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Abstract
In this paper, we deal with the numerical solution of the reaction–diffusion Ebola epidemic
model. The diffusion which is an important phenomenon for the epidemic model is included
in the model. This inclusion has made the model more comprehensive for studying the disease
dynamics in the human population. The quantities linked with the model indicate the pop-
ulation sizes which are taken as absolute, therefore, the numerical schemes utilized to solve
the underlying Ebola epidemic system should sustain the positivity. The numerical approaches
used to solve the underlying epidemic models are explicit nonstandard finite difference operator
splitting (ENSFD-OS) and implicit nonstandard finite difference operator splitting (INSFD-OS)
techniques. These schemes preserve all the physical features of the state variables, i.e. projected
schemes hold the positive solution acquired by the Ebola diffusive epidemic model. The underly-
ing epidemic model illustrates two stable steady states, a virus-free state, and a virus existence
state. The suggested approaches retain the stability of each of the steady states possessed by
the assumed epidemic model. A numerical example and simulations for validation of all the
characteristics of suggested techniques are also investigated.

Keywords : Ebola Infection; Reaction–diffusion System; Splitting Techniques; Nonstandard
Finite Differences; Simulations.

1. INTRODUCTION

Ebola is one of the scarce and fatal viruses which
causes diarrhea, body aches, bleeding, and fever.
Various organs and the immune system of a person
are damaged when a virus diffuses in the body of
that person. It is called Ebola hemorrhagic fever,
commonly named as Ebola virus. The recent out-
break of this infection particularly in Africa led
to over 28,000 cases and more than 11,000 peo-
ple were deceased by the year 2015.1 Also, the

Ebola epidemic is growing and a recent outbreak
was detected by the World Health Organization in
Congo.

Another study of this fatal disease outbreak
described that 34.7% was the rate of case fatal-
ity.2 The current inventions of Ebola medication are
declared by the World Medical Association which
gives hope to the countries mainly infected by this
disease. Several studies on the modeling of the
Ebola epidemic are presented with the aid of various
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approaches and attain the successful analysis of the
reproduction value of the Ebola outbreak.3–9

Many researchers who are fascinated by the epi-
demiological modeling get attention to examine the
complex dynamics of Ebola virus infection mod-
els.10–27 Sharomi and Malik28 presented various dis-
ease models to exhibit a comprehensive survey on
optimal control. The infection model for control-
ling the spread of Ebola disease was investigated
by Zakary et al.29 A deterministic Ebola infection
model is investigated mathematically and numer-
ically.30 A mathematical model for optimal con-
trol of Ebola disease is analyzed by Ahmad et al.31

Many researchers worked on various mathemati-
cal models of epidemic diseases. They developed
the classical models by using ordinary differential
equations. These models do not describe the infec-
tion dynamics accurately.32–34 Keeping in view such
types of issues, the diffusion process is included in
the model to describe the disease dynamics more
accurately. Hence, the partial differential equations
describe the disease dynamics more precisely. Frac-
tional calculus is gaining the attention of many
researchers and scientists. They are focusing now
on the noninteger order mathematical modeling of
many real-world situations, for instance in the field
of engineering, fluid dynamics, epidemiology, and
many more.35–41 The researchers who have con-
sidered the infection disease models did not focus
on the advection and diffusion processes simultane-
ously. So, this paper presents a novel and attrac-
tive model of cut-throat Ebola virus disease. More-
over, the consequences of the study paper are of
great importance. This work will be favorable for
the health departments to devise effective policies
for controlling the disease. The advantages of inte-
ger order partial derivatives in epidemic models are
that they describe the advection and diffusion pro-
cesses. The first-order partial derivative ∂

∂x rep-
resents the advection and the second-order par-
tial derivative represents the diffusion process. It
is quite rational to include the diffusion factor in
the epidemic models. These models can predict the
disease dynamics in a better way.42–49 A vaccinated
Ebola epidemic system is proposed and studied by
Area et al .50 Grigorieva et al.51 designed and inves-
tigated a controlled dynamical Ebola virus infection
system. Many researchers who are fascinated by the
epidemiological modeling get attention to examine
the complex dynamics of Ebola virus infection mod-
els. Some other important research studies are given
in Refs. 52–64.

