IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 27 September 2022, accepted 11 December 2022, date of publication 11 January 2023, date of current version 17 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3236165

==l ToPicAL REVIEW

Visualizing Anti-Patterns in Microservices at
Runtime: A Systematic Mapping Study

GARRETT PARKER"1, SAMUEL KIM', ABDULLAH AL MARUF "', (Member, IEEE),
TOMAS CERNY "1, KAREL FRAJTAK 2, PAVEL TISNOVSKY3,
AND DAVIDE TAIBI“45, (Member, IEEE)

! Department of Computer Science, Baylor University, Waco, TX 76798, USA

2Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, 166 36 Prague, Czech Republic
3Red Hat, 612 00 Brno, Czech Republic

4Empirical Software Engineering in Software, Systems, and Services, University of Oulu, 90570 Oulu, Finland

3Cloud and Software Engineering Group, Tampere University, 33720 Tampere, Finland

Corresponding author: Tomas Cerny (tomas_cerny @baylor.edu)
This work was supported in part by the National Science Foundation under Grant 1854049; in part by the Grant from Red Hat Research

(https://research.redhat.com); in part by the Grant from the Ulla Tuominen Foundation, Finland; and in part by the Grant from the
Academy of Finland under Grant 349488-MuFAno.

ABSTRACT In the world of microservices, companies must be able to create systems that operate in the
most efficient way. To achieve this, anti-patterns must be avoided because of their detriment to the quality
of the system. Some of the most troubling anti-patterns are hard to detect because of their appearance at
runtime. Effectively removing anti-patterns from a system requires dynamic analysis because of the large
size of microservice-based systems. While the detection of anti-patterns is helpful, being able to visualize
them offers a great benefit to companies working with microservices. Seeing how the overall system is
flowing and recognizing the existence of anti-patterns can help improve microservice-based systems. In this
paper, a systematic mapping study was performed to find the current state of research on visualizing anti-
patterns in microservices from the dynamic perspective. Several hundred papers were examined and a total
of 31 were found to be relevant to the research topic. The papers, when analyzed, revealed that there are
mechanisms to detect anti-patterns at runtime in microservices, and there are also mechanisms for visualizing
the architecture of a microservice-based system. This study’s findings could help to identify and remove anti-

patterns that occur during runtime in microservices, as well as a means of visualizing these anti-patterns.

INDEX TERMS Anti-pattern, dynamic analysis, mapping study, microservice, visualization.

I. INTRODUCTION

As software systems evolve and change, their analysis must
also evolve and change. Microservices are commonly used
in web-based systems because of their flexibility and ability
to support large scale architectures. While microservices are
appealing, they must be designed properly in order to provide
the best use for companies. Anti-patterns, also known as
bad smells, are common design flaws that can be found
across microservices. Understanding and preventing anti-
patterns in microservices is a necessity of any company that
plans on utilizing microservices [1]. This task is not as easy
as it sounds, however, since certain anti-patterns occur at

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen

4434 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

runtime [2] and require dynamic analysis to be discovered.
Dynamic analysis can also prove to be costly because of the
amount of time it requires. For a microservice-based system
to be as efficient as possible, there must be measures taken at
runtime to detect and remove anti-patterns.

The reason behind our mapping study was to collect
and analyze the current research on how anti-patterns in
microservices can be visualized from a dynamic perspective.
Tracing through a system at runtime and creating a visual
model is a topic that has been discussed across several
papers [3], [4], [5]. Combining that visualization aspect with
the detection of anti-patterns [6], [7] will allow for system
architects to quickly correct design flaws, suggest corrections
and improve the quality of the system. As straightforward
as this idea may sound, there is a small amount of research

VOLUME 11, 2023

https://orcid.org/0000-0002-7812-3460
https://orcid.org/0000-0001-5610-5483
https://orcid.org/0000-0002-5882-5502
https://orcid.org/0000-0003-4133-2805
https://orcid.org/0000-0002-3210-3990
https://orcid.org/0000-0002-3945-4363

G. Parker et al.: Visualizing Anti-Patterns in Microservices at Runtime: A Systematic Mapping Study

IEEE Access

that has been put towards combining anti-pattern detection
and visualization of a microservice—based system at runtime.
Although there is little research that combines all aspects of
our topic, there is a significant number of papers discussing
visualizing microservices and detecting anti—patterns at
runtime separately.

This research will be significant to system architects who
would like to verify that the system is free of anti-patterns.
To be able to automatically discover and detect the location
of anti—patterns would be beneficial for many companies
utilizing microservice—based systems.

The rest of this paper is organized as follows. Section II
defines anti-patterns as well as lists some examples.
Section III describes the methods utilized to discover and
analyze the existing research on the topic. Section IV presents
an analysis of the results after reading through all of the
selected papers. Finally, section V concludes the paper with
contributions and ideas for future works.

