB and 

MongoDB, and the available know-how of MongoDB, the decision is made to use 

MongoDB in this implementation phase. 

 

All previously self-developed systems are served by a Microsoft Windows 10 Home, 

version 10.0.19042 Build 19042 running on an x64-based Intel(R) Core (TM) i5-7200U 

CPU @ 2.50GHz, 2712 MHz, 2 cores, 4 logical processors. The hardware manufactured 

by HP Pavilion Laptop 15-cc007ng, with a BIOS-version Insyde F.13 from 03.11.2017, 

and the hardware abstract level version: 10.0.19041.488. The programming was 

mainly carried out using JAVA Spring Framework 5.0 on JDK 8 with the Java EE 

platform running under the Apache License 2.0. Python 3.7 with a number of compiled 

libraries such as TensorFlow 2.5.0, OpenCV 4.1.2.30 was used mainly to accomplish 

all artificial intelligence and predictions tasks. 

 

As explained in chapter 4, the proposed I3SEM introduces three zones divided 

physically into two main areas, one takes place in the household or community where 

sensors, appliances and occupants exists, and one in the cloud where systems controls, 

visualisation components and core processing unit exists. The implementation and the 

whole setup reflect this structure by preparing all components, units and modules in 

the way to be deployed and run separately. Important to mention that applying certain 

software paradigms and technologies such as microservices and Java have enabled this 

approach, because both offer a huge number of relevant built-ins and features. 

Although everything was prepared to implement the system locally and, on the cloud, 
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the cloud part was not deployed to the cloud, rather to a simulated cloud that runs 

locally, due to costs and hardware limitations offered in the free hosting version offered 

by a number of cloud hosting companies such as Heroku, AWS. The applied 

alternative, by running the whole system locally, offers more stability and control on 

the whole application, so no need to plan any backup or crash scenarios in case of 

downtime, which makes the implementation efforts shorter and easier. Moreover, 

cloud computing was invented in the framework to support dealing with endless 

number of households, however in the implementation only one household was 

considered, so using the cloud for this particular case may considered sort of 

overfitting. 

 

5.4. Predictive Analysis 

Obtaining the energy consumption wattage and the operational usage data from the 

sample devices; the refrigerator and immersion heater in both experiments by 

detecting the previous historical along with the future predicted data, establishes a 

robust background to apply various strategies and techniques to reduce the energy 

consumption for this appliance. Important to mention that this approach can be 

applied to other different appliances within the same household with high energy 

consumption which belong to the same category, such as heating systems, air-

conditioners, tumble clothes drying machines, and so on. Or even aggregating this 

approach by applying it to a large number of households for this sample device, and or 

other devices. Data can also be used by different establishments such as local 

governments and energy suppliers to adjust their energy production accordingly. 

Moreover, data could be interesting for the appliances’ manufacturers who require 

different operational parameters collected from their devices while running in a real 

environment, so they can spot the weak points and deliver improved versions. 
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The implementation phase went through a 

number of sequences to define and prepare the 

data to produce the desired prediction. The whole 

data mining process is managed by the Cross 

Industry Standard Process for Data Mining 

(CRISP-DM) methodology [187] which divides 

the data mining process into six main steps: 

beginning with business understanding, then 

data understanding, followed by data 

preparation, modelling, and evaluating the 

resulted models, and finally deploying the chosen 

models, all phases are illustrated in Figure 5.5. 

 

As the CRISP-DM methodology suggests the process is not a one-way direction 

process, rather there is a need to move forward and backwards among various phases 

to make necessary adjustments till reaching the desired result. Using the subset data 

and this methodology prediction models are created to predict both energy 

consumption of the refrigerator and the energy consumption and flowing water rates 

(usage or running periods) of the water immersion heater. The combination of 

historical data and the predicted data are put together to establish a solid database 

which will be used to suggest various approaches to save energy which will be explained 

including results and saving rates in chapter 6. During the implementation phase, the 

relevant CRISP-DM methodology phases have been considered and applied in the next 

sections. 

 

5.4.1. Business Understanding 

The household where the implementation of the proposed I3SEM framework takes 

place contains a number of conventional and smart equipment. As mentioned in 

section 5.2 household appliances are divided into three main categories: instant or run-

on-demand appliances such as TV or light, uninterruptible appliances which should 

not be switched on/off externally and have an internal module that decides when to 

switch it on/off based on internal parameters. The refrigerator is one of the best 

examples, and the last category, the schedulable appliances that can be switched on/off 

upon need, such as under-sink water immersion heaters, heating-system, air-

conditioning. In this research, the main focus will be on applying the proposed I3SEM 

Figure 5.5: Cross Industry Standard Process 
for Data Mining (CRISP-DM) Methodology‘s 
Six Phases and the flow [187] 
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framework on two sample appliances from both categories: the uninterruptible 

appliances category and schedulable appliances. Data were gathered from different 

external APIs, sensors and cams. Part of the sensing devices was bought off-the-shelf, 

moreover, the majority of the sensing and control equipment were completely designed 

and assembled especially for the purpose of this research. Datasets are prepared as 

training and test data for the use of several prediction analytics to obtain models, which 

are compared and evaluated based on several related metrics. 

 

The Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology is 

followed to predict energy consumption and appliance’s usage percentage. According 

to the followed CRISP-DM methodology, all begins with understanding the business 

and determining its objectives, also analysing the business area and its related 

circumstances. Generally speaking, the framework is built around the idea of reducing 

energy consumption in the household area by applying different strategies and policies, 

such as delivering recommendations to substitute appliances with more efficient ones 

based on the measured and predicted energy consumption or the usage percentage or 

automatically adjust the running periods of certain appliances based on predicted 

parameters. However, the dynamicity, integrability and scalability nature of the 

framework opens avenues for an indirect impact on various application fields such as 

offering energy consumption feedback for energy suppliers when energy consumption 

tracking and prediction techniques are aggregated and applied on every single 

appliance in the household and other households in the neighbourhood areas. 

 

Applying data mining techniques and predicting data of a particular appliance is 

essential in this research because: Firstly, predicted data combined with the measured 

historical data, enhance the overall dataset size to supply a solid and reliable basis to 

take accurate decisions. For example, if a decision is made to replace an appliance, this 

decision is considered reliable because it is anchored on a total of nines months of data, 

in case the energy consumption data is measured for three months and predicted for 

the next six months. Secondly, there is no need to install the system in every household 

to measure and record data. By applying the data mining techniques, a model can be 

built and used to predict data on other households with comparable conditions. 
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5.4.2. Data Understanding 

In this phase of CRISP-DM modelling, data will be taken into the focus, including 

deciding for the most relevant data variables, then gathering, describing, exploring, 

and verifying actions to have a robust dataset basis for the next steps. Important to 

mention that this step has been revisited and adjusted several times during the overall 

data mining process to ensure having reliable evaluation results. 

 

5.4.2.1. Data’s Associated Technical Limitations 

As mentioned before in section 2.5. the enormous amount and variety of data retrieved 

from various resources bring several challenges. The picture was not different while 

dealing with the data during the implementation phase, where several data limitations 

were faced. Following is a list of the most important causes of the data limitations were 

faced during the gathering stage:  

 

1) Hardware Malfunctioning – A huge portion of used data were retrieved from 

appliances and sensors installed within the household environment. Due to 

technical difficulties, hardware quality issues and unexplainable interruptions, it is 

noticed that some data were corrupted and suffer from inconstant and inconsistent 

values that were way beyond the expected ranges. A possible reason for such 

unexplainable hardware behaviour is the missing the overall integrability checks 

among the different components manufactured by different vendors, probably 

some of the combinations of the components were never tested together for this 

particular purpose. An example is running a Zigbee-based door motion sensor with 

an Arduino-based cam located inside a cold environment (below 4◦ C) in the 

refrigerator, synchronized within a Wi-Fi LAN together with many other sensors. 

 

2) Data Redundancy – Also data redundancy was noticed in the database, where 

exact similar readings with the same decimal level were saved several times with 

the same timestamp. This occurred due to a high load on the server or in the local 

area network, and the shortage of the proper handling of message queuing on the 

database level. This issue caused a delay to the whole process because of wasting 

storage capacities, increasing the processing time due to the increase of the 

processed data, and consuming longer development time invented to eliminate the 

repeated data. Extending the LAN and server capabilities would minimize or even 

remove this shortage, however, this solution is not considered due to costs 
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restrictions and the need to perform the implementation in an average household 

environment. 

 

3) Lack of Native Smart Household Appliances – The majority of used 

household appliances are legacy appliances without any smart capabilities. The 

household environment where the implementation takes place, disposes only of 

conventional appliances, so because of financial restrictions it is not possible to 

replace these appliances with smart ones, therefore these appliances were extended 

with additional smart sensors and components. As mentioned before (section 

5.3.1.1, the combination of those devices and the sensors are not always functioning 

smoothly. The best alternative would be using appliances with natively integrated 

and tested interfaces to gather and communicate the data. 

 

4) Lack of standards in this field – The lack of standards in this relatively evolving 

field, brings several challenges. This can be seen in the different sensors and 

components using various protocols such as Zigbee, Z-Wave, Wi-Fi, X10, Insteon, 

Thread, Bluetooth Low Energy (BLE) and Universal Powerline Bus (UPB). As will 

be seen in chapter 6, three protocols were used in the implementation, this brought 

an extra effort to use additional integration and translator plugins to let the 

hardware based on these protocols perform homogenously within the same 

environment and unify the resulted data structure retrieved from all different 

components. 

 

5) Artificial Intelligence Challenges – As mentioned before, one of the 

challenging tasks within the implementation phase was converting the normal and 

conventional appliances to smart ones by adding smart capabilities. This was 

achieved by implementing some artificial intelligence approaches such as facial 

detection to identify the number of occupants inside the household, and parsing 

images taken from the refrigerator control panel to retrieve the adjusted 

temperature. Reaching high accuracy levels require massive computing power, and 

specialised, high-definition equipment such as cameras.  In this research, despite 

the lack of those resources a relatively low however acceptable accuracy levels have 

been achieved. 
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Apart from the previously mentioned challenges, the next section provides a detailed 

description of the data used for both experiments and their sources.  

 

5.4.2.2. Data Sources and Structures 

Since data’s quality and quantity plays an essential role in the data mining process, it 

is extremely necessary to decide on relevant data variables by defining selecting 

criteria, which are collected from available and trustworthy data sources while 

assembling the required dataset. This section will provide a detailed description of the 

used data sources, and the data’s initial structure, with samples data illustrated in 

tables and graphs. Basically, both experiments share the same data sources, these are 

either internal data sources such as sensors, cameras, and processed data, or external 

APIs, as follows: 

 

External APIs – A number of external APIs were used to collect the relevant data, 

such as OpenWeatherMap API which delivers data as represented in Table 5.2 and 

Figure 5.6. 

 

Measured 
in month 

Average 
temperature 

(2m 
overground) 

Average 
temperature 

(5cm 
overground) 

Average 
humidity (2m 
overground) 

Weather 
condition 

Records used 
for average e 
calculation 

January -1 -2 84 Stormy 13392 

February 0,5 -0,8 78 Snowy 12096 

March 4,7 4,1 73,9 Rainy 13392 

April 8,6 8,3 69,8 Rainy 13518 

May 11,7 12,1 76,1 Rainy 17856 

June 16,8 17,5 73,7 Rainy 17280 

July 16,3 16,7 69,5 Rainy 17856 

August 18 18,1 74,3 Sunny 17856 

September 11,1 10,5 75,8 Rainy 17280 

October 7,9 8,9 80,4 Stormy 17856 

November 3,8 3,1 85,4 Rainy 17280 

December 1,7 0,7 79,5 Snowy 17856 

Table 5.2: Example weather data retrieved from the OpenWeatherMap API for the household located in 
Recklinghausen – Germany 
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Figure 5.6: Average weather data measured within one year where the household is located in Recklinghausen - 
Germany 

 

Internal Data Sensors – As previously explained in section 5.3 (Experimental 

Settings), a number of internal sensor systems were assembled to measure and collect 

different parameters. As the framework suggests, there are several sensors were 

implemented in different appliances, these are Energy consumption sensors, internal 

and external temperature sensors, internal and external humidity sensors, refrigerator 

door open/close detector, cameras. Table 5.3 shows samples of the collected raw data. 

 

Average 
Internal 

temperatur
e 

Average 
External 

temperatur
e 

kWh Times 
Frig door 
opened 

per 
10min 

Total 
seconds 
door left 
opened 

Day of 
the 

month 

No. of records used 
for the average 

calculation 

21,7 18,8 71 1 17 01 48 

19,2 16,8 62 1 9 02 48 

19,2 17,2 61 1 9 03 48 

21,7 19,1 80 1 17 04 48 

23,2 18,6 96 2 23 05 48 

21,7 18 75 1 17 06 48 

23,2 22,2 97 2 23 07 59 

51 14,2 92 2 23 08 72 

23,2 13,2 92 2 23 09 72 

21,7 14 84 1 17 10 71 

18,9 12,2 40 0 4 11 72 

21,7 9 83 1 17 12 71 

23,2 14,1 99 2 23 13 70 

21,7 15,5 87 1 17 14 68 
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86 16,6 93 2 23 15 72 

23,2 15 89 2 23 16 71 

21,7 12,5 78 1 17 17 72 

21,7 15,4 74 1 17 18 70 

23,2 15,2 104 2 23 19 71 

23,2 15,6 92 2 23 20 69 

23,2 14,8 89 2 23 21 71 

21,7 14,6 83 1 17 22 70 

21,7 14,6 69 1 17 23 72 

19,2 14,4 61 1 9 24 72 

21,7 16,1 73 1 17 25 58 

21,7 16,4 87 1 17 26 48 

23,2 16 90 2 23 27 48 

21,7 17,9 75 1 17 28 48 

21,7 17,4 80 1 17 29 48 

21,7 16,6 70 1 17 30 48 

21,7 18,8 78 1 17 31 48 
Table 5.3: Example of data collected via assembled sensor system in the household 

 

Machine Learning - Image recognition – This technology will be applied for three 

different types of data: facial recognition, measuring the refrigerator fullness 

(Refrigerator fullness detector) and reading the refrigerator temperature settings 

(Refrigerator temperature settings reader). The facial recognition technology was 

selected among the number of available biometric technologies such as fingerprint 

scanners and identifiers, palm print and iris recognition because it is easy to 

implement, return relatively accurate results, and does not involve complex hardware 

installations. Its main purpose is to determine the number of occupants of a household 

and save it in the database. This begins by taking pictures from different 

corners/rooms inside the household. Images may be taken regularly and on-demand 

when the main entrance opens or closes. Images get analysed by detecting the human 

faces, then capturing those faces by converting the analogue faces into digital 

equivalent information as a file, to initiate the matching process to verify whether faces 

belong to the same person or different persons. Important to mention that future work 

may consider using other accurate biometric technologies such as fingerprint, palm 

print or iris recognition. The second type is measuring the fullness of the refrigerator. 