2. PRELIMINARIES

In this section, some important definitions are
described that can help us to understand this work.

Definition 1. Suppose that f is a continuously dif-
ferentiable function defined on an open subset O
of Rn to Rn. Then x∗ ∈ O is called an equilib-
rium point of the dynamical system x′(t) = f(x) if,
f(x) = 0.

Here, O is the state space of the physical system
that may be biological, engineering or economics,
etc.

It is important to note that all the notations
and assumptions regarding the dynamical system
are the same in the forthcoming definitions in the
preliminaries section.

Definition 2. Suppose that x∗ ∈ O is an equilib-
rium point for x′(t) = f(x). Then x∗ is a stable
equilibrium if, for every neighborhood N of x∗ in
O, there is a neighborhood N1 of x∗ in N such that
every solution x(t) with x(0) in N1 is defined and
in N for all t > 0.

Definition 3. If N1 can be taken so that

lim
x→∞x(t) = x∗

along with the other assumptions defined in Defini-
tion 2, then x∗ is called the asymptotically stable
equilibrium.

To define the consistency stability and con-
vergence of a numerical scheme, it is important
to denote some notions. For this, suppose that
Φ(x(tn)) represents the exact solution of the dif-
ferential equation x′(t) = f(x), Φn stands for the
exact solution of the discrete system corresponding
to x′(t) = f(x) and Φ∗

n denotes the actually com-
puted solution. By applying a numerical scheme to
the continuous model, mainly, two types of errors
occur. One of them is called the discretization error,
i.e. the difference between the exact solutions of the
continuous system and corresponding discrete sys-
tem is denoted by

|Φ(x(tn)) − Φn|,
and the other is called the solution error which is the
difference between the exact solution of the discrete
system and the actually computed solution, which
is denoted by

|Φ∗
n − Φn|.

2340041-3

Fr
ac

ta
ls

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

K
E

N
T

 o
n 

03
/2

4/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

February 18, 2023 18:41 0218-348X
2340041

N. Ahmed et al.

Definition 4. A numerical scheme is said to be
consistent with the corresponding continuous model
if the discrete model converges to the continuous
model by applying the limit as Δt → 0.

Definition 5. A discretized numerical scheme is
said to be stable if the solution error |Φ∗

n − Φn|
remains bounded for all time steps in the domain.

In the next section, the numerical study of the
Ebola virus infectious disease model with the inclu-
sion of diffusion is studied numerically.

3. MATHEMATICAL MODEL

In this study, the Ebola virus infection Z1, Z2, Z3,
and Z4 reaction–diffusion epidemic model is pro-
posed as follows:

∂Z1

∂t
= α − ηZ1Z2 − αZ1 + DZ1

∂2Z1

∂x 2
, (1)

∂Z2

∂t
= ηZ1Z2 − (ζ + α) Z2 + DZ2

∂2Z2

∂x 2
, (2)

∂Z3

∂t
= ζZ2 − (π + α) Z3 + DZ3

∂2Z3

∂x 2
, (3)

∂Z4

∂t
= πZ3 − αZ4 + DZ4

∂2Z4

∂x 2
. (4)

In the above system, the state variables Z1, Z2,
Z3, and Z4 are susceptible, exposed, infected, and
recovered subpopulations, respectively, while the
parameters α, η, ζ, and π are birth as well as
death rate, contact rate, transmission rate from Z2

to Z3, and treatment rate, respectively. The values
DZ1 − DZ2 are diffusion coefficients. As the state
variable Z4 is not part of Eqs. (1)–(3), we can write

∂Z1

∂t
= α − ηZ1Z2 − αZ1 + DZ1

∂2Z1

∂x 2
, (5)

∂Z2

∂t
= ηZ1Z2 − (ζ + α) Z2 + DZ2

∂2Z2

∂x 2
, (6)

∂Z3

∂t
= ζZ2 − (π + α)Z3 + DZ3

∂2Z3

∂x 2
, (7)

which have the following initial conditions

Z1(x , 0) = ϑ1(x ), Z2(x , 0) = ϑ2(x ),

Z3(x , 0) = ϑ3(x ), 0 ≤ x ≤ �, (8)

and no-flux boundary conditions are

Z1x (0, t ) = Z1x (�, t ) = 0, (9)