Il. BACKGROUND

Patterns are problems that occur often and have solutions
that can be applied to them. By utilizing the solutions to
problems that have already been faced by others, systems can
be designed in the most efficient way. This efficiency is what
patterns are typically used for. Many developers repeat the
same mistakes made by other developers all over, introducing
the same set of previously known issues, anti-patterns, into
the system. That makes anti—patterns similar to patterns, but
anti—patterns are a detriment to the system [8]. It is important
to note that anti-patterns are not errors that result in a system
crashing; rather, they are typically design flaws that decrease
the quality of service [9]. Many anti-patterns were previously
detected and categorized — such as a bottleneck, cyclic
dependencies, knots, etc [2]. While these anti-patterns are
known and have existed for some time now, one may wonder
why they keep resurfacing. Since microservices are used to
support large scale systems, only few selected individuals,
usually system architects, know how all of the pieces interact.
Different people design different sections of a system; one
team can be responsible for one microservice without a deep
knowledge of the system as a whole. Since they do not see
the system as a whole, anti-patterns can manifest without
anyone being aware of it. Utilizing a tool that can create a
visualization of the system, thus, increases the probability of
detecting an anti—pattern.

There are other issues that come with detecting anti—
patterns, such as the fact that some anti-patterns manifest in
runtime. There has been research put into statically detecting
anti—patterns, but static anti-patterns are generally contained
in one service and only impact a single aspect of the whole
system. To see anti-patterns such as cyclic dependencies,
data must be collected at runtime to discover which
components of the system communicate with each other [10].
Dynamic analysis is not uncommon when it comes to testing
microservices. To ensure that the system is working properly
and that logic errors are not occurring, many companies

VOLUME 11, 2023

thoroughly test their complete systems in production-like
environments [11]. The issue concerning anti-patterns comes
from the limitation of testing mechanisms only detecting
outstanding errors, which are not caused by anti—patterns.
In order to detect anti—patterns at runtime, resources (time
and money) must be dedicated to understand the flow of
data; otherwise, some of the worst design offenses can go
undetected.

It is important to understand the current state of research
on microservices because of how quickly systems evolve.
We have discovered two mapping studies discussing topics
similar to the one presented in this paper. Ponce et al. [32]
examined smells in microservices and their impact on
security. Although this paper examines smells and their
existence in microservices, our mapping study is focused on
visualizing anti-patterns and does not examine the security
risks that they come with. Bushong et al. [33] present another
mapping study that discusses different tools and challenges
that come with analyzing a microservice-based system.
Though our study mentions analyzing microservices through
dynamic analysis, we primarily focus on visualization.

lll. MAPPING STUDY METHOD

In this work, we adopted the systematic mapping study
methodology, proposed by Petersen et al. [34]. Our complete
mapping study document can be found,! detailing our
filtration and mapping process.

In the first phase, we focused on defining the research
questions that would be answered by our study. Our questions
went through trial and error throughout the entire process
as we wanted to present relevant information about our
topic. In the second phase, we drafted a search query that
was applied across five research databases. After collecting
papers from our query, we moved into the third phase where
we began filtering out papers that were unrelated to our topic
based on their title and abstract. Once the initial filtering
was completed, we moved into the fourth phase where we
continued to filter papers after reading the full article. Finally,
we concluded with the fifth data analysis phase where we
mapped the 31 remaining papers to any research question that
it answered.

The questions we examined in this mapping study are as
follows:

RQ1 What methods of detecting patterns in SOA/
Microservices exist? Can these methods be adapted to
detect anti-patterns too?

RQ2 How can dynamic analysis be used to analyze anti-
patterns in a system built using microservices?

RQ3 Which anti-patterns can be visualized in call graphs?

RQ4 How can visualizing the architecture of a microservice
aid in detecting or preventing anti-patterns within that
system?

RQS5 Which tools exist for visualizing anti-patterns through
the dynamic perspective?

lhttps://zenodo.org/record/6815837

4435

https://zenodo.org/record/6815837

IEEE Access

G. Parker et al.: Visualizing Anti-Patterns in Microservices at Runtime: A Systematic Mapping Study

(pattern OR debt OR smell OR degrade)

AND

(microservice OR "cloud-native" OR soa OR "service-oriented architecture")

AND

(visualx OR model OR view OR graph OR interface)

AND

(dynamic OR runtime)

Listing 1. Search Query for the Research Databases.

We used five research databases in order to populate our
results including: ACM Digital Library (DL), IEEE Xplore,
ScienceDirect, Scopus, and SpringerLink. The search query
was written to focus our results on papers that discussed
the visualization of anti-patterns in microservices from the
dynamic perspective. The query was split into four parts. First
was smell and words related to it such as pattern, debt, and
degrade. The word, ““anti-pattern”’, was not included because
the term, “pattern”, collected papers with the word, “anti-
pattern”, and generated more results. Second, microservice
and terms that describe its predecessors such as service-
oriented architecture, and cloud-native. Third, visual and
other words that relate to visualization such as graph, model,
view, and interface. Fourth and finally, dynamic and runtime
to remove papers that only focused on static analysis. The full
search query is presented in Listing 1.

