
The Journal of Systems & Software 201 (2023) 111679

X
a

b

c

f
e
e
t
i
a
W
d
e
a
i

r
p
h
2

g

(
(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

The anatomy of a vulnerability database: A systematicmapping study✩

iaozhou Li a,c,∗, Sergio Moreschini a, Zheying Zhang a, Fabio Palomba b, Davide Taibi a,c
Tampere University, Tampere, Finland
SeSa Lab - University of Salerno, Fisciano, Italy
University of Oulu, Oulu, Finland

a r t i c l e i n f o

Article history:
Received 18 August 2022
Received in revised form 2 February 2023
Accepted 13 March 2023
Available online 22 March 2023

Keywords:
Software security
Vulnerability databases
Systematic mapping studies
Software evolution

a b s t r a c t

Software vulnerabilities play a major role, as there are multiple risks associated, including loss and
manipulation of private data. The software engineering research community has been contributing
to the body of knowledge by proposing several empirical studies on vulnerabilities and automated
techniques to detect and remove them from source code. The reliability and generalizability of the
findings heavily depend on the quality of the information mineable from publicly available datasets of
vulnerabilities as well as on the availability and suitability of those databases. In this paper, we seek
to understand the anatomy of the currently available vulnerability databases through a systematic
mapping study where we analyze (1) what are the popular vulnerability databases adopted; (2) what
are the goals for adoption; (3) what are the other sources of information adopted; (4) what are the
methods and techniques; (5) which tools are proposed. An improved understanding of these aspects
might not only allow researchers to take informed decisions on the databases to consider when doing
research but also practitioners to establish reliable sources of information to inform their security
policies and standards.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Software security has been always considered a crucial non-
unctional requirement to meet when developing software (Dowd
t al., 2006). With the rise of novel technologies and devices,
.g., Internet-of-Things (IoT) devices empowered by artificial in-
elligence approaches, the need for secure software is becom-
ng even more important to avoid malicious accesses to data
nd information treated by software systems (Duc et al., 2017).
hen it comes to software engineering, security refers to the
esign and implementation of programs that are resilient to
xternal attacks (McGraw, 2004), other than to the verification
nd validation mechanisms that might be put in place to manage
t (Edmundson et al., 2013; Felderer et al., 2016; Howard, 2006).

Software vulnerabilities are among the major threats to secu-
ity (Iannone et al., 2022). These are weaknesses introduced by
rogrammers that may be exploited by externals to cause loss or
arm during software maintenance and evolution (Decan et al.,
018; Plate et al., 2015).
The software engineering research community has been tar-

eting the problem of vulnerabilities from multiple perspectives,

✩ Editor: Heiko Koziolek.
∗ Corresponding author at: University of Oulu, Oulu, Finland.

E-mail addresses: xiaozhou.li@oulu.fi (X. Li), sergio.moreschini@tuni.fi
S. Moreschini), zheying.zhang@tuni.fi (Z. Zhang), fpalomba@unisa.it
F. Palomba), davide.taibi@oulu.fi (D. Taibi).
ttps://doi.org/10.1016/j.jss.2023.111679
164-1212/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a
by understanding their life cycle (Iannone et al., 2022; Shahzad
et al., 2012), their impact on code quality and reliability (Finifter
et al., 2013; Kim and Lee, 2018; Gonzalez et al., 2019), and
defining several automated approaches and tools to support their
detection (Hydara et al., 2015; McKinnel et al., 2019; Svacina
et al., 2020; Lomio et al., 2022).

A significant amount of research done in the area, both in
terms of empirical studies and approaches defined, relied on the
elaboration of data coming from publicly available vulnerability
databases. The mining of vulnerability repositories indeed repre-
sents a widely-adopted research approach that is useful to feed
machine learning, deep learning, static and dynamic analysis, and
other techniques used for detecting vulnerabilities (Ghaffarian
and Shahriari, 2017; Murtaza et al., 2016). As such, the quality of
the recommendations provided by empirical studies in literature
and the detection results provided by automated approaches
heavily depend on the quality of the information available in
those repositories.

Our work stems from this consideration and aims at providing
a comprehensive view of the sources of information typically
used to study vulnerabilities and build automated approaches
for software vulnerability detection. We address our goal with a
systematic mapping analysis of the literature Petersen et al. (2008).
Through this process, we identify and classify the existing litera-
ture on vulnerability databases in an effort of providing insights
into their anatomy. We specifically investigate five aspects: (1)
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2023.111679
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111679&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:xiaozhou.li@oulu.fi
mailto:sergio.moreschini@tuni.fi
mailto:zheying.zhang@tuni.fi
mailto:fpalomba@unisa.it
mailto:davide.taibi@oulu.fi
https://doi.org/10.1016/j.jss.2023.111679
http://creativecommons.org/licenses/by/4.0/


X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679

W
o
(
r
t
a
a
a
v
s
w
a
i
i
t
a
i

S

3

t
a
2
t
t
t

S

hat are the most common security-specific public databases
f security vulnerabilities employed by the research community;
2) What are the goals to employ vulnerability databases by the
esearch community; (3) What are the other sources of informa-
ion adopted to facilitate such goals; (4) what are the methods
nd techniques adopted; and (5) Which tools are proposed by
dopting or for investigating vulnerability databases. Important
s software security is, understanding the research domain of
ulnerability databases via investigating these research questions
hall certainly contribute to this critical area. The results of our
ork can indeed inform researchers about the existing vulner-
bility databases and their characteristics so that they can take
nformed decisions on the databases to consider when design-
ng future approaches for vulnerability discovery. At the same
ime, an improved understanding of how vulnerability reports
re created, stored, and managed may be useful for practitioners
nterested in enhancing their security policies and standards.

tructure of the paper. Section 2 introduces the background
information about vulnerability databases. Section 3 reports on
the research method employed to conduct the systematic map-
ping study. In Section 4 we analyze the results addressing the
five goals of the study. Section 5 presents the main discussion
points and the implications coming from our analysis. The pos-
sible threats to validity of the study are discussed in Section 6.
Section 7 discusses the related work. Finally, Section 8 concludes
the paper and outlines our future research agenda.

2. Background information

A vulnerability database collects, maintains, and disseminates
information about discovered security vulnerabilities. The Na-
tional Vulnerability Database (NVD) (National Vulnerability
Database (NVD), 2022) is one of the influential vulnerability
databases. It was created based on the list of Common Vulner-
ability and Exposures (CVE) (CVE, 2022) entries. Using CVEs and
CVE identifiers ensures that unique vulnerabilities are discussed,
and that information about the same vulnerability is shared by
different parties. Many studies employed the NVD reports and
the CVE entries to construct datasets for data-driven vulnerability
detection and prediction. For example, Gkortzis et al. (2018)
searched the NVD reports to create a dataset VulinOSS that re-
ports vulnerabilities of 8694 open-source components to analyze
the diverse software characteristics and their relation to security
vulnerabilities. Nikitopoulos et al. (2021) analyzed the GitHub
commits referenced by NVD and CVE entries to curate a labeled
dataset, CrossVul, containing 27476 vulnerable source code files
and the respective patched security counterparts retrieved from
Git commits. The dataset can be used to train models to detect
security patch commits. Similarly, to investigate an automated
approach to identifying fixes for new vulnerability disclosures in
SAP development units, Ponta et al. (2019) manually collected
data from both the NVD and the project-specific web resources to
curate a dataset of vulnerabilities and mapped them to the fixes.

Additionally, there are vulnerabilities reported by other se-
curity advisory sources such as Security Focus, IBM’s X-Force,
etc. The key aspects of vulnerabilities in these different security
databases are described differently and are complementary (Mas-
sacci and Nguyen , 2010; Guo et al., 2021). To meet the different
needs in software security management, there have been studies
to create a hybrid vulnerability database (Yun-hua and Pei , 2010)
by analyzing the CVE, NVD, X-Force databases or propose an
ontology (Fedorchenko et al., 2017) to construct a hybrid security
repository that incorporates the information security concepts

from databases and their relations.

2

While many attempts have been made to curate datasets for
investigating the security aspect of software components, a sys-
tematic study of research publications on the use of software vul-
nerabilities from different data sources remains under-explored.
Specifically, there is a lack of comprehensive understanding of the
motivation for using vulnerability datasets, the sources of infor-
mation on security vulnerabilities, the methods and tools to adopt
the databases, etc. To better understand these aspects, we con-
duct a systematic mapping study of the research on vulnerability
databases.

3. Research method

The goal of the systematic mapping study is to summarize
the state of the art on the use of public vulnerability databases,
with the purpose of deriving limitations and open challenges that
researchers might need to address to further support practition-
ers and researchers in devising methodologies and tools to deal
with software vulnerabilities. In the context of our research we
elaborated a number of research questions that aim at targeting
the problem under different perspectives. The metrics for answer-
ing each of the questions are the sorted list of categorized items
summarized from the systematically selected articles.

These are listed in the following:

• RQ1. What are the most common security-specific public
databases of security vulnerabilities employed by the research
community?

• RQ2. What are the goals to employ vulnerability databases by
research communities?

• RQ3. What are the other sources of information adopted to
facilitate such goals?

• RQ4. What are the methods and techniques adopted?
• RQ5. Which tools are proposed for adopting or for investigating

vulnerability databases?

Our systematic mapping study adheres to the commonly
adopted guidelines provided by Petersen et al. (2008). In addition,
we also followed the guidelines by Wohlin (2014), which are
connected to the adoption of the so-called ‘‘snowballing’’, i.e., the
analysis of the references of primary studies aiming at extracting
additional relevant sources to use when summarizing the current
knowledge on a given subject. When reporting the research
method adopted, we followed the recently defined ACM/SIGSOFT
Empirical Standards1 Given the nature of our study and the
currently available standards, we followed the ‘‘General Standard’’
and ‘‘Systematic Reviews’’ definitions and guidelines.

.1. Defining the search process

The main challenge of any systematic mapping study concerns
he definition of a search string that can lead to the retrieval of
complete set of studies to analyze (Kitchenham and Charters,
007). Our search strategy comprised a number of steps, namely
he search terms identification, the specification of the resources
o be searched, the definition of the search process, and finally
he definition of article selection criteria (see Fig. 1).

earch String. We first used the research questions to identify
the major terms that we aimed at considering. As such, we
started with the terms ‘‘software vulnerabilit*’’ and ‘‘soft-
ware vulnerabilit* database’’. Secondly, for these terms, we
found commonly used alternative spellings and/or syn-
onyms. This step led to the inclusion of terms like ‘‘security

1 Available at: https://github.com/acmsigsoft/EmpiricalStandards.

https://github.com/acmsigsoft/EmpiricalStandards


X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679

R

I

3

p
d
p
a
i
i
f

m
s
s
a

r
t
i
c

Table 1
Inclusion and exclusion criteria.
Inc./Exc. Criteria

Inclusion Papers on how to use vulnerability databases
Papers on how to enhance vulnerability databases
Papers on how to create vulnerability databases
Papers proposing methods to analyze the vulnerability datasets
Papers using vulnerability databases

Exclusion Not in English
Duplicated (post summarizing other websites)
Out of topic (using the terms for other purposes)
Non peer-reviewed papers
Research Plans, roadmaps, vision papers
Not employing any vulnerability databases

vulnerabilit*’’, ‘‘security weakness*’’ for the original term
‘‘software vulnerabilit*’’, but also ‘‘dataset*’’ and ‘‘repositor*’’
as synonyms of ‘‘database’’. To check for consistency and
completeness, we verified the presence of the keywords
in any relevant paper that was initially scanned: the third
step consisted of verifying the presence of any additional
term that we did not originally include. In our case, this
step did not return any terms. For this reason, we then
proceeded with the usage of boolean operators to relate the
various terms identified so far: we used the OR operator
to concatenate alternative spellings and synonyms, while
the AND operator was used to concatenate the major terms.
The final outcome was represented by the following search
string:

‘‘(security OR vulnerabilit* OR weakness*)’’
AND

‘‘(database* OR dataset* OR repositor*)’’

esources to be searched. After establishing a search string, we
defined the set of literature databases to search for. We
first considered Scopus,2 which is the most extensive liter-
ature database up to date. For double-checking the results
achieved from Scopus, we also considered IEEEXplore3 the
ACM Digital Library,4 the ScienceDirect,5 and the citation
database Web of Science that index articles published by a
number of publishers. The selection of these databases was
mainly driven by the popularity and potential level of com-
pleteness that they ensure. As a matter of fact, the selected
databases are widely recognized as the most representative
of the research in software engineering (Kitchenham and
Charters, 2007), other than being used by many systematic
literature and mapping studies (Azeem et al., 2019; Hall
et al., 2011; Petersen et al., 2008; Sharafi et al., 2015). It is
worth pointing out that we consciously excluded Google
Scholar6 from the set of databases: it does not include
sources that have been already published, but also un-
published research (e.g., preprints currently available on
open-access archives like for ArXiv and others). To avoid
the analysis of articles that are still not peer-reviewed, we
then decided not to rely on Google Scholar.

nclusion and Exclusion Criteria. As for the inclusion criteria,
these were mainly connected to the usefulness of an article

2 The Scopus database: https://www.scopus.com.
3 The IEEEXplore database: https://ieeexplore.ieee.org/.
4 The ACM Digital Library: https://dl.acm.org.
5 The ScienceDirect: https://www.sciencedirect.com/.
6 Google Scholar: https://scholar.google.com.
3

Table 2
Initial literature search by library.
Library Count

Scopus 1023
IEEE 277
ACM 256
Science direct 113
Web of science 132

Non-duplicates 1205

Fig. 1. The search and selection process.

to address our research objectives. As described in Table 1,
we included papers based on five criteria that map our
research questions.

To be useful for addressing our research questions, the
articles retrieved were scanned for consistency and ade-
quacy. The full list of inclusion and exclusion criteria is
available in Table 1. As shown, we first filtered out papers
that were not written in English, that were duplicated, and
not discussing topics connected to our research questions.
In addition, we also excluded papers that are not peer-
reviewed7 and short papers that only present preliminary
ideas. It is also worth remarking that, in cases where we
recognized that an article represented an extension of a
previously published paper, e.g., journal papers extend-
ing conference publications, we only kept the extension,
hence filtering out the previous, preliminary version. In
addition, we also screen out studies that do not employ any
vulnerability databases in their main contribution; there-
fore, studies regarding vulnerability detection using static
analysis are not included herein.

.2. Applying the search process

After defining the key elements of our mapping study, we
roceeded with the application of the search string on the search
atabases. We did not put any time restriction on the search
rocess in an effort of collecting as many articles as possible
nd, therefore, be as complete as possible in our reporting. It is
nevitable a certain number of potential primary studies are not
ncluded at first; however, the snowballing step shall compensate
or the selection.