Z2x (0, t ) = Z2x (�, t ) = 0, (10)

Z3x (0, t ) = Z3x (�, t ) = 0. (11)

The main idea of this paper is to formulate a
numerical scheme that is easy to implement and
maintain the positivity of the solution as the vari-
ables presented in the Z1Z2Z3 system are abso-
lute. Numerous investigators examine the numerical
solution of various physical models containing dif-
ferential equations with the assistance of structure-
preserving approaches.58–63 The operator splitting
approaches extensively used numerical techniques
for solving ordinary and partial differential equa-
tions.52–56 In this paper, a hybrid splitting approach
with a nonstandard finite difference (NSFD) tech-
nique is used to find the numerical solution to
the Ebola reaction–diffusion epidemic model. The
nonstandard approach proposed by Mickens57 is a
class of numerical schemes that helps to construct
structure-preserving techniques. Several researchers
employed different NSFD approaches for solving the
differential equations.

The rest of this paper is organized as follows. Sec-
tion 4 is given for the investigation of steady states
and reproductive number for the proposed epidemic
model. The proposed numerical techniques are pre-
sented in Sec. 5. The accuracy, stability, and pos-
itivity of both designed ENSFD-OS and INSFD-
OS schemes are studied and analyzed in this sec-
tion. Section 6 is dedicated to the numerical test
and graphical simulations of suggested techniques
for both steady states. Finally, Sec. 7 concludes.

4. STEADY STATES OF THE
PROPOSED EBOLA MODEL

The underlying system (5)–(7) has two steady
states, virus absent steady state (VASS) and virus
existence steady state (VESS). VASS is

(Z1
0, Z2

0, Z3
0) = (1, 0, 0), (12)

and VESS is

(Z1
∗, Z2

∗, Z3
∗) =

(
α + ζ

η
,

ζZ∗
2

α + π
,
α − αZ∗

1

ηZ∗
1

)
, (13)

and

R0 =
η

(α + ζ)
, when DZ1 = DZ2 = DZ3 = 0,

2340041-4
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where R0 is the reproduction number and if R0 < 1
then the underlying Ebola epidemic model illus-
trates VFSS and if, R0 > 1 then it depicts VESS.

5. NUMERICAL METHODS

In this section, finite difference approximation
approaches are proposed by using an operator-
splitting environment. These numerical schemes
govern the nonlinearity and intricacy of the
reaction–diffusion system because they split the
solution of reaction and diffusion terms. The tech-
niques which we applied to the system (5)–(7)
are ENSFD-OS and INSFD-OS schemes. Several
numerical mathematicians used operator-splitting
approaches on various ordinary and partial differ-
ential equations and systems.52–56,64 The proposed
Ebola epidemic system is split into two systems of
equations. First, we consider the reaction step which
is nonlinear and given as follows:

1
2

∂Z1

∂t
= α − ηZ1Z2 − αZ1, (14)

1
2

∂Z2

∂t
= ηZ1Z2 − (ζ + α)Z2, (15)

1
2

∂Z3

∂t
= ζZ2 − (π + α)Z3. (16)

At the second stage, the linear diffusion equation
is illustrated as follows:

1
2

∂Z1

∂t
= DZ1

∂2Z1

∂x 2
, (17)

1
2

∂Z2

∂t
= DZ2

∂2Z2

∂x 2
, (18)

1
2

∂Z3

∂t
= DZ3

∂2Z3

∂x 2
. (19)

At the first stage, the discrete model of the reac-
tion step is designed by incorporating the guide-
lines given by Mickens57 for the construction of
structure-preserving NSFD schemes.

Z̄1
q+ 1

2
p =

Z1
q
p + Δtα

1 + ΔtηZ2
q
p + Δtα

, (20)

Z̄2
q+ 1

2
p =

Z2
q
p + ΔtηZ1

q
pZ2

q
p

1 + Δt (ζ + α)
, (21)

Z̄3
q+ 1

2
p =

Z3
q
p + ΔtζZ2

q
p

1 + Δt (π + α)
, (22)

where Z1
q
p, Z2

q
p, and Z3

q
p interpret the numerical val-

ues of Z1, Z2, and Z3, respectively, at 0 + pΔx ,

p ∈ {0, 1, · · ·} and time qΔt , q ∈ {0, 1, · · ·} and
Z̄1

q+ 1
2

p , Z̄2
q+ 1

2
p and Z̄3

q+ 1
2

p demonstrate the represen-
tative values at the half time step.