After all the papers were collected from the search query,
we manually read through every title and abstract to filter
papers according to our inclusion and exclusion criteria.
We found that many papers were dedicated to maintaining
the security of a system and failed to discuss anti-patterns
and their detection. Several papers were also solely focused
on testing a microservice-based system for correctness and
failing to test for anti-patterns. After the initial filtering
process, we read through the full text of the remaining papers
and excluded those that did not prove to be relevant to our
study. If we found a paper related to our problem, we read
through the related works to add papers that our query failed
to include.

The inclusion criteria we applied is as follows:

1 Papers investigating anti-patterns/patterns as they per-

tain to microservices/SOA in the visual aspect.

2 Papers that discuss how anti-patterns can be seen from

the dynamic perspective of a microservice/SOA.

3 Papers that discuss the visualization of microser-

vices/SOA and mention anti-patternss.

4 Papers which mention how dynamic analysis can be

used to analyze anti-patterns within microservices/SOA.

5 Papers that provide use in detecting or preventing

anti-patterns in microservice/SOA.

The exclusion criteria we applied is as follows:

Papers not written in English.

Papers that do not discuss visualization.
Duplicates.

Opinion papers.

Papers that are non-peer reviewed.

Papers that do not have the full text available.

AN AW -

4436

TABLE 1. Search query results for various index sites.

Indexer gzzﬁg Filtered | Referenced R;(::t\?z}n "
ACM DL 21 2 0 2
IEEE Xplore 87 8 7 15
Scopus 118 5 2 7
ScienceDirect 1252 1 1 2
SpringerLink 153 0 0 0
Others - - 5 5
Total 3324 16 15 31

7 Papers that do not mentioned neither smells nor

detecting issues.

The results of our search query and filtering process are
listed in Table 1 as well as any papers that were added
from the references of another paper. After the process was
completed, we were left with 31 papers that were thoroughly
examined to understand where the current research on
visualizing anti-patterns at runtime in microservices stands.

In order to successfully present the research from the
31 collected papers, a map was created to connect each
paper with any research question it answered. As we read
through the papers, notes were taken on what question a paper
answered, as well as how it answered the question. Answering
the questions as we read helped us gather the current research
presented in section IV and track what information was
garnered from each paper. After taking these notes on the
papers, we read through all of the answers for a single
research question in order to synthesize the information.
Using our mapping and the different answers collected from
it allowed us to properly gather the information presented in
the research papers and ultimately present our findings in this
mapping study.

IV. ANALYSIS RESULTS

Of the 332 unique papers that were returned by our search
query, only 31 proved to be relevant to our topic. Many
papers were either focused on security or testing the system
to verify the absence of logic errors. These 31 papers, listed
in the Primary studies reference section, were examined and
utilized to answer our research questions. In this section,
we present the results of our study based on the information
gathered from our research.

As mentioned in section II, anti-patterns are similar
to patterns as they are problems that have solutions that
are applicable to multiple contexts. In a service-oriented
architecture (SOA), pattern detection is common because

VOLUME 11, 2023

G. Parker et al.: Visualizing Anti-Patterns in Microservices at Runtime: A Systematic Mapping Study

IEEE Access

it allows businesses to verify the quality of a system [12].
Another advantage of this pattern detection is that it is
performed at runtime, a necessity for detecting several anti-
patterns in microservices. Although the software that is
used for pattern detection may be slightly outdated, it is
worth examining because of its potential ability to detect
anti-patterns.

There are different approaches to pattern detection, but
one of the most common tools that we found was complex
event processing (CEP) [13], [14], [15]. CEP’s power
stems from the ability to trace through a large volume
of data to recognize patterns. The general method that
CEP follows is: the manual input of patterns, recording of
events as they take place, and notifying when a pattern
has been detected. This manual inputting of patterns allows
for the possibility of certain anti-patterns to be described
in CEP, and then detected at runtime. CEP can also be
connected with visualization tools such that when a pattern
is detected and the notification is sent, the visualization tool
models it. The power of CEP and pattern detection could
provide a mechanism for detecting anti-patterns in modern
microservices.

Other papers also mentioned a mechanism for detecting
patterns in SOA, and these papers described the process
of writing their own algorithm [12], [16]. Although this
approach is more complicated than building upon an existing
tool, a general algorithm that could be applied across multiple
languages would be more beneficial. Gammage et al. [2]
introduce an algorithm that utilizes graph theory to detect
anti-patterns such as the bottleneck, the knot, and cyclic
dependencies. This paper builds upon the existing knowledge
of graph elements, such as strongly connected components,
to provide a way for detecting anti-patterns. Should the
algorithms and knowledge described in this paper be applied
to other microservices, many systems can utilize this method
to detect and remove anti-patterns.

