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Introduction

In comparative and evolutionary genomics (e.g., Hardison 
2003; Jarvis et al. 2014; Itan et al. 2016), research is focused 
on comparing the structure and function of the genomes of 
different species, thereby providing insights into their evo-
lution (e.g., Zhang et al. 2014; Griffin et al. 2015; O’Connor 
et al. 2018a). Chromosomes undergo rearrangements dur-
ing evolution (Rogers 2015), including fissions, fusions, 
deletions, inversions, translocations, and duplications. In 
addition to well-established cytogenetic methods such as 
fluorescence in situ hybridization (FISH), bioinformatic 
tools are now frequently used to analyze and compare chro-
mosomes from various species and identify these chromo-
somal rearrangements (e.g., Romanov et al. 2005; Modi et 
al. 2009; Schmid et al. 2015; Kretschmer et al. 2021). This 
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Abstract
Avian chromosomes undergo more intra- than interchromosomal rearrangements, which either induce or are associated 
with genome variations among birds. Evolving from a common ancestor with a karyotype not dissimilar from modern 
chicken, two evolutionary elements characterize evolutionary change: homologous synteny blocks (HSBs) constitute com-
mon conserved parts at the sequence level, while evolutionary breakpoint regions (EBRs) occur between HSBs, defining 
the points where rearrangement occurred. Understanding the link between the structural organization and functionality of 
HSBs and EBRs provides insight into the mechanistic basis of chromosomal change. Previously, we identified gene ontol-
ogy (GO) terms associated with both; however, here we revisit our analyses in light of newly developed bioinformatic 
algorithms and the chicken genome assembly galGal6. We aligned genomes available for six birds and one lizard species, 
identifying 630 HSBs and 19 EBRs. We demonstrate that HSBs hold vast functionality expressed by GO terms that have 
been largely conserved through evolution. Particularly, we found that genes within microchromosomal HSBs had specific 
functionalities relevant to neurons, RNA, cellular transport and embryonic development, and other associations. Our find-
ings suggest that microchromosomes may have conserved throughout evolution due to the specificity of GO terms within 
their HSBs. The detected EBRs included those found in the genome of the anole lizard, meaning they were shared by all 
saurian descendants, with others being unique to avian lineages. Our estimate of gene richness in HSBs supported the fact 
that microchromosomes contain twice as many genes as macrochromosomes.
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has resulted in the discovery and analysis of homologous 
synteny blocks (HSBs) and evolutionary breakpoint regions 
(EBRs) (Larkin et al. 2009; Damas et al. 2018). HSBs are 
shared by various species and exhibit a common evolution 
from a single ancestor. On the other hand, EBRs that can 
be re-used in the genome evolution delineate HSBs and 
are found in the places where chromosomes break and then 
rejoin (Sankoff 2009; Griffin et al. 2015; O’Connor et al. 
2018a).

HSBs and EBRs constitute important genomic regions 
that may provide insights into the evolution of the genome 
and the species to which they belong. The chromosomes of 
avian species have been examined through sequence-based 
comparison in Farré et al. (2016). This resulted in the dis-
covery of 1021 EBRs, many of which were lineage-spe-
cific. Five sets of multispecies homologous synteny blocks 
(msHSBs) were created and utilized for hypothesized ances-
tral genomes of birds, archosaurians, archosaurians/testu-
dines, sauropsids, and amniotes. A total of 1746 msHSBs, 
or 76.3% of the chicken genome, was found in birds. The 
fact that the msHSBs exceed the maximum predicted length 
suggests that they may have survived during the evolution 
of the genomes of birds and reptiles (Farré et al. 2016).