In the first stage, ENSFD-OS and INSFD-OS
methods have the same design which is given above.
The discretization of ENSFD-OS for diffusion equa-
tion is described as follows:

Z1
q+1
p = (1 − 2Γ1)Z̄1

q+ 1
2

p

+ Γ1(Z̄1
q+ 1

2
p−1 + Z̄1

q+ 1
2

p+1 ), (23)

Z2
q+1
p = (1 − 2Γ2)Z̄2

q+ 1
2

p

+ Γ2(Z̄2
q+ 1

2
p−1 + Z̄2

q+ 1
2

p+1 ), (24)

Z3
q+1
p = (1 − 2Γ3)Z̄3

q+ 1
2

p

+ Γ3(Z̄3
q+ 1

2
p−1 + Z̄3

q+ 1
2

p+1 ). (25)

The discretization for the INSFD-OS technique at
second stage is given as follows:

−Γ1Z1
q+1
p−1 + (1 + 2Γ1)Z1

q+1
p

−Γ1Z1
q+1
p+1 = Z̄1

q+ 1
2

p , (26)

−Γ2Z2
q+1
p−1 + (1 + 2Γ2)Z2

q+1
p

−Γ2Z2
q+1
p+1 = Z̄2

q+ 1
2

p , (27)

−Γ3Z3
q+1
p−1 + (1 + 2Γ3)Z3

q+1
p

−Γ3Z3
q+1
p+1 = Z̄3

q+ 1
2

p , (28)

where

Γ1 = dZ1

Δt
Δx 2

, Γ2 = dZ2

Δt
Δx 2

, Γ3 = dZ3

Δt
Δx 2

.

5.1. Accuracy and Stability of the
Numerical Methods

The consistency and stability of ENSFD-OS and
INSFD-OS techniques depend on their split solu-
tion.52,53,64 Hence, reaction stage is solved exactly
with O(Δt ) accuracy of time step52,53,64 and
O(Δx 2) accuracy is contained by diffusion step.
As for as stability is concerned, the stage in which
the reaction equation is involved has unconditional
stability. For the stage where diffusive step is
involved ENSFD-OS (23)–(25) has the following

2340041-5
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stability conditions

Γj ≤ 1
2
, (j ∈ {1, 2, 3}). (29)

On the other hand, the INSFD-OS technique has
unconditional stability at the diffusion step.

5.2. Positivity of ENSFD-OS and
INSFD-OS Methods

Theorem 1. ENSFD-OS and INSFD-OS dis-
cretization techniques at reaction steps (20)–(22)
hold the positive solution provided that

Z1
q
p ≥ 0, Z2

q
p ≥ 0, Z3

q
p ≥ 0

⇒ Z̄1
q+ 1

2
p ≥ 0, Z̄2

q+ 1
2

p ≥ 0, Z̄3
q+ 1

2
p ≥ 0. (30)

Proof. The proof is obvious as each term involved
on the right-hand side of the discretization formulas
(20)–(22) has positive sign.

Remark 6. The proposed ENSFD-OS technique
(23)–(25) exhibits the positive solution if

1 − 2Γj ≥ 0, j ∈ {1, 2, 3},
which implies that

Γj ≤ 1
2
, (j ∈ {1, 2, 3}).

Above is the condition (29) of stability for
ENSFD-OS technique (23)–(25), which verifies that
this technique sustains the positivity of the solution
in its region of stability.

To validate the positivity of INSFD-OS tech-
nique (26)–(28), the results of M-matrix theory are
adopted.

Theorem 2. For every Δx > 0 and Δt > 0, the
system (26)–(28) is positive, i.e. Z1

q > 0, Z2
q > 0

and Z3
q > 0,∀ q ∈ {0, 1, 2, . . .}.