The search results are reported in Table 2, which shows how
any papers have been identified when querying each of the con-
idered databases after the exclusion step. The initial candidate
et was composed of 1,736 papers, which was reduced to 1,140
fter removing the duplicates.
Afterward, the first two authors of this paper assumed the

ole of inspectors. They first conducted a pilot investigation, where
hey verified the validity of the exclusion and inclusion criteria:
n this respect, they first independently analyzed an initial set
omposed of 50 articles, randomly selected from the candidate

7 Even if we did not consider Google Scholar as database, we could still
obtain non-peer-reviewed articles.

https://www.scopus.com
https://ieeexplore.ieee.org/
https://dl.acm.org
https://www.sciencedirect.com/
https://scholar.google.com


X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679

w
t
d
I
t
i
s
a
a
w
t

T
s
a
d
a
m

v
a
t
T
w
b
o
r
p
n
a
a
t
e
t
o

3

Table 3
Initial literature search by library.
Step # Papers

Retrieve from sources (unique) 1205
Read by Title & Abstract 1096 rejected
Full read 67 rejected
Snowballing 27

Selected Papers 69

set. After the pilot, the inspectors met and discussed the re-
sults: this procedure did not eventually lead to modifications
in the exclusion and inclusion criteria, possibly indicating their
completeness and suitability for our study.

Once the inspectors had completed the pilot, they proceeded
ith the application of the exclusion criteria to the set of re-
rieved articles. This was still done by the inspectors indepen-
ently. The analysis was first done based on the title and abstract.
n cases where the inspectors were doubtful, they proceeded with
he full read of papers. After the independent analysis, the two
nspectors compared their results in order to reach a full con-
ensus on the articles that should have been removed from the
nalysis. In case of disagreement, the inspectors first proceeded
nd read the entire article and then opened a discussion. If this
as not enough, the other authors of the paper were involved in
he decision making process.

This scanning process led to the exclusion of 1096 articles.
he remaining 109 were further considered for inclusion. The in-
pectors proceeded with the full-text reading, still independently
nalyzing whether an article should be included or not. In so
oing, they applied the inclusion criteria. After the independent
nalysis and joint discussion, 42 papers were accepted for the
apping study.
Each of these articles was then subject to another round of re-

iew, which was performed with the aim of applying a backward
nd forward snowballing process. With the forward snowballing,
he inspectors looked at the articles that cited each of the papers.
o accomplish this task, the inspectors relied on Google Scholar,
hich allows them to easily search for this information. As for the
ackward snowballing, the inspectors looked at the references
f each paper in order to verify whether some relevant piece of
esearch was missing. The backward snowballing process was re-
eated until no new papers were identified, i.e., the inspectors did
ot limit the search to the references of the articles accepted, but
lso went through the references of the cited articles, performing
dditional snowballing steps. The number of iterations was 2. Due
o the initial exclusion step, the snowballing results in a consid-
rable number of additional papers. Overall, the snowballing led
o the identification of 27 extra-papers. Hence, the total number
f papers led to 69 (see Table 3).

.3. Data extraction

From the 69 primary studies (PSs) selected previously based
on the inclusion and exclusion criteria, we extract the according
data therein and map the different data to the answering of
each RQ. The extraction process was driven by the open coding
research method, namely through an analytic process by which
we could assign concepts (codes) to the observed data. In our
specific case, we assigned a category to each paper based on the
objective of our research questions. For instance, we assigned a
code reporting the main goal of a paper with respect to the use
of vulnerability databases in RQ2, while we tagged a paper based
on the methods/techniques employed in the context of RQ4. The
process was iterative and lead by the first two authors of the
paper, who acted as the inspectors.

Specifically, the following steps are performed:
4

• In the initial stage, the inspectors independently analyzed
a subset of 10 articles and assigned codes with the aim of
addressing RQ2, RQ3, and RQ4. The inspectors were free to
assign as many codes as they found relevant. Afterward,
they scheduled an in-person meeting to discuss the codes
assigned so far, in an effort of finding an agreement. The
meeting lasted 1.5 h. In the first place, the inspectors an-
alyzed each of the ten papers and explained how they came
up with the codes — this process was performed to in-
crease the awareness of an inspector with respect to the
choices made by the other. Secondly, they discussed their
choices and found an agreement on the codes. Finally, they
computed the inter-rater agreement through the Cohen’s k
coefficient, which measured 0.38, showing a low level of
agreement.

• On the basis of the discussion had during the first meeting,
the inspectors reworked the codes assigned. Then, they took
the other 20 papers into account and proceeded with a new
classification exercise. In this stage, the inspectors mainly
attempted to use the codes that previously emerged, yet
they were allowed to define new codes whenever needed. At
the completion of the task, the two inspectors scheduled an-
other in-person meeting to open a new discussion on their
work. The second meeting lasted 1 h. The Cohen’s k coeffi-
cient scored 0.49 (moderate), hence showing a substantial
improvement.

• The inspectors reworked the codes of the previously coded
papers. Afterward, they started the analysis of the remaining
papers. Also, in this case, the inspectors were allowed to de-
fine new codes, if needed. Once the task was completed, the
inspectors planned a final in-person meeting to assess their
work — this lasted around 2 h. Two key insights emerged
from such a meeting. First, no new codes were identified
during the last coding exercise. As such, we reached the
so-called theoretical saturation, namely the phase where the
analysis does not propose newer insights and all concepts
are developed. Second, the agreement between the inspec-
tors scored 0.64, which may be interpreted as good. This
further corroborates the completion of the data analysis. As
a result, therefore, all papers were classified according to the
concepts of interest.

• As a final step, we proceeded with additional validation of
the codes assigned by the inspectors. In particular, the last
three authors of the paper went through papers and codes
in an effort of identifying possible inconsistencies and/or
erroneous interpretations made during the first steps. This
validation did not lead to further modifications. Hence, we
could consider the data analysis completed.

3.4. Replicability

In order to allow replication and extension of our work by
other researchers, we prepared a replication package8 for this
study with the complete results obtained.

4. Analysis of the results

Via the previously described process, we selected 69 papers.
Amongst these selected papers (SPs), 56 of them are conference
papers with 12 journal articles and one book chapter (shown in
Fig. 2). Meanwhile, when dividing these selected papers by the
publication year, we can observe the trend of the research on vul-
nerability databases. Shown in Fig. 3, the number of publications
per year is stable from 2009 to 2019 when it increases in 2020
and 2021, which is likely due to the increased application of data-
driven approaches. For the results in 2022, we only collected the
ones published before 10.2022.

8 https://figshare.com/s/266e02712de1f16a854a

https://figshare.com/s/266e02712de1f16a854a


X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679
Fig. 2. Paper types.

Fig. 3. Paper by year.

4.1. RQ1. What are the most common security-specific public
databases of security vulnerabilities employed by the research com-
munity?

To answer RQ1, we identify the vulnerability databases em-
ployed in the selected papers and investigate which are the
commonly adopted ones. In this work, we consider public plat-
forms providing a record of existing vulnerability information as
vulnerability databases, regardless of the format used to store
such information. For example, CVE (a list of publicly disclosed
cybersecurity vulnerabilities), NVD (A vulnerability database syn-
chronized with CVE), and VMware Security Advisories (a list of
security vulnerabilities in VMware products) are all considered
vulnerability databases. Within the 69 selected papers, 25 public
vulnerability databases were utilized. The information regarding
these vulnerability databases is shown in Table 4.

65 of the 69 selected papers adopted either NVD or CVE out
of the 26 vulnerability databases reported in Table 4 with 19 of
them adopting both. The NVD includes various relevant databases
that facilitate the automation of vulnerability management, secu-
rity measurement, and compliance. It encompasses various infor-
mation, such as security checklist references (i.e., CVE dataset),
security related software weakness (i.e., CWE), impact metrics
(i.e., CVSS), and so on. It is common for studies to extract in-
formation from all the datasets mentioned above when adopting
NVD. For example, Gallon (2011) studies the distribution of CVSS
metrics in NVD. Shahzad et al. (2012) studies the life cycle of a
large number of vulnerabilities from NVD when, especially, the

authors investigate the evolution of CVSS-vector metrics and the

5

Fig. 4. Database distribution.

general trend of CVSS score for short-listed vendors. Therefore,
similarly, for this case, we consider it employs both NVD and
CVSS.

As shown in Table 4, we can draw the conclusion that NVD
and CVE are the most commonly adopted vulnerability databases.
Besides, both OSVDB and X-Force have also been adopted in 12
studies, when the majority of those studies also adopt either NVD
or CVE. Vache (2009) is the only study among them that adopts
only OSVDB without using NVD or CVE. The authors investigate
the vulnerability life cycle events by comparing the vulnerability
disclosure date and the exploit creation date. For such a purpose,
they emphasize OSVDB can provide the patch date and exploit
data information.

Besides the existing public vulnerability databases displayed
in Fig. 4, some studies propose custom databases. For example,
Reis and Abreu (2017) creates a custom vulnerability database,
Secbench, by mining GitHub projects for different vulnerability
patterns. Yap and Zhong (2004) proposes the design of a new
proof-of-concept vulnerability database allowing effective data
integration from multiple sources. Allodi and Massacci (2012)
constructed another custom database, EKITS, from the vulnerabil-
ities used in exploit kits from the black market. Fan et al. (2020)
created a custom database, Big-Vul, containing only C/C++ code
vulnerabilities from open-source GitHub projects. These custom
databases are not used in the other selected papers.

To summarize and compare the popular vulnerability
databases, Tan et al. listed a set of 28 security vulnerability
databases which can be divided by their publishers (government
or enterprise) (Tan et al., 2019). By comparing the results, we
find only 10 of the vulnerability databases identified herein are
mentioned by Tan et al. (2019). Meanwhile, many vulnerability
databases mentioned in Tan et al. (2019), especially the ones
described in the Chinese language, are not often adopted in
academia.

4.2. RQ2. What are the goals to employ vulnerability datasets by
research communities?

Toward answering RQ2, we investigate the goals of the se-
lected papers when employing their selected vulnerability
databases. We summarize the goals of selected papers into the
following categories. Among the 69 selected papers, we identify
the following 8 main goals:

• Analysis - The contribution of the paper is to provide ana-
lytical results showing latent insights about one or multiple

existing vulnerability databases.



X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679
Table 4
Vulnerability databases.
VDB Description Selected papers

1337Day The Underground, is one of the world’s most popular and
comprehensive computer security web sites.

Fedorchenko et al. (2015)

Android Security
Bulletins

The available Android Security Bulletins, which provide fixes for
possible issues affecting devices running Android.

Linares-Vásquez et al. (2017)

CERT The CERT/CC Vulnerability Notes Database is run by the CERT
Division of Carnegie Mellon University.

Yap and Zhong (2004), Frei et al. (2006), Roschke et al. (2009),
Massacci and Nguyen (2010)

CoopVDB The Cooperative Vulnerability Database by The Center for Education
and Research in Information Assurance and Security (CERIAS) of
Purdue University

Roschke et al. (2009)

CVE CVE is a list of records, each containing an identification number, a
description, and at least one public reference, for publicly known
cybersecurity vulnerabilities.

Yap and Zhong (2004), Frei et al. (2006), Wang and Guo (2009),
Yun-hua and Pei (2010), Bozorgi et al. (2010), Neuhaus and
Zimmermann (2010), Chen et al. (2010), Massacci and Nguyen
(2010), Chang et al. (2011), Massacci et al. (2011), Edwards and
Chen (2012), Kuo et al. (2013), Glanz et al. (2015), Fedorchenko
et al. (2015), Camilo et al. (2015), Perl et al. (2015), ur Rahman et al.
(2016), Takahashi and Inoue (2016), Xianghui et al. (2015), Jimenez
et al. (2016), Reis and Abreu (2017), Fedorchenko et al. (2017), Han
et al. (2017), Linares-Vásquez et al. (2017), Chen et al. (2018),
Williams et al. (2018), Fan et al. (2020), Wu et al. (2020), Jiang et al.
(2019), Vanamala et al. (2020), Chen et al. (2020), Antal et al.
(2020), Sönmez (2021), Nikitopoulos et al. (2021), Wang et al.
(2021), Jiang et al. (2021), Yuan et al. (2021), Guo et al. (2021),
Yosifova et al. (2021), Challande et al. (2022), Hong et al. (2022),
Forain et al. (2022)

DoE-CIRC DOE-CIRC provides the U.S. Department of Energy with incident
response, reporting, and tracking, along with other computer
security support.

Roschke et al. (2009)

Dragonsoft DragonSoft Vulnerability DataBase by DragonSoft Security Associates,
Inc.

Roschke et al. (2009)

EDB The Exploit Database (EDB) is an ultimate archive of exploits and
vulnerable software.

Allodi and Massacci (2012), Fedorchenko et al. (2015), ur Rahman
et al. (2016), Fedorchenko et al. (2017)

CERT-FR(Previous
FrSIRT)

French Security Incident Response Team Frei et al. (2006)

JVN Japan’s national vulnerability database. It is maintained by the Japan
Computer Emergency Response Team Coordination Center and the
Japanese government’s Information-Technology Promotion Agency.

Takahashi and Inoue (2016)

MFSA Mozilla Foundation Security Advisories Massacci and Nguyen (2010), Massacci et al. (2011), Nguyen and
Massacci (2012), Alves et al. (2016)

MSRC The Microsoft Security Response Center is part of the defender
community and on the front line of security response evolution. For
over twenty years we have been working to improve security for
customers. Our mission is to protect customers and Microsoft from
current and emerging threats related to security and privacy.

Kuo et al. (2013), Jiang et al. (2021)

NVDB OpenBSD Vulnerability Database (NVDB) is a vulnerability database
of OpenBSD constructed for studying the vulnerability discovery
process.

Massacci and Nguyen (2010)

NVD The NVD is the U.S. government repository of standards based
vulnerability management data, it includes databases of security
checklist references, security-related software flaws,
misconfigurations, product names, and impact metrics.