Previously, features of genomic organization in birds, 
including macro- and microchromosomes, their rearrange-
ments, HSBs and EBRs, were the subject of our studies 
using the chicken genome assembly as a reference (e.g., 
Romanov et al. 2014a,b; Lithgow et al. 2014; Damas et 
al. 2018; O’Connor et al. 2018b). Datasets from 21 avian 
genomes and one outgroup of reptile species were uploaded 
into a chromosomal browser called Evolution Highway 
(Murphy et al. 2005; Romanov et al. 2014b). Using FISH, 
we rebuilt scaffold-based assemblies, and analysis of those 
showed a more sophisticated rearrangement pattern, includ-
ing changes in microchromosomes. The chicken and zebra 
finch were also evaluated for the presence of EBRs in rela-
tion to regional recombination rate, although the findings 
were not significant (Romanov et al. 2014b).

Using Evolution Highway and BioMart databases 
(Kasprzyk 2011; Romanov et al. 2014b) attempted to 
uncover more information about the function of these EBRs, 
and Farré et al. (2016) reported the presence of EBRs and 
the taxa to which they are related to. O’Connor et al. (2018a) 
sought to map the structure of the diapsid common ancestor 
genome to learn more about these genetic elements. The 397 
msHSBs and the respective EBRs were visualized based on 
the genome sequence alignment.

In gene ontology (GO) research (Ashburner et al. 2000; 
The Gene Ontology Consortium 2019), the genomes and 
gene databases of several species are combined that use a 
standard vocabulary to characterize the suites of properties 
of genes and their products. Consequently, the GO databases 

are established to analyze and annotate functionally the 
gene content of a genome or a genomic region of interest 
such as HSBs and EBRs, although in our previous study 
(Romanov et al. 2014b) we were unable to infer significant 
and meaningful GO results for these regions in birds. Since 
then, we have efficiently improved algorithms in our bioin-
formatic pipeline (O’Connor et al. 2018a), and essentially 
updated and improved versions of the chicken reference 
assembly and BioMart/GO databases have been released. 
Collectively, these bioinformatic improvements suggested 
to revisit and re-analyze the previous data (Romanov et al. 
2014b).

In this regard, we re-analyzed the msHSB and EBR data 
for better assembled bird genomes in light of improved 
bioinformatic algorithms and recent genomic sequence 
and database updates. Therefore, the current investigation 
aimed to look in silico at the distribution, quantity, and 
GO of genes found in avian msHSBs and EBRs. This has 
revealed information on the function of genes in msHSBs 
by determining whether or not functionally related sets of 
genes on the same chromosome have been preserved during 
evolution. In terms of EBRs, the objective was to learn if the 
function of genes associated to EBRs can be also relevant to 
the evolution of bird species. This study deepens our under-
standing of how the localization and function of msHSBs 
and EBRs relate to avian evolution.

Materials and methods

Genomes

The genomes of six different species of birds and a species 
of lizard were used to reconstruct the msHSBs as well as 
the EBRs of ancient birds and an avian/dinosaur ancestor. 
Chicken (Gallus gallus; GGA) was selected as a reference 
genome (International Chicken Genome Sequencing Con-
sortium 2004) and compared to the genomes of zebra finch 
(Taeniopygia guttata; Warren et al. 2010), turkey (Melea-
gris gallopavo; Dalloul et al. 2010), Pekin duck (Anas 
platyrhynchos; Huang et al. 2013), budgerigar (Melopsitta-
cus undulatus; Ganapathy et al. 2014) and ostrich (Struthio 
camelus; Zhang G. et al. 2014; Zhang J. et al. 2015).

These six species are all part of the class Aves but belong 
to different orders in most cases, or to different genera for the 
chicken and the turkey (Fig. 1). Both the turkey and chicken 
are members of order Galliformes, but the turkey is part of 
the Meleagris genus while the chicken is a member of the 
Gallus genus. The next closest species to the Galliformes is 
the duck as a member of the Anseriformes, which is in the 
same superorder as the Galliformes, the Galloanserae. At 
the infraclass level, both the zebra finch and the budgerigar 
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are part of the same infraclass Neognathae as the chicken 
but are both in the Neoaves superorder (Maddison and 
Schulz 2007). The zebra finch is part of the Passeriformes 
order, and the budgerigar belongs to the Psittaciformes. The 
species most distantly related to the five others is the ostrich, 
in the Struthioniformes order, which falls within the distinct 
infraclass of the palaeognaths. We also used the green anole 
(Anolis carolinensis) lizard genome (Alföldi et al. 2011) as 
an outgroup to identify EBRs in the avian evolution.