The refrigerator fullness percentage will be measured by taking regular photos from 

beneath every shelf from inside the refrigerator every time the door is opened. Based 

on the taken images, the empty area, which appears in a brighter tint than the occupied 

area. Subtracting the occupied area from the previously measured total area gives the 
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estimated fullness. Calculations are done using Python OpenCV and saved in the 

database. The third type is quite similar where the refrigerator temperature control 

settings are recorded by the camera fixed against the refrigerator control panel when 

the door is opened. Images are parsed using the Python OpenCV library to retrieve the 

adjusted temperature level and gets sent to the database. 

 

Another example of data retrieved from internally running systems can be seen in 

Figure 5.7, which is a module to take and process images from the refrigerator 

temperature settings panel to retrieve the frig set temperature. The assembled 

equipment is based on Arduino single-board computers together with related sensors 

and uses Python-based software to process and analyse images and convert them to 

processible integer values. 

 

Figure 5.7: Transformers: Refrigerator Temperature Settings Panel Reader 

 

System and administrative data – This covers data retrieved automatically from 

the system such as date/time, day type (weekend, weekday, bank holiday), or entered 

manually by the system administrators which describe the parameters related to the 

household and used sample appliances, such as the flat’s size, appliances’ types, 

models, colours, and sizes. 
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As a result of combining data collected from the previously mentioned three resources, 

a list of initial variables was put together for both experiments, these are: 

 

First experiment: Refrigerator – As mentioned in Table 5.1, one of the policies 

Energy Consumption based Appliance Substitution Policy (ECASP) and Usage 

Percentage based Appliance Substitution Policy (UPASP) will be applied to the sample 

appliance, the refrigerator, which represents the group of the uninterruptible 

household appliances. In this experiment,  regression techniques are applied due to 

the fact that both target features need to be predicted; the energy consumption, and 

the usage percentage, are quantities (numbers) not binaries (yes/no, or true/false). 

Therefore, algorithms such as kNN, simple linear regression, polynomial regression, 

random forest and tree regression are considered and evaluated. In this experiment, 

the initial dataset began with 16 features and ended up with eight features, where 

several features were removed, merged and altered during the prediction process. 

Table 5.4 shows the list of the initial data structure and related explanations. The final 

list of features will be shown and discussed in chapter 6. 

 

Variables Source Field 

Type 

Example 

values  

Description / Source / Related 

notes 

Datetime System Datetime  2021-03-10 

13:59:45 

Recorded automatically as a timestamp, 

on the database level while gathering the 

data. 

Internal Temperature Sensor Float Expected range 

between +10 - 

+35 C˚ 

Measured by an internal sensor and 

shows the internal temperature of the 

kitchen where the refrigerator is located. 

External Temperature 

5cm 

API Float The expected 

range between -

15 and +40C˚ 

Retrieved from the external API. Shows 

the outside temperature in the region 

where the household is located 

measured 5cm over the ground 

External Temperature 

5m 

API Float The expected 

range between -

20 and +45C˚ 

Retrieved from the external API. Shows 

the outside temperature in the region 

where the household is located 

measured 5meters over the ground 

External Temperature 

Measured 

Sensor Float The expected 

range between -

20 and +45C˚ 

Retrieved from a sensor located outside 

the household (on the balcony) and 

shows the outside temperature. 

External Relative 

Humidity 

API Integer 0-100% The humidity outside the household 

retrieved from the external weather API 
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External Relative 

Humidity Measured 

Sensor Integer 0-100% The humidity outside the household 

measured by a sensor 

Internal Relative 

Humidity Measured 

Sensor Integer 0-100% The humidity inside the kitchen was 

measured by a sensor 

Weather Condition API Varchar rainy, windy, 

stormy, snowy, 

cloudy, 

sunny,... 

Retrieved from the external weather 

API, and describes the type of weather 

condition: rainy, windy, stormy, snowy, 

cloudy, sunny,... 

Refrigerator Fullness AI Integer 0-100% Calculated via artificial intelligence 

techniques by analysing the regular 

shots taken from refrigerator shelves. 

Occupants AI Integer  An estimated number of occupants 

living in the household, calculated 

automatically by analysing data 

collected by different sensors and 

cameras inside the household. 

Refrigerator 

Temperature 

AI Integer Level 1 – 6 Due to technical restrictions of the 

refrigerator which is not equipped with 

digital temperature (see Figure 5.3) 

Energy Consumption Sensor Float kWh Measured by a sensor for a period of 

time, and predicted for the future in 

kWh. 

Times Door Opened Sensor Integer  Measured by a sensor to register the 

number of times the refrigerator gets 

opened in 24-hours time 

Duration Door Left 

Opened 

Sensor Integer X seconds It measures the time the door is left 

opened every time it gets opened. This 

information is important to deliver an 

approximate value of the wasted energy. 

Day Type System Varchar Weekend, 

weekday 

Calculated based on the recorded 

timestamp. It is either weekend, bank 

holiday, school holiday or regular 

weekday 

Table 5.4: Refrigerator’s energy consumption prediction’s initial variables, sources, database field type, format, 
short description, possible data range and some examples. 

 

Second experiment – Water Immersion Heater – The second experiment will 

be applied to a sample appliance that belongs to the schedulable appliances category, 

using both policies: Automatic Scheduling of Running Periods Policy (ASRPP). This 

device, shown in Figure 5.8, has a temperature regulator that varies between 35 and 85 



 
 
Integrated Scalable System for Smart Energy Management 

155 
 

degrees, used to define the desired water temperature. When the 

appliance is turned on, it runs continuously to keep the water 

temperature always on the desired level, even when the device is not 

in use. The basic idea is to bring the amount of consumed energy by 

the device to the lowest level, by preventing heating up the water 

during periods when the device is not used. This will be achieved by 

tracking the running periods of the appliance, together with other 

different variables for a period of time, then predicting the periods 

when the heater will be used, so the device can be switched off when 

it is not needed, for instance at night, or when household’s occupants 

are not at home. 

 

Table 5.5 shows the list of the initial data structure and related explanation. The final 

list of features will be shown and discussed in chapter 6. 

 

Variables Source Field 

Type 

Example 

values 

Description / Source / Related notes 

Timestamp System Datetime  2021-03-10 

13:59:45 

Recorded automatically as a timestamp, on 

the database level while gathering the data. 

Heater Target 

Temperature 

AI(*) Integer  Due to technical restrictions of the immersion 

heater which is not equipped with digital 

temperature. The temperature is calculated 

via artificial intelligence techniques by 

analysing the regular images taken from the 

heater’s temperature regulator. 

Occupants AI(*) Integer  An estimated number of occupants living in 

the household, calculated automatically by 

analysing data collected by different sensors 

and cameras inside the household. 

Internal 

Temperature 

Sensor Float Expected 

range 

between +10 

- +35 C˚ 

Measured by an internal sensor and shows the 

internal temperature of the kitchen where the 

immersion heater is located. 

External 

Temperature 5 

Meters over the 

ground 

API/Sensor Integer The 

expected 

range 

between -20 

and +45C˚ 

This is relevant because it affects the incoming 

water temperature. Retrieved from the 

external API and a sensor. Shows the outside 

temperature in the region where the 

Figure 5.8: The Immersion 
Water Heater used in the 
experiment [204] 
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household is located measured 5meters over 

the ground 

External 

Temperature 15 

meters over the 

ground 

API/Sensor Integer The 

expected 

range 

between -20 

and +45C˚ 

Retrieved from the external API and a sensor. 

Shows the outside temperature in the region 

where the household is located measured 

15cm over the ground 

Wind speed API Integer  This may affect the temperature of the 

incoming water 

Incoming water 

temperature 

Sensor Integer The 

expected 

range 

between +0 

and +45C˚ 

Retrieved from a sensor mounted on the 

pipeline feeding the immersion heater. 

Weather 

condition 

API Varchar rainy, 

windy, 

stormy, 

snowy, 

cloudy, 

sunny,... 

Retrieved from the external weather API, and 

describes the type of weather condition: rainy, 

windy, stormy, snowy, cloudy, sunny,... 

External 

Humidity 

API Integer 0-100% The humidity outside the household retrieved 

from the external weather API 

Internal 

Humidity 

Sensor Integer 0-100% The humidity inside the kitchen was measured 

by a sensor 

Off day 

(weekends, 

holidays, annual 

leave, …) 

System Varchar Yes, no Calculated by the system based on the 

timestamp, and also can be taken from the 

personal calendar. 

Energy 

consumption 

Sensor Float kWh Measured by a sensor for a period of time, and 

predicted for the future in kWh. 

Appliance 

On/Off 

DM(**) Binary 1/0 This field is guessed based on the energy 

consumption field. 

Water 

consumption 

Sensor Integer Litre(s)/sec. Measured by a sensor for a period of time, and 

predicted for the future in Litre(s)/second. 

Traffic situation 

For First 

Occupant 

API Varchar on-time, 

slightly-

delayed or 

excessively-

late 

Calculated via an external map service (such 

as OpenStreetMap) to guess the delay. It is 

categorized into on-time, slightly-delayed or 

excessively-late 
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Traffic Delay in 

Minutes for First 

Occupant 

API/System Integer Minutes Calculated via an external map service (such 

as OpenStreetMap) to guess the delay in 

minutes 

Traffic situation 

For Second 

Occupant 

API Varchar on-time, 

slightly-

delayed or 

excessively-

late 

See Traffic situation For First Occupant 

Traffic Delay in 

Minutes for 

Second 

Occupant 

API/System Integer Minutes See Traffic Delay in Minutes for First 

Occupant 

Traffic situation 

For the Third 

Occupant 

API Varchar on-time, 

slightly-

delayed or 

excessively-

late 

See Traffic situation For First Occupant 

Traffic Delay in 

Minutes for the 

Third Occupant 

API/System Integer Minutes See Traffic Delay in Minutes for First 

Occupant 

Table 5.5: Immersion water heater energy consumption prediction’s initial variables, sources, database field type, 
format, possible data range and some examples, with applied pre-processing actions. [AI(*): Artificial Intelligence, 
DM(**): Data Mining] 

 

The data which were collected during the measurement phase of energy consumption 

and water rate data are illustrated in both Figure 5.9 and Figure 5.10 accordingly. 

 

 

Figure 5.9: Measured Average Energy Consumption in 24-hours (in kWh), with Squared-R Value (Coefficient of 
determination) that shows the proportion of the variance in variables  
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Figure 5.10: Measured Water Flow Rate in 24-hours (in Litre/second), with Squared-R Value (Coefficient of 
determination) that shows the proportion of the variance in variables  

 

5.4.3. Data Preparation 

This phase is considered one of the most important phases in CRISP-DM data mining 

because it has a direct impact on prediction quality and accuracy. In this phase, data 

runs through several preparation iterations including selecting, cleaning, constructing, 

integrating and formatting. The motivation behind preparing features is the high 

impact on the resulted model performance because removing irrelevant features 

results in an easy-to-understand, better performing and faster running model. Not all 

these steps are applicable, rather it depends on the nature of the case. The final decision 

is taken based on the final model, it went through several iterations till having 

satisfying results. The acceptance of the final results was measured using the usual 

regression metrics, which will be explained in detail in the next section, including Mean 

Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) 

and the Coefficient of Determination (R2). The following steps were applied to the 

collected dataset. 

 

5.4.3.1. High Percentage of Missing Values 

Due to technical shortage of the used humidity sensor and the nature of the room 

where it is installed, the kitchen, which was rapidly changing on an hourly basis, it 

seems that a huge number of observations in the internal humidity feature is either 

N/A, null, zero or has unreadable corrupted values, therefore this feature was removed. 

Important to mention that binding the external humidity data retrieved from external 
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API with the internal humidity was not an option due to the huge difference between 

those values. 

 

5.4.3.2. Low Variation Rates 

In this stage features with almost the same value are detected and dropped. The 

variation rates are calculated automatically via MATLAB and Orange 3, based on the 

equation explained in section 3.3.7.  

 

Inspecting the values reveals that some of them have a strong variance score, such as 

energy consumption, however other features were scoring a very low variance score 

such as the weather condition, which scored a 0.24877371, therefore this feature will 

be removed from the dataset. 

 

5.4.3.3. Merging, Splitting Features 

Increasing the data quality could be obtained by merging data from two or more 

features. It is not necessarily required that these features have a high feature-wise 

correlation. A clear example was detected while inspecting the external temperature 

values. External temperatures were retrieved from the weather API and also measured 

via a sensor. The externally collected data were separated into two values: 

temperatures measured on 5cm and 5 meters high. Surprisingly values were varying in 

some cases up to 150%. The best solution was to take the average of the three features: 

External_Temperature_5cm, External_Temperature_5m, and 

External_Temperature_Measured. The new feature External_Temperature was left 

because of the low correlation rate. 