Frei et al. (2006), Wang and Guo (2009), Yun-hua and Pei (2010),
Huang et al. (2010), Massacci and Nguyen (2010), Zheng et al.
(2011), Tripathi and Singh (2011), Gallon (2011), Chang et al. (2011),
Liu and Zhang (2011), Massacci et al. (2011), Allodi and Massacci
(2012), Nguyen and Massacci (2012), Shahzad et al. (2012), Kim
et al. (2013), Glanz et al. (2015), Fedorchenko et al. (2015), Zhang
et al. (2015), Wen et al. (2015), Camilo et al. (2015), Takahashi and
Inoue (2016), Alqahtani et al. (2016), Jimenez et al. (2016),
Fedorchenko et al. (2017), Gkortzis et al. (2018), Chen et al. (2018),
Ponta et al. (2019), Williams et al. (2018), Li et al. (2019), Jimenez
et al. (2019), Jiang et al. (2019), Huang et al. (2020), Nerwich et al.
(2020), Zou et al. (2019), Chen et al. (2020), Nikitopoulos et al.
(2021), Wang et al. (2021), Kuehn et al. (2021), Jiang et al. (2021),
Wu and Wang (2011), Aksu et al. (2018)

OSVDB The Open Sourced Vulnerability Database (OSVDB) was an
independent and open-sourced vulnerability database. The goal of
the project was to provide accurate, detailed, current, and unbiased
technical information on security vulnerabilities.

Frei et al. (2006), Roschke et al. (2009), Vache (2009), Bozorgi et al.
(2010), Massacci and Nguyen (2010), Zheng et al. (2011), Tripathi
and Singh (2011), Shahzad et al. (2012), Kim et al. (2013),
Fedorchenko et al. (2015), Wen et al. (2015), Fedorchenko et al.
(2017)

(continued on next page)
6



X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679

t

v
a
t
g
i

p

l
a
o
r

Table 4 (continued).
VDB Description Selected papers

SARD Software Assurance Reference Dataset (SARD) is to provide users,
researchers, and software security assurance tool developers with a
set of known security flaws.

Xiaomeng et al. (2018), Li et al. (2019), Zou et al. (2019)

Secunia Secunia Research criticality rating and Common Vulnerability Scoring
System (CVSS) metrics are issued following distinct analysis
including product context and related security best practices to
allow for a greatly improved means of prioritizing by criticality.

Frei et al. (2006), Roschke et al. (2009), Chen et al. (2010), Tripathi
and Singh (2011),

SecurityFocus The SecurityFocus Vulnerability Database provides security
professionals with the most up-to-date information on
vulnerabilities for all platforms and services.

Frei et al. (2006), Roschke et al. (2009), Tripathi and Singh (2011), ur
Rahman et al. (2016)

Snyk.io Snyk is a developer security platform. Integrating directly into
development tools, workflows, and automation pipelines, Snyk makes
it easy for teams to find, prioritize, and fix security vulnerabilities in
code, dependencies, containers, and infrastructure as code.

Decan et al. (2018)

VMware Security
Advisories

former VMware Tanzu Reports and Pivotal VulnerabilityReport. Now
is a document remediation for security vulnerabilities that are
reported in VMware products.

Jiang et al. (2021)

VulDB Number one vulnerability database hosting and explaining
vulnerabilities since 1970. - VulDB.

Alves et al. (2016)

Vupen VUPEN Security offers defensive and offensive cybersecurity
intelligence and advanced in-house vulnerability research

Zheng et al. (2011), Liu and Zhang (2011)

X-Force IBM X-Force Exchange is a threat intelligence sharing platform
enabling research on security threats, aggregation of intelligence,
and collaboration with peers.

Frei et al. (2006), Roschke et al. (2009), Yun-hua and Pei (2010),
Chen et al. (2010), Massacci and Nguyen (2010), Zheng et al.
(2011), Tripathi and Singh (2011), Liu and Zhang (2011),
Fedorchenko et al. (2015, 2017), Guo et al. (2021)

XSA Security Advisories for Xen Project Alves et al. (2016)

Securiteam A commercial vulnerability database for the network vulnerability
scanner product

Roschke et al. (2009)

CNVD/CNNVD the Chinese National Vulnerability Database Forain et al. (2022)
• Merging - The contribution of the paper is to merge multiple
existing vulnerability databases.

• Creation - The contribution of the paper is to provide the cre-
ation of new vulnerability databases by collecting security
vulnerability information from other sources.

• Application - The contribution of the paper is to provide
solutions to existing research gaps or industrial issues by
adopting one or multiple vulnerability databases.

• Classification - The contribution of the paper is to provide
vulnerability categorization or categorization approaches
using one or multiple vulnerability databases.

• Enhancement - The contribution of the paper is to improve
the quality of the existing vulnerability databases by adding
information obtained from other sources.

• Comparison - The contribution of the paper is to provide
a comparison between two or more existing vulnerability
databases.

• Detection - The contribution of the paper is to provide ap-
proaches to detect vulnerabilities in software applications
by adopting existing vulnerability databases.

Fig. 5 summarizes the distribution of the different goals iden-
ified within the selected papers.

From Fig. 5 we can state that the main goal when using
ulnerability databases (more than 46% of the works) is to provide
nalytical insights. The second notable goal (detected in ∼ 30% of
he works) is to merge multiple existing databases. All the other
oals can be classified as marginal as none of them exceeds 16%
n our usage distribution.

Table 5 presents the categorized contributions of the selected
apers mapped to the summarized goals.
As we can observe from both Fig. 5 and Table 5, 30 of the 69 se-

ected papers contribute to analyzing the vulnerability databases
s well as their related information. Therein, eight studies focus
n investigating the connection between vulnerabilities and other
elevant information. For example, Edwards and Chen (2012)
7

Fig. 5. Paper goals.

studies the correlation between the changes in issue density
and those in vulnerability discovery rate in new releases. Other
studies, like Camilo et al. (2015), Alves et al. (2016), Alqahtani
et al. (2016), Jimenez et al. (2016), Sönmez (2021), investigate
the correlation between vulnerabilities and software repository
information, e.g., pre-release bugs, issues, commit messages and
metrics. Meanwhile, seven studies investigate the life cycle of
vulnerabilities while five studies the trends in vulnerability as
well as their metrics. Massacci et al. (2011) looks into the case
of Firefox and the evolution of its source code, investigating the
phenomena of ‘‘after-life vulnerabilities’’. Vache (2009) analyzes
quantitatively the vulnerability life cycle and the patch disclo-
sure behaviors related. Decan et al. (2018) studies the impact
of vulnerabilities on the npm packages and their dependencies,



X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679

i
p
t
m
d
e
p
p
e
p
v
m
o
s
m
u

i
t
e
c
n

Table 5
Vulnerability databases research goals.
Goal Contribution Selected papers

Analysis Trend of vulnerabilities and metrics Frei et al. (2006), Neuhaus and Zimmermann (2010), Chang
et al. (2011), Williams et al. (2018), Jiang et al. (2019)

Impact of vulnerabilities and metrics Frei et al. (2006), Shahzad et al. (2012), Linares-Vásquez et al.
(2017), Decan et al. (2018), Jiang et al. (2021)

Distribution of vulnerabilities Gallon (2011), Liu and Zhang (2011)
Quality of vulnerability DBs Massacci and Nguyen (2010), Kuehn et al. (2021)
Life cycle of vulnerabilities Vache (2009), Massacci et al. (2011), Shahzad et al. (2012),

Linares-Vásquez et al. (2017), Decan et al. (2018), Williams
et al. (2018)

Vulnerability discovery validation Nguyen and Massacci (2012), Xianghui et al. (2015), Xiaomeng
et al. (2018), Li et al. (2019), Jimenez et al. (2019), Huang
et al. (2020), Antal et al. (2020)

Connection between vulnerabilities and other info Shahzad et al. (2012), Edwards and Chen (2012), Camilo et al.
(2015), Alves et al. (2016), Alqahtani et al. (2016), Jimenez
et al. (2016), Jiang et al. (2019), Sönmez (2021)

Vulnerability types Neuhaus and Zimmermann (2010), Linares-Vásquez et al.
(2017)

Others Vache (2009), Liu and Zhang (2011), Chen et al. (2018),
Nerwich et al. (2020)

Application Prediction on vulnerability attributes Zhang et al. (2015), Han et al. (2017), Chen et al. (2020), Yuan
et al. (2021), Yosifova et al. (2021)

Security information extraction Perl et al. (2015), Alqahtani et al. (2016), Wu et al. (2020),
Guo et al. (2021), Wu and Wang (2011)

Classification Classification based on vulnerability information Huang et al. (2010), Chen et al. (2010), Wen et al. (2015),
Vanamala et al. (2020)

Classification toward prediction/detection Bozorgi et al. (2010), Perl et al. (2015)

Comparison Comparing information contents in prominent VDBs Tripathi and Singh (2011), Forain et al. (2022)

Creation Creating by merging information Yap and Zhong (2004), Zheng et al. (2011), Allodi and
Massacci (2012), Fedorchenko et al. (2015), Ponta et al. (2019),
Fan et al. (2020), Nikitopoulos et al. (2021), Wang et al. (2021)

Creating by extracting information Reis and Abreu (2017), Gkortzis et al. (2018)

Detection Multiclass vulnerability detection Zou et al. (2019)

Enhancement Enhancing vulnerability info quality Glanz et al. (2015), Takahashi and Inoue (2016), Kuehn et al.
(2021)

Merging as is Roschke et al. (2009), Wang and Guo (2009), Yun-hua and Pei
(2010), Kuo et al. (2013), Kim et al. (2013), ur Rahman et al.
(2016), Fedorchenko et al. (2017)

Merging Merging for analysis Shahzad et al. (2012), Jiang et al. (2019), Nerwich et al. (2020)
Merging for classification Vanamala et al. (2020)
Merging for creation Yap and Zhong (2004), Zheng et al. (2011), Allodi and

Massacci (2012), Fedorchenko et al. (2015), Ponta et al. (2019),
Fan et al. (2020), Nikitopoulos et al. (2021), Wang et al.
(2021), Challande et al. (2022), Hong et al. (2022)
regarding, the effectiveness of vulnerability discovery and fixing,
as well as the related effect.

11 selected papers focus on the application of vulnerabil-
ty databases for different purposes. Therein, five of the papers
ropose methods to use vulnerability data to predict the at-
ributes of vulnerabilities. For example, Zhang et al. (2015) uses
achine learning methods on NVD vulnerability data to pre-
ict the time to the next vulnerability. Han et al. (2017), Chen
t al. (2020), Yuan et al. (2021), and Yosifova et al. (2021) also
ropose approaches using machine learning or deep learning to
redict vulnerability severity, vulnerability relatedness, security
ntity relationship, and vulnerability types. The other four pa-
ers conduct research on extracting security information from
ulnerability databases. Alqahtani et al. (2016) proposes a se-
antic web approach to extract the ontological representation
f vulnerability databases as well as the traceability links toward
oftware repositories. Guo et al. (2021) proposes a deep learning
ethod to extract key aspects of vulnerability information from
nstructured vulnerability description.
Specifically, six papers propose approaches toward vulnerabil-

ty classification. Therein, two propose methods to use classifica-
ion models to predict potential vulnerability attributes. Bozorgi
t al. (2010) proposes to use trained linear support vector ma-
hines (SVM) classifiers to predict whether and how soon a vul-

erability is likely to be exploited. Perl et al. (2015) also uses SVM

8

classification method to detect suspicious commits. Meanwhile,
four papers propose a classification based on different vulnera-
bility information. Huang et al. (2010) proposes a text clustering
method on the vulnerability descriptions from NVD where 45
main clusters are detected as the main taxonomies. Chen et al.
(2010) proposes a classification framework using SVM on the
diverse taxonomic features of multiple vulnerability databases,
which also the phenomena that the majority of the security risks
are harbored by a small set of services. Wen et al. (2015) pro-
poses an automatic categorization framework of vulnerabilities
using text mining. Vanamala et al. (2020) uses topic modeling
to classify existing vulnerability topics toward OWASP top 10
vulnerabilities.

21 selected papers provide approaches to merge multiple vul-
nerability databases for various purposes. Seven papers propose
merging approaches as is. For example, Roschke et al. (2009)
proposes an approach toward unifying vulnerability information
for attack graph construction; Wang and Guo (2009) proposes
an ontological approach for vulnerability management to connect
vulnerabilities in NVD with additional information, e.g., inference
rules, knowledge representation, etc. Meanwhile, eight papers
propose methods to merge existing vulnerability databases and
potentially other sources of information toward creating new
ones. For example, Yap and Zhong (2004) proposes a new vul-

nerability database, Movtraq, by integrating general vulnerability



X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679

i
m
e
a
n
i
a
p
e
d
t
f
n
f
b
a
V
v

i
(
a
q
2

4

a
t
c

nformation with additional environmental requirements infor-
ation and vulnerability impact from CERT, Bugtraq, etc. Zheng
t al. (2011) proposes an alliance model, named IVDA, which
ims to integrate security databases managed by security orga-
izations from different countries. This study also proposes the
nternational vulnerability description (IVD) to identify vulner-
bilities and avoid redundancy. Furthermore, two papers pro-
ose approaches toward new vulnerability database creation by
xtracting information. Reis and Abreu (2017) proposes a new
atabase of ‘‘real’’ security vulnerabilities, SECBENCH, by mining
he millions of commits for 16 different vulnerability patterns
rom GitHub repositories. Herein, the authors refer to ‘‘real’’ vul-
erabilities as the ones in contrast to the artificial hand-seeded
aults used in empirical studies due to the challenges of vulnera-
ility extraction or reproduction. Gkortzis et al. (2018) proposes
new dataset of security vulnerabilities in open-source systems,
ulinOSS, which maps the OSS version references and various
ulnerability reports from NVD.
Five papers contribute to other purposes, including compar-

ng the information contents of different vulnerability databases
Tripathi and Singh, 2011, Forain et al., 2022), multi-class vulner-
bility detection (Zou et al., 2019), and vulnerability information
uality enhancement (Glanz et al., 2015; Takahashi and Inoue,
016; Kuehn et al., 2021).

.3. RQ3 . What are the other sources of information adopted to
facilitate such goals?

For RQ3, we investigate what other resources of information
re adopted by the selected papers that facilitate their studies
oward the above mentioned goals. These information sources are
ategorized as follows.

• Vulnerability databases - The public platforms providing a
record of existing vulnerability information (e.g., NVD, CVE,
SecurityFocus, etc.)

• Project data - The set of information regarding any soft-
ware projects and products (e.g., GitHub projects, Derby,
Chromium, etc.)

• Identifier - The pre-defined indicator sets that facilitate fast
and accurate correlation of configuration data across multi-
ple information sources and tools (e.g., CCE, CPE, etc.)

• Doc and Articles - The collections of documents and articles
that contain security and vulnerability related information
(e.g., Microsoft Knowledge Database, Cybersecurity news,
etc.)

• Bug report databases - The collections of bug reports from
bug tracking systems or testing tools for specific software
projects or from software collaboration platforms (e.g.,
Bugzilla, LaunchPad, etc.)

• Others - The other sources that provide additional informa-
tion.