Bioinformatic tools and a pipeline to study msHSBs, 
EBRs, and their GO

Several bioinformatic tools and algorithms were used to 
carry out this study and formed an inhouse msHSB/EBR 
mining pipeline (O’Connor et al. 2018a; Abdelmanova et 
al. 2021). The latter implied the consequent use of the fol-
lowing components and applications: Evolution Highway 
→ LiftOver → BioMart → DAVID.

Evolution highway

This genome browser visually represents the comparison 
of the genomes of multiple amniote species aligned to the 
genome of a reference species (see an example in Fig. 2). 
The web tool makes it possible to identify and characterize 
msHSBs, EBRs, their localization, including their start and 
end positions (in bp), and their length (Murphy et al. 2005; 
Romanov et al. 2014b). Evolution Highway was previously 
used for studying many avian species (e.g., Romanov et al. 
2014b; Farré et al. 2016; O’Connor et al. 2018a,b; Kiazim et 
al. 2021). As aforementioned, we used the chicken genome 
as the reference, applied it to the total set of chromosomes 
available in the genomes of zebra finch, Pekin duck, turkey, 

budgerigar and ostrich, and aligned with them at the 300-
Kb resolution. The msHSBs and EBRs were classified as 
such using Evolution Highway, if they occurred in, and 
were shared by, all the species compared. We examined 
the output chromosome diagrams (see examples in Fig. 2) 
that represented alignments of genome sequences of the 
above birds identified against the reference chicken genome 
(Romanov et al. 2014b). Using Evolution Highway, this 
approach resulted in lists of 649 msHSBs and 21 EBRs 
including all the relevant information. For EBRs we also 
did an alignment by adding the genome of the anole lizard 
to look at EBRs specific to bird lineages.

LiftOver

Being a part of the UCSC Genome Browser project (Hin-
richs et al. 2010), the LiftOver (or Lift Genome Annota-
tions) web tool converts coordinates from one genome 
assembly to another. This conversion follows a certain per-
centage of match between the two genomes and removes all 
extra conversions, which could have been obtained from a 
single msHSB or EBR. Once the lists of msHSBs and EBRs 
were generated, the msHSBs coordinates were converted 
from the chicken genome assembly galGal4 (an older ver-
sion used by Evolution Highway; Schmid et al. 2015) into 
galGal6 (GRCg6a 2018), a more recent assembly version. 
When running LiftOver, only those msHSBs that had a per-
centage of match between the two genomes over 90% were 
kept. As a result, 630 distinct conversions of msHSBs were 
obtained. For EBRs, a lower match of 24% was manually 
selected, which at the end gave 19 EBRs.

Fig. 1 Cladogram of avian lineages for the six species studied, with the 
lizard used as an outgroup. The tree was visualized using the Phylo.
io web application (Robinson et al. 2016) and scaled in million years 

ago. The respective Newick format tree can be written as ((((Zebra finc
h,Budgerigar),((Chicken,Turkey),Pekin duck)),Ostrich),Anole lizard);
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a list composed of the chicken genes present within each 
region of interest and on both DNA strands. BioMart also 
provided information about orthologous human genes best 
annotated among all sequenced genomes, including gene 
stable ID and name, chromosome name, human-chicken 
orthology type, and confidence score. This generated two 
lists of genes filtered by orthology type and confidence 

BioMart

The BioMart Ensembl Genes Database version 95 that con-
tained information of curated and annotated genes for vari-
ous organisms (Kasprzyk 2011; Zerbino et al. 2018) and its 
dataset of chicken genes from galGal6 were used to deter-
mine the location of msHSBs and EBRs. We then produced 