 

5.4.3.4. Correlation 

There are two different types of correlations. Feature-wise and target-correlation. The 

feature-wise correlation occurs when two or more independent features show a high 

correlation rate. In this case, to achieve better performance and computing times, it is 

recommended to remove the feature with the lowest correlation level. However, the 

second type represents a high correlation between an independent feature(s) and the 

dependent target feature. High correlation levels are required to have good prediction 

results, where weak correlations, close to zero, are not relevant in the prediction 

process. 
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To obtain reliable data mining results it is necessary to inspect the relationship’s 

strength among features in the dataset to find out the association or correlation score. 

This covers the correlation among features on one side, and between features and the 

target on the other side. Regardless of which formula is applied, the result must be 

always either negative, positive or zero-correlation, ranging between -1 and +1. In the 

literature, there are two main methods: Pearson and Spearman correlations. In fact, 

there is a third method called Kendall, however, it is similar to the Spearman method. 

The main difference between both approaches is the way how variables are handled in 

the pre-processing phase. The Pearson approach inspects the linear relationship of two 

or more values, so the value of the variable stands in the heart of the process, this leads 

to the fact that having any outliers or any data abnormality will affect the result. 

Therefore, it is necessary to apply different pre-processing actions before applying this 

method. Since the Spearman approach is not based on evaluating the values of the 

variables, rather on their rank-order, the values tend to change parallelly but not 

automatically at a steady rate. The correlation value ranges between -1 and +1. Where 

+1 is considered a perfect positive value that describes an exact rate of value change in 

the same direction between two variables. Any value bigger than 0.8 is considered a 

strong correlation, where the value bigger than 0.4 is judged as high. When the value 

stands between 0.4 and 0.2 it is described as correlated. Anything below 0.1 is not 

correlated, where 0 value describes the independent relationship between inspected 

values. The same classification is valid for the same negative values. Important to 

mention that negative values differ only in the direction, in other words, a -0.8 score 

means that both variables have a strong correlation where the first value decreases 

when the second increases. 

 

As a result of the correlation analysis, it is expected to record a high correlation 

between the consumed energy and some variables such as the refrigerator fullness, the 

adjusted refrigerator temperature, the average total seconds of how long the 

refrigerator’s door was opened per hour, and the internal temperature inside the 

household. Moreover, it is expected to measure a weak correlation between energy 

consumption and the external temperature, or the internal humidity. It is not expected 

to measure any negative correlation. Table 5.6 shows the resulted list of features after 

applying the previous data preparation techniques, with both correlations. 
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Variable Pearson’s Correlation / Type Spearman’s 

Correlation / Type 

The average total seconds the door left 

opened per hour  

+0.946 

Strong correlation 

+0.953 

Strong correlation 

Refrigerator’s target (adjusted) 

temperature 

+0.918 

Strong correlation 

+0.952 

Strong correlation 

Refrigerator fullness +0.861 

Strong correlation 

+0.857 

Strong correlation 

The average time the refrigerator’s door 

left opened per hour 

+0.840 

Strong correlation 

+0.832 

Strong correlation 

Current number of occupants +0.525 

High correlation 

Note: This is corrected to (+0.923) 

after removing outliers 

+0.919 

Strong correlation 

Household’s internal temperature +0.178 

Not strong correlation 

Note: This is corrected to (+0.947) 

after removing outliers 

+0.923 

Strong correlation 

Datetime -0.142 

Not strong correlation 

-0.164 

Not strong correlation 

External temperature (outside the 

household) 

-0.044 

Does not correlate 

-0.040 

Does not correlate 

Table 5.6: Correlation Analysis: Pearson and Spearman calculated for some variables related to the refrigerator 
experiment 

As seen in the table the score’s evaluation based on both methods is quite similar for 

most variables. Some differences are seen related to the Household’s internal 

temperature and Current number of occupants. The reason is related to the number 

of outliers in both variables’ datasets. 

 

5.4.3.5. Anomaly Detection and Outliers 

A visual data observation and calculating minimum, maximum and average of the 

features gave an indicator of having some anomalies and outliers, as seen in Figure 5.11 

which illustrates two values: the number of occupants calculated using different 

machine learning techniques, and the internal temperature measured via an internal 

sensor. The peaks are the outliers which are shown in the graph. 
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Figure 5.11: Number of occupants (blue) and the internal household temperature (red) with the peaks representing 
the outliers 

Figure 5.12 shows the detected outliers for two features Number of occupants and 

Household’s internal temperature, the data is shown on the right side after removing 

the outliers using the Covariance Estimator method, with a 2% contamination 

supported by a 1,0 fraction. Important to mention that re-calculating the target 

correlation with both features after removing the outliers showed much higher scores, 

Household’s internal temperature Pearson scored +0.947, and Current number of 

occupants changed to +0.923, therefore both can be considered in the further data 

mining process. 
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Figure 5.12: The top-left graph shows the outliers of the Number of occupants using the Covariance Estimator 
method, with a 2% contamination supported by a 1,0 fraction. Outliers (blue), Number of occupants (red). The 
graph on the top-right side shows the data after removing the outliers. The same thing repeated for the Household’s 
Internal Temperature on the bottom-left and bottom-right graphs. 

 

Further anomaly detection was carried on for the rest of the features, this was 

processed using an open-source data visualization, machine learning and data mining 

toolkit called Orange 3, developed by the University of Ljubljana [188] shown in Figure 

5.13. The Outliers widget applies one of the four methods for outlier detection. All 

methods apply classification to the dataset. One-class SVM with non-linear kernels 

(RBF) performs well with non-Gaussian distributions, while a Covariance estimator 

works only for data with Gaussian distribution. One efficient way to perform outlier 

detection on moderately high dimensional datasets is to use the Local Outlier Factor 

algorithm. The algorithm computes a score reflecting the degree of abnormality of the 

observations. It measures the local density deviation of a given data point concerning 

its neighbours. Another efficient way of performing outlier detection in high-

dimensional datasets is to use random forests (Isolation Forest). Results obtained from 

applying the mentioned workflow can be seen in the next chapter in section 6.2.1.3. 
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Figure 5.13: Orange 3 Workflow to remove Outliers 

 

After applying the third method Local Outlier Factor, to detect and remove outliers in 

the target feature Figure 5.14 shows the results: 

 

 

Figure 5.14: Refrigerator Energy Consumption with outliers (left), without outliers (right) presented using Kernel 
Density Distribution. 

 

One of the possible problems which may reduce the model quality is the fact that the 

model is adapting itself to the training data, or what is called overfitting. It is highly 

required to identify, detect and prevent this problem because not taking any action 

against it makes the model tailored for the training data and has a very weak ability to 

correctly predict the target when having new different observations. This has been 

dealt with by splitting the data into 10 folds and using them all for training and 
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validation. Another approach was to start with building a simple model then increasing 

the complexity by adding more and more features. This approach helps to detect and 

avoid underfitting and reach the good fit target. Early stopping may help prevent the 

overfitting problem. This can be done by detecting the point where the gap between 

prediction error of both training and validation is as small as possible and stopping the 

process. 

 

5.4.4. Modelling and Applying Machine Learning Algorithms 

The data source for the three implementation instances which were carried on for two 

sample appliances within the household are obtained from both observed and 

predicted data. Observed datasets were collected from various sensors, artificial 

intelligence techniques, and external APIs. However, predicted datasets were obtained 

from applying data mining and machine learning algorithms on the observed data to 

create a model with a high accuracy rate to produce predictions and discover patterns 

and mutual relationships. As mentioned in section 3.3, there are a number of different 

data mining techniques, each one has its own features, application area, nature of 

problems and algorithms. Important to mention that some algorithms can be applied 

for more than techniques such as Neural Networks which can be used for regression 

and classification problems. The application of a particular technique depends on the 

targeted feature and the nature of the dataset. For example, classification techniques 

are better in predicting labels, such as yes/no, on/off, however, regression techniques 

are specialised in predicting quantities. Following is the description of the applied 

policies and experiments. 

 

Data preparation offered an insight into the exact problem description and defined the 

character of the needed prediction problem. In the previous sections, it is seen that 

there are several independent features with different correlations rates and diverging 

impacts on the dependent target feature (energy consumption). The required 

prediction should deliver continuous dependent values based on independent features, 

where the target is not dichotomous. This matches the definition of a regression 

problem where independent features are labelled and the target feature is a continuous 

variable, not classified. The next step is applying the prepared features on several 

candidate regression algorithms to obtain the required model. For this purpose 

following algorithms will be applied using different settings to have the best match to 

the problem:  
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1. Generalized Linear Regression – which is only used for regression problems, with 

applying different regularization parameters and strength such as Ridge Regression 

(L2), Lasso regression (L1) and Elastic net regression. Apart from the fact that 

multiple LR expects several features, both are identical. 

2. Polynomial Regression – shows the regression line for multiple regressors. 

Polynomial expansion is a regulation of the degree of the polynomial that is used to 

transform the input data and has an effect on the shape of a curve. If polynomial 

expansion is set to 1 it means that untransformed data are used in the regression.  

3. Tree – This algorithm is a simple algorithm, a precursor to Random Forest, that 

splits the data into nodes by class purity and can be used for both classification and 

regression problems.  

4. Random Forest – is an ensemble learning method used for classification, regression 

and other tasks. Random Forest builds a set of decision trees. Each tree is developed 

from a bootstrap sample from the training data. When developing individual trees, 

an arbitrary subset of attributes is drawn (hence the term Random), from which 

the best attribute for the split is selected. The final model is based on the majority 

vote from individually developed trees in the forest.  

5. Finally, the k-Nearest Neighbour (kNN) – Searches for K closest training examples 

in feature space and uses their average as a prediction.  

 

One of the possible problems which may reduce the model quality is the fact that the 

model is adapting itself to the training data, or what is called overfitting. It is highly 

required to identify, detect and prevent this problem because not taking any action 

against it makes the model tailored for the training data and has a very weak ability to 

correctly predict the target when having new different observations. This has been 

dealt with by splitting the data into 10 folds and using them all for training and 

validation. Another approach was to start with building a simple model then increasing 

the complexity by adding more and more features. This approach helps to detect and 

avoid underfitting and reach the good fit target. Early stopping may help to prevent the 

overfitting problem. This can be done by detecting the point where the gap between 

prediction error of both training and validation is as small as possible and stopping the 

process. 
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5.4.5. Cross-Validation of Models 

As mentioned in section 3.3.7., regression algorithms are suitable for prediction 

problems where a continuous value or a quantity should be predicted, however, the 

classification techniques are more suitable to predict discrete class labels such as 

On/Off, Yes, No. Each machine learning approach has its own validation criteria, as 

explained in the following sections. 

 

5.4.5.1. Regression Techniques Cross-Validation Metrics 

Predicting energy consumption for the first experiment is considered a regression 

problem predicted by applying regression algorithms because it attempts to predict 

continuous values [189] [190] [191], therefore only regression-specific evaluation 

metrics can give an insight on the suitability of a regression approach. For this reason, 

commonly known performance metrics such as confusion matrix, accuracy, and ROC 

Curve, which are suitable for classification algorithms, will not be used [192]. However, 

as explained in section 3.3.7, other mathematical equations are used, such as Mean-

Squared-Error (MSE), Root-Mean-Square-Error (MRSE), Mean-Absolute-Error 

(MAE) and Coefficient of Determination (R2). 

 

Calculating the previously mentioned metrics were performed using different software, 

MATLAB and Orange 3. Figure 5.15 shows the workflow designed for this purpose. 

 

 

Figure 5.15: Orange 3 Workflow to Apply Various Regression Algorithms and Calculate Validation Metrics for the 
Refrigerator 
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All these metrics were calculated for the wattage variable, results will be illustrated in 

chapter 6 (case study). 

 

5.4.5.2. Classification Techniques Cross-Validation Metrics 

This machine learning approach is used for the second experiment where the discrete 

class label of the running periods of the immersion heater (switched on/off) needs to 

be predicted. Figure 5.16 shows the Orange 3 workflow used to feed the initial data, 

and the algorithms and the final validation criteria. 

 

Figure 5.16: Orange 3 Workflow to Apply Various Classification Algorithms and Calculate Validation Metrics Fort 
he Immersion Heater 

Figures 5.17 illustrate the default settings used in the evaluation software for the 

applied algorithms. 
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Figure 5.17: Orange 3 default settings of the applied classification algorithms 

 

 

Table 5.7: Predictions Possible Outcomes Compared to the Real Values 

 

Here we notice that the validation metrics are different from the ones in the previous 

regression refrigerator experiment. These metrics are:  

 

Area Under ROC Curve (AUC) – As explained in section 3.3.3., This metric simply 

represents the probability to rank a randomly chosen positive example higher than a 

randomly chosen negative example. Referring to Table 5.7, this metric depends on 

calculating two different values: True Positive Rate (TPR), and False Positive Rate 

(FPR), then plotting these results on an XY dimension. AUC is the resulting area 

beneath the line. 
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Classification Accuracy (CA) – This is considered the typical metric which is 

calculated by taking the proportion of true outcomes divided by the entire quantity of 

all observed cases. A detailed explanation can be seen in section 3.3.3. 

 

Results are considered good when it approaches the 100% target. As will be shown in 

chapter 6, every CA result that goes over 95% is considered good enough to consider 

the algorithm. Figure 5.18 shows part of the used data and resulted predictions using 

the mentioned algorithms (kNN, SVM, Neural Network, Tree, Random Forest, Naïve 

Bayes and Logistic Regression). Comparing the value in the column appliance on/off 

with the predicted value in each algorithm resulted in showing red underlines which 

indicate the mistaken prediction and blue underlines which indicate a correct 

prediction. 

