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a b s t r a c t

Recently, the significance of biofuel production on food prices has become an important topic of dis-
cussion within the framework of sustainable development. Based on the relevant discussions, this work
aims at observing the influence of biofuel production on food prices in the US for the monthly period
1981e2018 by considering all possible structural changes between the co-movements of the variables. In
the analyses, oil prices and population variables are also employed as control variables. To this end, we
use continuous wavelet model estimations for the whole sample period and sub-sample periods at
different frequencies. All computations have considered the potential changes in co-movements of the
variables at different sub-sample periods corresponding to high and low frequencies of observed time
series data. Estimation results show that there exist significant relationships between biofuel production
and food prices in the short-term and long-term cycles. The outcomes of the research hence may provide
some insights into the design of sustainable energy and food policies in the United States.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The global food prices increased considerably in early 2008
since the shock in food prices appeared at the beginning of the
1970s [1]. The market price of many types of foods doubled in real
terms from 2005 to mid-2008. Until the peak in July 2008, the main
increases were in prices of palm oil (140%), rice (110%), corn (102%),
wheat (101%), and soybean (86%) [2]. While the food prices crisis
led to food uprisings in many countries, some countries banned
grain and food exports and reduced tariffs on imported products
[3]. More importantly, the food crisis led to poverty, food insecurity,
and hunger in many households all around the world [4,5]. In-
creases in food prices deeply affected specifically low-income
countries and net grain importers, such as sub-Saharan African
countries, as households in these countries have to allocate 50e90%
of their incomes to food expenditures [6]. Due to these effects, the
food crisis has become an essential agenda of public policy [7].

In the following years, global increases in food prices could not
lgili@gmail.com (F. Bilgili),
erciyes.edu.tr (S. Kuşkaya),
be controlled. According to the Food and Agriculture Organization
of the United Nations (FAO), while the food price index value was
97.7 in 2003, it was 201.4 in 2008, 211.9 in 2011, and 174.6 in 2017.
Remarkably, prices were higher in 2011 compared to 2008, which
was considered as the crisis year. While the prevalence of malnu-
trition in the world decreased in the 2000s, the rise in food prices
re-raised this prevalence. The number of undernourished people in
2017 is estimated to be one-ninth of the world's population,
approximately 821 million people [8]. These figures increase the
risk of not achieving the goal of removing hunger, which is the
second one of the United Nations Sustainable Development Goals
(SDG-2) by 2030 [8].

In order to provide adequate and specific solutions to the price
shocks, first of all, the reasons for the increase in food prices need to
be revealed [7]. For this reason, many international organizations,
such as the IATP (Institute for Agriculture and Trade Policy) and the
World Bank, have focused on the reasons for the increase in global
food prices in recent years [6]. Similarly, the food crisis has led
many academicians to theoretically and empirically examine the
reasons for the rise in food prices [7,9]. When one observes the
outputs of these studies, he/she can classify the causes of the in-
creases in food prices under a few groups.

The first and foremost reason for the increase in food prices is
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considered as the high growth rates and the urbanization process in
the 2000s [10,11]. Countries with a high population, namely China
and India, notedly exhibited a remarkable growth performance in
the 2000s. According to theWorld Bank, the Chinese economy grew
by 14% and 9.6% in 2007 and 2008, while the Indian economy grew
by 7.6% and 3.8% in the same period. The world's most impov-
erished region, namely sub-Saharan African countries, grew by 6.6%
and 5.5% in 2007 and 2008. These high growth rates have a sig-
nificant influence on the demand side of the world food balance,
resulting in much higher food consumption than expected. The
urbanization process also changed the consumption structure and
increased the demand for foods [12,13].

The second reason for the pressure on food prices is extreme
weather conditions stemming from global warming and climate
change [14e17]. Due to global warming and climate change, sig-
nificant deviations occur in rainfall and temperature, and many
regions face droughts and floods. The yield in agricultural pro-
duction is substantially reduced in the areas that are exposed to
extreme weather conditions [18].

Researchers point out crude oil prices as a third and essential
factor that led to increases in food prices, and many empirical
studies explore findings supporting co-movement between crude
oil prices and food prices [1,19e22]. Crude oil is the primary input
of the product processing and transportation processes in the
agricultural sector. Increases in crude oil prices have a direct impact
on agricultural production costs, leading to a rise in food prices
[23]. Additionally, crude oil prices also influence the food prices via
exchange rate channel because an increase in oil prices may bring
about the current account deficit, which in turn can result in a
depreciation of the national currency. The increase in the exchange
rate affects the prices of many agricultural inputs and leads to in-
creases in food prices [21].

Last but not least, the literature emphasizes the relationship
between food prices and biofuel production. Biofuels are regarded
as an essential policy tool for sustainable economic development
[24,25]. There are several reasons for this feature of biofuels: (i) The
raw material needed to produce biofuels is found in all parts of the
world. In recent years, public support and technological de-
velopments for biofuels have made the production of biofuels
economically reasonable [26]. (ii) Biofuels have the potential to
mitigate transport-induced CO2 emissions to fight global warming
[27,28]. (iii) Fossil fuels can be substituted with biofuels that sup-
port countries' energy security [29]. (iv) Bioenergy might help rural
areas increase employment, and hence, can improve agricultural
production, and so reduce poverty in developing countries [30].

Despite the enormous potential of biofuels, the causality from
biofuel production to food prices and the competition between
biofuels market and foodmarket have become an essential issue for
economic and political debates due to the boom of global biofuel
production after the year 2005 [31,32].

Contributing to the economic and political debates on the
competition between biofuels and food with robust empirical evi-
dence motivates us for this research. In this paper, following these
discussions, we observe the co-movements of biofuel production
and food prices. The literature explains the burden of biofuel pro-
duction on food prices with the deterioration in the mechanism of
food supply and demand. According to demand-side approaches,
the reason for increasing food demand in recent years has been not
only related to nutrition but also related to biofuel production. As is
known, basic foods are used as rawmaterials in biofuel production.
Ethanol is produced fromvarious grains (in Africa), corn (in the US),
and sugarcane (in Brazil), while biodiesel is obtained from rapeseed
(in EU) and soybeans (in the US and Brazil) [33]. With the boom of
biofuel production, demand for these products can increase
significantly, and food prices can rise [34].
2

On the other hand, according to supply-side approaches,
farmers tend to grow energy crops on the lands previously used for
food production due to the increasing interest in biofuels and the
supports provided by states [9,35]. Moreover, as the biofuel market
grows out of land competition, demand for water use, fertilizer,
agricultural machinery, and capital, pesticides, and labor are
increasing for food and feed production [34]. For this reason, the
use of lands for energy crops leads to decreases in food supply and
can lead to difficulties for sustainable food production both globally
and locally [32]. Finally, it is important to note that the increase in
biofuel production may cause pressures on agricultural productiv-
ity. The use of cultivation areas for the production of biofuel raw
materials reduces land productivity due to reasons such as soil
degradation, erosion, reduction of biodiversity, monoculture culti-
vation, and increased chemical emissions.