Within the 69 selected papers, 38 of them employed other in-
formation sources besides vulnerability databases listed in
Table 4. Therein, four main types of information have been iden-
tified with the number of selected papers adopting each type of
source shown in Table 6.

Therein, 15 selected papers adopted specific software project
data or software projects databases as the additional information
sources. Amongst them, 11 papers utilized software repository
information from GitHub. For example, Perl et al. (2015) uses the
commit data, specifically the vulnerability-contributing commits,
from GitHub projects, together with the CVE database, conducting
the large-scaled mapping between them. Jimenez et al. (2016)
uses the source code of Android operating system from GitHub
9

to investigate the comprehensive list of issues leading to Android
vulnerabilities. Reis and Abreu (2017) also uses the source code
data from 248 GitHub projects, as well as the commit messages
to investigate the different patterns of security vulnerabilities
and attacks. Besides GitHub data, other software project data
sources are adopted, including Maven project data (Alqahtani
et al., 2016), Software Heritage Graph Dataset (Antal et al., 2020),
NASA Metrics Data Program (MDP), and OpenBSD project data
(Massacci and Nguyen , 2010), Chromium project data (Camilo
et al., 2015), and PROMISE repository data (Massacci and Nguyen
, 2010).

Five papers use the data from bug report systems, e.g., Bugzilla
and Bugtraq, supporting their study with vulnerability databases.
For example, both Bugzilla and Bugtraq data are used in Massacci
and Nguyen (2010) as part of the database comparison. Nguyen
and Massacci (2012) uses bug report data from Bugzilla together
with NVD data to investigate the impact of different vulnerability
definitions on the ‘‘goodness-of-fitness’’ of vulnerability discov-
ery models. Alves et al. (2016) uses Bugzilla data together with
the vulnerabilities information of five projects to investigate the
relation between software metrics and existing vulnerabilities.
Chen et al. (2020) uses Bugzilla data as part of the training data,
together with data from different issue trackers (e.g., Jira tickets,
GitHub issues) toward the prediction of vulnerability relatedness.
Hong et al. (2022) proposes a high-coverage approach collecting
known security patches by tracking multiple data sources includ-
ing issue trackers like Bugzilla, GitHub projects, and information
from Stack Overflow.

Meanwhile, the Common Platform Enumeration (CPE) Dic-
tionary as a configuration identifier for vulnerabilities is also
commonly adopted. For example, Wang and Guo (2009) uses
CPE as one of the critical information sources for the proposed
ontology for vulnerability management. Fedorchenko et al. (2015)
and Zhang et al. (2015) also use CPE for the integration of
vulnerability-related information for the purposes of database
merging and vulnerability prediction respectively.

Security related documents and articles are also used to sup-
port the studies on vulnerabilities. For example, Reis and Abreu
(2017) aims to design a database for security testing with vul-
nerabilities mined from GitHub where the OWASP Top 10 2017
is used for the identification of a considerable amount of trending
security patterns. Vanamala et al. (2020) also adopts the OWASP
Top 10 risks as the vulnerability types for the proposed topic
modeling and classification of the CVE database. ThreatPost and
Microsoft Security Bulletin are also used as additional information
sources supporting vulnerability database integration (ur Rahman
et al., 2016) and database comparison (Massacci and Nguyen ,
2010).

Furthermore, there are other types of vulnerability-related
information sources commonly adopted by a number of the se-
lected papers. Therein, CVSS is the most adopted information
utilized by 15 selected papers where it quantifies the evalua-
tion of vulnerability impact. For example, five studies, Frei et al.
(2006), Gallon (2011), Chang et al. (2011), Liu and Zhang (2011),
and Jiang et al. (2019), investigate the trends and distribution
of vulnerabilities in databases in terms of CVSS; Seven studies,
Roschke et al. (2009), Wang and Guo (2009), Shahzad et al.
(2012), Kuo et al. (2013), Kim et al. (2013), ur Rahman et al.
(2016), and Jiang et al. (2019), propose approaches to merge
vulnerability databases also taken into account CVSS as one of
their key information resources; CVSS is also used in two studies
toward vulnerability-related predictions, i.e., Zhang et al. (2015),
Han et al. (2017). In addition, OVAL, Jira issues, CAPEC, CRE, ERI,
SCAP, Code gadgets, emails from the OSS project mailing list,
and user contributed attacks and vulnerabilities are also used as
information sources in 10 studies reported in Table 6.



X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679
Table 6
Other information sources adopted.
Type Source Description Selected papers

Project DB GitHub data information retrieved from GitHub Perl et al. (2015), Jimenez et al. (2016), Reis
and Abreu (2017), Gkortzis et al. (2018), Ponta
et al. (2019), Jimenez et al. (2019), Fan et al.
(2020), Chen et al. (2020), Nikitopoulos et al.
(2021), Wang et al. (2021), Hong et al. (2022)

Maven Project Apache Maven is a software project management and
comprehension tool.

Alqahtani et al. (2016)

Software Heritage
Graph Dataset

The dataset links together file content identifiers, source code
directories, Version Control System (VCS) commits tracking
evolution over time.

Antal et al. (2020)

OpenBSD Project A FREE, multi-platform 4.4BSD-based UNIX-like operating system Massacci and Nguyen (2010)
NASA MDP NASA IV&V Facility Metrics Data Program Massacci and Nguyen (2010)
Chromium Project Include Chromium and Chromium OS, the open-source projects. Camilo et al. (2015)
PROMISE a public repository that hosts many sanitized data sets used in

many prediction models.
Massacci and Nguyen (2010)

Bug Report Bugzilla a web-based general-purpose bug tracking system and testing
tool

Massacci and Nguyen (2010), Nguyen and
Massacci (2012), Alves et al. (2016), Chen
et al. (2020), Hong et al. (2022)

Bugtraq An electronic mailing list dedicated to issues about computer
security.

Massacci and Nguyen (2010)

Jira a proprietary issue tracking product Chen et al. (2020)

Identifier CCE unique identifiers to system configuration issues Fedorchenko et al. (2017)
CPE a structured naming scheme for information technology systems,

software, and packages
Wang and Guo (2009), Fedorchenko et al.
(2015), Zhang et al. (2015), Takahashi and
Inoue (2016), Fedorchenko et al. (2017), Jiang
et al. (2019, 2021)

Doc&Articles OWASP OWASP Top 10 is a standard awareness document for developers
and web application security.

Reis and Abreu (2017), Vanamala et al. (2020)

ThreatPost an independent news site which is a leading source of
information about IT and business security.

ur Rahman et al. (2016)

MS Security Bulletin Security bulletin for The Microsoft Security Response Center Massacci and Nguyen (2010)
StackOverflow Q&A Forum Hong et al. (2022)

Others CVSS an open framework for communicating the characteristics and
severity of software vulnerabilities.

Frei et al. (2006), Roschke et al. (2009), Wang
and Guo (2009), Bozorgi et al. (2010), Gallon
(2011), Chang et al. (2011), Liu and Zhang
(2011), Shahzad et al. (2012), Kuo et al.
(2013), Kim et al. (2013), Zhang et al. (2015),
ur Rahman et al. (2016), Han et al. (2017),
Jiang et al. (2019), Kuehn et al. (2021)

OVAL A community-developed language for determining vulnerability
and configuration issues

Roschke et al. (2009), Zhang et al. (2015),
Aksu et al. (2018)

CAPEC a comprehensive dictionary of known patterns of attack
employed by adversaries

Wang and Guo (2009), Xianghui et al. (2015),
Fedorchenko et al. (2017), Jiang et al. (2019),
Yuan et al. (2021)

CRE Common Remediation Enumeration (CRE) Fedorchenko et al. (2017)
ERI Extended Remediation Information (ERI) Fedorchenko et al. (2017)
User contribution user reported attacks, and vulnerabilities. Nerwich et al. (2020)
SCAP Security Content Automation Protocol Wang and Guo (2009)
Code gadgets (code) statements that are semantically related to each other. Zou et al. (2019)
Emails emails from OSS projects mailing list Chen et al. (2020)
4.4. RQ4 . What are the methods and techniques adopted?

For RQ4, we investigate and summarize the methods and
techniques applied by the selected papers in terms of how they
utilize the vulnerability databases and other information sources
toward the goals mentioned above. The methods and techniques
are categorized as follows.

• Info Integration - The approach is a combination of tra-
ditional methods to match relevant information manually
(e.g., reading vulnerability reports and matching them to
source code), using pre-defined identifiers (e.g., using CVE Id
match vulnerabilities from different vendors) or with source
code (e.g., using basic string manipulation and compare
methods to match users’ report to NVD vulnerabilities).

• Statistics - Statistical methods are applied to the
vulnerability-related information sources to gain further
insights.
10
• Machine Learning - Using machine learning algorithms (e.g.,
Naive Bayes, Logistic Regression, Decision Tree, etc.) to sup-
port the analysis of vulnerability database information.

• Deep Learning - Using deep learning algorithms (e.g., CNN,
RNN, etc.) to support the analysis of vulnerability database
information.

• Data Collecting - Collecting vulnerability data from pub-
lic databases or other sources via web scraping or other
crawling techniques to support the analysis of vulnerability
database information.

• Text Analysis - Analyzing the collected textual data manually
or using NLP techniques to extract insights from
vulnerability-related information.

As shown in Fig. 6, within the 69 selected papers, nearly
half (33 papers) adopt the conventional information integration
methods to analyze, merge or utilize vulnerability databases.
Therein, for 19 papers, such a method serves the purpose of
database merging. Four of the papers propose the construction of
common security-based databases using identifiers. For example,



X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679
Fig. 6. Method distribution.

Yun-hua and Pei (2010), Shahzad et al. (2012), and Kuo et al.
(2013) propose the integration of information from multiple ex-
isting vulnerability databases using CVEID as an identifier. Ponta
et al. (2019) propose similar integration of databases but also
mention, besides CVEID, project-specific identifiers can also be
used. Two of the papers propose a common schema of relations
between security info to integrate vulnerability databases and
other sources. Both Fedorchenko et al. (2015) and Fedorchenko
et al. (2017) propose ontological approaches to integrate security
information, including both dynamical and static content, via a
common schema of the relations. Meanwhile, four of the papers
(Yap and Zhong, 2004; Roschke et al., 2009; Wang and Guo, 2009;
Nerwich et al., 2020) extract information from texts, such as
the description of the vulnerabilities, to support the integration.
Commit histories are also used as the connector between vulner-
abilities and project commits by Fan et al. (2020), Nikitopoulos
et al. (2021). Zheng et al. (2011) proposes to use systematic poli-
cies and language to archive international vulnerability databases
using Vulnerability Citation Index (VCI) as a unified identifier
to avoid redundancy. There are also four papers that do not
specify by what identifiers to merge the databases and/or other
information.

Furthermore, 26 of the papers combine information from vul-
nerability databases with possibly other sources for database
integration or analyzing and exploring in-depth insight therein.
For example, Huang et al. (2020) builds a prototype system that
accesses and integrates information, such as, exploit script, the
configuration of software, proof of vulnerability, and vulnerability
description . The system can be used to store and automat-
ically process vulnerability information for cloud-native appli-
cation vulnerability database. Antal et al. (2020) integrates the
information of vulnerabilities and that of vulnerability resolu-
tion commits to analyze the typical security issue types and the
security issues reaction times. Allodi and Massacci (2012) con-
struct a new database by integrating the standard vulnerability
form NVD with the ones currently used in exploit kits from
the black market. ur Rahman et al. (2016), Kim et al. (2013)
propose high-abstraction level system design which indicates the
integration of multiple vulnerability databases and other sources
of information.

In the results, nearly one third (21) of the selected papers
adopt statistical methods. For example, Frei et al. (2006) uses
statistical distribution, e.g., Exponential, Pareto, and Weibull, to
analyze the exploit availability of vulnerabilities. Similarly, Vache
11
(2009) uses the probability distribution to characterize the vul-
nerability life cycle and exploit creation events when Massacci
and Nguyen (2010) analyzes the distribution of vulnerability
severity ranking levels on NVD and the trend of these severity
ranking levels by years. Camilo et al. (2015) adopts the Cohen’s D
static (Cohen, 2013) to examine the amount of overlap between
neutral and vulnerable files with respect to a number of bugs.
Wu et al. (2020) uses the Wilcoxon rank-sum test to analyze
the statistical significance amongst classifiers. Furthermore, cor-
relation analysis is also applied, for example, Edwards and Chen
(2012) analyzes the correlation between issue density and annual
vulnerability.

Meanwhile, AI-based approaches, including machine learning
(ML), deep learning (DL), and natural language processing (NLP),
are also commonly applied to the large volume of vulnerability
data. Therein, several studies propose ML-based methods for vul-
nerability classification. For example, Yosifova et al. (2021) adopts
Linear Support Vector, Naive Bayes and Random Forest Classifier
to classify and predict vulnerability types. Perl et al. (2015) also
uses Linear Support Vector Machines (SVM) to classify commits
data toward detecting the ones that contribute to vulnerabilities.
Wen et al. (2015) uses also SVM algorithm with Radial kernel
function to train and classify the vulnerability data in the target
database. Xiaomeng et al. (2018) proposes using deep-learning
algorithm, e.g., CNN or RNN, on the vectorized representation of
regularized code data toward vulnerability analysis. Yuan et al.
(2021) also uses CNN-based graph attention network toward
the prediction of security entity relationships. Furthermore, NLP-
based methods are also commonly applied. For example, Williams
et al. (2018) uses Supervised Topical Evolution Model (STEM) on
a large volume of vulnerability-describing reports from NVD to
analyze the evolving trends of the vulnerabilities. Vanamala et al.
(2020) also utilizes topic modeling methods to classify the entries
of CVE database.

To be noted, some of the papers do not apply AI-based ap-
proaches but conduct crawling of the vulnerability data. For such
situations, the method is marked as ‘‘data collecting’’. For exam-
ple, Reis and Abreu (2017) extracts the indications of a vulner-
ability fix or patch committed by the developers from GitHub
projects. Chen et al. (2018) propose a text mining approach to
predict invalid vulnerability reports. To identify invalid CVEs,
they extract text features using term frequency. However, no
NLP tools or techniques are mentioned when conducting such
tasks. To clarify the differences, we categorize the method as ‘‘text
analysis’’ instead of ‘‘NLP’’.

4.5. RQ5 . Which tools are proposed for adopting or investigating
vulnerability databases?

For RQ5, we summarize what tools are proposed to sup-
port the research on vulnerability databases. Toward answering
this research question, we investigate the tools proposed by the
selected studies that utilize vulnerability databases, and possi-
bly the other information sources identified in Table 6. Within
the 69 selected papers, three of them propose tools that adopt
vulnerability databases.