 

Figure 5.18: Part of target Feature appliance on/off and the resulted prediction using different classification 
algorithms (kNN, SVM, Neural Network, Tree, Random Forest, Naïve Bayes and Logistic Regression). Red 

underlines indicate the mistaken prediction, whereas blue underlines indicate a correct prediction. 

 

5.5. RECHS Application 

Due to the nature of the implementation which covers several areas inside the 

household, and communication with external systems and platforms, there is a need 
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to have a central point to put all related systems, APIs, GUIs and interfaces which are 

required to implement the various strategies mentioned previously, in one place to 

enhance the modularity and the encapsulation, besides keeping the maintenance 

efforts in its minimum level. This central software application is called RECHS which 

stands for Reduction of Energy Consumption in Household Sector. 

 

The software application is implemented using the waterfall project management 

approach, therefore describing, documenting, and prototyping the requirements 

precisely was considered as an essential milestone during the project's life cycle, which 

included the justification of the built artefact, description of methods, aims, 

deliverables and plans, covering functional and non-functional requirements, 

documenting detailed user’s requirements via use-cases, sequences and activity 

diagrams. Technically, the application consists of a farm of microservices built on a 

Java Spring Boot version 2.0.3, the communication was established over RESTful API 

specifications that interact with the frontend via a middleware built via PHP 7, jQuery 

3 and Bootstrap v5.0. The application’s infrastructure overview and general software 

architecture are illustrated in Figure 5.19. 

 

Figure 5.19: RECHS System Architecture 

Figures 5.20, 5.21 and 5.22 illustrate some sections of the RECHS application. 

Including the home page, the appliances overview which shows some details of the 
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tracked appliances. Important to mention that some of the details are entered by 

administrators, and the rest were automatically measured and collected via different 

sensors. Besides these components, the application has its own user management, 

schedule management (Figure 5.23) and local energy suppliers management. 
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Figure 5.20: RECHS Homepage Overview 
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Figure 5.21: RECHS Appliances Overview where the substitution function can be triggered. 

 

 

Figure 5.22: RECHS Application – Appliances historical energy consumption overview grouped by for different 
periods: 24-hours, days, months and years 
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Figure 5.23: Create Manual Schedule to run the Immersion Water Heater 

 

5.6. Framework’s Additional Components 

The framework consists of several other components than previously mentioned. 

These are integrated into the overall system to support the accomplishment of major 

and minor functions such as enhancing the encapsulation, supporting the integration 

and data assimilation which combines numeric models with observations. In this 

section, a number of the most important components will be highlighted. 

 

5.6.1. Microservices and The RESTful API 

As explained in section 3.2. microservices are split up into a set of distributed services, 

mainly categorised into five main groups: appliances, authentication, energy 

providers, APIs management and basic error management. Important to mention that 

the developed farm of microservices differs from the Service Oriented Architecture 

SOA approach in many ways, firstly it is smaller in size, has abounded context and 

serves a single purpose, designed to perform a high degree of independence. Figure 

5.24 illustrates the farm of microservices developed for this purpose using Java 

SpringBoot, and figure 5.25 shows an example RESTful verb responsible for recording 

energy consumption for any appliance. 
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Figure 5.24: Part of the Microservices farm and some example RESTFUL Verbs 

  

 

Figure 5.25: Example RESTful Verb: Recording energy consumption for any appliance 
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As mentioned in section 4.2. (Quality factors), performance can be broken down into 

three main factors: response time, throughput and utilisation. The following load tests 

were carried on using a load testing tool called JMeter to measure the response time 

by simulating simultaneous requests sent by 5000 users in parallel, to show the 

suitability of this paradigm to support one of the most important attributes of the 

proposed framework which is the scalability and to handle the performance of the 

microservices. Figure 5.26 shows the response time measured for two sample 

webservices authentication and energy consumption wattage recording done by 

5000 users against one instance of the related webservice. In this figure it is seen that 

the response time is almost zero for all requests done in the first 80 seconds (from 

13:31:30 till 13:32:50), the response time measured in milliseconds starts increasing 

gradually for both webservices till reaching approximately ~28 milliseconds for the 

authentication and ~20 milliseconds for the energy consumption wattage recording 

after about 23 minutes and 20 seconds, at 13:54:50. From this point forward till the 

end of the measurement period which ended at 13:55:30, the response varies for both 

webservices up and down. This behaviour may have occurred due to the resources-

sharing of the laptop where both client and server and the JMeter tool are running 

together with other applications. Important to mention that the authentication 

webservice requires a longer response time than the energy consumption wattage 

recording because of the nature of the SQL enquiry, the authentication requires 

running SELECT statements, which imply processing and waiting time, where the 

energy consumption wattage recording relies only on INSERT action which runs 

much faster since it only requires adding a new line to the table without inquiring any 

existing data. 
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Figure 5.26: Response time measurement of two requests login and energy consumption wattage recording 
measured with one instance of the related webservices 

 

Comparing this figure with the next figure 5.27, which measure the same parameters 

except for the number of instances which is increased to 5 instances. We notice a 

similar behaviour of both webservices in the first 23minutes and 20 seconds (from 

13:31:30 till ~13:54:50), where the response time is almost zero for both webservices 

in the first 100 seconds, then it rapidly increases till reaching its maximum after ~24 

minutes (at ~13:55:40). At this point, when the response time reaches 28 milliseconds, 

the other 4 instances get allocated to process the coming requests, so we start observing 

a rapid decrease of the response time, which means an increase in the performance. 

This turnaround behaviour is seen nearly till the end of the experiment time (at 

14:27:20). Important to notice that deploying the 4 instances (at ~13:55:40) did have 

more effect on the authentication than the energy consumption wattage recording 

because of the internal caching mechanism on the database level, where the result of 

SELECT statements is cached and used without a need to repeatedly running the query. 

As seen in the previous figure 5.27, towards the end of the experiment an irregularity 

of the response time can be observed for both services, this might occur when the same 

hardware, in this case, the laptop, is shared among clients, server and other 

applications running parallelly.  
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Figure 5.27: Response time measurement of two requests login and energy consumption wattage recording 
measured with 5 instances of the related webservices 

 

Figure 5.28 illustrates a comparison of aggregated data parameters including average, 

median, the minimum and maximum response time (measured in milliseconds) for 

both requests login and energy consumption recorder. 

 

Figure 5.28: A comparison of aggregated data parameters including Average, Median, Minimum and Maximum 
Response time (measured in milliseconds) for both requests login and energy consumption recorder 

 

5.6.2. Data Transformers 

Due to the fact that the proposed framework can handle all data collected from 

different sources having different formats, varying from images, to binaries, or even 

ASCII with different data structures, it is essential to implement a number of data 

transformers to assure a proper data flow and reliable results. Moreover, the 

framework is built to support almost all kinds of household appliances, the 
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conventional and digital ones, so there is a need to obtain and process output 

parameters from these appliances. This approach supports the strength point of the 

framework to deal with smart and conventional appliances. Where smart appliances 

can directly generate processible data, and images can be taken from conventional 

appliances settings panels then converted to processible ASCII formats using these 

data transformers. An example is shown in Figure 5.3 to read the refrigerator 

temperature setting panel and convert it into an integer. 

 

5.6.3. Mobility Management 

Running a system based on a mesh network requires a lot of attention to the security 

simple because each node must be trusted, and therefore any attack either physically 

by stealing the node, or digitally over the LAN may threaten the whole system. For this 

purpose, securing the mobile devices gained huge importance because these mobile 

devices could be part of other networks, and they are parallelly used for other purposes 

such as making phone calls. The module shown in Figure 5.29 used for this purpose 

categorize the tracked devices into TRUSTED or NOT TRUSTED based on evaluating 

the following five questions, where a device is considered NOT TRUSTED if at least 

one question is answered with NO. 

 

1. Is the device physically located within 50 meters radius of the household? 

2. Is the device currently part of the mesh network related to the household? 

3. Is the device currently *only* connected to the mesh network? 

4. Is there antivirus software installed? 

5. Is the device currently logged in/authorized? 
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Figure 5.29: The module used to track and evaluate the trusted mobile devices 

 

5.7. Conclusion 

This chapter has presented a detailed description of the process which will be followed 

to implement the proposed framework on two different sample appliances within the 

household. It started with providing analysis of the household appliances categories: 

uninterruptible, instant, and schedulable devices, and explained a number of strategies 

and policies applied to reduce the energy consumption which are: energy-based 

appliance substation policy, usage percentage-based appliance substitution policy, and 

automatic scheduling of running periods policy. Then, provided a detailed description 
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of the experimental settings, covering all self-assembled systems, off-the-shelf 

hardware and software which will be utilised during the implementation phase.  

 

Since the data is the main pillar in this research, a detailed review of the data structure, 

data gathering, and processing methodology CRISP-DM was introduced. This included 

several stages starting from understanding the business, then understanding the data 

including mentioning the data limitations and challenges faced, together with the data 

sources used across the entire implementation phase, followed by a listing of the initial 

data structure of both experiments: refrigerator experiment, and water immersion 

heater experiment. The next sections were describing the methods used to prepare the 

data in a way to make it ready for the next modelling phase. The data preparation phase 

has concentrated on several steps: firstly, detect and eliminate the variables with high 

missing values rate. Secondly, detect and eliminate variables with low variation rates. 

Thirdly, merging or splitting variables to increase the data quality and score good 

points during the evaluation stage will be done separately. Fourthly, calculating the 

correlation between different columns, which lead to removing feature with high 

correlations, finally describing the anomaly detection and outliers detection done to 

spot the unusual and bizarre values and eliminate them accordingly. 

 

After the data was prepared, the turn comes to applying the related machine learning 

algorithms to produce models which will be used for predicting data. Due to the 

different nature of both experiments, the regression algorithms were applied in the 

first refrigerator experiment because the required prediction should deliver 

continuous dependent values based on independent features, where the target is not 

dichotomous, which is the amount of the consumed energy, however, in the second 

water immersion heater experiment, the classification algorithms were applied 

because the discrete class label of the running periods of the immersion heater 

(switched on/off) needs to be predicted. A number of workflows designed using the 

Orange 3 platform to perform data analysis and visualization, were illustrated. Finally, 

a number of evaluation metrics for both regression and classification were discussed. 

 

The last part of this chapter covered several components beginning with the core Java-

based application, called RECHS, which was developed to merge all components and 

modules under one umbrella. Then explaining the load testing tool called JMeter 

which simulates requests and measures a number of important performance 
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parameters. Moreover, covering the microservices paradigm and RESTful API 

approach and their role to support the framework’s main characteristics: integrability 

and scalability. As will be seen in the next case study chapter, a number of data 

transformers are explained to illustrate the framework’s capability of transforming 

data from any format to an understandable and processable format, such as images to 

figures. Finally, the mobility management and it's five questions to determine whether 

a node is secure or not, offered by the framework is explained.  
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6. Case Study: Reduction of Energy Consumption of 

Two Sample Appliances 

 

6.1. Introduction 

The framework is built around the idea of reducing energy consumption in the 

household area while keep offering the same level of comfort, by applying different 

strategies and policies, such as delivering recommendations to replace appliances with 

more efficient ones based on the energy consumption or usage, or automatically 

adjusting operating periods of certain appliances based on predicted parameters. 

Moreover, the dynamicity, integrational nature of the framework opens avenues for an 

indirect impact on a number of industrial fields such as providing the local energy 

suppliers with the aggregated energy quantities consumed by households within a 

neighbourhood or city. Also, providing the appliances’ manufacturers realistic energy 

consumption figures measured under real-life conditions.  

 

This chapter consists of a detailed explanation of two main experiments designed to 

offer an example implementation of the proposed framework on two sample household 

appliances: the refrigerator and the immersion water heater. Both experiments will 

follow the same road map, which all begins with categorising the appliance in one of 

the three categories: uninterruptable, instant or schedulable, in order to allocate the 

appropriate applicable policy. For the first experiment related to the refrigerator, 

which belongs to the Uninterruptable appliances category, the Energy Consumption 

based Appliance Substitution Policy (ECASP) will be applied, however, the Automatic 

Scheduling of Running Periods Policy (ASRPP) will be applied for the second 

experiment related to the immersion heater. 

 

In both experiments, data mining and predictions play an essential role to extend the 

overall dataset volume to become more precise approximate to the true decisions. Also, 

to offer an insight into the futuristic behaviour of appliances, so it is possible to act in 

advance. For this purpose, both MATLAB and Orange Data Mining will be used to 

follow the CRISP-DM approach, to apply several steps starting from understanding the 

business, then defining the data and preparing it in the way to reach high accuracy 

levels during the application of various data mining algorithms. The preparation phase 

will pass the data through several actions such as: removing the predictors with a high 
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percentage of missing data, removing non-relevant data, detecting anomalies and 

outliers and dealing with them properly, then assessing correlations among predictors 

and target-wise. Once the first draft of the final data structure is set up, depending on 

the nature of the approaches, algorithms from both types of regression or classification 

will be considered for each experiment; where regression is chosen for the refrigerator 

experiment because there is a need to predict a continues value (the energy 

consumption), and the classification was picked up for the immersion heater 

experiment because it is required to predict (or classify) the discrete value appliance 

on/off. Important to mention that the final datasets were adjusted repeatedly after 

applying the algorithms to ensure reaching acceptable accuracy levels when applying a 

number of relevant evaluation metrics. The final step will be applying the 

correspondent policy to reduce the energy consumption and examine the obtained 

results which are presented and explained at the end of each experiment. 