We can explain the possible contributions of our paper to the
literature as follows:

(1) The results of these studies are expected to help policy-
makers decide whether to maintain biofuel production
[36]. Despite the extensive literature that reveals that bio-
fuels are clean, renewable, and eco-friendly, opinions have
also begun to increase that biofuels have adverse effects on
food prices and land use [37]. These contradictory results
cause confusion among researchers, policy-makers, and
people. Empirical evidence regarding the consequence of
biofuels on food prices seems not to be sufficient, and lack of
research is observed [38]. Considering the importance of the
increase in biofuel production on the future of the environ-
ment along with food prices, it is essential to unravel the
impacts of biofuel production to determine the policies of
food, energy, and environment [32,37]. In this paper, we aim
to provide new empirical evidence for the correlation be-
tween biofuels and food prices with a focus on the research
gap in the literature. Within this scope, we use monthly data
spanning from January 1981 to January 2018 in the USA to
investigate the possible co-movement between biofuel pro-
duction and food prices via the wavelet coherence method
considering some control variables, such as oil prices, and
population. We focus specifically on the US in the paper as
the US is the world's greatest biofuel producer and grain
exporter. The US alone dominates the global biofuels market
[39]. The US currently accounts for 57% of global ethanol
production [40]. According to the USDA Food Database, the
share of the US inwheat, corn, and soybean exports in 2017 is
15%, 39%, and 40%, respectively. Therefore, we hope that the
empirical results of the paper will provide significant con-
clusions to the literature and administrators due to the
impact of the US on global food and biofuel markets.

(2) Lastly, in terms of research methodology, this paper differs
from the available papers in the literature. The papers
available in the literature, in general, pursue the field ana-
lyses, or, correlation analyses or, time series models, or panel
data models to investigate the possible potential impact(s) of
energy products on food prices. These analyses obtain in
general the parameter estimations which either don't change
or might change due to two-three structural breaks during
the entire example period. This paper, on the other hand,
employs continuouswavelet model estimations for (a) whole
sample period, and (b) sub-sample periods at different fre-
quencies in the US for the monthly period 1981:1e2018:1.
The following papers about the robust aspects of the method
can be viewed separately [41e44]. To this end, this work
addresses the interaction between biofuel production and
food prices by investigating all potential structural changes
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between the co-movements of the variables. All computa-
tions, therefore, have considered the possible changes in
interactions of the variables at sub-sample periods corre-
sponding to both low frequency (3-8-year cycle) and high
frequency (1-2-year cycle) of observed time series data.
Therefore, themethod followed in this research increases the
original value of the paper.
2. Literature

It is of great interest for economists to examine the interrela-
tionship between the energy market and the food market. Espe-
cially after the oil price shocks in the 1970s, the impact of oil prices
on many macroeconomic indicators began to be examined [45].
One of the crucial indicators affected by the energy crisis is food
prices. Then, in 2008, a commonmovement was observed between
oil prices and food prices [46]. Thus, researchers have sought to
reveal the possible impact of changes in energy prices on food
prices. Many studies mainly investigate the relationship between
global food prices and oil prices with various analysis methods.
Apart from global food prices, there are also some studies on oil
price-food prices in a single/specific country. Therefore, in the
literature review, we first evaluated the studies that empirically
investigate the correlation between energy/oil prices and food
prices.

In this context, Esmaeili and Shokoohi [47] analyze the
connection between macroeconomic indicators, oil prices, and
world food prices in 1961e2005 with the principal component
analysis. The paper considered the market prices of 7 main prod-
ucts, including wheat, rice, sugar, eggs, milk, meat, and oilseeds.
Research indicates that oil prices increase food prices. However, it
reveals that macroeconomic indicators have a more significant in-
fluence on food prices. Nazlioglu and Soytas [21] explored the dy-
namic link between oil prices and agricultural product prices for
the period 1980e2010 through the panel vector error correction
model (VEC) estimations. Test results indicate that the volatility in
world oil prices has significant consequences on food prices. Wang
et al. [48] monitored the dependence between oil prices and global
agricultural commodity prices with monthly data by using the
structural VAR method. The results confirm the significant effect of
oil shocks on food prices. Ibrahim [49] evaluates the relationship
between oil prices, GDP, and food price index in Malaysia for the
period 1971e2012 with the NARDL method. The study indicates
that there exists a strong positive correlation between oil prices
food prices in the long and short run.

On the other hand, it shows that the fall in food prices is not
related to the fall in oil prices. Cheng and Cao [50] tested the
relationship between global oil prices and food prices for the period
1990e2017 using the threshold VECM. The test results confirm the
validity of a nonlinear relationship between global oil prices and
food prices. Taghizadeh-Hesary et al. [51] examine the impulse-
response relationship between energy (oil) prices and food prices
in Asian countries for the period of 2000e2016 by using panel
structural VAR method. The research findings reveal a significant
causality from oil prices to food prices and emphasize that the
move in oil prices explains 64% of the variance in food prices.