The main issue that was found regarding pattern detection
techniques was that many of the techniques only describe
SOA. While SOA may be a predecessor to microservices,
there are still differences between these architectures. Updat-
ing the methods used in SOA is possible, but creating an
algorithm that can be applied to across multiple languages
would be the most beneficial. Overall the most promising
proposal came from Gammage et al. [2] as it detects anti-
patterns in microservices at runtime.

A. DYNAMIC ANALYSIS OF SMELLS

Given the large scale of microservice architectures, dynamic
analysis is necessary to get the understanding of behavior of
the system at runtime. Without this insight, there is no way to
observe the system in its entirety. Most papers that discussed
dynamic analysis as it relates to microservices focused solely
on testing the system for logic errors [17]. For the purpose
of this paper, however, we are interested in applying dynamic
analysis to discover anti-patterns in microservices.

VOLUME 11, 2023

supplier order

shopping cart

inventory
product

FIGURE 1. Graphical representation of cyclic dependencies.

In order to detect smells in microservices from the dynamic
perspective, some papers suggested gathering information
based on the log files of a system [18], [19]. Tracing through
the log files and seeing how different services communicate
with each other allows patterns to be found. By examining
information from logs, it is possible to discover anti—patterns
like cyclic dependencies because of the flow of information.

Dynamic analysis also goes hand in hand with pattern
detection, as mentioned in section III. Since pattern detection
involves tracking the flow of data at runtime, it is a form
of dynamic analysis [20], [21]. Some papers also discuss
combining static analysis with dynamic analysis in order
to create the most efficient system possible [6], [20], [22].
Although these papers mention ‘“‘combining” both forms of
analysis, they are done separately and do not interact with
each other. Therefore, there is not much that static analysis
contributes to discovering anti—patterns that occur at runtime.

Dynamic analysis is currently not commonly used for
detecting anti—patterns. Many of the papers that discuss
the detection of anti—patterns utilize static analysis. More
research exists on finding patterns by using dynamic analysis,
and this research could be extended to include anti-patterns.
Extending the existing research is likely the best solution to
utilize dynamic analysis for anti-pattern detection.

B. ANTI-PATTERNS IN GRAPHS

Visualizing the architecture of a system is of great benefit to
those who want a complete view of the architecture. The most
basic way of visually describing a microservice-based system
is through a graph [2], [23]. Having a node representing a
service and an edge representing the communication between
services allows for a simple understanding of how the system
is working at runtime. Even with this basic visualization
technique, it is possible to see anti-patterns.

Several anti-patterns can be visualized in graphs. As shown
in Figure 1, cyclic dependencies are one of the sim-
plest anti-patterns to observe. A cyclic dependency in
microservice—based systems is defined as a cycle of messages
that occurs between a set of services [9]. It is easy to visualize
this anti-pattern because it is a closed circuit in the graph.

Bottleneck services can also be shown in graphs. A bot-
tleneck occurs when a service is extensively used but cannot
handle the high volume of requests [8]. Graphs could depict
this anti—pattern by highlighting a node that has a high volume
of input and output. There may be cases where developers
want to have a service with a lot of communication running

4437

IEEE Access

G. Parker et al.: Visualizing Anti-Patterns in Microservices at Runtime: A Systematic Mapping Study

through it; therefore, the maximum number of connections to
other services would be determined by the developers.

The knot is another anti-pattern that can be seen in graphs.
A knot is a group of services that have low cohesion, but are
tightly coupled [8]. Although similar to the bottleneck, knots
refer to a group of services rather than a single one. Knots
can be visualized in graphs by demonstrating areas where
multiple services that have a high volume of input and output
are connected.

The presented anti-patterns are some of the simplest to
visualize in graphs because they focus on the connections
to other services. Other anti-patterns can also be visualized
in graphs such as Nanoservice, Endpoint-based Service
Interaction, Not Having an API Gateway, Service Chain,
Shared Persistency, and Wobbly Service Interaction. Gam-
mage et al. [2] and Borges et al. [24] describe a means for
visualizing these anti-patterns.

Although anti-patterns can be visualized in graphs, this
only provides a basis for visualization. The main issue
regarding graphs is the fact that microservices are not just
several services communicating with each other; they are
many related services. Graphs are easy to observe when they
are small, but modeling the architecture of a microservice in
a graph can get cluttered quickly. Therefore, it is necessary to
create visualization techniques that would be able to focus on
the part of system that contains the anti-pattern, rather than
finding anti-patterns by looking at every service.