 

6.2. First Experiment: Reduction of Energy Consumption of the 

Refrigerator 

The first experiment will be carried on the refrigerator, a sample appliance belonging 

to the uninterruptible household’s appliances category, where the Energy 

Consumption-based Appliance Substitution Policy (ECASP) will be applied. As a first 

step data must be gathered, cleaned, then the prediction process starts to forecast the 

future energy consumption, which makes it possible to use external APIs to search and 

replace the appliance with a more efficient one, as will be explained in section 6.2.1. 

The initial data structure was presented in section 5.4.2.2. (Table 5.4) which shows the 

list of all potential independent variables that might be considered. The data has gone 

through a list of cleaning and preparation steps, as described in the next section. 

 

6.2.1. Refrigerator Data Preparation 

The following five steps were applied in this phase. Each step covers a different aspect 

of the data and aims to put the data into proper shape as a preparation for the following 

step related to choosing the appropriate modelling algorithm. 
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6.2.1.1. Removing Independent Variables with a High Percentage of Missing 

Values 

As mentioned in section 5.4.3.1. the humidity dataset had a lot of missing values, so 

this independent variable has been excluded from the final data set to increase the 

overall prediction accuracy. Data were inspected for approximately three months is 

shown via the blue area, where the missing data records are represented by the gaps 

shown in Figure 6.1 which cover approximately over 30% of the measured data. In this 

figure, the internal humidity measured via a sensor is shown in blue, where gaps 

between the blue areas represent the periods when there is no data recorded. 

 

 

Figure 6.1: Internal humidity measured via a sensor, showing a huge number of missing values 

 

6.2.1.2. Removing of non-relevant Independent Variables 

As will be seen later, the nature of the dependent target variable requires utilising 

regression algorithms, therefore some independent variables which are not relevant 

such as the DateTime should be removed. This kind of time-bounded variable could be 

relevant if the nature of the data mining is time series. 

 

6.2.1.3. Anomalies, outliers’ detection and smoothing data 

The next step is reducing anomalies and outliers which exists in the dataset due to 

different reasons which were mentioned in section 5.4.2.1. Each feature is inspected 

and, when possible, cleaned by either removing the anomalies or smoothing the data 
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peaks in the way to achieve an acceptable accuracy rate. Figures 6.2, 6.3 and 6.4 show 

three different plotting for four sample independent variables: internal temperature, 

fullness, and times refrigerator door’s open. It is important to mention that only 250 

records were considered to enhance the readability and clarity of the figures. 

 

In Figure 6.2 we see in the top image, four three parameters: outliers threshold, 

outliers centre which show the boundaries of the data including the peaks (in grey), 

and its average (in black). The cleaned data line represents the resulting data after 

removing the outliers. The second bottom-left figure illustrates the data’s local maxima 

and minima, which helps to identify the turning points where data flow increases or 

decreases. The third figure shows two lines representing the input data in light blue, 

and the resulting data after applying the smoothing method Moving-mean with the 

factor 0.5 (bold blue line). 
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Figure 6.2: Internal Temperature Anomalies detection and data smoothing sample plotting for the first 250 data 

records 

A similar approach can be seen in Figure 6.3 for the Fullness independent variable, 

which describes the percentage fullness of the refrigerator measured regularly. Due to 

the massive data disparity, seen in the bottom-left graph, a higher factor (0.7) was used 

for the data smoothing process. 
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Figure 6.3: Three figures illustrate the anomalies detection, data smoothing for the refrigerator fullness 

independent variable 

 
Figure 6.4 shows the same picture for the independent variable times door is opened 

which indicates how many times the refrigerator door was opened within 10 minutes. 

 

 

 
Figure 6.4: Plotting the independent variable times the refrigerator's door is opened 
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6.2.1.4. Correlation computation 

As mentioned in section 5.4.3.4. both correlation types were examined, features 

showing high levels of feature-wise correlation were eliminated, and high levels of 

feature-target correlation were kept. This is calculated for several features using 

Spearman’s method, as shown in Table 6.1. 

 

Feature Correlation 

Type (*) 

Feature 2 (**) Correlation 

rate (Result) 

Internal Temperature Feature-Target Wattage 0.92 (Strong) 

External Temperature 5cm Feature-Target, 

Feature-Feature 

Wattage,  

External Temperature 

Measured 

0.09 (Weak), 

0.87 (High) 

External Temperature 2m Feature-Target, 

Feature-Feature 

Wattage,  

External Temperature 

Measured 

0.15 (Weak), 

0.9 (High) 

External Temperature 

Measured 

Feature-Target Wattage 0.14 (Weak) 

External Relative Humidity Feature-Target, 

Feature-Feature 

External Relative Humidity 

Measured 

-0.07 (Weak), 

0.86 (High) 

External Relative Humidity 

Measured 

Feature-Target -- -0.06 (Weak) 

Refrigerator Fullness Feature-Target -- 0.85 (Strong) 

Refrigerator Temperature Feature-Target -- 0.92 (Strong) 

Times Door Opened Feature-Target -- 0.84 (Strong) 

Duration Door Left Opened Feature-Target -- 0.95 (Strong) 

Occupants Feature-Target -- 0.52 (Middle) 

Table 6.1: Results of the calculated correlations for all relevant features/predictors [(*): Shows the type of the 
relation, either between a feature and the target (Feature-Target) or between 2 features (Feature-Wise), (**): 

Relevant only if the feature-wise correlation is examined 

Table 6.1 contains a list of all relevant features or predictors for which the correlation 

calculation took place. Correlation type Feature-Target was calculated for the relevant 

feature against the target feature Wattage to determine whether to keep it or not, 

because, on one hand, showing a strong-correlation rate means that the examined 

feature is strongly affecting the target feature, on the other hand when a feature shows 

a weak-correlation rate with the target feature, the feature will be eliminated because 

it has not any considerable impact on the to-be-predicted target. Another correlation 

type is examined which is the Feature-Feature, where the correlation rate is examined 
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for two features to assess the possibility to eliminate one of them to save processing 

power and storage. Features are eliminated when two features have a high Feature-

Feature correlation rate. Features are divided into four categories: 

 

1. Temperature – This category includes: 1) Internal temperature (InTp), 2) 

External temperature 5cm over the ground (XTp5c), 3) External temperature 2m 

over the ground (XTp5m) and 4) External temperature measured by a sensor 

(XTpM). Figure 6.5 illustrates the calculated correlation rates among features on 

one hand, and between the features and the target feature on the other hand. 

According to the figure, a high correlation is noticed between the target and internal 

temperature, and less correlation between target and external temperature, which 

supports the obvious fact that external temperature does not affect the energy 

consumption of a refrigerator. 

 
Figure 6.5: Correlation Matrix to illustrate the correlation rates among the external temperature features on one 

hand, and between features and target feature on the other hand. 

 

2. Humidity Measurements – It includes both external humidity (HmdEx) and 

measured humidity by a sensor (HmdM), as shown in Figure 6.6, as expected - we 

see a weak correlation between both features and the target because there is no 
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direct relation between the wattage consumed by a refrigerator and the humidity 

figures. So both features should not be considered in the final dataset. Important to 

mention that the mutual correlation between both features is high (0.86) which 

means that it is possible to eliminate one of them. 

 

Figure 6.6: Plotting the mutual correlation rates among humidity features and the target feature.  

 

3. Refrigerator Parameters – This category contains all independent variables 

that are directly measured from the refrigerator. It is expected that these features 

show a high correlation rate with energy consumption, which is proven by the 

resulting correlation rates shown in Figure 6.7. The calculated features are 1) 

Refrigerator fullness (Full), 2) Refrigerator target temperature (FrgTp), 3) Times 

the refrigerator door is opened every 10 minutes (TmDor), and finally 4) Seconds 

the door was left opened every time it gets opened (SecDo). Looking at the first line 

of the plot show that there is a strong correlation rate between the target feature 

watts and all other features; fullness (0.85), target temperature (0.92), times door 

opened (0.84) and seconds the door left opened (0.95). 
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Figure 6.7: Illustration of features from the refrigerator parameters. fullness (Full), frig internal temperature 
(FrgTp), times the frig door is opened in 10 minutes (TmDor), seconds the door left open each time it gets opened 

(SecDo) 

 

4. Additional Parameters – Figure 6.8 illustrates some additional parameters 

measured from the surrounding environment, these are the number of occupants 

who have been in the household (Occpt) and the type of the day (DayTp), which is 

divided into working-day, or none-working-day (such as weekend, holiday, bank 

holiday, etc.). Although the number of occupants does not show a high correlation 

rate with the target, it did score 0.52, it is considered because – logically – the 

number of household occupants must have a direct impact on the energy consumed 

by the refrigerator. Important to mention that a high mutual correlation rate 

between Occpt and DayTp was expected, however the rate was 0.00 because 

occupants number should increase in none-working-days, which was not the case 

in this experiment. 
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Figure 6.8: Correlation matrix of the additional parameters category 

 

6.2.1.5. Variance calculation 

The weather-condition is removed from the dataset because it has a very low variance 

score (0.24877371). 

 

6.2.1.6. Data Final Structure 

Table 6.2 shows the final structure after completing all previously explained steps 

during the preparation process. 

 

Independent Variables Source Field 

Type 

Example values  Action / Justification 

Datetime System Datetime  2021-03-10 13:59:45 Removed / Not relevant for 

regression algorithms 

predictions 

Internal Temperature Sensor Float Expected range 

between +10 - +35 C˚ 

Accepted / Shows high 

correlation with the target-

feature 

External Temperature 

5cm 

API Float The expected range 

between -15 and +40C˚ 

Removed / Low target-

correlation 

External Temperature 2m API Float The expected range 

between -20 and +45C˚ 

Removed / See External 

Temperature 5cm 

External Temperature 

Measured 

Sensor Float The expected range 

between -20 and +45C˚ 

Removed / See External 

Temperature 5cm 

External Relative 

Humidity 

API Integer 0-100% Removed / Low correlation 

score 
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External Relative 

Humidity Measured 

Sensor Integer 0-100% Removed / due to low 

correlation score 

Internal Relative 

Humidity Measured 

Sensor Integer 0-100% Removed / A high 

percentage of missing data 

Weather Condition API Varchar rainy, windy, stormy, 

snowy, cloudy, sunny 

Removed / Low Variance 

score (0.24877371) 

Refrigerator Fullness AI Integer 0-100% Accepted / It shows a high 

correlation score with the 

target-dependent feature 

Occupants AI Integer  Accepted / The correlation 

score is not high, but also 

not low enough to discard 

this feature 

Refrigerator Temperature AI Integer Level 1 – 6 Accepted / A high 

correlation score was 

calculated. 

Energy Consumption Sensor Float kWh Accepted / This is the 

target-dependent feature to 

be predicted measured in 

kWh. 

Times Door Opened Sensor Integer  Accepted / Despite high 

feature-wise correlation 

with Duration Door left 

Opened, the field is kept to 

get better predictions 

Duration Door Left 

Opened 

Sensor Integer X seconds Accepted / See Times Door 

Opened 

Day Type System Varchar Weekend, weekday Altered / to (weekend: 0,1) 

because the effect of the 

day type affects the 

number of occupants 

staying at the household. 

The day type itself does not 

affect the prediction. 

Table 6.2: Refrigerator’s energy consumption prediction’s final independent variables list after running the 
preparation phase 

 

6.2.2. Modelling & Evaluation 

To enhance the dataset of the refrigerator’s energy consumption, it is required to 

predict the continuous dependent variable wattage, therefore, as discussed in section 

3.3.7., regression is the most suitable approach for this purpose. As explained in section 

5.4.4. a total of 5 different algorithms were examined and evaluated to decide the most 

suitable model. This is accomplished by applying the model to a portion of data to 
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validate and test it.  Figures 6.9 and 6.10 illustrate two examples random forest and 

polynomial regression of the resulting relationship between the test value represented 

by the blue bubbles, and the predicted value shown in yellow. The error between both 

values is represented with the orange line.  

 

Figure 6.9: Prediction model obtained from applying the Random Forest algorithm, with a good RMSE (2.892) 
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Figure 6.10: Prediction model obtained from applying the Polynomial Regression (RMSE 14.681) 

 

Model MSE RMSE MAE R2 
Polynomial Regression 215.542 14.681 9.871 0.397 

Linear Regression (Multiple) 430.948 20.759 15.519 -0.205 

Random Forest 8.363 2.892 1.708 0.977 

Tree 8.332 2.886 1.685 0.977 

Linear Regression (Simple) 22.513 4.745 3.359 0.937 

k-Nearest Neighbour 13.519 3.677 2.254 0.962 

Table 6.3: Different evaluation metrics related to the applied regression algorithms 

 

A quick look at Table 6.3 reveals that Random Forest and Tree are performing well to 

predict the wattage. This can be clearly seen in the violin plots shown in Figure 6.11 

simply by visually comparing the shape of the initial test wattage, and the predicted 

wattage done by Tree and Random Forest algorithms. Important to mention that kNN 

is doing well with an R2 value of (0.962), however it has been excluded because other 

models were more accurate. 
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k-Nearest-Neighbor 

 
Tree 

 
Random Forest 

 
Simple Linear Regression 

 
Polynomial Regression 

 
Simple Linear Regression 

 
 

 

 
Initial Wattage 

 

 
Figure 6.11: Violin Plotting of the initial Wattage and the predicted one with different algorithms 

The same fact is emphasized in Figure 6.12 and 6.13 that show the evolving MSE value 

during the data training process for both random forest and polynomial regression. In 

Figure 6.12 both estimated (light blue) and observed (dark blue) MSE are quite 

identical, however, in figure 6.13 those lines indicate a perceptible difference, where it 

is clearly seen that the polynomial regression algorithm has difficulties delivering a 

proper and reliable model. 
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Figure 6.12: A graph showing the evolving of the MSE values during the data training process while applying the 
random forest algorithm 
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Figure 6.13: The MSE journey during the data training process emphasizes the fact the polynomial regression 
algorithm has difficulties to deliver a proper and reliable prediction model 

 

In the next section, the dataset which is gathered from the observation and predictions 

will be utilised during the application of the energy consumption-based appliance 

substitution policy. 