On the other hand, global food prices peaked in 2011, while oil
prices tended to decline. The boom in biofuel production, which
began in 2005, continued in 2011 as well [52]. Researchers began to
emphasize that another important reason for the increase in food
prices might be biofuel production. Then, the literature engages in
the relationship or competition between the biofuel market and the
food market. Therefore, we secondly review studies focusing solely
on the relationship between biofuel production/prices and food
3

prices. In the related literature, it is seen that researchers follow
different analysis methods. For example, Ajanovic [11] examines
the relationship between biofuel production, production costs, oil
prices, land use, and food prices in the USA and Europe with
descriptive statistics and comparative analysis methods. The main
findings of the study are as follows: (1) Biofuel production may put
pressure on raw material prices due to high raw material demand
and high marginal costs. (2) However, the most crucial reason for
the volatility in raw material prices in the period 2000e2009 was
not the production of biofuels, but the oil prices and speculative
movements. This situation shows that the recent increases in bio-
fuel production have no significant impact on raw material prices.
Tokgoz et al. [39] explored the relationship between biofuel pro-
duction growth and agricultural commodity prices, uncertainties in
OECD energy and fuel policies. The results of the analysis have
shown that biofuels growth has a significant impact on the prices of
agricultural products and that these effects may change con-
sumption, calorie availability, and food safety. Araujo Enciso et al.
[53] research the impact of biofuel policies on global food safety for
the period 2015e2024. The analysis findings of the model show
that the abolishment of biofuel policies does not yield an increasing
effect on global food security. Martínez-Jaramillo et al. [54] explore
the repercussion of biofuels on food safety and land usage in
Colombia for the period 2016e2030 with a system dynamics
model. The outputs underline that production of biofuel affects
food production and food prices by reducing the land supply allo-
cated to agriculture. In other respects, Yan et al. [55] conduct a
comprehensive life cycle assessment and economic analysis of
ethanol produced from agave in the context of water-energy-food-
environment. Research results show that agave is promising for
biofuel production in the water-energy-food-environment context.
Moreover, agave outperforms corn and sugar cane on environ-
mental impact.

In the literature, a group of researchers presents the relationship
between biofuels and food prices with partial equilibrium, dynamic
partial equilibrium, and general equilibrium approaches. These
approaches are market models created by simulation techniques by
various international organizations. Partial equilibrium models
estimate the impact of taxes and subsidies in the biofuels market on
the agricultural sector. General equilibrium models investigate the
interaction between the biofuels market and other markets and the
bi-directional relationship. In particular, the general equilibrium
model analyzes to focus on the effects of biofuels and carbon
emission targets on economic and international trade [56]. In this
context, Tokgoz [57] examines the relations between crude oil
prices, biofuel market, and the agriculture sector in EU-27 countries
with a general equilibrium approach. The first scenario indicates
that crude oil prices have increased bioethanol production, con-
sumption, and grain prices. The second scenario reveals that trade
liberalization decreases grain prices, and this effect is greater than
the burden of crude oil prices. Timilsina et al. [36] explore the
significance of oil prices on biofuels expansion and food supply. The
research shows that the rise in oil prices has reduced agricultural
production. The negative impact of the increase in oil prices on
agricultural production appears to be relatively less in the major
biofuel producing countries. Bahel et al. [59] observe the relation-
ship between oil prices, biofuel production, and global food prices
with the decentralized equilibriummodel. Model results argue that
biofuel production increases food prices by affecting land scarcity.
Chakravorty et al. [60] employed a Ricardian model with different
land quality to show that world food prices may enlarge by 32% by
2022. They take into account the multi-national, multi-sectoral,
dynamic, and global computable general equilibriummodel. In this
way, they evaluate the relationships between biofuel supply, agri-
cultural supply, global food supply, and land-use change. Research
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shows that biofuels production might contribute to an increase in
food prices. The study also draws attention to demand-side factors
such as population, dietary preferences, and income level. Dick and
Wilson [61] inspect the effect of ethanol production on land use
and food safety in Nigeria during the period 1995e2010 with the
partial equilibrium model. The model points to two important
outcomes: (1) Nigeria may meet the demand for ethanol without
compromising food safety. (2) The doubling of current ethanol
demand adversely affects land use and food safety. Weng et al. [63]
analyze the influence of biofuel production on land use and food
safety in China. Model findings reveal that biofuel production leads
to reallocation of land for rice, cereals and other crops, forests, and
grassland. Brinkman et al. [64] examine the effects of biofuel pro-
duction on food security, availability, access, use, and stability for
urban and rural households in Ghana with the computable general
equilibrium (CGE) model. The results show that the most critical
effect of biofuel production in terms of food security is to increase
the pressure on food prices and import dependency.

Finally, we evaluate the literature that examines the relationship
between biofuels and food prices with econometric estimations
such as time series and panel data analysis. Applanaidu et al. [65]
search the effects of the increases in biodiesel demand in Malaysia
on the palm oil market between 1980 and 2007 with the nonlinear
two-stage least squares (2SLS) method. Research findings indicate
that a 70% increase in biodiesel demand results in an increase of
110% on the price of raw palm oil. Bastianin et al. [66] investigate
the interactions of biofuels, field crops, and cattle prices in the USA
for the period of 1987e2012 with Granger causality and asym-
metric least squares methods (OLS). Estimation findings do not
provide significant evidence of an association between cattle pri-
ces, field crops, and biofuels in the United States. Bayramo�glu et al.
[56] observe the connection between corn prices and bioethanol
production in the USA between 1993 and 2011 by using Three-
Stage Least Squares (3SLS) method. In contrast to the results of
Bastianin et al. [66]. Bayramo�glu et al. [56] reveal that bioethanol
production has a significant and increasing effect on corn prices.
They also emphasize that bioethanol production in the US is a
considerable fact in explaining the increase in world corn prices.
Similarly, To and Grafton [1] estimate the relationship between oil
prices, per capita income, biofuel production, and food prices using
autoregressive models using the US and global data. The results of
the investigation show that food prices are affected by crude oil
prices and biofuel production in the US and globally.

Koizumi [34] evaluates the correlation between agricultural
development, food safety, and crude oil prices in Brazil, USA,
Indonesia, Malaysia, Thailand, and China with the least squares
(OLS) method for the period 1990e2012. Research findings indicate
that biofuel productionmight yield an adverse effect on food safety.
The results also show that biofuel production creates essential
opportunities for agricultural developments. Bentivoglio et al. [9]
test the relation between sugar prices, ethanol, and gasoline in
Brazil during 2007e2013 by causality analysis, impulse-response
functions, and variance decomposition. The test findings show
that gasoline and sugar prices influence the ethanol prices, while
ethanol prices don't affect on sugar prices. Ak�e [67] evaluates the
link between global food prices and biofuel production for the
period 1992e2016 using dynamic conditional correlation and
phase synchronization methods. Analysis findings confirm that
increases in profits in biofuel production have an increasing impact
on the prices of oily cereals. Paris [68] examines the connection
between agricultural commodity prices, oil prices, and biofuel
production in the US and Europe for the period 1986e2014 with a
cointegration model approach. The results of the research show
that biofuel production contributes to the price of agricultural
products positively. Lima et al. [33] examined the co-movements of
4

ethanol production and sugar prices in Brazil by partial cross-
correlation analysis (DPCCA).