Proof. The discretization formulas (26)–(28) can
be written as follows:

AZ1
q+1 = Z1

q, (31)

BZ2
q+1 = Z2

q, (32)

CZ3
q+1 = Z3

q, (33)

where A, B, and C are the square matrices as fol-
lows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a3 a1 0 · · · · · · · · · · · · 0

a2 a3 a2
. . .

...

0 a2 a3 a2
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . a2 a3 a2 0
...

. . . a2 a3 a2

0 · · · · · · · · · · · · 0 a1 a3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(34)

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b3 b1 0 · · · · · · · · · · · · 0

b2 b3 b2
. . .

...

0 b2 b3 b2
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . b2 b3 b2 0
...

. . . b2 b3 b2

0 · · · · · · · · · · · · 0 b1 b3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(35)

and

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c3 c1 0 · · · · · · · · · · · · 0

c2 c3 c2
. . .

...

0 c2 c3 c2
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . c2 c3 c2 0
...

. . . c2 c3 c2
0 · · · · · · · · · · · · 0 c1 c3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(36)

The off-diagonal values of A are a1 = −2Γ1, a2 =
−Γ1 whereas the diagonal values are a3 = 1 + 2Γ1.
The off-diagonal values of B are b1 = −2Γ1, b2 =
−Γ1 and the diagonal values are b3 = 1 + 2Γ2. The
off-diagonal values of C are c1 = −2Γ3, c2 = −Γ3
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while the diagonal values are c3 = 1 + 2Γ3. There-
fore, the matrices A, B, and C are M-matrices. So
Eqs. (31)–(33) become

Z1
q+1 = A−1Z1

q, (37)

Z2
q+1 = B−1Z2

q, (38)

Z3
q+1 = C−1Z3

q. (39)

Now, if we suppose that Z1
q > 0,Z2

q > 0 and
Z3

q > 0, then by using the M-matrix theory and the
expressions (37)–(39), we have Z1

q+1 > 0,Z2
q+1 > 0

and Z3
q+1 > 0. Hence, by the induction, the theo-

rem is proved.

The above theorem validates that the INSFD-OS
technique retains the positive solution uncondition-
ally.

6. NUMERICAL EXAMPLE
AND SIMULATIONS

In this section, we illustrate a numerical example for
both steady states by using the ENSFD-OS tech-
nique and the INSFD-OS technique. For this, the
following parametric values are chosen for VFSS

η = 0.5, ζ = 0.18187, π = 0.1, α = 0.5.

For VESS, values of the parameters are given as
follows:

η = 0.5, ζ = 0.18187, π = 0.1, α = 0.5.

In this experiment, we take DZ1 = 0.05,DZ2 =
0.05 and DZ3 = 0.05. The initial conditions for the
Ebola virus model (5)–(7) are given as follows:

Z1(x , 0) =

{
0.4x if 0 ≤ x < 0.5,

0.4(1 − x ) if 0.5 ≤ x ≤ 1,
(40)

Z2(x , 0) =

{
0.3x if 0 ≤ x < 0.5,

0.3(1 − x ) if 0.5 ≤ x ≤ 1,
(41)

Z3(x , 0) =

{
0.2x if 0 ≤ x < 0.5,

0.2(1 − x ) if 0.5 ≤ x ≤ 1.
(42)

6.1. Virus-Free Steady State

In this section, we consider the parametric values
such that R0 < 1 and the Ebola epidemic system
under consideration converges to VASS. For all the
simulation behaviors in this section, we assume the
step size values and diffusion constant as Γ1 = Γ2 =

Fig. 1 Numerical solution of Z1(x , t) (susceptible popu-
lace) by employing ENSFD-OS numerical scheme.

Fig. 2 Numerical solution of Z2(x , t) (exposed populace)
by employing ENSFD-OS numerical scheme.

Fig. 3 Numerical solution of Z3(x , t) (infected populace)
by employing ENSFD-OS numerical scheme.
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Γ3 = 0.5 and DZ1 = DZ2 = DZ3 = 0.05, respec-
tively. First, the graphical solution of the suggested
ENSFD-OS numerical technique is discussed.