 

6.2.3. The Application of The Energy Consumption based Appliance 

Substitution Policy 

The RECHS application, mentioned in section 5.5., implements the substitution 

strategy to reduce the consumed energy by using the dataset consisting of both 

historical and predicted wattage of the appliance to determine the exact and real-life 

energy consumption of the appliance, then it uses an external product API (from eBay 

Product Search API) to search for more efficient appliances while keep matching the 

same features. This approach can be initiated either manually, by starting the search 

by an admin, or automatically where an observation system keeps watching and 

measuring different parameters of the used appliance’s energy consumption, compare 

it with results from the external API, then notify the admins with the suitable 
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substitution recommendations. Following is an explanation of how an approximate 

saving of 22% of the energy consumption was achieved for the sample appliance.  

 

 

Figure 6.14: Screenshot is taken from the RECHS application showing the returned matching list of equivalent 
refrigerators with more efficient energy consumption 

 

Figure 6.14 shows part of the list of refrigerators with similar features to the sample 

refrigerator with better energy efficiency, which was returned by eBay product search 

API. The total average saving of each item in the result’s list is calculated in the RECHS 

application using the three equations explained in section 5.2., and will be shown 

highlighted in orange within the list. Following is a sample efficiency calculation of the 

most efficient candidate Sharp Refrigerator shown in the third place on the list to 

replace the current refrigerator that proves that a refrigerator with the energy 

efficiency class A+++ may save energy up to 22% 

 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑛𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 =  0,081 𝑘𝑊ℎ 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑛𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 =  0,063 𝑘𝑊ℎ 

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑡ℎ𝑒 𝑟𝑒𝑓𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑜𝑟 𝑟𝑢𝑛𝑠 𝑑𝑎𝑖𝑙𝑦 𝑖𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 8 ℎ𝑜𝑢𝑟𝑠 

 

𝐸1 =  0,081 ∗  8 = 0,648 𝑘𝑊ℎ 

𝐸2 =  0,063 ∗  8 = 0,504 𝑘𝑊ℎ 
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𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑎𝑣𝑖𝑛𝑔 =  
(0,648 ∗ 365) − (0,504 ∗ 365)

0,648 ∗ 365
∗ 100% = 22,2% 

 

The next section will describe the second experiment related to the immersion heater 

and the applied policies to reduce energy consumption. 

 

6.3. Second Experiment: Reduction of Energy Consumption of an 

Immersion Heater 

The energy consumed when water is not used, considered wasted energy and should 

be cut off. For this purpose, the experiment should be built around predicting the 

periods when the appliance is used, in other words when the water flow rates are not 

zero, and cut-off the energy completely to prevent the re-heating cycles and thus save 

energy. As explained in section 5.4.2.2, several parameters will be measured and 

collected to assist in predicting the running periods of the heater (when the heater will 

be used). Having this valuable information allows switching the device ON shortly 

before using it, and OFF when it is not used, for instance at night.  

 

Energy consumption (in kWh) and water usage (in Litres/second) are considered the 

most important variables which have a direct impact on the prediction. Figure 6.15 

shows the measured average energy consumption over three months within 24-hours 

cycles. There the energy consumption represented in the blue line, shows a peak in 

consumption between 16:00 and 21:00 clock, which is the period when households 

come back home and start their evening activities (cooking, dishwashing, …). The same 

behaviour can be seen around mid-day between 11:00 and 14:00 clock, and in the early 

morning between 05:00 and 7:00.  
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Figure 6.15: Measured Average Energy Consumption in 24-hours (in kWh), showing the moving average line (in 
orange) 

 

 

Figure 6.16: Measured Water Flow Rate in 24-hours (in Litre/second) with the orange line showing the moving 
average 

Comparing both figures is shown in the usage and energy consumption indicator graph 

in Figure 6.17, where the red line represents energy consumption, and the blue line 

represents the water flow. Important to mention that these lines do not show the 

quantity, rather shows one when there is a value, and zero when there is no value. it 

emphasizes the obvious idea that both peaks in the energy consumption and water 

usage are match in the periods between 6:00 and 23:00 clock, taking into 

consideration that the heater volume of 10 litres plays a role in buffering hot water so 

there is no need for continuous heating up the water. In other words -roughly- the 

energy consumption increases when the water flow increases. However, according to 

Figure 6.17, although the water usage is zero in the time between midnight and 6:00 

clock in the morning, there are noticeable energy consumption values (or peaks). This 
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occurs because the device attempts to keep the water on the same required temperature 

level when the water temperature drops.  

 

Figure 6.17: A comparison between the energy consumption (in kWh) and the Water Flow Rate or usage (in a 
litre(s)/sec.) 

 

Similar to the previous experiment, it all begins with defining and preparing the data, 

then applying it to the appropriate algorithms to predict the running periods to allow 

applying the ASRPP policy. The initial data structure which was previously discussed 

in section 5.4.2.2. in Table 5.5, went through a number of verification and cleaning 

processes explained in the next sections. 

 

6.3.1. Immersion Heater Data Preparation 

To reduce the processing power and time, and to achieve high accuracy rates, data was 

prepared to decide for the most relevant and suitable independent variables, moreover, 

the records were running through several cleaning procedures to eliminate data noise, 

inconsistency, and irrelevant data records. These iterations are described as follows: 

 

6.3.1.1. Shared Independent Variables 

Because both sample appliances used in both experiments operate within the same 

environment, they share a number of similar independent variables. Following are a 

list of these variables which were prepared and discussed in the first experiment related 

to the refrigerator. These includes: 

• Internal humidity – removed because of the missing values as explained in 

section 6.2.1.1. 
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• Timestamp – Automatically generated date/time to define the time sequence 

which will be used in the applied sequence classification with recurrent neural 

network data mining technique. 

• Internal temperature – An important feature for both refrigerator and water 

immersion heater, because it has a direct impact on the loss of heat occurred 

due to lack of adequate isolation. As seen in section 6.2.1.3. and Figure 6.2, 

anomalies and outliers detection were applied to smooth the data and increase 

prediction’s accuracy. 

• External temperature and external humidity measurements – As 

explained in the correlation calculations in section 6.2.1.4., all external 

temperature and external humidity independent variables are removed because 

they show low correlation rates with the target feature (Feature-Target), and 

high correlation with other features (Feature-Wise) 

• Surrounding additional independent variables from the household 

– Number of occupants and the type of day (weekend/weekday) are common 

variables that are valid for all appliances in both experiments.  

 

6.3.1.2. Detecting Outliers’ Detection and Smoothing Data 

Similar to the approach applied in the first experiment, explained in section 6.2.1.3., 

anomalies detection is one of the basic data preparation processes in this experiment 

which aims to remove all outliers and clean the data from extreme values. Although 

this process has been applied to all variables, in this section only one example will be 

explained to avoid repetition. Figure 6.18 shows three graphs, the top one indicates 

outliers (represented with letter x) in the dataset of the variable water flow rate. The 

final cleaned data is represented in the bold blue line. Both bottom graphs also explain 

the process of finding the extreme points (bottom-left) and the smoothed data by 

applying the moving mean method (bottom-right). 
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Figure 6.18: Three figures show the anomalies detection for the variable Water Flow Rate 

 

6.3.1.3. Merging, Splitting, Aggregating Data 

Sometimes it is necessary to merge several variables into one average variable to 

enhance the data correctness, and to reduce the calculation time. This approach is 

applied to both external temperature, humidity and traffic delay fields, as follows: 

 

➔ External Temperature – Both fields External Temperature 5cm over the 

ground and External Temperature 2 meters over the ground are merged into 

External Temperature to enhance the accuracy and the overall temperature. 
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➔ External Humidity – The same approach is done for the external humidity, 

where the average of both fields External Relative Humidity and External 

Relative Humidity Measured is put into one field to combine both data 

resources and ultimately improve the data correctness. 

 

➔ Traffic-Related Variables – Consists of two variables; firstly, Traffic delay 

in minutes which determines when the first person will arrive home, so the 

heater is turned on shortly before he arrives. All other persons who may arrive 

later, will not be considered because the appliance has already been turned on. 

This merged field’s value is based on Traffic delay in minutes for the first 

occupant, Traffic delay in minutes for the second occupant and Traffic delay 

in minutes for the third occupant. Secondly, the Traffic situation shows the 

traffic situation for the first person arrives home. 

 

6.3.1.4. Correlation Assessment 

This step concentrates on assessing both correlation types: Feature-Wise, and Feature-

Target. Features show high levels of feature-wise correlation will be eliminated, and 

high levels of feature-target correlation will be considered in the prediction analysis. 

This is calculated for several features using Spearman’s method, as shown in table 6.4, 

where the column Correlation Type shows the type of the relation, either between a 

feature and the target (Feature-Target), or between 2 features (Feature-Wise), and the 

column Feature 2 which is only relevant if the feature-wise correlation is examined and 

shows the correspondent’s variable name. To avoid plotting big size figures, which may 

decrease the readability, similar variables are put together as follows: 

 

1. Temperatures – The correlation assessed for the following fields: internal 

temperature (InTp), external temperature measured 5cm over the ground 

(XTp5c), external temperature measured 2 meters over the ground (XTp2m), 

external temperature measured by a sensor (XTpM), and incoming water 

temperature (WTp) against the target variable (to be predicted) the water flow, 

or the usage of the appliance (WFlow). Results are illustrated in Figure 6.19 that 

clearly emphasizes the idea that temperature has barely influenced the usage of 

the device, which is seen on the correlation values, on line one, that are around 

the zero between (WFlow) and all other variables. However, there is a strong 
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correlation among all external temperature measurements (for example 

between (XTpM) and (XTp5c) it reached 0.96) 

 
Figure 6.19: Correlation assessment of the target and all temperature-related variables, and among all 

temperature variables 

 

2. Humidity – Calculating the correlation for humidity variables reveals a similar 

picture as done for temperatures as illustrated in Figure 6.20. Where there is 

almost no correlation between the target and the humidity, however, there is a 

strong correlation between humidity measured by a sensor and the humidity 

retrieved from the API which is 0.84 
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Figure 6.20: Correlation assessment for humidity related variables together with the target variable The usage of 

the appliance, and among themselves 

3. Heater Related Parameters – In this part all variables measured directly 

from the heater will be assessed. This includes energy consumption (EngCo), 

appliance on/off (OnOff), and water consumption rates (WFlRt), together with 

the water flow on/off (WFlow). Except for the water consumption variable, it is 

not expected that all of these variables will have a strong correlation with the 

target variable appliance usage. Results are illustrated in Figure 6.21, which 

shows a relatively strong correlation with water consumption rates (0.55) and a 

weak relationship with the energy consumption quantity (0.25) 

 
Figure 6.21: Illustration of heater features 
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4. Others – All other surrounding variables are examined here. These are 

occupants (Occpt), traffic delay in minutes (TrfDm), and weekend/weekdays 

(DyTyp). According to Figure 6.22, a weak correlation was noticed between the 

appliance usage target variable (WFlow) and both traffic delay and the type of 

the day (DyTyp), however there is a strong correlation with the number of 

occupants reached 0.96. This means when the number of occupants increases, 

the usage of the appliance increases as well. 

 
Figure 6.22: Plotting the correlation between surrounding variables and the target variable. 

 

All calculated correlation factors are summarized in the following table 6.4.  

 

Feature Correlation 

Type (*) 

Feature 2 (**) Correlation 

rate (Result) 

Internal Temperature Feature-Target Water flow (True/False) 0.04 (weak) 

Feature-Feature All other temperature vars. -0.2 - 0.09 (weak) 

External Temperature 5cm Feature-Target Water flow (True/False) -0.08 (weak) 

Feature-Feature All other temperature vars. -0.01 – 0.96 

External Temperature 2m Feature-Target Water flow (True/False) -0.05 (weak) 

Feature-Feature All other temperature vars. -0.01 – 0.94 

External Temperature  

Measured 

Feature-Target Water flow (True/False) -0.05 (weak) 

Feature-Feature All other temperature vars. -0.02 – 0.94 
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Incoming Water Temperature Feature-Target Water flow (True/False) 0.10 (weak) 

Feature-Feature All other temperature vars. -0.01–0.1 (weak) 

External Relative Humidity Feature-Target Water flow (True/False) 0.03 (weak) 

Feature-Feature Measured humidity 0.84 (strong) 

External Relative Humidity 

Measured 

Feature-Target Water flow (True/False) 0.04 (weak) 

Feature-Feature Retrieved humidity value 0.84 (strong) 

Energy Consumption Feature-Target Water flow (True/False) 0.25 (weak) 

Feature-Feature Heater related vars. ~0.6 (strong) 

Appliance On/Off Feature-Target Water flow (True/False) 0.02 (weak) 

Feature-Feature Heater related vars. 0.17 – 0.62 

Water Consumption Rates Feature-Target Water flow (True/False) 0.55 (rel. strong) 

Feature-Feature Heater related vars. 0.17 – 0.63 

Day Type (weekends, holidays, 

annual leave, …) 

Feature-Target Water flow (True/False) 0.07 (weak) 

Feature-Feature Additional variables ~0.08 (weak) 

Occupants Feature-Target Water flow (True/False) 0.96 (strong) 

Feature-Feature Additional variables ~0.07 (weak) 

Traffic Delay in minutes Feature-Target Water flow (True/False) 0.03 (weak) 

Feature-Feature Additional variables ~0.07 (weak) 

Table 6.4: Results of the correlation assessment for all relevant features/predictors linked to the immersion heater 
experiment 

6.3.1.5. Variances Analysis  

Both weather condition and the heater target temperature were removed from the 

dataset because they have a very low variance score; 0.25 for the first, and zero for the 

second. 