The proposed tools include:

• µVulDeePecker (Zou et al., 2019) is a deep learning-based
multi-class vulnerability detection tool upgraded from the
original VulDeePecker (Li et al., 2018). The original VulDeeP-
ecker uses Bidirectional Long-Short Time Memory (BLSTM)
neural network to detect software vulnerabilities. As a bi-
nary classifier, it can only report the target source code



X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679

p
p
g
a
d

5

s
n
w

O

O

being vulnerable or not without detecting the vulnerabil-
ity types. The µVulDeePecker tool adopts the novel con-
cept of code attention and uses a novel feature fusion-
oriented three BLSTM networks toward multi-class vulner-
ability detection with vulnerability types identified. For this
tool, 181641 code gadgets, labeled either vulnerable or non-
vulnerable, are obtained from SARD and NVD covering 40
vulnerability types, which are used as training and testing
datasets.

• VCCFinder (Perl et al., 2015) is a code analysis tool that
flags suspicious commits by using an SVM-based detection
model. A large-scale database mapping CVE database to
collected vulnerability-contributing commits (VCCs) is built
for the evaluation.

• EVMAT (Aksu et al., 2018) is a dashboard solution for mon-
itoring enterprise vulnerability levels for proper enterprise
risk management. It can also automatically gather system
characteristics based on OVAL and further evaluates soft-
ware vulnerabilities installed in a computer resource based
on the data retrieved from NVD. The tool can also pro-
vide a quantified evaluation of the vulnerability score of an
enterprise.

The results show that compared to the number of selected
apers, the number of proposed tools is limited. Therein, though
ublic vulnerability databases are adopted, many are not inte-
rated into tools directly. For example, in Zou et al. (2019), SARD
nd NVD are used to create training and testing datasets. These
atasets are not integrated as tool components.

. Discussion and implications

The results of the research questions elaborated within the
cope of our systematic mapping study allow us to provide a
umber of implications for researchers and practitioners, which
e discuss in the following.

n vulnerability databases and their adoption. By summariz-
ing the previous studies on vulnerability databases, we
could observe that NVD and CVE are, by far, the most
commonly used vulnerability databases by researchers.
At the same time, we discovered that several countries
have their own national security vulnerability databases,
e.g., FrSIRT from France, JVN from Japan, or CNNVD from
China. So far, the main purpose of those databases is to
serve as a collection and standardized reference to known
vulnerabilities. Despite the availability of these alternative
databases, we pointed out that researchers have rarely
adopted them for research purposes. Indeed, only the work
by Zheng et al. (2011) proposed a framework aiming at
exploiting vulnerability databases from different countries
in an effort of providing a common framework.

Perhaps more importantly, the research effort conducted to
merge the pieces of information available in these vulner-
ability databases is still limited. According to our mapping
study (see Table 6), most of the studies that attempted to
merge data from different sources only focused on Github
data, CPE, and CVSS, therefore neglecting the potential
contributions brought by the alternative databases.

When considering this perspective, multiple challenges
and open questions arise. In the first place, we call for
more research aiming at assessing the ecological validity
of the findings achieved by researchers so far. Indeed, the
generalizability of the conclusions drawn in literature might
be potentially be threatened by the specific characteristics

of NVD and CVE and, therefore, additional insights might be

12
identified when considering alternative databases. In the
second place, the research efforts conducted to merge vul-
nerability data might be extended to a more comprehen-
sive set of vulnerability databases, further contributing to
the generation of more robust benchmarks, more generaliz-
able, and deeper analysis/understanding of the connections
between software vulnerabilities in the wild. Last but not
least, a few attempts have been made to enhance existing
vulnerability databases, despite the availability of other
sources of information that can be used to complement
them. In this sense, the findings of our mapping study
may serve as a basis for novel datasets, benchmarks, and
empirical investigations into vulnerabilities.

Implication #1. Our findings represent a call for
researchers working in the area of software security, soft-
ware vulnerability analytics, and empirical software engi-
neering, who are called to revisit previous findings on more
comprehensive sets of vulnerability databases and provide
more information about the ecological validity of the findings
reported in the literature.

Implication #2. The variety of vulnerability databases
identified in our work represents an opportunity for
researchers to build novel, unified data sources, and bench-
marks, which might be exploited to better understand the
nature and the relations between software vulnerabilities.
The additional sources of information available on software
vulnerabilities might serve as a further instrument to enhance
existing databases. Moreover, we foresee the opportunity for
companies to develop new integrated data sources and pro-
vide direct API access to developers that need to continuously
check the existence of possible vulnerabilities on the software
component they are using.

n the limitations of vulnerability databases. As part of our
systematic mapping, we could discover that only a limited
set of studies employed vulnerability databases in the
context of vulnerability detection (e.g., Zou et al., 2019),
database comparison (e.g., Tripathi and Singh, 2011), and
database quality improvement (e.g., Glanz et al., 2015). In-
stead, these studies preferred uncovering vulnerability data
by mining other data sources (Lin et al., 2020). This clearly
indicates that the current structure and information pro-
vided by the existing vulnerability databases are limited,
preventing their wider adoption in research. Very likely,
most of the limitations are due to the limited amount
of metadata provided to researchers. For instance, let us
consider the case of vulnerability detection approaches.
Most of these approaches aim at detecting vulnerabilities
at line-, function, or file-level. However, most vulnerability
databases do not provide fine-grained pieces of informa-
tion on the location of vulnerabilities that can be actually
exploited by vulnerability detection approaches. As such,
the practical usefulness of vulnerability databases is threat-
ened and our study promotes further considerations on
the way vulnerability databases can be helpful for soft-
ware security, both from the researcher’s and practitioner’s
perspective. For instance, we may envision a stronger, col-
laborative effort involving researchers, practitioners, and
government agencies with the aim of revisiting the way
the vulnerabilities stored in public databases are collected
and made available: in this respect, novel data collec-
tion and reporting guidelines might be devised to let the
contributors of those databases be aware of the need of
curating vulnerabilities with additional meta-data. At the
same time, the limited amount of literature targeting data



X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679
quality contributes to having a few insights into the in-
formation needed by researchers. We, therefore, call for
further research efforts on the matter, as works aiming at
integrating information within those databases might be
a valuable contribution to the field and enable additional
research on software vulnerabilities—as also pointed out in
the previous discussion and implication point.

Implication #3. Current vulnerability databases lack fine-
grained information and metadata, hence threatening their
suitability for research targeting vulnerability detection. More
research on data quality and information needs should there-
fore be considered in an effort of establishing new ways
through which vulnerability databases can support the re-
search and practice on software security. We recommend
practitioners and in particular the maintainers of the vulner-
ability databases, to complement the information, introducing
fine-grained meta-data and considering data quality aspects.

On the actionability of vulnerability databases. One of the
most surprising outcomes of our systematic mapping study
was concerned with how vulnerability databases have been
used by researchers. Most studies employed databases to
conduct empirical analyses, while only two tools were
proposed within the 64 selected papers. Two other tool-
proposing papers were identified during the ‘‘full-reading’’
step but were rejected as a consequence of the inclu-
sion and exclusion criteria. Grieco et al. (2016) proposed
VDiscover, a tool using state-of-the-art machine learning
techniques to detect and predict vulnerabilities in test
cases. The proposed tool utilizes a customized dataset
built from the test case data from the Debian bug tracker;
however, the study does not utilize any public vulnerability
databases. Liu et al. (2018) proposed CBTracer to monitor
software runtime executions by catching its real-time I/O
traffic, which continuously builds a security database in-
cluding vulnerability discovery and exploit generation. The
data sources used for CBTracer include exploit challenges,
e.g., Capture The Flag (CTF) challenges and Cyber Grand
Challenge (CGC), with no vulnerability databases adopted.
Our findings, along with the further evidence provided
by the papers by Grieco et al. (2016) and by Liu et al.
(2018), further highlight the limited suitability of existing
vulnerability databases for research purposes other than
empirical analysis. This statement is also supported by the
fact that these tools are neither industrialized nor properly
maintained, meaning that the tools devised on the basis of
existing vulnerability databases seem to build on insuffi-
cient or incomplete pieces of information. In this sense, our
findings suggest that more research should focus on how
to make vulnerability databases actionable for industrially-
relevant research or suitable for practitioners interested
in exploiting vulnerability data for analytical instruments.
For the large open-source community, especially, for the
relevant research on open-source software quality and
sustainability (Li et al., 2022b,a), vulnerability databases
should also be seen as critical sources.

Implication #4. Current vulnerability databases seem not
to provide enough support for building tools and analytical
instruments. More research should target the actionability
of the current databases and possibly inform researchers on
how to complement the available pieces of information with
industrially-relevant insights.
13
6. Threats to validity

In this section, we follow the three categories of threats to va-
lidity in software engineering secondary studies proposed by Am-
patzoglou et al. (2019). Compared to the four-category guideline
by Wohlin et al. (2012), this categorization is more suitable for
secondary studies in the software engineering domain. Herein,
we discuss the Study Selection Validity, Data Validity, and Research
Validity of our study and the potential mitigation to their impact.

Study Selection Validity: In this study, the search strategy,
review protocol, and the data extraction process were entirely
based on established systematic mapping guidelines (Petersen
et al., 2008, 2015; Kitchenham et al., 2022). By doing so, we
reduced the threats to the initial search and study filtering pro-
cesses of the secondary study planning phase. Especially, the
search string was formulated to include keywords identified from
research questions and diversified using synonyms. Although the
automated search covers most publications, we admit that poten-
tial issues and limitations may arise during the search process,
such as (a) limitations on the search string and (b) searching
only on article titles, which may miss some relevant studies. To
mitigate the search limitations and extend the coverage of stud-
ies, we used snowballing as the complementary. We reviewed
all the references listed in the selected studies and evaluated all
the papers that reference the selected ones, which resulted in
26 additional relevant publications. The inclusion and exclusion
criteria were defined and piloted to assist the study selection.
The criteria are in line with the goal and research questions of
the paper and follow the guidelines recommended by Petersen
et al. (2008). Two authors conducted the study selection inde-
pendently. The other authors were involved in the discussion
to resolve the disagreement. Furthermore, the study selection
was conducted in December 2021. At the time of preparing the
submission of this study report in 2022, we executed the queries
to search for relevant studies published since our last queries, and
the new queries resulted in 3 additional studies which were also
included in the analysis. This reduces the potential threat of an
incomplete report.

Data Validity: Regarding the data extraction process, a similar
procedure is conducted where the first two authors carried out an
iterative and analytic process driven by the open coding method
to identify the classification schema. The last three authors fur-
ther reviewed and validated the codes assigned to all the selected
studies. For example, the three sets of categories for RQ2, RQ3,
and RQ4 extracted from the open coding method largely reduced
the bias in classification schema and the mapping of data. For
the data analysis process, thanks to the pre-defined categories,
the extracted results can be easily summarized and displayed
in the forms of bar-charts and tables. On the other hand, pub-
lication bias is also a potential threat to data validity where
methods, techniques and usage goals from companies are not
included sufficiently due to confidential policies, which is hard
to be mitigated. Such a perspective can be further investigated
via industrial surveys in future studies.

Research Validity: The study can be replicated by following
the replication documentation and the steps meticulously. The
search strings and details on the systematic mapping study pro-
cess are all described in detail in Appendix, by which the scholar
can easily replicate the study. Before the start of this study,
multiple discussion sessions were organized by all the authors
to determine the research method. As the decision on adopting
a systematic mapping study was agreed upon by all authors, it
shall mitigate the threat of the research method bias. After the
selection of research method, all the authors also determined the

research question together via several iterations.



X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679

s
u
r

m
t
f
a
c
v
l
n
t
i
a
t
a
l
s
l
t
a
t
a

l
t
m
l
r
a
a
p
2

Table 7
Comparison to related systematic studies.

Our Study Alqahtani (Alqahtani, 2022)

Research Questions In common: RQ1. VDBs commonly used

RQ2 Goals to employ
RQ3 Other info sources
RQ4 Methods and techs
RQ5 Tools proposed

RQ2 Security topics
RQ3 Topics changed
overtime

In common: Frei et al. (2006), Vache (2009), Neuhaus and
Zimmermann (2010), Camilo et al. (2015), Shahzad et al. (2012)

#SP 64 94

Years 2004–2022 2006–2017

Contributions Identify the common VDBs;
Focus on the goals and
methods used with/for the
common public VDBs in
academia; Identify other info
sources adopted supporting the
use of VDBs; Identify tools to
support such application;

Identify the common VDBs
used in SE community;
Focus on the common
security topics and their
changes overtime;

VDBs Commonly Used In common: NVD, CVE, OSVDB, SecurityFocus

1337Day, Android Security
Bulletins, CERT, CoopVDB,
DoE-CIRC, Dragonsoft, EDB,
CERT-FR, JVN, MFSA, MSRC,
NVDB, SARD, Secunia, Snyk.io,
VMware Security Advisories,
VulDB, Vupen, X-Force, XSA,
Securiteam, CNVD/CNNVD

OWASP, CWE
7. Related work

Software security vulnerabilities are a constant threat to the
oftware industry. The exploitation of vulnerabilities can lead to
nauthorized breaches and cause significant financial losses and
eputational damage to both software companies and customers.

As an early form of quality assurance in software develop-
ent, software vulnerability prediction is a data-driven process

o leverage historical software vulnerability knowledge for classi-
ying vulnerable code modules. McKinnel et al. (2019) performed
systematic literature review to investigate the use of artifi-

ial intelligence and machine learning techniques for software
ulnerability assessment and their performance. The authors se-
ected 31 relevant studies and identified the scalability and the
eed for real-time identification of exploitable vulnerabilities as
he research challenges and opportunities. The authors’ findings
ndicate the increasing attempts to leverage AI in vulnerability
ssessment. Similar findings are further reported in another sys-
ematic literature review by Eberendu et al. (2022) to investigate
pproaches to software vulnerability detection. The authors se-
ected 55 studies published between 2015 and 2021. The results
howed that besides the static and dynamic analysis, machine
earning and deep learning approaches were mostly used to de-
ect software vulnerability. Although there are studies on tools
nd applications for software vulnerability detection and predic-
ion, an investigation of the use of data sources for such tools and
pproaches is lacking.
A recent study by Croft et al. (2022) reports challenges and so-

utions to data preparation for vulnerability prediction. Based on
he 61 selected studies, the authors identified 16 data challenges,
ost of which were related to data generalizability, accessibility,

abel collection effort, etc. The results show that the complexity of
eal-world vulnerabilities and the difficulty in preparing vulner-
bility datasets form the major barrier to the adoption of vulner-
bility prediction in the industry. Similar findings have been re-
orted in other studies on vulnerability assessment (Turhan et al.,
009; Morrison et al., 2015; McKinnel et al., 2019; Chakraborty
14
et al., 2021). The studies show a clear need of creating high-
quality datasets that provide data provenance and comprehensive
information for better sharing and governance of vulnerability
data (Croft et al., 2022).