Fig. 2 Examples of representation of chicken chromosome 5 and the 
appropriate aligned chromosomes of multiple bird species using the 
Evolution Highway genome browser: a with pairwise HSBs shown 

in blue and red, b with their multispecies HSBs shown in green, and c 
with a single EBR represented as a red line. Chicken:300 K denotes the 
300-Kb resolution window
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msHSBs genes list were only present on chromosomes 
GGA1 to GGA15, GGA17 to GGA24, GGA26 to GGA28, 
and GGAZ, the corresponding background gene list was 
composed of all human orthologous genes on the above 
27 chicken chromosomes. For the EBRs background list, 
genes from GGA4 to GGA6, GGA8, GGA9, GGA14, and 
GGA18 were respectively used. The two background gene 
lists obtained were then used to run DAVID.

msHSBs

As a result of the Evolution Highway-based analy-
sis (Fig. 2b), the 630 msHSBs had a total length of 
807,632,434 bp that represented about 2/3 of the chicken 
genome (~ 1.2 Gb). Using BioMart, we derived orthologous 
human genes, and after their initial filtering by orthology 
type and confidence score 7896 genes were identified for 
further analysis. This corresponded to a gene richness of 
12.5 filtered genes per 1 msHSB. Average gene density was 
9.8 genes per 1 Mb across all msHSBs.

After subsequent filtering by %ID, we compared the gene 
content in microchromosomes and macrochromosomes. 
Within 482 msHSBs in macrochromosomes, a total of 3796 
orthologous human genes were found, meaning about 7.9 
genes per 1 msHSB in macrochromosomes. In microchro-
mosomes, 1179 genes were present in 148 msHSBs, which 
implied around 8 genes per 1 msHSB, suggesting that the 
gene richness was similar in microchromosome- and mac-
rochromosome-specific msHSBs. However, gene density 
differed in msHSBs of macro- and microchromosomes. In 
macrochromosomes, msHSBs made up for 691,169,434 bp, 
in which 3796 orthologous human genes occurred. This 
meant a gene density of 5.5 genes per 1 Mb in macrochro-
mosomal msHSBs. In microchromosomes, msHSBs made 
up for 116,463,000 bp and 1179 genes were present in them, 
with gene density being 10.1 genes per 1 Mb.

Due to the high number of genes present in macro-
chromosomes, only their single GO terms were studied 
(Table 1). Seventy-nine single GO terms, with the largest 
one being linked to “Phosphoprotein“, were found making 
up for 2046 genes. In microchromosomes, the single GO 
term “Phosphoprotein“ was also found for 672 genes, sug-
gesting that across all msHSBs we had 2718 genes whose 
functionality was linked to “Phosphoprotein.”

In microchromosomes, the following GO clusters and 
terms for separate microchromosomes were retrieved 
(Table 1):

 ● GGA11: one significant annotation cluster was found 
but it did not pass the FDR test, meaning that this clus-
ter should not be considered significant. The respective 

score: one for the genes present in msHSBs, and the other 
one for the those present in EBRs as well as the respective 
information about them. For both studies, these lists were 
further filtered to keep only the genes whose %ID for target 
gene identical to query gene, and for query gene identical 
to target gene, was higher than 70%, as it was experimen-
tally tested and effectively implemented in a previous study 
(O’Connor et al. 2018a).