 

6.3.1.6. Data Final Structure 

Table 6.5 shows the immersion heater’s energy consumption prediction’s final 

variables list after running the preparation phase. 

 

Variables Source Field 

Type 

Example 

values 

Action 

Timestamp System Datetime  2021-03-10 

13:59:45 

Automatically generated 

Heater Target 

Temperature 

AI(*) Integer Varies between 

1˚ - 85˚ 

Accepted 

Occupants AI(*) Integer  Accepted 

Internal 

Temperature 

Sensor Float Ranges between 

+10 - +35 C˚ 

Accepted 
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External 

Temperature 5cm 

over ground 

API/Sensor Integer Ranges between 

-20 and +45C˚ 

Removed 

External 

Temperature 2m 

over ground 

API/Sensor Integer Ranges between 

-20 and +45C˚ 

Removed 

Wind speed API Integer  Removed 

Incoming water 

temperature 

Sensor Integer Ranges between 

+0 and +45C˚ 

Removed 

Weather 

condition 

API Varchar rainy, windy,  

snowy,  sunny, 

... 

Removed 

External 

Humidity 

API Integer 0-100% Removed 

Internal 

Humidity 

Sensor Integer 0-100% Removed. A high percentage of 

missing data. Explained in section 

6.2.1.1. 

Off day 

(weekends, 

holidays, annual 

leave, …) 

System Varchar Yes, no Accepted. High correlation 

Energy 

consumption 

Sensor Float kWh Accepted. High correlation with 

other variables related to the heater 

Appliance On/Off DM(**) Binary 1/0 Removed 

Water 

Consumption 

Sensor Integer Litre(s)/sec. Accepted. Shows relatively high 

correlation with the target 

Traffic situation 

for the first 

occupant 

API Varchar on-time, 

slightly-

delayed or late 

Merged with Traffic situation for 2. 

occupant and Traffic situation for 

3. occupant 

Traffic delay in 

minutes for the 

second occupant 

API/System Integer Minutes Merged with Traffic Delay in 

Minutes for 2. occupant and Traffic 

Delay in Minutes for 3. Occupant 

Traffic situation 

for the second 

occupant 

API Varchar on-time, 

slightly-

delayed or late 

Merged. See Traffic situation for 1. 

Occupant 

Traffic Delay in 

minutes for the 

second occupant 

API/System Integer Minutes Merged. See Traffic Delay in 

Minutes for 1. Occupant 

Traffic situation 

for the third 

occupant 

API Varchar on-time, 

slightly-

delayed or late 

Merged. See Traffic situation for 1. 

occupant 
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Traffic delay in 

minutes for the 

third occupant 

API/System Integer Minutes Merged. See Traffic Delay in 

Minutes for 1. Occupant 

Table 6.5: Immersion heater’s energy consumption final variables list. (*) AI: Artificial Intelligence, (**) Data 
Mining 

6.3.2. Modelling & Evaluation 

As mentioned before in section 5.4.4., it is required to predict the time when the 

immersion heater is used, this means -technically- predicting when the water flows out 

of the heater. Since the target variable is a label (true/false) that is combined with a 

time sequence, the sequence classification with recurrent neural network data mining 

techniques will be applied.  

 

As shown in Figure 6.23, the MATLAB Parallel Coordinates Plot Tool is used to decide 

the most relevant predictors. It offers the possibility to investigate involved predictors 

and their influence on the overall prediction process, and determine the most suitable 

predictors, and eliminate the ones with less impact. In this figure dotted lines represent 

the mistaken prediction, where straight lines show the correct forecasting. 

 

 

Figure 6.23: MATLAB Parallel Coordinates Plot Tool used to investigate predictors and their influence on the 
prediction 

 



 
 
Integrated Scalable System for Smart Energy Management 

214 
 

As shown in Figure 6.24, all begins with plotting the heaters running cycles, where the 

first 200 cycles are shown. The Y-Axes represents the appliance’s ON and OFF status, 

by 0 and 1, where X-Axes shows the first 200 sequence or cycles. 

 

 
Figure 6.24: Plotting the sequence (in time) of the on/off cycles 

 

The previously chosen predictors are used to forecast the heater’s running cycles by 

feeding them to MATLAB. Figure 6.25 shows the training process for 250 iterations. 

Both RMSE and Loos values are calculated during the training, three peaks are noticed 

in the beginning, however, both values are getting closer to zero towards the end of the 

250th iteration. This reveals that the training process was reliable and can be used for 

the forecasting illustrated in Figure 6.26.  
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Figure 6.25: Training Process and the evolvement of both RMSE and Loss values 

Results can be seen in Figure 6.26, where the forecast of the last 20 sequences is shown 

in red, and observed data is represented in blue. The forecast will be used to operate 

the immersion heater in the future. 
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Figure 6.26: Combined plot shows the observed and forecast of the heater’s running periods 

 

The exact prediction of the last 20 time sequences and the correspondent RMSE error 

is shown in Figure 6.27, where both graphs indicate bad results for the first two cycles, 

then it improves starting from the third cycle till the 7th one where it shows incorrect 

prediction. This analysis is reflected in the bottom graph where a good prediction is 

seen when the error closes to zero, and the bad predictions are seen when the error is 

far from the bottom line.  
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Figure 6.27: Sub-plotting the last 20 cycles and the correspondent RMSE error for each. 

 

A similar trend can be seen in the overall detailed graph in Figure 6.28 where all types 

of training, validation and testing data are inspected. 
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Figure 6.28: Sub-Plotting of all Data Types: Training, Validation and Testing. 

After obtaining the prediction data, we can move to the next step to use it to apply the 

related ASRPP policy as explained in the next section. 

 

6.3.3. The Application of The Automatic Scheduling of Running Periods 

Policy 

As explained in section 5.2., the basic idea behind this policy is automatically 

controlling the running periods of the heater by switching it On/Off depending on the 

usage. This has been carried out using the previously mentioned RECHS application 

(section 5.5.) where the energy consumption of the immersion was measured before 

and after applying this policy. 

 

Figure 6.17 has shown the indicator of both measured usage and energy consumption, 

where Figure 6.29 illustrates the same indicators after applying the ASRPP policy, 

where the system has turned off the appliance during the night (between 00:00 and 

5:00 clock), which lead to saving the wasted energy.  
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Figure 6.29: A comparison between the energy consumption (in kWh) and the Water Flow (usage) After applying 
the ASRPP Policy 

 

The following Table 6.6 shows the water flow (appliance usage) and the running 

periods of the heater before and after applying the ASRPP policy, together with energy 

consumed in kWh. Using the figures in this table it is possible to calculate the amount 

of energy saved by calculating the average energy consumed before and after applying 

the policy. This can be achieved by creating a new column called Possibly estimated 

saved energy (in kWh) (highlighted in light green), which is calculated based on the 

flowchart from Figure 6.30. 

 

 

Figure 6.30: Flowchart to decide when the appliance is saving energy after applying the ASRPP policy 
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24-
Hours 

Appliance 
Consuming 

Energy 
(BEFORE) 

applying the 
ASRPP Policy 

Appliance 
Energy 

Consumption 
(AFTER) 

applying the 
ASRPP Policy 

Appliance 
Is Being 

Used 
Yes/No 

Energy 
Lost 

Yes/No 

Energy 
Consumption 

(in kWh) 

Possibly 
estimated 

Saved Energy 
(in kWh) 

0 1 0 0 Yes 0.165 0.165 

1 0 0 0 No 0 0 

2 0 0 0 No 0 0 

3 1 0 0 Yes 0.202 0.202 

4 1 0 0 Yes 0.86 0.86 

5 0 0 0 No 0 0 

6 1 1 0 Yes 0.46 0 

7 0 0 1 No 0 0 

8 1 1 1 Yes 0.62 0 

9 0 0 1 No 0 0 

10 0 0 1 No 0 0 

11 0 0 1 No 0 0 

12 1 1 1 No 0.33 0 

13 1 1 1 No 0.58 0 

14 0 0 1 No 0 0 

15 0 0 1 No 0 0 

16 0 0 1 No 0 0 

17 1 1 1 No 0.55 0 

18 1 1 1 No 0.127 0 

19 1 0 1 No 0.219 0 

20 1 0 1 No 0.191 0 

21 0 1 1 No 0 0 

22 0 0 1 No 0 0 

23 0 0 1 No 0 0 
Table 6.6: Appliance running period (Energy consumption), appliance usage (water flow bigger than zero) and the 

estimated energy lost, the average kWh consumed every hour during the day, and the possibly estimated saved 
energy 

 

The system has achieved a noticeable energy-saving rate, approximately 36% which is 

equivalent to 10.872 kWh from the average daily total energy consumption of 1.244 

kWh, by switching off the appliance when it is not used and switching it on shortly 

before using it again. 

 

6.4. Conclusion 

In this chapter, two experiments were illustrated as an example of the possible 

implementation of the proposed I3SEM framework, where each of them was dedicated 

to demonstrate applying some components of the proposed framework on a sample 

appliance from the household and show how it did achieve a noticeable saving in the 
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consumed energy reaching up to 36%, while keep offering almost the same level of 

comfort. Both appliances: the refrigerator and the immersion water heater were chosen 

based on several criteria: firstly, each one of them belongs to a different appliances’ 

category; the refrigerator is considered a member of the uninterruptable devices, and 

the immersion heater is part of the schedulable appliances. Secondly, both are common 

devices that exist nearly in every household in the area where the implementation took 

place (in NRW state in the west part of Germany). Thirdly, the possibility to find and 

buy suitable and compatible hardware items such as sensors and actuators and attach 

them to these appliances was easy and cost-efficient. Fourthly, these devices fully 

belong to the household owner and are not shared with others, contrary to other 

potential appliances with high energy consumption, such as the heating system in the 

building which is shared by all other building inhabitants. Therefore, it is possible to 

switch those appliances on/off upon need to install sensors or try anything without 

interrupting others. 

 

Both experiments began with the data preparation to decide which variable to consider 

and which one to discard. The decision was taken based on a number of data 

preparations steps started by ascertaining and eliminating the measured internal 

humidity which showed a high percentage of missing values. Then it continued by 

removing the date/time variable which is not relevant for this regression approach 

problem. Detecting outliers and anomalies was a considerable part of the job to ensure 

the data homogeneity and reliability. Finally, feature-wise and target-wise correlation 

assessments took place, to decide for the most relevant and effective features. This 

preparation phase leads to the first refrigerator experiment, to accept a total of 8 

predictors, and remove or merge 8 others with other variables as shown in Table 6.2. 

The picture was almost similar in the second immersion heater experiment where 7 

variables were accepted and 14 were merged or removed. 

 

The prepared datasets were used to train different algorithms from regression and 

classification types using MATLAB and the Orange Data Mining Software. For the first 

refrigerator experiment, the regression approach was chosen because there is a need 

to predict continuous values (the energy consumption) and for the second immersion 

heater experiment the sequence classification with neural network data mining was 

applied, because there is a need to predict a discrete label bounded to time sequence. 

The resulted models were used to deliver forecasts of the future behaviour of 
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appliances as a preparation for applying the correspondent policy; the Energy 

Consumption based Appliance Substitution Policy (ECASP) for the refrigerator 

experiment and Automatic Scheduling of Running Periods Policy (ASRPP) for the 

immersion heater. Which resulted in saving energy up to 22,2% for the refrigerator and 

36% for the immersion heater. 

 

The proposed framework attempts to deliver clear answers to the drawbacks of the 

reviewed frameworks by incorporating standards for exchanging, analysing and 

displaying energy data, and measuring the performance. Also, by supporting decision-

taking mechanisms and organisation services to consider the amount of energy 

consumed by various assets, or by different processes, to enable energy optimization 

on both local and global levels. And meeting the requirements of compatibility, 

expandability and interoperability to support further future developments and 

extensions. Finally, offering a platform to run all together. Both presented case studies 

in this chapter demonstrated some of these points commenced by analysing and 

illustrating energy consumption data to gain an overall picture of some vital 

parameters of the system. This was followed by performing a number of data 

preparation processes to generate models and decide for the most suitable one in order 

to establish a proper base for predicting energy consumption in order to take decisions 

to enable energy optimization. The framework’s integrability nature supports its ability 

to deal with various data structures and types resulting from different resources in this 

field, shaping them into processible datasets by offering a number of fundamental data 

integration and transformation components during the implementation. As discussed 

within the thesis, supporting scalability considered one of the basic pillars of the 

framework, therefore an examination test was carried on comparing performance 

parameters when running the application on initial hardware setup, and then run it on 

a scaled setup. Moreover, the illustrated case studies show how the whole system may 

look like when it deployed and operate as one unit. 

 

Important to mention that both experiments were chosen to demonstrate the concept 

of the system, rather than energy savings. Both represent examples of the 

implementation of the proposed I3SEM Framework that can applied almost on any 

conventional or smart appliance inside any household with minimum hardware 

settings. In some cases, as done in the first experiment, the applied substation strategy 

based on the energy consumption may negatively affect the resulted footprint, because 
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of the fact that producing new appliances may cost more energy than saved, however, 

this negative impact may be reduced due to offering some mitigating aspects 

represented in offering some recycling and spare parts opportunities, and apply this 

strategy exclusively in regions where energy prices are high. Moreover, applying the 

framework on the refrigerator in the first experiment, offer some additional benefits 

than a direct energy saving, shown in offering the real-life energy consumption data of 

the refrigerator while running under real life conditions, to the manufacturers to let 

them observe the possibilities to deal with eventual shortages and drawbacks. 
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7. Conclusion and Future Work 

7.1. Conclusion 

The main focus of this research is to address the evolving enormous energy 

consumption in the household sector within the last decades, and its disastrous 

consequences on the environment, planet resources, and householders’ budgets.  The 

key objective is proposing, implementing, and evaluating a contemporary integrated, 

scalable, smart energy management framework that assists in reducing the energy 

consumption in the household sector by applying a number of correspondent strategies 

and policies which utilise a set of observed and predicted system entities. This chapter 

converges the conducted research in corroboration of the literature in order to achieve 

the indicated research goals and objectives. The most important findings, which 

ultimately form the basis for a knowledge contribution in this area, are summarized. 