In contrast to the findings of Bentivoglio et al. [9], Lima et al. [33]
show a positive and significant correlation between ethanol pro-
duction and sugar prices in Brazil. Shrestha et al. [69] estimate the
association between food prices, biofuel production, and land-use
change in the United States for the period 1991e2016 by employ-
ing correlation analysis. The findings emphasize that biofuel pro-
duction does not cause food prices to increase. According to the
research, the two main factors affecting food prices are oil prices
and population. Gilbert et al. [70] investigate the effect of ethanol
production on corn prices in the US by using regression analysis
with structural breaks using monthly data for the period
2000e2016. Regression findings show that ethanol production
causes upward pressure on corn prices. Subramaniam et al. [71]
resolve the effect of the interaction between biofuels and envi-
ronmental quality on food security with a generalized method of
moments (GMM) for fifty-one countries. The paper shows that
biofuels may initially bring competition to food security, but at a
later stage may lead to a favorable situation for agriculture.

Table 1 describes a summary of the literature findings. For
example, in terms of the nexus between bio-energy demand and
food prices, there exist different outputs in the literature. Applan-
dau et al. [65] indicate that an increase in biodiesel demand in-
creases the price of raw palm oil. Müller et al. [72] reveal, on the
other hand, that the growing demand for bio-energy might influ-
ence the food production/food prices positively and negatively. In
terms of the nexus between bio-energy production and food prices,
the literature reveals different outputs as well. Some works exhibit
that biofuel production has no impact on food prices [11,66], and
some other papers yield that biofuel production has a significant
effect on food prices [1,34,39,56,59,60,67].

After all these evaluations, (1) we may state that there is no
consensus between the empirical findings in the relevant literature
considering the dependence between biofuel production and food
prices. (2) The literature findings differ according to the country/
countries, period, and method. (3) Due to the dominant role of
Brazil and the US in the biofuel market, the literature focuses either
on these two countries or on the global market. (4) The findings of
all researches aim to contribute to the development of biofuels and
food policies. The first main factor that motivates us to prepare this
paper is the lack of enough empirical evidence in the literature on
the relationship between biofuel production and food price. The
second factor is to contribute to the development of global food and
energy policies.

3. Methodology: wavelet analyses

Fourier transform and wavelet transform are the most used
methods in frequency analysis. The Fourier transform is a suitable
method for the analysis of stationary time series. So, the Fourier
transform is not an effective method for researchers using non-
stationary time series. For this reason, this paper used the
wavelet transformation technique, which allows analysis of non-
stationary time series.

Wavelet analysis is a technique using a mathematical repre-
sentation of Fourier transform together with a new feature of the
transform called scaling. Wavelet has the advantage of localizing
signals both in time and frequency domain simultaneously. The
wavelet transform, as the best technique for the non-stationary
time series, is filtered into different frequency bands, which are
divided into segments in the time domain.

This research differs from other researches available in the
literature of biofuel product-food price nexus in terms of the time
dimension and frequency dimension. In general, the seminal



Table 1
Summary of literature.

Author(s) Country Period Method Results

Applandau
et al. [65]

Malaysia 1980e2007 Nonlinear 2SLS A 70% increase in biodiesel demand results in an increase of 110% on the price
of raw palm oil.

Müller at al
[72].

Global 1970e2006 Statistical comparisons Demand for bio-energy might influence food production and food prices
negatively or positively.

Tokgoz [57] EU-27 countries 2008e2017 General equilibrium approach Oil prices increase bioethanol production, consumption, and grain prices.
Esmaeili and

Shokoohi
[47]

Global 1961e2005 Principal component analysis Oil prices and macroeconomic indicators significantly affect food prices.

Ajanovic [11] The USA and Europe 2000e2007 Descriptive statistics and
comparative analysis

Biofuel production does not influence the raw material prices. The prominent
increase in food prices stems from oil prices.

Timilsina et al.
[36]

Global 2009e2020 Computable general
equilibrium

The rise in oil prices reduces agricultural production. This negative effect of oil
prices on agricultural output appears to be relatively less in biofuel producing
countries.

Nazlioglu and
Soytas [21]

Global January 1980
to February
2010

Panel co-integration and panel
VEC causality

The world oil price yields a significant consequence on agricultural commodity
prices.

Tokgoz et al.
[39]

OECD 2005e2020 IMPACT analyses Biofuel production has a considerable effect on agricultural commodity prices.

Bahel et al. [59] Global e Decentralized equilibrium
model

Biofuel production increases food prices by affecting land scarcity.

Gardebroek
and
Hernandez
[73]

USA 1997e2001 GARCH models There is a significant interaction between the ethanol market and the corn
market. However, oil prices have no major impact on the corn market.

Bastian et al.
[66]

USA 1987e2012 Asymmetric OLS and Granger
causality

There is nomeaningful association among cattle prices, biofuels, and field crops
in the US.

Wang et al.
[48]

Global January 1980
to December
2012

Structure VAR. Agricultural commodity prices respond to oil price shocks.

Koizumi [34] Brazil, USA, Indonesia,
Malaysia, Thailand, and
China

1990e2012 OLS Food safety is affected negatively by biofuel production.

To and Grafton
[1]

Global and USA 1981e2013 Autoregressive model Food prices are influenced by biofuel production and oil prices in the US and
globally.

Ibrahim [49] Malaysia 1971e2012 NARDL model There is an asymmetric relationship between oil prices and food prices.
Bayramo�glu

et al. [56]
USA 1993e2011 3SLS Bioethanol production has a significant and increasing effect on corn prices.

Bentivoglio
et al. [9]

Brazil 2007e2013 Causality, impulse-response
functions and variance
decomposition.

Changes in ethanol prices do not affect sugar prices.

Enciso et al.
[53]

Global 2015e2024 Recursive-dynamic agricultural
multi-commodity model

The abolition of biofuel policies has no impact on increasing global food
security.

Ak�e [67] Global 1992e2016 Dynamic conditional
correlation and phase
synchronization

As biofuel production becomes profitable, it has an increasing effect on oily
cereal prices.

Chakravorty
et al. [60]

Global 2007e2030 Ricardian model Biofuels account for about half of the increase in food prices.

Dick and
Wilson [61]

Nigeria 1995e2010 Partial equilibrium model The demand for ethanol negatively influences land-use and food security.

Paris [68] The USA and Europe 1986e2014 Smooth transition regression Biofuel production contributes to the price increase in agricultural products.
Cheng and Cao

[50]
Global January 1990

to June 2017
TVECM Oil and food prices follow a nonlinear causality.