There are also other studies investigating public vulnerability
databases via systematic mapping study or systematic literature
review. Alqahtani conducted a survey on 99 relevant software
engineering research articles toward investigating the use of vul-
nerabilities databases in the software engineering domain Alqah-
tani (2022). The study focuses on the security topics covered in
software engineering studies as well as in different software en-
gineering activities. While Alqahtani’s research reports on which
are the commonly adopted vulnerability databases but does not
investigate the methods, the related information sources, or the
tools. Lin et al. also conducted a survey reviewing the literature on
building high-quality vulnerability datasets (Lin et al., 2022). The
study aims to investigate how data mining and data processing
techniques are adopted to generate vulnerability datasets to facil-
itate vulnerability discovery. However, Lin et al.’s study is neither
a systematic mapping study nor a systematic literature review.

We compare our study to the previously mentioned systematic
mapping study on vulnerability databases, i.e., Alqahtani (2022),
regarding the overlap of research questions, covered periods,
number of selected studies, etc. Details of the comparison are
present in Table 7.

Alqahtani’s study focuses on the vulnerability databases used
in software engineering domain when our study does not ap-
ply exclusions on other domains. Only five selected papers are
identical (i.e., Frei et al. (2006), Vache (2009), Neuhaus and Zim-
mermann (2010), Camilo et al. (2015), Shahzad et al. (2012))
between the two studies. Such a difference is caused by the
study focus. Alqahtani’s study include papers that use vulner-
ability databases on the level of individual vulnerabilities. For
example, Ming et al.’s study (Ming et al., 2016) on a hybrid taint
analysis tool that completely decouples the program execution
and taint analysis is included by Alqahtani. The study selects 10
individual vulnerabilities from CVE database as tests to evaluate



X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679
Table 8
SEGRESS checklist for the secondary study methods and our mapping study.
SEGRESS checklist
items

Our mapping study

Eligibility criteria The systematic mapping study seeks to understand the anatomy of the current availability of vulnerability databases,
with the purpose of deriving limitations and open challenges that researchers might need to address to further
support practitioners and researchers in devising methodologies and tools to deal with software vulnerabilities. The
inclusion criteria were mainly connected to the usefulness of a study to address our research objectives, and they are:

• Papers on how to use vulnerability databases
• Papers on how to enhance vulnerability databases
• Papers on how to create vulnerability databases
• Papers proposing methods to analyze the vulnerability datasets
• Papers using vulnerability databases

The exclusion criteria are:
• Not in English
• Duplicated (post summarizing other websites)
• Out of topic (using the terms for other purposes)
• Non peer-reviewed papers
• Research Plans, roadmaps, vision papers
• Not employing any vulnerability databases

Our selected studies excluded studies reported systematic review or mapping studies related to vulnerability
assessment and prediction (Croft et al., 2022; McKinnel et al., 2019; Eberendu et al., 2022) and the use of vulnerability
databases in software engineering process (Alqahtani, 2022), but are not primarily about methods and tools for
adopting vulnerability databases, although they were referenced in the discussion of related work.
All selected studies are published by Oct. 2022.

Information
sources

Five most representative databases for research in software engineering are used in the study, and they are Scopus,
IEEEXplore, ACM Digital Library, ScienceDirect, and Web of Science. In addition, Google Scholar was used in the
forward snowballing process, since it allows to easily search for the citations.

Search Strategy The search string was identified in the following steps: (1) identify the major terms using research questions; (2)
commonly used alternative spellings and/or synonyms; (3) verify the presence of any additional terms that were not
included in the first two steps. When no new terms were identified we concatenated the major terms using AND and
the alternatives and synonyms using OR. The Search string is ‘‘(security OR vulnerabilit* OR weakness*)’’AND
‘‘(database* OR dataset* OR repositor*)’’
The search string was used to search for relevant studies in the chosen databases. An initial search applying to article
title and abstract resulted in over 45k results from Scopus alone. Considering the feasibility and our aim to include
articles with their core contribution targeting the use of vulnerability databases, we narrowed down the scope by
applying the search string to the article title. We received 1205 non-duplicated studies, of which 42 papers were
selected for the mapping study using the predefined inclusion and exclusion criteria.
Each of the 42 studies then underwent another round of searches in a backward and forward snowballing process. We
relied on Google Scholar to search the articles citing each of the identified studies in the forward snowballing, and
browsed the reference list of each identified study in the backward snowballing. The processes were repeated for
newly identified studies until no new studies were identified. The snowballing process resulted in 27 articles. Hence,
the total number of identified studies was 69.

Selection Process The selection process was conducted through independent analysis and joint discussion. The first two authors of this
paper acted as inspectors. They first conducted a pilot investigation to verify the validity of the exclusion and inclusion
criteria: in this respect, they first independently analyzed an initial set composed of 50 articles, randomly selected
from the candidate set. After the pilot, the inspectors met and discussed the results: this procedure did not eventually
lead to modifications of the exclusion and inclusion criteria, which may indicate their completeness and suitability for
our study.
After the inspectors completed the pilot, they independently applied the exclusion criteria to the set of retrieved
articles. The analysis was first done based on the title and abstract. In cases where the inspectors were doubtful, they
read the paper in full. After the independent analysis, the two inspectors compared their results in order to reach full
consensus on articles that should beremoved from the analysis. In case of disagreement, the inspectors first proceeded
and read the entire article and then opened a discussion. If this was not enough, the other authors of the paper were
involved in the decision making process.

Data Collection
Process

The data collection process was driven by the open coding research method, namely through an analytic process by
which we could assign concepts (codes) to the observed data. Specifically, the following steps were performed:
1. In the initial stage, the inspectors (the first two authors) independently analyzed a subset of 10 articles and
assigned codes with the aim of addressing RQ2, RQ3, and RQ4. The inspectors were free to assign as many codes as
they found relevant. Afterward, they scheduled an inperson meeting to discuss about the codes assigned so far, in an
effort of finding an agreement. The meeting lasted 1.5 h. In the first place, the inspectors analyzed each of the ten
papers and explained how they came up with the codes — this process was performed to increase the awareness of
an inspector with respect to the choices made by the other. Secondly, they discussed about their choices and found an
agreement on the codes. Finally, they computed the inter-rater agreement through the Cohen’s k coefficient, which
measured 0.38, showing a low level of agreement.
the accuracy of our offline symbolic taint analysis in the task of
software attack detection when it is neither using nor applying
methods or techniques upon CVE database as a whole (Ming
et al., 2016). Therefore, similar studies are excluded in our study.
Furthermore, our study covers more recent studies from the year
2017 to 2022 compared to Alqahtani’s paper. Alqahtani’s paper
contributes specifically on the identification of security topics
and their changes overtime. Comparatively, our paper focuses
15
on investigating the use of vulnerability database as a whole, as
well as the methods, techniques, external information sources
and tools adopted or created for such a purpose.

Especially, regarding the results coverage, our study and
Alqahtani’s paper have four commonly used vulnerability
databases in common, i.e., NVD, CVE, OSVDB, SecurityFocus.
OWASP and CWE are also included as common vulnerability
databases in Alqahtani’s paper. Our paper considers OWASP as
external information source because OWASP Top 10 is a standard



X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679
Table 9
SEGRESS checklist for the secondary study methods and our mapping study (continues).
SEGRESS checklist
items

Our mapping study

Data Collection Process 2. On the basis of the discussion had during the first meeting, the inspectors reworked on the codes assigned. Then,
they took other 20 papers into account and proceeded with a new classification exercise. In this stage, the inspectors
mainly attempted to use the codes previously emerged, yet they were allowed to define new codes whenever needed.
At the completion of the task, the two inspectors scheduled another in-person meeting to open a new discussion on
their work. The second meeting lasted 1 h. The Cohen’s k coefficient scored 0.49 (moderate), hence showing a
substantial improvement.
3. The inspectors reworked on the codes. Afterward, they started the analysis of the remaining papers. Also in this
case, the inspectors were allowed to define new codes, if needed. Once the task was completed, the inspectors
planned a final in-person meeting to assess their work—this lasted around 2 h. Two key insights emerged from such a
meeting. First, no new codes were identified during the last coding exercise. As such, we reached the so-called
theoretical saturation, namely the phase where the analysis does not propose newer insights and all concepts are
developed. Second, the agreement between the inspectors scored 0.64, which may be interpreted as good. This further
corroborates the completion of the data analysis. As a result, therefore, all papers were classified according to the
concepts of interest.
4. As a final step, we proceeded with an additional validation of the codes assigned by the inspectors. In particular,
the last three authors of the paper went through papers and codes in an effort of identifying possible inconsistencies
and/or erroneous interpretations made during the first steps. This validation did not eventually lead to further
modifications. Hence, we could consider the data analysis completed.

Data items To identify the main characteristics of each selected study, the context related data items were collected. The list of
data items is below.

• Goal to employing vulnerability databases in each selected study were collected. The goals of study are
summarized to address RQ2.

• Methods and techniques applied to achieve the goals were identified to address RQ4.
• Vulnerability Databases used in each study were collected and summarized to address RQ1.
• Other databases and information adopted in each study were collected to summarize the range of information

sources used for achieving the goals, which addresses RQ3 and complements RQ1.
• Creating new vulnerability databases or merging from existing databases for custom vulnerability databases were

identified and collected for each study, addressing RQ2 and complementing RQ1.
• Proposed tools for investigating vulnerability databases and other information sources were collected from each

selected study to address RQ5.
The data was collected using the open coding research method, that is to say, through an analytic process by which
we could assign concepts (codes) to the observed data, addressing RQ2, RQ3, and RQ4. It is described in the Data
Collection Process.

Study Risk Of Bias
Assessment

The processes of study selection and data collection were conducted through independent analysis and joint discussion.
The details have been explained in the Selection Process and Data Collection Process. In the data collection process, the
Cohen’s k coefficient score was calculated at each step to measure the inter-rater agreement on the codes assignment
by inspectors. The scores indicated substantial improvement of the reliability for codes in the data collection process.

Effect Measures Since the research questions do not involve identifying the definition of outcome metrics used in empirical studies, the
effect measures were not applied in this systematic mapping study.

Analysis and
Summarizing methods

The characteristics of selected studies were sought following the data items and recorded in a shared excel file which
can always be revisited. We summarized the data by identifying themes emanating from the identified codes. These
identified themes gave us the categories reported in the Results section. The charts were created with selected data
using Excel’s chart creator, and tables were created based on the recorded data.

Reporting Bias
Assessmen

Not relevant for mapping studies

Certainty Assessment Not relevant for mapping studies
awareness document for developers and web application security.9
To be noted, besides the Top 10 list, OWASP foundation provides
tools, e.g., OWASP Dependency-Track,10 which is a vulnerability
dependency tracking tool that integrates with NVD and other
vulnerability databases. Its analysis covers a number of differ-
ent vulnerability databases. Meanwhile, CWE, as a community-
developed list of software and hardware weakness types,11 is only
used together with NVD or CVE. Compared to Alqahtani’s paper,
we also find there are 22 other vulnerability databases used in
our selected papers, which are listed in Table 7.

8. Conclusion

Vulnerability databases have been playing a crucial role in
collecting, maintaining, and disseminating information about dis-
covered software vulnerabilities, which contributes to software

9 https://owasp.org/www-project-top-ten/
10 https://owasp.org/www-project-dependency-track/
11 https://cwe.mitre.org/
16
security. Along with the advance in computing methods and the
growth of the data, it is highly required to understand how
vulnerability databases are used. We conducted a systematic
mapping study on the academic literature published before Octo-
ber 2022 in order to examine the existing body of knowledge in
the adopted vulnerability databases. Based on the 69 selected pa-
pers, we investigate what are vulnerability databases commonly
utilized, what other sources of information are also used, what
are the goals of using them, what methods are adopted, and what
tools are proposed. The summarized results show that NVD and
CVE are the most commonly adopted in vulnerability database
related studies with various other sources of information also
adopted, e.g., software project data, bug reports, security docu-
ments, and articles, etc. Meanwhile, besides the general methods
of information integration, data-driven methods are commonly
adopted when studying vulnerability data. The goals of the stud-
ies are mainly focusing on the analysis, classification, comparison,
enhancement, merging, and general analysis of the vulnerabil-
ity database themselves while vulnerability detection is seldom
studied with vulnerability databases utilized.

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-dependency-track/
https://cwe.mitre.org/


X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679

C

o
o

RediT authorship contribution statement

Xiaozhou Li: Conceptualization, Methodology, Writing –
riginal draft. Sergio Moreschini: Conceptualization, Method-
logy, Writing – original draft. Zheying Zhang: Conceptualiza-

tion, Methodology, Writing – original draft. Fabio Palomba:
Conceptualization, Supervision, Reviewing and editing. Davide
Taibi: Conceptualization, Supervision, Reviewing and editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

Fabio Palomba gratefully acknowledges the support of the
Swiss National Science Foundation through the SNF Projects No.
PZ00P2_186090. This work has been partially supported by the
EMELIOT national research project, funded by the MUR under the
PRIN 2020 program (Contract 2020W3A5FY).

Appendix. Comparing our mapping study with the SEGRESS
checklist for secondary study methods

See Tables 8 and 9.

References

Alqahtani, S.S., 2022. A study on the use of vulnerabilities databases in software
engineering domain. Comput. Secur. 116, 102661.

Ampatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M., Chatzigeorgiou, A., 2019.
Identifying, categorizing and mitigating threats to validity in software
engineering secondary studies. Inf. Softw. Technol. 106, 201–230.

Azeem, M.I., Palomba, F., Shi, L., Wang, Q., 2019. Machine learning techniques
for code smell detection: A systematic literature review and meta-analysis.
Inf. Softw. Technol. 108, 115–138.

Chakraborty, S., Krishna, R., Ding, Y., Ray, B., 2021. Deep learning based
vulnerability detection: Are we there yet. IEEE Trans. Softw. Eng..

Cohen, J., 2013. Statistical Power Analysis for the Behavioral Sciences. Routledge.
Croft, R., Xie, Y., Babar, M.A., 2022. Data preparation for software vulnerability

prediction: A systematic literature review. IEEE Trans. Softw. Eng. 1.
CVE, 2022. https://cve.mitre.org/.
Dowd, M., McDonald, J., Schuh, J., 2006. The Art of Software Security Assessment:

Identifying and Preventing Software Vulnerabilities. Pearson Education.
Duc, A.N., Jabangwe, R., Paul, P., Abrahamsson, P., 2017. Security challenges in

IoT development: a software engineering perspective. In: Proceedings of the
XP2017 Scientific Workshops. pp. 1–5.