 

The rapid development of smart techniques and the increasing maturity grade of 

machine learning technologies, besides the crucial need to overcome main drawbacks 

in the reviewed frameworks, were among the main pillars that support proposing the 

Integrated Scalable System for Smart Energy Management (I3SEM) framework 

utilised in this research. The framework’s integrability nature supports its ability to 

deal with various data structures and types resulting from different resources in this 

field, shaping them into processible datasets by offering a number of fundamental data 

integration and transformation components. Moreover, there is an essential need to 

support the scalability attribute by offering a number of relevant modern software 

paradigms, due to the fact that the success of this framework is strictly bound to its 

ability to be rolled out to a huge number of households, and its ability to maintain an 

acceptable level of stability while being adapted to the rapidly evolving smart 

technological inventions in this field. Smartness is a pivotal and central characteristic 

of the framework that enables the integration of smart components to enhance the 

framework’s overall capabilities and form its basis. 

 

The initial stage of this research commenced with emphasizing the importance of 

energy management systems approaches, assessment of background and potential 

challenges, followed by a compiling of different statistics schemes related to the energy 

consumption datasets narrowed down to the household’s sector in various 

geographical locations and application domains. Also, disclosing a description of 
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current attempts aim to respond to the evolving challenge in the industry related to the 

production of clean energy, and providing statutory and legal rules and guidelines to 

enforce and govern actions in this area. 

 

Establishing an in-depth understanding and enhancing the knowledge in this field was 

conducted by the literature review in the second chapter commenced with covering a 

number of Meta Operating Systems (MOS) which are established on top of an 

operating system allowing coordinating heterogeneous systems, devices, applications 

and processes allowing real-time communication. Energy management systems are 

considered as large and complex systems that operate in dynamic environments, 

therefore a clarification of the large systems’ most relevant characteristics such as 

compatibility, expandability, interoperability, integrability, reliability and scalability, 

took part in this chapter. The discussion proceeds further to illustrate a number of data 

challenges related to the acquisition and storing of data. An analysis and comparison 

of the most relevant, existing conventional and intelligent energy management 

frameworks provided classification and insights into the relative merits and limitations 

of different approaches and techniques. 

 

The literature review to intensify the knowledge of technologies and techniques which 

are considered the pillars to implement previously reviewed frameworks, and the 

proposed I3SEM framework, has continued in chapter 3 which commenced with 

recitation microservices, cloud computing and the Internet of Things (IoT) approach 

which meant to connect the ubiquitous appliances to the cloud. Then proceeds with 

unfolding a number of modern techniques and models pointed to safe pathways for 

constructing smart energy management systems such as big data, data mining, and 

machine learning approaches including supervised, unsupervised, classification, 

association, anomaly detection, clustering, regression and time series algorithms. 

 

Energy management systems are required to offer an acceptable response to the 

challenging equation of achieving the most efficient energy consumption approaches 

without sacrificing the overall comfort level. The literature review revealed that these 

systems suffer from one or more drawbacks related to firstly, the deficiency of 

integration processes designed to deal with both conventional and smart appliances on 

one hand, and deal with data retrieved from different resources following different 

standards on the other hand. Secondly, the lack of integrated architecture that 
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supports quality factors such as adaptability, expandability, and performance. Thirdly, 

the lack of standardisation and unified data architectures as the majority of them are 

following their own vendor's standards and data architecture; this resulted in 

complicating the overall collaboration and interoperability in the industry and prevent 

small vendors from contributing to the industry by developing specific aggregable units 

by following a certain standard and unified data architecture. Fourthly, the restricted 

applicability on legacy and modern and smart environments, covering almost every 

single appliance within the regular household. Fifthly, lack of mobility management 

and the shortage of engaging stakeholders in the whole process. And finally, the 

absence of mesh network nodes management in terms of security.  

 

The proposed I3SEM, in chapter 4, provides a comprehensive and solid architecture to 

bypass these downsides by offering a unique structure that divides the framework into 

three main zones, and presenting a number of relevant generic components, moreover, 

utilising appropriate state-of-art and modern paradigms, besides offering essential 

approaches related to the context-sensitive analysis, detection and probability 

generation, predictive analysis and the alerting messaging. The division of the 

framework into two main zones combined with a gate zone improves several quality-

driven aspects related to scalability, enhanced encapsulation, performance, and 

interoperability. The client zone is implemented and physically resides in the 

household site, and external APIs providers. This approach shifts a remarkable part of 

processing power from the central processing units in the cloud to the client and offer 

more privacy and enhanced security to deal with sensitive data within the 

correspondent household without the need to transfer it to the cloud, where only 

filtered, anonymous constraints are processed centrally. The cloud gate stands in front 

of the cloud zone to facilitate a number of relevant characteristics related to security 

and performance, by authorising, load-balancing incoming requests and caching 

responses. The cloud zone is the core and central unit of the architecture comprised of 

all necessary components to process and analyse the gathered data and deliver 

responses to all upcoming requests. Shifting shared units from the client zone to the 

cloud has a direct impact on enhancing scalability, modularity and performance.  

 

In this research, household appliances are classified according to their operational 

nature into three main categories: uninterruptible, schedulable, and instant or run-on-

demand appliances. In order to achieve the main goal of reducing energy consumption, 
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three main strategies and policies were designed and introduced: Energy 

Consumption-based Appliance Substitution Policy (ECASP), Usage Percentage-based 

Appliance Substitution Policy (UPASP) and Automatic Scheduling of Running Periods 

Policy (ASRPP). Each policy applies to one or more appliances’ groups, taking into 

consideration the capabilities and limitations of appliances from each category. 

Chapter 5 covered the novel aspects of the I3SEM framework capabilities by 

demonstrating them in two experiments applied to two different household appliances 

that belong to two categories: Refrigerator from the uninterruptable appliances 

category, and the immersion water heater from the schedulable appliances category. 

Both appliances were chosen because they are commonly used in households, and are 

suitable to be equipped with affordable additional sensors and actuators. Moreover, 

they can be switched on/off without interrupting anybody.  

 

The final dataset entities used while applying the mentioned strategies are comprised 

of observed and predicted data. The observed data were retrieved from 5 specially 

designed and assembled Arduino-based systems: Z-Wave-based Energy Consumption 

Recorder (ZW-ECR), Arduino Uno-based Unique Occupant Detector (AU-UOD), 

Arduino Uno-based Refrigerator Fullness Detector (AU-RFD), Arduino Uno-based 

Refrigerator Settings Panel Reader (AU-RSPR) and Arduino Uno-based Immersion 

Heater Inspector (AU-IHI). However, the predicted data resulted from using the data 

mining techniques which follow the CRISP-DM methodology that includes 

understanding business, understanding data, preparing data, modelling and 

evaluation. The resulted models were used to deliver forecasts of the future behaviour 

of appliances as a preparation for applying the correspondent policy; the ECASP for 

the refrigerator experiment and ASRPP for the immersion heater. Which have 

delivered promising results by saving energy up to 22,2% for the refrigerator and 36% 

for the immersion heater. 

 

Due to the applied methods, collected measurements, performed strategies and 

predictions, it was possible to make a clear comparison between the overall energy 

consumption ‘before’ and ‘after’, and show how percentual energy consumption can be 

reduced. Due to the fact that this research is moving among two relatively new areas; 

the reduction of energy consumption and various smart technologies, it was a hard and 

challenging task to go through a long and sensitive selecting process to decide on the 

most reliable, accurate and most-fit-for-purpose software and hardware. The decision 
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was sometimes easy and straightforward, however, sometimes it must go through a 

tough, challenging, time-consuming, precise checking and testing process. 

 

7.2. Contributions 

The key finding of this research is proposing a robust, integrated, scalable smart energy 

management architecture that contributes to the knowledge of managing energy by 

overcoming shortcomings and drawbacks from existing approaches and addressing 

further benefits. The I3SEM represents a novel contribution by proposing a generic, 

integrated, scalable architecture that employs smart techniques. The proposed 

framework’s architecture is divided into two main zones separated by a gate zone to 

enhance a number of quality-driven aspects related to privacy and security, by 

processing the sensitive and person-related data within the local mesh network. 

Moreover, increasing performance by integrating a distributed-computing-like 

approach, and improving the modularity by introducing modules with standard 

interfaces.  

 

The I3SEM framework provides practical and effective ways to handle different data 

structures retrieved from different internal and external resources by utilising data 

integration and data transformation components. It does support scalability 

horizontally and vertically. Horizontally, by employing appropriate paradigms, to offer 

possibilities to expand the framework’s capabilities. And vertically, by having 

autonomous control units that observe the system’s load and scale it up or down 

accordingly. The I3SEM framework provides real-time evaluation and visualization of 

results, predictions, charts and plain figures to reflect the outcomes, or can be passed 

to third parties such as local energy providers, appliances’ manufacturers and involved 

governmental agencies.  

 

Supporting data mining techniques is an essential and core part of the framework, in 

order to enhance the overall dataset required for the decision-making component. This 

was achieved by introducing the Data Analytical Engine (DAE), and defining a set of 

evaluation metrics to enhance the predicted models’ reliability and correctness level. 

Also supports the decision-making processes during the application phase of various 

strategies and policies. Moreover, additional holistic security assessments are 

considered in the I3SEM framework to address a number of key deficits observed in 

the reviewed literature, to offer additional safeguarding for the mesh networks. This 
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framework further extends the panel of household appliances to be part of the mesh 

network by applying IoT concepts to add native support for both smart and 

conventional appliances. As a response to the absence of a mature and agreed-upon 

standardisation in this evolving field, the framework contributes the Data Collection 

and Integration (DCI) component which includes several conversion, transformation 

and translation modules to support the inter-components communication. 

 

Based on this thesis the best presentation award was obtained in the Smart Energy 

Management and Energy Efficiency Conference, in August 2020 in Paris by the 

Program Committee as per the Conference Awards Scheme, for the paper titled 

“Reduction of Energy Consumption Using Smart Home Techniques in the Household 

Sector” [193], and same paper was chosen to be published in the International Journal 

of Energy and Environmental Engineering. Another journal paper titled “Predictive 

Analytics based Smart Energy Management Framework for Household Appliances” is 

submitted to the Environmental Progress & Sustainable Energy, published by John 

Wiley and Sons Inc., on 12th of May 2021 which is still under review. 

 

7.3. Future Work 

The proposed framework should be considered as an initial step towards building a 

comprehensive smart energy management framework that suggests a wide range of 

layers, zones and components to deal with the evolving nature of this field, where 

continuous and rapid development steps are achieved. The proposed future work can 

be categorized into three main directions: introducing new layers and zones, 

augmenting the current zones with additional components, and finally enhancing the 

implementation phase. These suggested future work  aim to bring the framework to 

the next level, and deal with the framework’s limitations which can be summarised in: 

missing a concept to deal with clean-energy production and storage from reasonable 

sources, having an overhead administration and increased costs, spending a 

considerable portion of time and resources in data preparation and analysis, having 

limited reporting capabilities, and missing comprehensive policies to deal with 

footprint resulted from applying various strategies related to appliances’ substitution. 

However, as follows, each point of these limitations is discussed, and potential layers, 

components or modules are suggested to deal with each issue. 
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The proposed framework might be extended by introducing a new layer that considers 

the utilisation of clean energy production from reasonable sources such as solar panels, 

combined with storage capabilities to reduce the dependence on local energy suppliers 

and to contribute to increase the generation of clean energy and reduce the energy 

consumption during peaks. Also, introducing a new zone called Community Zone that 

includes collective households residing together such as several departments in the 

same building. This will minimize the overhead administration efforts and reduce 

costs. Moreover, a number of components can be introduced such as an Automatic 

Data Validator which is responsible to validate and discover anomalies, deficiencies 

in the data during the collecting and processing phase. This leads to saving storage 

space and reducing the processing time. Also, the generating of the standard reports 

can be enhanced by adding the Customised Reports Creator component which allows 

third parties to generate specially dedicated reports which are not included in the 

standard report templates. For example, the amount of saved energy after applying the 

framework. Moreover, the framework’s interoperability can be extended by adding a 

new component Automatic Smart Appliance Installer, which is used by admins to add 

a new smart appliance to the mesh network by defining the data nodes interface by 

admins, so data can flow from the new appliance into the system effortlessly. And 

finally, inventing the component Appliances’ Recycler to add a possibility to recycle 

old, substituted appliances by selling them as spare parts, or recycling them as a whole. 

Important to ensure that they are not sold as a whole to another customer, unless it 

detaches another higher-energy-consuming appliance. 

 

Furthermore, the future work might be concentrating on applying the framework on a 

bigger scale study, covering more appliances within the household, or integrating a 

large number of households to aggregate the data. Moreover, increasing the sensing 

accuracy by utilising better hardware to enhance the quality of the retrieved data. 

Moreover, implementing a case study to apply the third strategy which is based on 

substituting appliances based on their usage. Appliances are observed to find out 

whether they have bigger capacity than needed by the occupants, then making 

recommendations to replace them with smaller ones, to reduce energy. 
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