Lima et al. [33] Brazil 2000e2016 DPCCA Ethanol production and sugar prices have a positive correlation.
Shrestha et al.

[69]
USA 1991e2016 Correlation analysis Oil prices and population influence food prices, while biofuel production is not

the real reason for the rise in food prices.
Taghizadeh-

Hesary et al.
[51]

Asian countries 2000e2016 Panel structure VAR Oil price fluctuations powerfully explain the rise in food prices.

Martínez-
Jaramillo
et al. [54]

Colombia 2016e2030 System dynamics model Biofuels change land use and reduce the land supply allocated to agriculture.
This situation brings about a shortage of food supply and boosts food prices.

Weng et al.
[63]

China 2012e2020 Computable general
equilibrium

Biofuel production causes a reallocation of land for rice, cereals and crops,
forest, and grassland.

Yan et al. [55] Australia e Comprehensive life cycle
assessment

Agave is promising for biofuel production in the water-energy-food-
environment context.

Brikman et al.
[64]

Ghana 2010e2030 Computable general
equilibrium model

The most critical effect of biofuel production in terms of food security is to
increase the pressure on food prices and import dependency.

Gilbert et al.
[70]

US 2010e2016 Regression analysis with
structural breaks

Ethanol production causes upward pressure on corn prices.

Subramaniam
et al. [71]

Fifty-one countries. 2011e2016 GMM Biofuels may initially bring competition to food security, but at a later stage
may lead to a favorable situation for agriculture.
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Fig. 1. Phase difference circle. Source: [90].
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papers in the literature economics and/or engineering yield rele-
vant model estimations in which (i) parameter estimations do not
change through time or (ii) the parameter estimations consider at
most two or three potential structural breaks of the series. This
paper, however, reveals (a) the impact of the leading variable on the
lagged variable in the estimated model that might change through
time, and, (b) the effect of the leading variable on the lagged vari-
able in the estimatedmodel that might change from high frequency
to low frequency. By following the motivation of this research, this
paper employs a continuous wavelet approach, which can address
the issues given in (i) and (ii).

Fourier transform and wavelet transform are the leading signal
analysis methods. The Fourier Transform (FT) is an effective tech-
nique to observe the frequency components of the signal. But,
when we consider the FT over the entire time axis, we cannot
monitor a certain frequency clearly [74]. To overcome such a limi-
tation, the wavelet analysis has been proposed. Wavelet compu-
tation is to use a mathematical representation of the FT through its
new feature of scaling. Wavelet analysis provides an advantage
since it has flexibility in using different non-stationary signals.
Wavelet analysis is a powerful tool well-suited to study multiscale,
nonstationary processes occurring over finite spatial and temporal
domains [75]. Wavelet analysis has been used successfully in signal
processing analysis in the last thirty years [76e81].

In this paper, wavelet analysis allows us to effectively measure
the correlation between the food price index and biofuel produc-
tion indicators for the USA at a specific scale and at a specific time.
Also, Wavelet analysis provides advantages that enables us to
detect sudden structural changes that may occur over time [81].

Wavelets have the features of being localized over time scale
because they move homogeneously over time and are structured
over finite time intervals [82]. This analysis considers both time and
scale domains simultaneously. This is the reason why ripples can
discrete data into varied frequency components [83]. A wavelet
follows an oscillating, complex or real function [84].
The factor used to create the wavelet family is called the
mother wavelet and it can be written as below:

(1)

where the term defined as the normalization factor. The
mother wavelet includes scaled and located ð[Þ parameters.
The mother wavelet is designed to balance between the time
and frequency domains resolution. The term [ is the translation
parameter which represents the position of the wavelet in the time
domain. The term is the scaling parameter which represents the
position of the wavelet in the frequency domain.

An increase in detects the low-frequency feature of time series,
as a descending compacts it to observe the high-frequency
properties of the time series. This means that there is a negative
association between scale and frequency. This allows the creation
of aXðtÞ time-series through ContinuousWavelet Transform (CWT)

The CWT provides a repetitious depiction of a function
obtained through the mother wavelet [85]. Thereby, the wavelet-
based transformation can be depicted by XðtÞ using Eq. (2).

(2)

Hence, the CWT of XðtÞ in terms of is denoted by Eq. (3).

(3)

where the [ is the translation or position the factor, is the
expansion or scale factor, and asterisk (*) represents complex
6

conjugation.
Wavelets generally don't have identical properties. They might

have different features. One form of the wavelet is Morlet. As it is
presented firstly by Morlet et al. [86], the Morlet wavelet provides
both phase and amplitude analysis because it contains imaginary
and real parts. The Morlet wavelet analysis offers several features-
advantages for time-frequency analysis. One of these advantages is
that the Morlet wavelet is Gaussian-shaped in the frequency
domain. Due to this feature, the absence of sharp edges minimizes
ripple effects that can be misinterpreted as oscillations. Another
important advantage is the results of Morlet wavelet convolution,
preserving the temporal resolution of the original signal [87]. The
Morlet wavelet can be exhibited in Eq. (4).

(4)

When the wavelet scale, , is negatively correlated with
frequency, , clarifying the exposition of the wavelet trans-
form [88]. It is possible to obtain the cross-wavelet power (CWP) by
using the CWT as . The CWP expresses the region's
covariance of {X} and {Y} series at different scales [89]. The corre-
lation {X} and {Y} series, then, is defined as in Eq. (5).

(5)

where Ixy represents the correlation between variables. It takes a
value ranging from zero to one in both the time and frequency
domain. The phase difference analysis is used to detect the nega-
tive/positive correlation and the lead-lag relationship among the
components. The visual expression of the lead-lag relationship
between the variables is given in Fig. 1.

The phase difference between {X} and
{Y} series can be written as follows:

(6)

where FðwxyÞ and KðwxyÞ represent the real part and imaginary

part of the smooth power spectrum, respectively. If
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the series move in phase, fXg leads fYg If the series

move again in phase, then {Y} is leading. If there is

anti-phase relation, in this case, the series move again out of the
phase where yðtÞ is leading. There exists anti-phase relation when

the phase difference is p or � p. If the series is

following anti-phase relation as fXg is leading. A phase difference
of zero indicates that fYg and fXg move together.

4. Data and descriptive statistics

This research analyses the co-movements between food prices
index and biofuel production together with the control variables of
oil price and population for the USA. Table 2 reveals the descriptive
statistics of the variables.