DAVID

The final online tool employed in this study was DAVID, 
or Database for Annotation, Visualization and Integrated 
Discovery (Huang et al. 2009a, b; DAVID Knowledge-
base 6.8). Using Ensembl Gene IDs as the gene list identi-
fiers, this tool compared GO of an obtained experimental 
gene list against a background gene list. This procedure 
produced a GO term enrichment analysis in the form of 
gene–GO term functional annotation charts and functional 
annotation clusters for both msHSBs and EBRs. Theoreti-
cally, background gene lists could be, for example, a total 
set of all human genes or those ones that corresponded to 
certain chromosomes. O’Connor et al. (2018a) experimen-
tally tested both sets of human orthologs and determined 
that the background GO analysis list should only include 
results for those chicken chromosomes where the msHSBs 
and EBRs were found. Following here the same approach, 
we determined GO enrichment clusters and single GO terms 
in genomic regions of interest (i.e., msHSBs or EBRs) or in 
whole chromosomes. In particular, the obtained charts gave 
information on GO terms, the number of genes and their 
names in a GO term, their statistical relevance through their 
p-value, and the percentage of the genes on the list that were 
included in a GO term. The GO clusters regrouped terms 
having a similar biological meaning as they shared similar 
gene members. The clusters also provided the genes present 
in each term, their statistical relevance, and an enrichment 
score for a cluster to rank their significance. As statistical 
values, an enrichment score of ≥ 1.3 and a p-value < 0.05 
were used for significant clusters, while a p-value < 0.05 was 
considered for significant GO terms. Additionally, a false 
discovery rate (FDR) threshold of 5% was used to establish 
final numbers of significant clusters and GO terms.

Results

Using the Evolution Highway genome browser (Fig. 2) 
and LiftOver, we identified the 630 msHSBs and 19 EBRs 
used further for deriving BioMart lists of genes. BioMart 
also generated two lists of background genes, one for the 
msHSBs and one for the EBRs. As the genes from the 
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 ● GGA21 had a significant GO cluster for NADP, and the 
same term can be found as the only single GO term for 
this microchromosome.

 ● GGA23: six significant annotation clusters passed 
the FDR test. These included mRNA splicing, ribo-
nucleoprotein, gene silencing by miRNA, translation 
regulation, stem cell self-renewal protein Piwi, and sin-
gle-stranded RNA binding. Thirty-five single GO terms 
were also found that embraced the same functionalities 
plus the nucleoplasm and poly(A) RNA binding.

 ● GGA24: out of five clusters, four passed the FDR test. 
These code for cytoplasmic topological domain, extra-
cellular topological domain, immunoglobin domain, 
anchored component of membrane and potassium ion 
import. Seventeen more single GO terms were also 
found in this microchromosome.

 ● GGA26 possessed a single significant cluster for BTB/
POZ fold, potassium channel ion, and transmembrane 
transport. We also found 20 single GO terms all linked 
to cellular transport.

 ● GGA27 showed one significant annotation cluster for 
transcription, DNA-binding, homeobox, developmental 
protein, and embryonic skeletal system morphogenesis. 
The functional annotation chart displayed 20 single GO 
terms with the same functionalities and, additionally, 
nucleus-related one.

EBRs

Using the Evolution Highway genome browser (Fig. 2c), a 
total of 21 EBRs were detected out of which 13 were also 
present in the genome of the anole lizard, i.e., being com-
mon for all saurian descendants, while eight were specific 
to avian lineages (Table 2). EBRs on chromosomes 4–6, 8, 
9,14, and 18 were either specific to avian lineages or shared 
between avian lineages and lizards, i.e., being common 
for all saurian descendants. The identified EBRs made up 
for 2,401,536 bp, which was approximately 1/500 of the 
genome. In this total length, 12 filtered genes were found, 
giving the gene density of five genes per 1 Mb in EBRs. 
After LiftOver conversions, a list of 19 EBRs was obtained. 
None of the EBRs contained a significant GO term or a sig-
nificant GO cluster in our hands.

Discussion

In the present study, we re-assessed the in-silico data that 
we previously used to produce the reconstruction of the 
general avian genome structure, organization and evolu-
tion (Romanov et al. 2014b). The six particular birds used 

functional annotation chart did not reveal any significant 
GO terms.

 ● GGA12: neither any cluster passed the FDR test, nor any 
significant single GO terms was discovered. Similarly, 
the functional annotation chart and functional annota-
tion clustering did not reveal any significant single GO 
term or cluster on GGA18, GGA22 and GGA28.