Figures 1–3 manifest the solution behavior of sus-
ceptible, exposed, and infected populace, respec-
tively, for VFSS. It is figured out that the graphs
demonstrate the convergence exactly towards VFSS
(Z1

0, Z2
0, Z3

0) = (1, 0, 0). These graphs also express
the positive behavior which is essential because the
state variables are taken as absolute. This behavior
can be observed at all step sizes of time and space.

Next, we depict the graphical results of Z1Z2Z3

with the aid of the proposed INSFD-OS numerical
technique.

Fig. 4 Numerical solution of Z1(x , t) (susceptible popu-
lace) by employing INSFD-OS numerical scheme.

Fig. 5 Numerical solution of Z2(x , t) (exposed populace)
by employing INSFD-OS numerical scheme.

Fig. 6 Numerical solution of Z3(x , t) (infected populace)
by employing INSFD-OS numerical scheme.

It is observed that the Ebola reaction–diffusion
system (5)–(7) exhibits some important phenomena
like the positivity of the state variable and stabil-
ity of steady states. The proposed INSFD-OS tech-
nique also illustrates the positive solution which is
clearly shown in Figs. 4–6. One can see this posi-
tive behavior at various step sizes of time and space.
This technique also retains the convergence of the
system towards VFSS as preserved by ENSFD-OS.

6.2. Virus Existence Steady State

This section is devoted to exhibiting the graphical
solution of all the sub-population by taking the val-
ues of parameters in such a manner that R0 > 1

Fig. 7 Numerical solution of Z1(x , t) (susceptible popu-
lace) by employing ENSFD-OS numerical scheme.
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Fig. 8 Numerical solution of Z2(x , t) (exposed populace)
by employing ENSFD-OS numerical scheme.

Fig. 9 Numerical solution of Z3(x , t) (infected populace)
by employing ENSFD-OS numerical scheme.

Fig. 10 Numerical solution of Z1(x , t) (susceptible popu-
lace) by employing INSFD-OS numerical scheme.

and the underlying Ebola disease reaction–diffusion
model shows that the system is stable at VESS.

Again, the step size and diffusion constant as
Γ1 = Γ2 = Γ3 = 0.5 and DZ1 = DZ2 = DZ3 = 0.05,
respectively, are considered same as given in previ-
ous section.

The solution graphs depicted in Figs. 7–9 reveal
the simulation behavior of susceptible, exposed, and
infected populace, respectively, for VESS. It is evi-
dent from the solution behavior that the proposed
ENSFD-OS approach sustains the stability of VESS
(Z1

∗, Z2
∗, Z3

∗). It can easily be concluded that the
proposed ENSFD-OS approach is consistent with
the continuous Ebola model and retains all the

Fig. 11 Numerical solution of Z2(x , t) (exposed populace)
by employing INSFD-OS numerical scheme.

Fig. 12 Numerical solution of Z3(x , t) (infected populace)
by employing INSFD-OS numerical scheme.
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essential phenomena exhibited by the underlying
system.

Figures 10–12 clearly show that the designed
INSFD-OS approach is also consistent with the con-
tinuous system under consideration as shown by the
ENSFD-OS approach. Both the suggested schemes
hold a positive solution as well as the stability of
both steady states.

7. CONCLUSION

In this work, we proposed a reaction–diffusion epi-
demic model of Ebola infection dynamics and solved
this infectious disease model with the support of
two structure-preserving approaches, the ENSFD-
OS numerical scheme and the INSFD-OS numerical
scheme. The model under study is the population
model therefore, we propose such numerical tech-
niques for the solution of this model which sustain
all-important structural properties like positivity
and, the stability of steady states. All the important
properties of both techniques are discussed mathe-
matically and validated with graphical simulations.
The M-matrix theory is applied to demonstrate the
positivity of the numerical solutions. The philoso-
phy of the operating splitting schemes is discussed,
moreover, the order of accuracy and stability condi-
tions for the numerical methods are described. The
steady state of the model is presented i.e. virus-
free state and virus existing state. Numerical sim-
ulations for both steady states are presented. All
the graphs reflect the fact that the schemes con-
verge towards the exact steady states, with posi-
tive values against each variable which is an impor-
tant feature for a numerical scheme in the theory of
dynamical systems. In the future, these techniques
can be employed on delay reaction–diffusion mod-
els, advection–reaction–diffusion models, advection-
reaction models, etc.
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