C. VISUALIZING ANTI-PATTERNS
As mentioned in the previous section, visualizing the
architecture of a system can help with the detection of anti-
patterns. Seeing how the system runs and observing the flow
of data offers a greater understanding of where problem areas
may lie. In order to improve visualization to help understand
anti-patterns in microservice-based systems, it is necessary
to provide a way to automatically detect anti-patterns. While
we examined the research papers for a tool that combines
visualization of microservices with the detection of anti-
patterns, there are few tools that achieve both. Although, there
are tools that can visualize the architecture of microservices
and separate tools that detect anti-patterns at runtime.
Combining these tools would create a larger tool that can
accomplish both visualization and detection of anti-patterns.
Visualization tools for modeling the architecture of a
microservice—based system have been gaining more ground
in recent years. An example visualization of a visual model
of a microservice-based system is depicted in Figure 2. There
are many different approaches that have been taken, but the
most common way to gain a preliminary understanding of
the system is to track the log files [22], [25], [26], [27].
To create a model of the system, it is necessary to discover
what services are communicating with other services. One
of the easiest ways to achieve this is to extract distributed
tracing data> from log files to see what services responded

5https://opentracing.io

4438

ServiceLocator_2
CustomerServiceImpl

~
BookingSeryicelmpl

BookingsREST
ConnectionManaget 3 |/ Servicelocator_4
CustomerREST
ConnectionManager_1
2
KeyGenerator KeyGenerator_2
Addresslnfo Customerinfo
LoginREST
CustomerService
ServiceLocator” | FlightService
Seryi b 1
R Chocatlor 3 ServieLocator 3

FlightServie. plonnectionManager 2
RESTCookieSessionFilter
FlightsREST

FIGURE 2. Visualization of the microservice architecture. (Reprinted
from [27]).

to messages sent out by other services. This tracing forms
the basis for many visualization tools. After this tracing has
been finished, it varies between each tool on how the system
is finally modeled.

Although visualization of microservices is achieved in
several ways, there is a gap between the visualization
and detection of anti-patterns. Several papers describe an
approach to combine separate tools — one for visualization,
one for anti—pattern detection, and another that operates
between the two [24], [28], [29]. Using separate tools is cur-
rently the only way to achieve visualization of anti—patterns
in microservices from the dynamic perspective. One tool that
is able to complete the problem we have presented would
be more beneficial because it would remove the need for
multiple tools to be set up.

D. TOOLS FOR VISUALIZATION

Our research has identified a number of tools and approaches
for visualizing anti—patterns through the dynamic perspec-
tive. It is important to note that visualization is distinct
from detection, as detection involves reporting that a given
anti—pattern exists, while visualization is the graphical repre-
sentation of the anti—pattern. Table 2 indicates anti—patterns
that are both detected and visualized by certain tools as well
as those that are only detected and not visualized. After
collecting and synthesizing the research, we found that visu-
alization of anti—patterns was less common than tools used
for their detection. Furthermore, it is important to designate
the threshold for what constitutes a visualization. In order for
a tool to have achieved visualization, it must include some
diagram that a person could gain information from. We define
tables, JSON files, and other textual descriptions to not be
visualization.

After examining the presented tools, we found that the
most common anti—pattern mentioned was cyclic dependen-
cies. Many tools only obtained detection and visualization
of cyclic dependencies, those being: Al Reviewer, Approach

VOLUME 11, 2023

https://opentracing.io

G. Parker et al.: Visualizing Anti-Patterns in Microservices at Runtime: A Systematic Mapping Study

IEEE Access

TABLE 2. Microservice antipattern detection and visualization between tools.

. MSANose Arcan MAIG N Approach from
Antipattern 130] [41] 2] Fre[sghle]ner Borgo et al. [24]
Ambiguous Service X X
API Versioning X
Bloated Service X
Bottleneck Service XX X
Cyclic Dependency X XX XX
Endpoint-based Service Interaction XX
Enterprise Service Bus (ESB) Usage X
Hard-coded Endpoints X X X
Inappropriate Service Intimacy X
Microservice Greedy X
Nano Service XX
Not Having an API Gateway X XX
Service Chain XX
Shared Libraries X
Shared Persistency X X XX
The Knot XX
Too Many Standards X
‘Wobbly Service Interaction XX
Wrong Cuts X

Displays whether a given smell is only detected or both detected and visualized by a given tool (X = Detected; XX = Detected and Visualized).

from Mayer et al. [26], Designite [35], GSMART [22], Jaeger,
Massey Architecture Explorer [36], Sonargraph [37], STAN,
Structure 101, and Titan [38]. There are also two tools that
only perform detection of cyclic dependencies, those tools
being Hotspot Detector [39] and ARCADE [40]. Amongst
the tools that only recognized cyclic dependencies, most
performed the detection automatically, but the approach from
Mayer et al. [26] and Jaeger required manual detection. There
are different approaches to visualization and they are listed
in Table 3, but cyclic dependencies were most commonly
shown in service dependency graphs (SDG). Although there
are many tools that can only detect cyclic dependencies,
there is room for the extension of these tools. Extending
the visualization and detection techniques of these tools to
include more anti—patterns would offer new approaches to the
removal of anti—patterns.