Eberendu, A.C., Udegbe, V.I., Ezennorom, E.O., Ibegbulam, A.C., Chinebu, T.I., et
al., 2022. A systematic literature review of software vulnerability detection.
Eur. J. Comput. Sci. Inform. Technol. 10 (1), 23–37.

Edmundson, A., Holtkamp, B., Rivera, E., Finifter, M., Mettler, A., Wagner, D.,
2013. An empirical study on the effectiveness of security code review.
In: International Symposium on Engineering Secure Software and Systems.
Springer, pp. 197–212.

Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R., Pretschner, A., 2016.
Security testing: A survey. In: Advances in Computers. Vol. 101. Elsevier, pp.
1–51.

Finifter, M., Akhawe, D., Wagner, D., 2013. An empirical study of vulnerability re-
wards programs. In: 22nd {USENIX} Security Symposium. {USENIX} Security
13, pp. 273–288.

Ghaffarian, S.M., Shahriari, H.R., 2017. Software vulnerability analysis and dis-
covery using machine-learning and data-mining techniques: A survey. ACM
Comput. Surv. 50 (4), 1–36.

Gonzalez, D., Alhenaki, F., Mirakhorli, M., 2019. Architectural security weaknesses
in industrial control systems (ICS) an empirical study based on disclosed soft-
ware vulnerabilities. In: International Conference on Software Architecture.
ICSA, pp. 31–40.
17
Grieco, G., Grinblat, G.L., Uzal, L., Rawat, S., Feist, J., Mounier, L., 2016. Toward
large-scale vulnerability discovery using machine learning. In: Proceedings
of the Sixth ACM Conference on Data and Application Security and Privacy.
pp. 85–96.

Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S., 2011. A systematic
literature review on fault prediction performance in software engineering.
IEEE Trans. Softw. Eng. 38 (6), 1276–1304.

Howard, M.A., 2006. A process for performing security code reviews. IEEE Secur.
Priv. 4 (4), 74–79.

Hydara, I., Sultan, A.B.M., Zulzalil, H., Admodisastro, N., 2015. Current state of
research on cross-site scripting (XSS)–A systematic literature review. Inf.
Softw. Technol. 58, 170–186.

Iannone, E., Guadagni, R., Ferrucci, F., De Lucia, A., Palomba, F., 2022. The secret
life of software vulnerabilities: A large-scale empirical study. IEEE Trans.
Softw. Eng..

Kim, S., Lee, H., 2018. Software systems at risk: An empirical study of cloned
vulnerabilities in practice. Comput. Secur. 77, 720–736.

Kitchenham, B., Charters, S., 2007. Guidelines for performing systematic
literature reviews in software engineering.

Kitchenham, B.A., Madeyski, L., Budgen, D., 2022. SEGRESS: Software engineering
guidelines for reporting secondary studies. IEEE Trans. Softw. Eng..

Li, X., Moreschini, S., Pecorelli, F., Taibi, D., 2022a. OSSARA: abandonment risk
assessment for embedded open source components. IEEE Softw. 39 (04),
48–53.

Li, X., Moreschini, S., Zhang, Z., Taibi, D., 2022b. Exploring factors and metrics to
select open source software components for integration: An empirical study.
J. Syst. Softw. 188, 111255.

Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., Zhong, Y., 2018.
Vuldeepecker: A deep learning-based system for vulnerability detection. In:
Proceedings of the 25th Annual Network and Distributed System Security
Symposium. NDSS.

Lin, Y., Li, Y., Gu, M., Sun, H., Yue, Q., Hu, J., Cao, C., Zhang, Y., 2022. Vulnerability
dataset construction methods applied to vulnerability detection: A survey. In:
2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops. DSN-W, IEEE, pp. 141–146.

Lin, G., Wen, S., Han, Q.-L., Zhang, J., Xiang, Y., 2020. Software vulnerability
detection using deep neural networks: a survey. Proc. IEEE 108 (10),
1825–1848.

Liu, Y., Jianwei, Z., Zhang, C., 2018. CBTracer: Continuously building datasets
for binary vulnerability and exploit research. In: Proceedings of the First
Workshop on Radical and Experiential Security. pp. 1–7.

Lomio, F., Iannone, E., De Lucia, A., Palomba, F., Lenarduzzi, V., 2022. Just-in-time
software vulnerability detection: Are we there yet? J. Syst. Softw. 111283.

McGraw, G., 2004. Software security. IEEE Secur. Priv. 2 (2), 80–83.
McKinnel, D.R., Dargahi, T., Dehghantanha, A., Choo, K.-K.R., 2019. A systematic

literature review and meta-analysis on artificial intelligence in penetration
testing and vulnerability assessment. Comput. Electr. Eng. 75, 175–188.

Ming, J., Wu, D., Wang, J., Xiao, G., Liu, P., 2016. Straighttaint: Decoupled offline
symbolic taint analysis. In: Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. pp. 308–319.

Morrison, P., Herzig, K., Murphy, B., Williams, L., 2015. Challenges with Applying
Vulnerability Prediction Models. HotSoS ’15, Association for Computing
Machinery, New York, NY, USA.

Murtaza, S.S., Khreich, W., Hamou-Lhadj, A., Bener, A.B., 2016. Mining trends and
patterns of software vulnerabilities. J. Syst. Softw. 117, 218–228.

National Vulnerability Database (NVD), 2022. https://nvd.nist.gov/general.
(Accessed 30 April 2022).

Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M., 2008. Systematic mapping stud-
ies in software engineering. In: 12th International Conference on Evaluation
and Assessment in Software Engineering. Vol. 12. EASE, pp. 1–10.

Petersen, K., Vakkalanka, S., Kuzniarz, L., 2015. Guidelines for conducting system-
atic mapping studies in software engineering: An update. Inf. Softw. Technol.
64, 1–18.

Plate, H., Ponta, S.E., Sabetta, A., 2015. Impact assessment for vulnerabilities
in open-source software libraries. In: International Conference on Software
Maintenance and Evolution. ICSME, pp. 411–420.

Sharafi, Z., Soh, Z., Guéhéneuc, Y.-G., 2015. A systematic literature review on
the usage of eye-tracking in software engineering. Inf. Softw. Technol. 67,
79–107.

Svacina, J., Raffety, J., Woodahl, C., Stone, B., Cerny, T., Bures, M., Shin, D.,
Frajtak, K., Tisnovsky, P., 2020. On vulnerability and security log analysis:
A systematic literature review on recent trends. In: International Conference
on Research in Adaptive and Convergent Systems. pp. 175–180.

Tan, T., Wang, B., Tang, Y., Zhou, X., Han, J., 2019. A method for vulnera-
bility database quantitative evaluation. Comput. Mater. Continua 61 (3),
1129–1144.

Turhan, B., Menzies, T., Bener, A.B., Di Stefano, J., 2009. On the relative value
of cross-company and within-company data for defect prediction. Empirical
Softw. Engg. 14 (5), 540–578.

Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In: EASE 2014.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., 2012.
Experimentation in Software Engineering. Springer.

http://refhub.elsevier.com/S0164-1212(23)00074-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb2
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb2
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb2
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb2
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb2
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb3
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb3
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb3
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb3
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb3
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb4
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb4
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb4
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb5
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb6
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb6
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb6
https://cve.mitre.org/
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb8
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb8
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb8
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb9
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb9
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb9
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb9
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb9
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb10
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb10
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb10
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb10
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb10
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb12
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb12
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb12
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb12
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb12
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb13
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb13
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb13
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb13
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb13
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb14
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb14
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb14
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb14
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb14
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb17
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb17
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb17
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb17
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb17
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb18
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb18
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb18
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb19
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb19
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb19
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb19
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb19
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb20
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb20
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb20
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb20
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb20
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb21
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb21
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb21
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb22
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb22
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb22
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb23
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb23
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb23
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb25
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb25
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb25
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb25
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb25
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb29
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb29
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb29
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb29
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb29
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb31
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb32
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb32
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb32
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb32
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb32
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb33
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb33
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb33
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb33
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb33
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb34
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb34
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb34
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb34
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb34
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb35
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb35
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb35
https://nvd.nist.gov/general
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb37
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb37
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb37
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb37
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb37
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb38
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb38
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb38
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb38
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb38
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb39
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb39
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb39
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb39
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb39
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb40
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb40
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb40
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb40
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb40
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb41
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb41
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb41
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb41
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb41
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb41
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb41
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb42
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb42
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb42
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb42
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb42
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb44
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb44
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb44
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb45
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb45
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb45


X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679

T

B

C

C

C

C

C

C

D

E

F

F

F

F

F

G

G

G

G

H

he Selected Papers (SPs)

Aksu, M.U., Bicakci, K., Dilek, M.H., Ozbayoglu, A.M., Tatli, E.I., 2018. Automated
generation of attack graphs using NVD. In: Proceedings of the Eighth ACM
Conference on Data and Application Security and Privacy. pp. 135–142.

Allodi, L., Massacci, F., 2012. A preliminary analysis of vulnerability scores for
attacks in wild: The ekits and sym datasets. In: Proceedings of the 2012 ACM
Workshop on Building Analysis Datasets and Gathering Experience Returns
for Security. pp. 17–24.

Alqahtani, S.S., Eghan, E.E., Rilling, J., 2016. Tracing known security vulnerabilities
in software repositories-A Semantic Web enabled modeling approach. Sci.
Comput. Programm. 121, 153–175.

Alves, H., Fonseca, B., Antunes, N., 2016. Software metrics and security vulnera-
bilities: dataset and exploratory study. In: 2016 12th European Dependable
Computing Conference. EDCC, IEEE, pp. 37–44.

Antal, G., Keleti, M., Hegedŭs, P., 2020. Exploring the security awareness of the
python and javascript open source communities. In: Proceedings of the 17th
International Conference on Mining Software Repositories. pp. 16–20.

ozorgi, M., Saul, L., Savage, S., Voelker, G.M., 2010. Beyond heuristics: learning
to classify vulnerabilities and predict exploits. In: Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. pp. 105–114.

amilo, F., Meneely, A., Nagappan, M., 2015. Do bugs foreshadow vulnerabili-
ties? A study of the chromium project. In: 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories. IEEE, pp. 269–279.

hallande, A., David, R., Renault, G., 2022. Building a commit-level dataset of
real-world vulnerabilities. In: Proceedings of the Twelveth ACM Conference
on Data and Application Security and Privacy. pp. 101–106.

hang, Y.Y., Zavarsky, P., Ruhl, R., Lindskog, D., 2011. Trend analysis of the
CVE for software vulnerability management. In: 2011 IEEE Third Interna-
tional Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third
International Conference on Social Computing. IEEE, pp. 1290–1293.

hen, Q., Bao, L., Li, L., Xia, X., Cai, L., 2018. Categorizing and predicting invalid
vulnerabilities on common vulnerabilities and exposures. In: 2018 25th
Asia-Pacific Software Engineering Conference. APSEC, IEEE, pp. 345–354.

hen, Y., Santosa, A.E., Yi, A.M., Sharma, A., Sharma, A., Lo, D., 2020. A machine
learning approach for vulnerability curation. In: Proceedings of the 17th
International Conference on Mining Software Repositories. pp. 32–42.

hen, Z., Zhang, Y., Chen, Z., 2010. A categorization framework for common
computer vulnerabilities and exposures. Comput. J. 53 (5), 551–580.

ecan, A., Mens, T., Constantinou, E., 2018. On the impact of security vulnerabil-
ities in the npm package dependency network. In: Proceedings of the 15th
International Conference on Mining Software Repositories. pp. 181–191.

dwards, N., Chen, L., 2012. An historical examination of open source releases
and their vulnerabilities. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security. pp. 183–194.

an, J., Li, Y., Wang, S., Nguyen, T., 2020. AC/C++ code vulnerability dataset with
code changes and CVE summaries. In: Proceedings of the 17th International
Conference on Mining Software Repositories. pp. 508–512.

edorchenko, A., Kotenko, I.V., Chechulin, A., 2015. Integrated repository of
security information for network security evaluation. J. Wirel. Mob. Netw.
Ubiquitous Comput. Dependable Appl. 6 (2), 41–57.

edorchenko, A.V., Kotenko, I.V., Doynikova, E.V., Chechulin, A.A., 2017. The
ontological approach application for construction of the hybrid security
repository. In: 2017 IEEE International Conference on Soft Computing and
Measurements. IEEE, pp. 525–528.

orain, I., de Oliveira Albuquerque, R., de Sousa Júnior, R.T., 2022. Towards
system security: What a comparison of National Vulnerability databases
reveals. In: 2022 17th Iberian Conference on Information Systems and
Technologies. CISTI, IEEE, pp. 1–6.

rei, S., May, M., Fiedler, U., Plattner, B., 2006. Large-scale vulnerability analysis.
In: Proceedings of the 2006 SIGCOMM Workshop on Large-Scale Attack
Defense. pp. 131–138.

allon, L., 2011. Vulnerability discrimination using cvss framework. In: 2011 4th
IFIP International Conference on New Technologies, Mobility and Security.
IEEE, pp. 1–6.

kortzis, A., Mitropoulos, D., Spinellis, D., 2018. Vulinoss: a dataset of secu-
rity vulnerabilities in open-source systems. In: Proceedings of the 15th
International Conference on Mining Software Repositories. pp. 18–21.

lanz, L., Schmidt, S., Wollny, S., Hermann, B., 2015. A vulnerability’s lifetime:
enhancing version information in CVE databases. In: Proceedings of the
15th International Conference on Knowledge Technologies and Data-driven
Business. pp. 1–4.

uo, H., Xing, Z., Chen, S., Li, X., Bai, Y., Zhang, H., 2021. Key aspects augmen-
tation of vulnerability description based on multiple security databases. In:
2021 IEEE 45th Annual Computers, Software, and Applications Conference.
pp. 1020–1025.

an, Z., Li, X., Xing, Z., Liu, H., Feng, Z., 2017. Learning to predict severity of
software vulnerability using only vulnerability description. In: 2017 IEEE
International Conference on Software Maintenance and Evolution. ICSME,
IEEE, pp. 125–136.
18
Hong, H., Woo, S., Choi, E., Choi, J., Lee, H., 2022. xVDB: A high-coverage approach
for constructing a vulnerability database. IEEE Access 10, 85050–85063.

Huang, M., Fan, W., Huang, W., Cheng, Y., Xiao, H., 2020. Research on building
exploitable vulnerability database for cloud-native app. In: 2020 IEEE 4th
Information Technology, Networking, Electronic and Automation Control
Conference. Vol. 1. ITNEC, IEEE, pp. 758–762.