Figs. 2e5 depict the polynomial trends to demonstrate the slope
of the variables. Food price index, biofuel production, oil price, and
population data are estimated well with their polynomial trends as
shown in Eqs. (7)e(10).

Food price index¼2E� 07x2 � 0:0026x� 12:921 (7)

Biofuel production¼ � 7E� 14x4 þ 1E� 08x3 � 0:0005x2

þ 12:759x� 113703

(8)

Oil price¼ � 7E� 18x5 þ 1E� 12x4 � 8E� 08x3 þ 0:0028x2

� 48:738xþ 333218

(9)

Population¼ �3E�05x2 þ9:491x�33285
i

(10)

The trend lines of the variables from Figs. 2e5 have the good-
ness of fit measures (R2) of [0.996], [0.973], [0.831], and [0.997],
respectively. Figs. 2 and 5 indicate that the food price index and
population tend to increase for the whole sample period. Fig. 3
explores that, although there exist some fluctuations in observed
data for biofuel production during the whole sample data, the 4th
degree of polynomial representation of the data demonstrates an
increase in biofuel production after 1996 till the end of the period.
One may monitor from Fig. 4 that realized data points of oil price
exhibit more severe fluctuations than biofuel production data do.
Although it fluctuates around its mean with several considerable
ups and downs, the 5th degree of polynomial representation of the
data yields first a decline (during the period 1981:01e1997:06),
later an increase (for the period 1997:07e2012:06), and later again
a decrease in oil price index till the end of the period.

Although observed data and their polynomial equations provide
some visual inspections about historical movements of the
Table 2
Variable definitions, data sources, and descriptive statistics: 1981:1e2018:1.

Variable Definitions

Food Price
Index

The consumer price index for all urban consumers (Index 1982
e1984¼ 100)

Biofuel
Production

Total biomass inputs to the production of fuel ethanol and biodiesel
(trillion BTU)

Oil price Crude Oil Domestic First Purchase Price (Dollars per Barrel)

Population Total population (Thousands)
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variables, they do not provide specific co-movement information at
specific sample period(s) between the variables. The next section
intends to analyze the co-movements and lead-lag relations be-
tween time series xðtÞ and yðtÞ for the whole sample data period
and sub-sample periods at high and low frequencies.
5. Wavelet-time and frequency domain-estimation results

In this section, we investigate the co-movements of the food
price index and biofuel production of the USA through continuous
wavelet model, time domain, and frequency domain computations.

Fig. 6a illustrates the wavelet analysis of the food price index
and biofuel production (without control variables). Fig. 7a shows
the wavelet coherency between the food price index and biofuel
production, together with the control variables of population and
oil prices. All figures show the co-movements of the respective
variables. In Figs. 6a and 7a, the thick black curves depict the cone
of influences that monitor the border distortions. In the color bar,
blue indicates weak coherence and red represents strong co-
herency. The dark blue color demonstrates the weakest coherence
and the dark red indicates the strongest coherence.

Finally, Fig. 6b-c and 7b-7c expose the phase difference outputs
of 1~2 years and 3~8 years frequencies.

Fig. 6a, monitoring the co-movements between biofuel product
and food price (index), and phase difference analysis given in
Fig. 6b, denoting lead-lag relations, reveal that, in short term cycle
(1~2 years frequency):

(a) During 1981e1986, biofuel production and food price move
together; as biofuel production (food price) increases, food
price (biofuel production) increases as well. In his period
there is no lead-lag relation between the variables.

(b) During 1995e2000, as food price index goes up, the biofuel
production goes up as well. This association of the variables
at this period seems, however, to be relatively weaker than
that of variables at the period 1981e1986.

(c) Another relationship that is not very strong but worth
interpreting is realized in periods 2000e2003 and
2006e2008. At these periods, biofuel production leads to an
increase in the food price index.

(d) In the period 2014e2017, the increase in food prices leads to
an increase in biofuel production.

Fig. 6a and c shows that in the 3~8 years frequency band (in the
long-term cycle), the variables move together; as food price index
boosts, the biofuel production also boosts (or vice versa). In the
long term (at the low-frequency period), it appears that there is no
lead-lag association between variables.

When the controlled variables of oil price and population are
observed additionally in the wavelet analyses (Fig. 7a), the co-
movements of the food price index and biofuel production
Sources Mean Median Min. Max. Obs.

U.S. Bureau of Labor Statistics 169.12 163.80 91.50 252.36 445

U.S. Energy Information
Administration (EIA)

58.85 18.45 0.97 252.36 445

U.S. Energy Information
Administration (EIA)

37.66 26.04 8.03 128.08 445

U.S. Bureau of Labor Statistics 278140.1 279,448 229,004 327,265 445



Fig. 2. The food price index of the US (1981:1 to 2018:1). Data source: [91].

Fig. 3. The biofuel production of the US (1981:1 to 2018:1). Data Source: [92].

Fig. 4. The oil price in the US (1981:1 to 2018:1). Data Source: [92].
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become clearer and more accurate than Fig. 6a.
In Fig. 7a, a strong co-movement association between biofuel

production and food prices is observed. Fig. 7a and b indicate that in
the short-term cycle (1~2 years frequency):

(a) During 1983e2000, an increase in food price results in an
increase in biofuel production.
8

(b) In 2000e2010, biofuel production causes the food price in-
dex to increase.

(c) On the other hand, the biofuel production brings about a
decrease in the food price index for the period 2011e2017.

Fig. 7a and c yield that in the 3~8 years frequency band (in the
long-term cycle), during 2001e2017, the biofuel production brings
about an increase in the food price index.



Fig. 5. The population of the US (1981:1 to 2018:1). Data Source: [92].

Fig. 6a. wavelet coherency [biofuel production/food price] computation. Fig. 6b: 1~2 Years frequency band. Fig. 6c: 3~8 Years frequency band.
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The considerable remarks obtained from Fig. 7a, b, and 7c are
that.

(i) In short cycle, (1~2 years frequency), biofuels increased food
prices for the period 2000e2010 but decreased food prices
for the period 2011e2017.

(ii) However, when longer cycle (3~8 years frequency) is
considered, it is observed that, during 2001e2017, the biofuel
production brings about an increase in the food price index.

Overall, wavelet analyses indicate that, at high-frequency in-
tervals, the biofuels supply first increased food prices during the
2000s, later, decreased the price of food after 2010s. The biofuels,
however, affect the prices of food positively both during the 2000s
and after 2010s at low frequency (at longer cycle periods) in the US.
9

6. The verification, sensitivity, residual and extension
analyses of wavelet estimations

The wavelet computations of this paper might need to explore
the verification, sensitivity, residual, and extension analyses.