Although many tools we found only focused on cyclic
dependencies, there are several tools listed in Table 2 that did
include other anti—patterns. MSANose [30] is one of the tools
that mentioned the detection of other anti—patterns. Although
there is mention of other anti—patterns, MSANose detects
anti—patterns using static analysis and does not provide
any visualization. Although using static analysis to detect
anti—patterns is a valid approach, our mapping study focuses
on using dynamic analysis. MSANose is mentioned here,
however, because of its ability to detect other anti—patterns
not included by other tools.

Arcan is another tool we found that is able to detect other
anti—patterns. Pigazzini et al. [41] extended Arcan in order
to achieve the detection of three anti—patterns, as well as the
visualization of cyclic dependencies. This is a smaller number
of detected anti—patterns than MSANose, and it also achieves
detection by static analysis. Although Arcan’s extension is
able to detect more than cyclic dependencies, MSANose
achieves more with static analysis.

VOLUME 11, 2023

Borges et al. [24] present another means for detecting
several anti—patterns. The approach is built off of Spinnaker
and detects a total of five anti—patterns. This approach still
finds fewer anti—patterns than MSANose and also utilizes
static analysis. Although it may find fewer anti—patterns,
it can detect three anti—patterns that MSANose does not.
However, because it is focused on static analysis, this
tool does not provide a means for finding anti—patterns at
runtime.

Microservice Anti—Patterns Insights Generator (MAIG) [2]
is capable of both visualizing and detecting anti—patterns
based on data obtained at runtime. MAIG operates by using
dependency graphs to provide a view of how the system
is behaving. There are also tracking tools that follow the
number of outgoing and incoming edges for a service, which
aid in the detection of anti-patterns such as the knot and
bottleneck. Operating based on trace data obtained from
Zipkin and relaying that data to the graph database Neo4;j,
MAIG successfully combines two different tools to achieve
visualization and detection of anti—patterns.

Lastly, uFreshener [31] is also able to detect and visualize
anti—patterns based on information obtained at runtime.
By processing collected trace information, pFreshener is able
to detect anti—patterns and visualize them by highlighting
the impacted nodes in the corresponding service graph.
uFreshener can also be combined with other tools like
MTOSCA in order to achieve this detection.

After analyzing all of the tools, it is apparent that there are
not many existing tools for detecting and visualizing anti—
patterns. The two that achieved this, MAIG and pFreshener,
also relied on other tools to achieve the visualization and
detection. Combining tools is therefore the only approach
we found to properly visualize anti—patterns in microservices
from the dynamic. No single tool is completely capable of
providing all of the aspects our study intended to find.

4439

IEEE Access

G. Parker et al.: Visualizing Anti-Patterns in Microservices at Runtime: A Systematic Mapping Study

TABLE 3. Methods of visualizations for each microservice antipattern.

Antipattern

Visualization Methods

Bottleneck Service
Cyclic Dependency

Endpoint-based Service Interaction
Nano Service
Not Having an API Gateway
Service Chain
Shared Persistency
The Knot
Wobbly Service Interaction

SDG [22], [26], [36], [37]; Sunburst Diagram

Dependency Graph [2]

[35]; Design Structure Matrix [38]
SDG [31]
Dependency Graph [2]

SDG [31]
Dependency Graph [2]

SDG [31]
Dependency Graph [2]

SDG [31]

E. FUTURE DIRECTIONS

Many papers identified in this mapping study mentioned
some future work in their conclusion. We found that there
were three general ideas mentioned across most of the
papers we collected. First, papers that focused on pattern
detection or definitions of anti—patterns wanted to extend
their understanding to include more patterns [14], [19]
as well as improve their pattern detection technique
[11], [25]. Improving pattern detection to include more
patterns may lead to the addition of anti—patterns, thus
creating a new means for anti—pattern detection. For defining
new anti—patterns, the more common issues are found across
microservices, the more solutions will arise that can be
applied across all microservices. Improving pattern detection
will assert that the given tool will perform more accurately,
allowing less anti—patterns to avoid being found.

Second, papers that focused on visualizing the architecture
of a system discussed improving the adaptability of their
visualization tool in the future [4], [10], [18]. Providing a
way for a visualization tool to grow as a microservice-based
system evolves would prove to be a major asset. As mentioned
by Nakazawa et al. [27], there is a limit on the maximum
number of nodes that can exist in their visualization tool,
which would lead to a problem whenever a system grew
too large for that tool. Another future direction related to
visualization that was only mentioned by Zhao et al. [21]
was the idea to take the visual model of a system and create
a coding framework based on the model. This could allow
for the design of a microservice—based system from a visual
perspective, such that anti—patterns are not included from the
start of the process.