Huang, S., Tang, H., Zhang, M., Tian, J., 2010. Text clustering on national vul-
nerability database. In: 2010 Second International Conference on Computer
Engineering and Applications. Vol. 2. IEEE, pp. 295–299.

Jiang, Y., Atif, Y., Ding, J., 2019. Cyber-physical systems security based on a cross-
linked and correlated vulnerability database. In: International Conference on
Critical Information Infrastructures Security. Springer, Cham, pp. 71–82.

Jiang, Y., Jeusfeld, M., Ding, J., 2021. Evaluating the data inconsistency of open-
source vulnerability repositories. In: The 16th International Conference on
Availability, Reliability and Security. pp. 1–10.

Jimenez, M., Papadakis, M., Bissyandé, T.F., Klein, J., 2016. Profiling android
vulnerabilities. In: 2016 IEEE International Conference on Software Quality,
Reliability and Security. QRS, IEEE, pp. 222–229.

Jimenez, M., Rwemalika, R., Papadakis, M., Sarro, F., Le Traon, Y., Harman, M.,
2019. The importance of accounting for real-world labelling when predicting
software vulnerabilities. In: Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. pp. 695–705.

Kim, G., Oh, J., Seo, D., Kim, J., 2013. The design of vulnerability management
system. Int. J. Comput. Sci. Netw. Secur. (IJCSNS) 13 (4), 19.

Kuehn, P., Bayer, M., Wendelborn, M., Reuter, C., 2021. OVANA: An approach to
analyze and improve the information quality of vulnerability databases. In:
The 16th International Conference on Availability, Reliability and Security.
pp. 1–11.

Kuo, C.T., Ruan, H.M., Chen, S.J., Lei, C.L., 2013. Design and implementation of
a self-growth security baseline database for automatic security auditing. In:
Advances in Intelligent Systems and Applications. Vol. 2. Springer, Berlin,
Heidelberg, pp. 177–184.

Li, Z., Zou, D., Tang, J., Zhang, Z., Sun, M., Jin, H., 2019. A comparative
study of deep learning-based vulnerability detection system. IEEE Access 7,
103184-103197.

Linares-Vásquez, M., Bavota, G., Escobar-Velásquez, C., 2017. An empirical study
on android-related vulnerabilities. In: 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories. MSR, IEEE, pp. 2–13.

Liu, Q., Zhang, Y., 2011. VRSS: A new system for rating and scoring
vulnerabilities. Comput. Commun. 34 (3), 264–273.

Massacci, F., Neuhaus, S., Nguyen, V.H., 2011. After-life vulnerabilities: a study on
firefox evolution, its vulnerabilities, and fixes. In: International Symposium
on Engineering Secure Software and Systems. Springer, Berlin, Heidelberg,
pp. 195–208.

Massacci, F., Nguyen, V.H., 2010. Which is the right source for vulnerability
studies? An empirical analysis on mozilla firefox. In: Proceedings of the 6th
International Workshop on Security Measurements and Metrics. pp. 1–8.

Nerwich, M., Gauravaram, P., Paik, H.Y., Nepal, S., 2020. Vulnerability database as
a service for IoT. In: International Conference on Applications and Techniques
in Information Security. Springer, Singapore, pp. 95–107.

Neuhaus, S., Zimmermann, T., 2010. Security trend analysis with CVE topic
models. In: 2010 IEEE 21st International Symposium on Software Reliability
Engineering. IEEE, pp. 111–120.

Nguyen, V.H., Massacci, F., 2012. An independent validation of vulnerability dis-
covery models. In: Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security. pp. 6–7, May.

Nikitopoulos, G., Dritsa, K., Louridas, P., Mitropoulos, D., 2021. CrossVul: a cross-
language vulnerability dataset with commit data. In: Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. pp. 1565–1569.

Perl, H., Dechand, S., Smith, M., Arp, D., Yamaguchi, F., Rieck, K., Fahl, S., Acar, Y.,
2015. VCCFinder: Finding potential vulnerabilities in open-source projects to
assist code audits. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. pp. 426–437.

Ponta, S.E., Plate, H., Sabetta, A., Bezzi, M., Dangremont, C., 2019. A manually-
curated dataset of fixes to vulnerabilities of open-source software. In: 2019
IEEE/ACM 16th International Conference on Mining Software Repositories.
pp. 383–387.

Reis, S., Abreu, R., 2017. SECBENCH: A database of real security vulnerabilities.
In: SecSE@ ESORICS. pp. 69–85.

Roschke, S., Cheng, F., Schuppenies, R., Meinel, C., 2009. Towards unifying
vulnerability information for attack graph construction. In: International
Conference on Information Security. Springer, Berlin, Heidelberg, pp.
218–233.

Shahzad, M., Shafiq, M.Z., Liu, A.X., 2012. A large scale exploratory analysis of
software vulnerability life cycles. In: 2012 34th International Conference on
Software Engineering. pp. 771–781.

http://refhub.elsevier.com/S0164-1212(23)00074-2/sb46
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb46
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb46
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb46
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb46
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb47
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb47
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb47
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb47
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb47
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb47
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb47
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb48
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb48
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb48
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb48
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb48
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb49
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb49
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb49
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb49
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb49
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb50
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb50
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb50
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb50
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb50
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb51
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb51
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb51
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb51
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb51
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb51
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb51
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb52
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb52
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb52
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb52
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb52
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb54
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb54
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb54
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb54
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb54
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb54
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb54
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb55
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb55
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb55
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb55
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb55
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb56
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb56
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb56
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb56
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb56
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb57
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb57
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb57
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb58
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb58
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb58
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb58
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb58
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb59
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb59
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb59
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb59
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb59
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb60
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb60
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb60
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb60
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb60
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb61
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb61
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb61
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb61
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb61
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb62
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb62
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb62
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb62
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb62
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb62
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb62
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb63
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb63
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb63
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb63
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb63
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb63
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb63
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb64
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb64
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb64
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb64
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb64
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb65
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb65
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb65
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb65
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb65
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb66
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb66
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb66
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb66
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb66
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb67
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb67
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb67
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb67
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb67
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb67
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb67
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb68
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb68
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb68
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb68
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb68
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb68
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb68
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb69
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb69
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb69
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb69
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb69
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb69
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb69
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb70
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb70
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb70
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb71
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb71
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb71
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb71
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb71
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb71
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb71
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb72
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb72
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb72
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb72
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb72
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb73
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb73
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb73
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb73
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb73
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb74
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb74
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb74
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb74
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb74
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb75
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb75
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb75
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb75
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb75
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb76
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb76
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb76
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb76
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb76
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb76
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb76
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb76
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb76
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb77
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb77
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb77
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb78
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb78
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb78
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb78
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb78
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb78
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb78
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb79
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb79
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb79
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb79
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb79
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb79
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb79
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb80
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb80
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb80
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb80
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb80
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb81
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb81
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb81
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb81
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb81
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb82
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb82
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb82
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb83
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb83
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb83
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb83
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb83
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb83
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb83
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb84
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb84
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb84
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb84
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb84
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb85
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb85
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb85
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb85
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb85
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb86
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb86
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb86
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb86
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb86
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb87
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb87
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb87
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb87
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb87
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb88
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb88
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb88
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb88
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb88
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb88
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb88
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb89
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb89
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb89
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb89
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb89
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb89
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb89
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb90
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb90
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb90
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb90
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb90
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb90
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb90
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb91
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb91
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb91
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb92
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb92
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb92
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb92
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb92
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb92
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb92
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb93
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb93
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb93
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb93
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb93


X. Li, S. Moreschini, Z. Zhang et al. The Journal of Systems & Software 201 (2023) 111679

S

T

T

u

V

V

W

W

W

W

önmez, F., 2021. Classifying common vulnerabilities and exposures database
using text mining and graph theoretical analysis. In: Machine Intelligence
and Big Data Analytics for Cybersecurity Applications. Springer, Cham, pp.
313–338.

akahashi, T., Inoue, D., 2016. Generating software identifier dictionaries from
Vulnerability Database. In: 2016 14th Annual Conference on Privacy, Security
and Trust. PST, IEEE, pp. 417–420.

ripathi, A., Singh, U.K., 2011. Taxonomic analysis of classification schemes in
vulnerability databases. In: 2011 6th International Conference on Computer
Sciences and Convergence Information Technology. ICCIT, IEEE, pp. 686–691.

r Rahman, M., Deep, V., Multhalli, S., 2016. Centralized vulnerability database
for organization specific automated vulnerabilities discovery and supervision.
In: 2016 International Conference on Research Advances in Integrated
Navigation Systems. RAINS, IEEE, pp. 1–5.

ache, G., 2009. Vulnerability analysis for a quantitative security evaluation. In:
2009 3rd International Symposium on Empirical Software Engineering and
Measurement. IEEE, pp. 526–534.

anamala, M., Yuan, X., Roy, K., 2020. Topic modeling and classification
of Common Vulnerabilities And Exposures database. In: 2020 Interna-
tional Conference on Artificial Intelligence, Big Data, Computing and Data
Communication Systems. icABCD, IEEE, pp. 1–5.

ang, J.A., Guo, M., 2009. OVM: An ontology for vulnerability management. In:
Proceedings of the 5th Annual Workshop on Cyber Security and Information
Intelligence Research: Cyber Security and Information Intelligence Challenges
and Strategies. pp. 1–4.

ang, X., Wang, S., Feng, P., Sun, K., Jajodia, S., 2021. PatchDB: A large-
scale security patch dataset. In: 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. DSN, IEEE, pp. 149–160.

en, T., Zhang, Y., Wu, Q., Yang, G., 2015. ASVC: An automatic security vul-
nerability categorization framework based on novel features of vulnerability
data. J. Commun. 10 (2), 107–116.

illiams, M.A., Dey, S., Barranco, R.C., Naim, S.M., Hossain, M.S., Akbar, M.,
2018. Analyzing evolving trends of vulnerabilities in national vulnerability
database. In: 2018 IEEE International Conference on Big Data. Big Data, IEEE,
pp. 3011–3020.
19
Wu, B., Wang, A.J.A., 2011. EVMAT: An OVAL and NVD based enterprise
vulnerability modeling and assessment tool. In: Proceedings of the 49th
Annual Southeast Regional Conference. pp. 115–120.

Wu, X., Zheng, W., Chen, X., Wang, F., Mu, D., 2020. CVE-assisted large-scale
security bug report dataset construction method. J. Syst. Softw. 160, 110456.

Xianghui, Z., Yong, P., Zan, Z., Yi, J., Yuangang, Y., 2015. Research on parallel
vulnerabilities discovery based on open source database and text mining.
In: 2015 International Conference on Intelligent Information Hiding and
Multimedia Signal Processing. IIH-MSP, IEEE, pp. 327–332.

Xiaomeng, W., Tao, Z., Runpu, W., Wei, X., Changyu, H., 2018. CPGVA: Code
property graph based vulnerability analysis by deep learning. In: 2018 10th
International Conference on Advanced Infocomm Technology. ICAIT, IEEE, pp.
184–188.

Yap, R.H., Zhong, L., 2004. A machine-oriented integrated vulnerability database
for automated vulnerability detection and processing. In: Large Installation
System Administration. LISA.

Yosifova, V., Tasheva, A., Trifonov, R., 2021. Predicting vulnerability type
in common vulnerabilities and exposures (CVE) database with machine
learning classifiers. In: 2021 12th National Conference with International
Participation. ELECTRONICA, IEEE, pp. 1–6.

Yuan, L., Bai, Y., Xing, Z., Chen, S., Li, X., Deng, Z., 2021. Predicting entity relations
across different security databases by using graph attention network. In:
2021 IEEE 45th Annual Computers, Software, and Applications Conference.
COMPSAC, IEEE, pp. 834–843.

Yun-hua, G., Pei, L., 2010. Design and research on vulnerability database. In:
2010 Third International Conference on Information and Computing. IEEE,
pp. 209–212.

Zhang, S., Ou, X., Caragea, D., 2015. Predicting cyber risks through national
vulnerability database. Inform. Secur. J. A Glob. Perspect. 24 (4–6), 194–206.

Zheng, C., Zhang, Y., Sun, Y., Liu, Q., 2011. IVDA: International vulnerability
database alliance. In: 2011 Second Worldwide Cybersecurity Summit. WCS,
IEEE, pp. 1–6.

Zou, D., Wang, S., Xu, S., Li, Z., Jin, H., 2019. µ VulDeePecker: A deep learning-
based system for multiclass vulnerability detection. IEEE Trans. Dependable
Secure Comput. 18 (5), 2224–2236.

http://refhub.elsevier.com/S0164-1212(23)00074-2/sb94
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb94
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb94
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb94
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb94
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb94
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb94
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb95
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb95
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb95
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb95
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb95
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb96
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb96
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb96
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb96
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb96
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb97
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb97
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb97
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb97
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb97
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb97
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb97
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb98
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb98
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb98
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb98
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb98
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb99
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb99
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb99
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb99
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb99
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb99
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb99
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb100
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb100
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb100
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb100
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb100
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb100
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb100
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb101
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb101
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb101
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb101
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb101
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb102
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb102
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb102
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb102
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb102
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb103
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb103
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb103
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb103
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb103
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb103
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb103
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb104
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb104
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb104
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb104
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb104
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb105
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb105
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb105
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb106
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb106
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb106
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb106
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb106
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb106
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb106
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb107
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb107
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb107
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb107
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb107
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb107
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb107
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb108
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb108
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb108
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb108
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb108
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb109
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb109
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb109
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb109
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb109
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb109
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb109
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb110
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb110
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb110
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb110
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb110
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb110
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb110
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb111
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb111
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb111
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb111
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb111
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb112
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb112
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb112
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb113
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb113
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb113
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb113
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb113
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb114
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb114
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb114
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb114
http://refhub.elsevier.com/S0164-1212(23)00074-2/sb114

	The anatomy of a vulnerability database: A systematic mapping study
	Introduction
	Background Information
	Research Method
	Defining the Search Process
	Applying the Search Process
	Data Extraction
	Replicability

	Analysis of the Results
	RQ1. What are the most common security-specific public databases of security vulnerabilities employed by the research community?
	RQ2. What are the goals to employ vulnerability datasets by research communities?
	RQ3 . What are the other sources of information adopted to facilitate such goals?
	RQ4 . What are the methods and techniques adopted?
	RQ5 . Which tools are proposed for adopting or investigating vulnerability databases?

	Discussion and Implications
	Threats to Validity
	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix. Comparing our mapping study with the SEGRESS checklist for secondary study methods
	References