To verify the model, we obtained the wavelet estimations at 5%
and 10% significance levels by Monte Carlo simulations. We
launched the Monte Carlo simulations with 500 and 1000 repli-
cations to reach significant partial wavelet computations at 5% and
10% significance levels. The relevant figures (Figs. A1 and A2) are
given in the appendix. The significant regions were obtained based
on Monte Carlo simulations by following an ARMA (p, q) model by
creating new samples through drawn errors from a Gaussian dis-
tribution by following Aguiar-Conraria and Soares [88,93] and
Torrence and Compo [94]. The Monte Carlo simulations were
launched by following Matlab lines of [nsur: 1000,



Fig. 7a. wavelet coherency [biofuel production/food price/oil price/population] computation. Fig. 7b: 1~2 Years frequency band. Fig. 7c: 3~8 Years frequency band.
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nsur_type¼ ‘ARMAEcon’; p¼ 1; q¼ 1] trough Econometrics and
Signal Processing Toolboxes of Matlab as explained in Aguiar -
Conraria and Soares [93]. In Figs. A1, and A2, the black contour
depicts the 5% significance level and grey contour yields the 10%
significance level based on the null of ARMA (p¼ 1, q¼ 1). The
region influenced by edge effects is depicted by the cone of influ-
ence denoted by thick black lines.

Figs. A1 and A2 have just small differences. Fig. A2 differs from
Fig. A1 in terms of the island shown at a 1-year frequency band in
2013 which becomes now more significant at 5% level. In Fig. A2,
the 5% significance of co-movements during 2014e2016 at a 1.5-
year frequency band has become more apparent. The association
between the variables during 2006e2008 at the high-frequency
band in Fig. A1, on the other hand, is more significant (5% level)
than the relevant association in Fig. A2.

In a comparison of Fig. A1 and A2 with 7a, the outcomes are
almost similar at a higher frequency band (1~2 years). The out-
comes of the lower frequency band (3~8 years), however, indicate
that the red color region (strong coherency) for the period
2014e2017 is found insignificant at 5% and 10% significance levels.

Next, we performed the sensitivity analyses by considering the
works of Zhong and Oyadiji [95], Aguiar-Conraria and Soares [96]
and Shen and Li [97].

Zhong and Oyadiji [95] indicate that the sampling intervals
(different sampling distances; Si of 5, 25, 50, and 125mm)
considerably influence the peak value of the stationary wavelet
transform (SWT) detail coefficient and, hence, affect the crack
sensitivity, which in turn affect the damage detection capability.

Aguiar-Conraria, Martins and Soares [96] underline the poten-
tial sensitiveness to frequency and time in wavelet analyses as
revealed in the work of Verona [98] that assessed the investment-Q
sensitivity at different frequencies and its evolution over time.

Therefore, to conduct the sensitivity analyses, we re-estimated
our wavelet work by following different periods to observe if the
main outputs of our wavelet analyses are sensitive to different
sampling intervals. Our wavelet estimations were performed for
10
the period 1981:1e2018:1.
To this end, we conducted the relevant wavelet analyses for the

monthly periods of 1982:1e2018:1 (Fig. A3), 1983:1e2018:1
(Fig. A4), 1984:1e2018:1 (Fig. A5), and 1985:1e2018:1 (Fig. A6).

One might state through re-estimated partial wavelet co-
herencies that, as the period is shortened, the strong energy (co-
movements) between the biofuel production and food prices
(together with control variables of population and oil price) in the
US is diminishing and finally disappearing in the 1985e2018
period. Phase difference analyses, on the other hand, do not change
significantly as the initial period varies. The re-computed phase
difference analyses are not shown here to save the space.

Overall, the partial wavelet estimations seem to be sensitive to
different sampling sizes at initial periods. The main findings of
wavelet coherency and phase difference predictions given in Fig. 7a
remained the same. Decreasing the period by one year at each step,
and, eventually, after subtracting 5 years from the main data (by
decreasing the number of observations from 445 to 397), the out-
puts at higher frequency (1-year cycle) did not change. The findings
at a lower period of frequencies (3-8-year cycle) yielded some slight
changes. Figs. from A3 to A6 are given in the appendix section.

To observe the residuals from wavelet estimations, we used the
One-Dimensional Multi signal Analysis of MatlabR2099b, wavelet
toolbox. This program provides us with the features of one-
dimensional multisignal wavelet analysis, compression and
denoising using the Wavelet Toolbox™ software. The rationale is
the same as in the 1-D single signal case. The original, denoised and
residual signals are selected (3� 91¼273 signals). We have chosen
the Asc. at the bottom of the Selection of Data pane to sort the
signals using the Idx Sig parameter through SeparateMode. Overall,
multisignal denoising analyses can indicate that the original signals
are observed well by the denoised signals and the expected values
of residuals are close to zero. The relevant figs. (A7 and A8) are
presented in the appendix section.

We also thoroughly searched to realize the signal extension
analyses through MatlabR2009b toolbox. The extension of analysis
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as a sample deals with the border distortion. It is defined for se-
quences with length of some power of 2, and different ways of
extending samples of other sizes are needed as explained in Mat-
labR2009b. Eventually, we did run signal extension analyses. We
utilized Signal Extension Tool dguisext. It demonstrates Signal
extension GUI tools in the Wavelet Toolbox. This is a slideshow file
for use with wshowdrv.m. To observe it, we did run the analyses by
following ‘wshowdrv dguisext’. Throughout signal extension ana-
lyses, we considered the frame from Matlabr2019b.

First, the signal has been extended by zero-padding (see Fig. A9
in appendix section). Later, we have extended the signal for SWT
(see Fig. A10 in appendix section). Since the decomposition at level
k of a signal using SWT requires that 2̂ k divides evenly into the
length of the signal, the tool provides a special option dedicated to
this kind of extension. Then we did select the for SWT option from
the Extension mode menu. Since the signal from SWT is of length
40,496¼ 2 1̂2, there is no need to apply the extension of signal. In
this case the Extension tool is ineffective as shown in Fig. A10.

Overall, all these analyses indicate that the wavelet analyses and
several products of the estimations worked well so that no worries
were needed.

Besides, we simulated the wavelet reconstruction program ob-
tained from our wavelet workplace and our wavelet workplace in
which bootstrapping with 1000 replications were conducted. We
reached the identical ‘wavelet-input signals’, ‘wavelet-output sig-
nals’, and ‘wavelet-difference signals’. All checks yielded the
‘Passed’ result.