Finally, the last common future direction mentioned was
an automatic tool for testing the quality of a system [3],
[71, [17], [26]. While the quality of a system typically refers
to the system working as intended, the papers mentioned
extending these tools to find design issues. Design issues can
be related to anti—patterns, and therefore have some interest
in our mapping study. Another future direction mentioned in
Sampaio et al. [28] discusses improving log analysis tools to
increase the accuracy and the amount of tracked data.

F. THREATS TO VALIDITY

The main threat to validity comes from the exclusion
of papers that could have been relevant to visualizing
anti—patterns in microservices from the dynamic perspective.

4440

FIGURE 3. Our tool prototype to visualize anti—patterns in a microservice
system service dependency graph.

This exclusion comes in phase 2 of section III from our
search query. Since this search is performed automatically,
we confirmed whether a query gave us valid results based
only on the total number of results and the first 25 papers
listed. Relevant papers could have been excluded here if
they did not contain keywords that were listed in our query,
thus leading to the potential exclusion of tools. In order to
mitigate this issue, we made our query broad in order to
avoid losing papers that were relevant to the topic. We also
expanded our query to include service-oriented architecture
to avoid missing any written research on the predecessor of
microservices.

Another threat comes from the potential exclusion of
papers in the third phase — the filtering of the titles and
abstracts. Human error could have caused some papers
that may have had relevance to be lost, but to avoid
any major concern with this issue, multiple authors read
through each title and abstract. Having multiple authors in
this phase reduced the chance that a relevant paper would
accidentally be removed because each title and abstract was
read at least twice, by two different people. When there
were disagreements between the authors, another author was
brought in to resolve the inconsistency.

The last threat to validity comes from the number of search
indexers used. Only five were selected for this paper, namely
ACM Digital Library (DL), IEEE Xplore, ScienceDirect,
Scopus, and SpringerLink. There may be other papers that

VOLUME 11, 2023

G. Parker et al.: Visualizing Anti-Patterns in Microservices at Runtime: A Systematic Mapping Study

IEEE Access

were published on other sites that are not included in our
study. To mitigate this issue, the related works were read in
the relevant papers in order to include any research that may
have been published on a different site.

V. CONCLUSION

Visualizing anti—patterns in microservices from the dynamic
perspective helps their detection and removal. Removing
anti—patterns from a system’s design helps to improve the
quality of service as well as prevent potential design flaws
that could appear as the system evolves. Our mapping study
found a total of 31 papers relevant to our topic and after
thoroughly examining them, we presented the current state
of research on our topic. We found that there is research
discussing the detection of anti—patterns at runtime, and there
is separate research visualizing a microservice-based system
from the dynamic perspective. Combining these methods
results in an overall system that can detect anti—patterns and
notify a visualization tool of their existence. While there was
not an individual tool that was able to accomplish both aspects
of our topic, this combination of tools is the most common
approach we found.

For future research, we are developing our own tool
that is able to detect selected anti—patterns at the service-
dependency graph and uses visualization to highlight the
occurrence of the anti—pattern. Figure 3 shows our tool
visualization demonstrating cyclic dependencies. Our study
helped us to gain a stronger understanding of the current
outlook on anti-patterns in microservices and how they are
visualized from the dynamic perspective, as well as what
research may appear in the future.

REFERENCES

[1] J. Rasheedh and S. Saradha, “Design and development of resilient
microservices architecture for cloud based applications using hybrid design
patterns,” Indian J. Comput. Sci. Eng., vol. 13, no. 2, pp. 365-378, 2022.

[2] I. U.P. Gamage and I. Perera, ““Using dependency graph and graph theory
concepts to identify anti-patterns in a microservices system: A tool-based
approach,” in Proc. Moratuwa Eng. Res. Conf. (MERCon), Jul. 2021,
pp. 699-704.

[3] F. Z. Safy, M. El-Ramly, and A. Salah, “Runtime monitoring of SOA
applications: Importance, implementations and challenges,” in Proc. IEEE
7th Int. Symp. Service-Oriented Syst. Eng., Mar. 2013, pp. 315-319.

[4] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, and D. Kroger,
“Microservice decomposition via static and dynamic analysis of the
monolith,” in Proc. IEEE Int. Conf. Softw. Archit. Companion (ICSA-C),
Mar. 2020, pp. 9-16.

[5] X. Guo, X. Peng, H. Wang, W. Li, H. Jiang, D. Ding, T. Xie, and L. Su,
“Graph-based trace analysis for microservice architecture understanding
and problem diagnosis,” in Proc. 28th ACM Joint Meeting Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., Nov. 2020, pp. 1387-1397, doi:
10.1145/3368089.3417066.

[6] A.Ouni, M. Kessentini, K. Inoue, and M. O. Cinnéide, ““Search-based web
service antipatterns detection,” IEEE Trans. Services Comput., vol. 10,
no. 4, pp. 603-617, Aug. 2017.