 ● GGA13: a single significant cluster and 19 significant 
single GO terms were identified. The cluster included 
GO terms for neuroactive ligand-receptor interaction, 
postsynaptic cell membrane, ion transmembrane trans-
port, and synapse. Nineteen significant single GO terms 
showed the same functionalities and, additionally, pro-
tein binding.

 ● GGA14: we only showed single GO terms. These 
included such functionality as phosphate binding and 
interaction with TP53.

 ● GGA15: one significant cluster was displayed that 
passed the FDR test. This cluster included the term 
TPR repeat. In addition, the functional annotation chart 
found significant terms for acetylation, protein complex, 
RING and polysome.

 ● GGA19 showed two clusters, but they did not pass the 
FDR test; those were linked to manganese ion binding 
site. In addition, two single GO terms were found, and 
these were terms for acetylation and cytosol.

 ● GGA20 had a single significant cluster for transcription 
and no significant single GO terms.

Table 2 Summary of the shared EBRs
EBR No. Chromosome Start, bp End, bp Length, 

bp
1a 1 8,882,547 8,889,065 6,518
2a 1 72,413,370 72,415,249 1,879
3b 3 2,394,598 2,406,625 12,027
4b 3 5,597,364 5,606,885 9,521
5a 3 11,579,794 11,585,862 6,068
6b 4 1,871,562 1,872,588 1,026
7b 4 19,197,411 19,231,456 34,045
8b 5 5,678,440 5,834,079 155,639
9b 5 6,517,980 6,533,261 15,281
10a 6 6,069,207 6,074,379 5,172
11a 6 8,642,096 8,814,146 172,050
12a 6 10,015,618 10,021,973 6,355
13a 6 10,643,477 10,727,907 84,430
14b 6 11,568,835 11,578,014 9,179
15b 7 7,336,101 7,339,690 3,589
16b 8 9,981,443 9,998,441 16,998
17a 9 2,892,593 2,958,453 65,860
18b 14 13,596,312 13,672,177 75,865
19b 14 14,294,034 14,305,879 11,845
20b 18 5,035,833 5,038,416 2,583
21b 18 10,250,901 10,252,198 1,297
a, EBRs in avian lineages only (i.e., shared between all bird species 
studied); b, EBRs shared between lizard and birds.
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terms, and infer eventually the meaningful GO terms and 
clusters. Romanov et al. (2014b) only found this on GGA16 
which was linked to the immune system. Here, however, 
we established that many association between HSB located 
on specific avian chromosomes and specific GO functions, 
including msHSBs on GGA13 that were specific to neurons, 
those on GGA23 to RNA, those on GGA26 to cellular trans-
port, and those on GGA27 were linked to embryonic devel-
opment, among many others.

As the msHSBs made a total 807,632,434 bp in about 1.2 
Gb of the reference sequence, we concluded that through-
out the evolution of avian species ~ 2/3 of their genome was 
conserved. We found that microchromosomal msHSBs were 
around twice as gene dense as those on macrochromosomes. 
This was highly consistent with other similar estimates of 
overall gene density on microchromosomes relative to mac-
rochromosomes (e.g., Smith et al. 2000; Abdelmanova et 
al. 2021), proving a clear negative relationship between 
gene density and chromosome type by length in the avian 
genome (International Chicken Genome Sequencing Con-
sortium 2004).

While our msHSB-derived GO results for the six birds 
were provided for individual chromosomes or chromo-
some groups (Table 1), Farré et al. (2016) used a different 
approach by unveiling the most common signatures of gene-
functional enrichment for all pooled macro- and microchro-
mosomal msHSBs. Nevertheless, few GO terms revealed 
for embryonic morphogenesis, nucleotide binding, and 
transcription were shared between the two studies. Damas 
et al. (2018) searched for msHSB-specific GO terms present 
on few reconstructed avian ancestral microchromosomes. 
Among GO terms enriched on those chromosomes, there 
were those identified for microchromosomes in the pres-
ent study and relevant to binding, transcription, membrane, 
extracellular topological domain (region), protein binding, 
and substrate-specific channel activity.