7. Discussion and conclusion

One might observe that there has been a great interest in the
literature of energy, energy economics, and agricultural economics
to observe the fluctuations in the energymarket, energy prices, and
food market. The researchers have been monitoring specifically the
influence of oil production shocks on food prices since the oil price
shocks of the 1970s.

Then, the relevant literature has focused on the impacts of the
productions of fossil energy and renewable energy on food mar-
kets. One might also observe throughout literature evidence that
there might be a correlation between disaggregated renewables’
production and food prices since the boom of global biofuels pro-
duction of 2005. Based on these discussions, this paper aims at
observing the potential impacts of biofuel production on food pri-
ces in the US by using monthly data from 1981 to 2018 through a
continuous wavelet method. Throughout wavelet analyses, this
paper reveals that, at high frequency (1~2 years) intervals, the
biofuels supply first increased food prices during the 2000s, later,
decreased the price of food after 2010s. The biofuels, however,
affect the prices of food positively both during the 2000s and after
2010s at low frequency (3~8 years) in the US.

Our results, especially obtained from 3~8 years frequency ana-
lyses, support the literature evidence [29,32e34,73] that biofuel
production increases food prices by causing additional pressure on
food supply and demand. Moreover, the findings support the ar-
guments that biofuels production may be a possible cause of high
increases in global food prices [11,100], called the 2007e2008
World Food Crisis. In addition, our findings are consistent with the
results of To and Grafton [1], Tokgoz et al. [38], Bahel et al. [58], and
Paris [68].

Contrary to the dominant view in the literature, this paper
presents also new evidence that biofuels have a reducing effect on
food prices in the United States during the period 2011e2017 at
high frequency (at 1~2 years cycle). This may support more opti-
mistic views that more food, more energy, and more raw materials
can be produced if the land surface is used efficiently. Especially in
11
the United States, there exist some literature evaluations in the last
decade finding that large scale production in the agricultural sector,
the use of more advanced agricultural technologies and innovations
increase the land-use efficiency [101e103]. Therefore, in recent
years, both agricultural developments and developments in biofuel
production may explain the background of such a result. The sec-
ond reason behind this result may be the decline in oil prices due to
the rapid increase in biofuel production in the USA. In the last
decade, biofuels production increases in leading countries such as
the USA, Brazil, and Argentina led to a sevenfold expansion of the
global biofuels sector. The rapid growth in the biofuel sector has led
to a dramatic drop in oil prices since mid-2014 [104,105]. The
decline in oil prices may be the cause of the decline in food prices,
as oil is the main input for production in food prices.

Despite the potential contribution of this study to the current
literature, this paper has some limitations. First, we analyzed the
interactions of biofuel production and food prices in the United
States. However, the possible future researches may consider
investigating the co-movements of relevant variables for other
major producing countries such as Brazil, Canada, Germany, China,
France, and Australia. Second, we followed the wavelet analysis
method for empirical analysis. Future research may follow both
linear and nonlinear time series methods, such as structural frac-
ture cointegration and granger causality analyses, for further
empirical evidence. Besides, potential future works may apply
panel data methods by evaluating the major producer countries
together. Thirdly, we concluded that biofuels put pressure on food
prices in the USA during 2000e2010. On the other hand, we found
that biofuel production in the USA has a decreasing effect on food
prices for the period 2011e2017. Future research (es) might eval-
uate and compare the energy and food policies, sectoral dynamics,
and structural changes in the USA for the relevant period.

For future works, this paper invites potential future researches
to analyze the impacts of biofuel production on food prices (a) in
other developed countries such as the UK, Canada, Japan, Germany,
etc., (b) in developing countries and/or new emergent markets.
Besides, the paper might invite the future works to observe the
association between biofuel market and food markets through (i)
dynamic time series models with structural changes or regime
shifts (i.e. cointegration models with structural changes, Markov
regime-switching (MS) models, MS-VAR models, structural VAR
models, (ii) dynamic panel methodologies such as dynamic panel
GMM, panel structural VAR models, panel dynamic cointegration
models, clustering algorithm and convergence clubs, panel smooth
transition regression or panel spatial regressions to reveal the time-
varying co-movements, or direct and indirect causalities between
biofuel production and food prices, if exist.

Finally, our research work might suggest that future works
consider the variables of energy efficiency, energy security, ur-
banization, ruralization, and economic-political or pandemic un-
certainties in determining the interactions between biofuel
markets and food markets.
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Fig. A1. Wavelet Coherency [Biofuel Production/Food Price/Oil Price/Populatio
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.energy.2020.118777.

Appendix
Mother wavelet

Normalization factor

A scaling or dilation factor that controls the width of the wavelet

A translation parameter controlling the location of the wavelet
Time
Morlet wavelet function

A time-series variable
A time-series variable
Cross wavelet power
Wavelet transform of X
Wavelet transform of Y
Fourier Transform
Cross-wavelet power
Continuous wavelet transform
Exponential
Pi
Wavelet coherency
Smoothing operator
Phase difference

The imaginary part of smoothed cross wavelet power
The real part of smoothed cross wavelet power
Complex conjugation
Stationary wavelet transform

n] Computation with Monte Carlo estimations through 500 replications.

https://doi.org/10.1016/j.energy.2020.118777


Fig. A2. Wavelet Coherency [Biofuel Production/Food Price/ Oil Price/Population] Computation with Monte Carlo estimations through 1000 replications.

Fig. A3. Wavelet Coherency [Biofuel Production/Food Price/ Oil Price/Population] Computation (1982:1e2018:1).
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Fig. A5. Wavelet Coherency [Biofuel Production/Food Price/ Oil Price/Population] Computation (1984:1e2018:1).

Fig. A4. Wavelet Coherency [Biofuel Production/Food Price/ Oil Price/Population] Computation (1983:1e2018:1).
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Fig. A7. The residual analyses: Original signals 1, 2, the corresponding denoised signal 92, 93, and the residuals 183 and 184.

Fig. A6. Wavelet Coherency [Biofuel Production/Food Price/ Oil Price/Population] Computation (1985:1e2018:1).
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Fig. A8. The residual analyses: Original signals 15, 16, the corresponding denoised signal 106, 107, and the residuals 197, 198.

Fig. A9. The signal extension by zero-padding.
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Fig. A10. The signal extension by stationary wavelet transforms.
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