In our observations, EBRs were rarer genomic features 
than HSBs in multispecies comparisons. Only 21 EBRs 
were found in the comparisons of six avian genomes and 
that of the anole lizard (Table 2). Moreover, 13 of these 
EBRs are also shared with lizards, meaning they have been 
conserved since the common ancestor of birds and lizards, 
which would be the saurian ancestor (Maddison and Schulz 
2007). The eight other EBRs were specific to avian lineages 
and were therefore considered less ancient than the 13 EBRs 
coming from the saurian ancestor.

In terms of gene density, these EBRs had five filtered 
genes per 1 Mb, while msHSBs had the overall gene density 
of 9.8 genes per 1 Mb. Since the estimate for EBRs-spe-
cific gene richness was unlikely to be significant, we can-
not deduce that msHSBs and EBRs were characterized by 
unsimilar gene density. Accordingly, the fact that we found 

here for comparisons with the previous study by Romanov 
et al. (2014b) were selected because their genomes were 
sequenced, assembled and annotated at high quality level, 
with the chicken genome sequence being the standard avian 
reference genome widely used in comparative genomics. 
Moreover, these avian species represent major evolutionary 
lineages of birds, including the orders Galliformes (chicken, 
turkey) and Anseriformes (duck), which form the basal avian 
clade Galloanserae of the Neognathae infraclass. The ostrich 
belongs to the sister, and more ancient, taxon Palaeognathae. 
Finally, the other two selected species are members of the 
Neognathae infraclass, Neoaves, represented by the orders 
Passeriformes (zebra finch) and Psittaciformes (budgeri-
gar), both forming the most recent evolutionary clade Psit-
tacopasserae, remarkable for including species with vocal 
learning. The study of msHSBs, EBRs, and their related 
gene ontology as described in our previous (Romanov et al. 
2014b) and current investigations has essentially benefited 
from the coverage of major avian evolutionary lineages. We 
took into account that we now have better genome assem-
blies and alignments as well as improved GO analysis 
components and new bioinformatic tools and algorithms. 
To this end, we employed the powerful inhouse comput-
ing pipeline (O’Connor et al. 2018a; Abdelmanova et al. 
2021) that encompassed Evolution Highway (for defining 
msHSBs and EBRs), LiftOver, BioMart, and DAVID. We 
inferred useful information from the msHSBs and EBRs in 
achieving our final aim, which was the functional charac-
terization of these evolutionarily conserved elements in the 
avian genome using GO terms. For this purpose, we did not 
analyze directly chicken genes located within the msHSBs 
and EBRs and retrieved orthologous human genes for these 
chicken genome regions using BioMart in Ensembl, a key 
tool in the pipeline of our overall analysis. Rather, we used 
human orthologs instead of chicken genes because human 
genes are much better functionally annotated than chicken 
genes (O’Connor et al. 2018a). As a result, we were able to 
find some specific and significant gene enrichments and the 
appropriate GO terms for the genomic regions in birds and 
their ancestors (including extinct dinosaurs) that correspond 
to msHSBs and EBRs.

Having at hand the galGal4 assembly and DAVID 
Knowledgebase 6.7, Romanov et al. (2014b) stated that lim-
ited evidence exists to support the concept that a clustering 
of genes with related functions on the same chromosome 
may be one explanation for the hypothesis that microchro-
mosomes reflect highly conserved blocks of interchromo-
somal synteny. Unlike the GO estimation by Romanov et 
al. (2014b), we used the updated chicken reference genome 
sequence (galGal6) and the updated DAVID GO database 
(Knowledgebase 6.8) to discover msHSBs on multiple 
microchromosomes, characterize them by specific GO 
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