[7] S.Panichella, M. Rahman, and D. Taibi, ““Structural coupling for microser-
vices,” in Proc. 11th Int. Conf. Cloud Comput. Services Sci. (CLOSER).
SCITEPRESS—Science and Technology Publications, pp. 280-287, doi:
10.5220/0010481902800287.

[8] F.Palmaand N. Mohay, ‘A study on the taxonomy of service antipatterns,”
in Proc. IEEE 2nd Int. Workshop Patterns Promotion Anti-Patterns
Prevention (PPAP), Mar. 2015, pp. 5-8.

[9] D. Taibi and V. Lenarduzzi, “On the definition of microservice bad
smells,” IEEE Softw., vol. 35, no. 3, pp. 5662, May/Jun. 2018.

VOLUME 11, 2023

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino,
and A. Di Salle, “Towards recovering the software architecture of
microservice-based systems,” in Proc. IEEE Int. Conf. Softw. Archit.
Workshops (ICSAW), Apr. 2017, pp. 46-53.

J. P. Sotomayor, S. C. Allala, D. Santiago, T. M. King, and P. J. Clarke,
“Comparison of open-source runtime testing tools for microservices,”
Softw. Quality J., May 2022.

M. Di Penta, A. Santone, and M. L. Villani, “Discovery of SOA patterns
via model checking,” in Proc. 2nd Int. Workshop Service Oriented Softw.
Eng. Conjunct 6th ESEC/FSE Joint Meeting. Association for Computing
Machinery, Sep. 2007, pp. 8-14, doi: 10.1145/1294928.1294931.

K. Vidackovic and A. Weisbecker, “A methodology for dynamic service
compositions based on an event-driven approach,” in Proc. Annu. SRII
Global Conf., Mar. 2011, pp. 484-494.

J. Boubeta-Puig, G. Ortiz, and 1. Medina-Bulo, “MEdit4CEP: A model-
driven solution for real-time decision making in SOA 2.0,” Knowl.-
Based Syst., vol. 89, pp.97-112, Nov. 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950705115002397

T. Holmes, E. Mulo, U. Zdun, and S. Dustdar, ‘““Model-aware monitoring
of SOAs for compliance,” in Service Engineering: European Research
Results, pp. 117-136.

P. Scandurra and S. Capelli, “A practical and automated approach
for engineering service-oriented applications with design patterns,” in
Proc. IEEE 38th Int. Comput. Softw. Appl. Conf. Workshops, Jul. 2014,
pp. 684-689.

D. Rud, A. Schmietendorf, and R. Dumke, “R.: Product metrics for
service-oriented infrastructures,” in Proc. Appl. Softw. Meas. Int. Work-
shop Software Metrics DASMA Softw. Metrik Kongress (IWSM/MetriKon,
Jan. 2006.

F. H. Vera-Rivera, E. Puerto, H. Astudillo, and C. M. Gaona, ‘“Microser-
vices backlog—A genetic programming technique for identification and
evaluation of microservices from user stories,” IEEE Access, vol. 9,
pp. 117178-117203, 2021.

M. Nayrolles, N. Moha, and P. Valtchev, “Improving SOA antipatterns
detection in service based systems by mining execution traces,” in Proc.
20th Work. Conf. Reverse Eng. (WCRE), Oct. 2013, pp. 321-330.

F. Palma, N. Moha, G. Tremblay, and Y.-G. Guéhéneuc, ““Specification and
detection of SOA antipatterns in web services,” in Software Architecture
(Lecture Notes in Computer Science), P. Avgeriou and U. Zdun, Eds.
Berlin, Germany: Springer, 2014, pp. 58-73.

B. Zhao, Y. Zhao, and D. Ma, “A constraint mechanism for dynamic
evolution of service oriented systems,” in Proc. IEEE 15th Int.
Symp. Object/Component/Service-Oriented Real-Time Distrib. Comput.,
Apr. 2012, pp. 103-110.

S.-P. Ma, C.-Y. Fan, Y. Chuang, L.-H. Liu, and C.-W. Lan, “Graph-
based and scenario-driven microservice analysis, retrieval, and
testing,” Future Gener. Comput. Syst., vol. 100, pp.724-735,
Nov. 2019. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167739X19302614

Y. Zuo, X. Zhu, J. Qin, and W. Yao, “Temporal relations extraction and
analysis of log events for micro-service framework,” in Proc. 40th Chin.
Control Conf. (CCC), Jul. 2021, pp. 3391-3396.

R. Borges and T. Khan. Algorithm for Detecting Antipatterns in
Microservices Projects. CEUR-WS. Accepted: Mar. 30, 2021. [Online].
Available: https://trepo.tuni.fi/handle/10024/129802

L. Mazzola, P. Kapahnke, and M. Klusch, “Semantic composition of
optimal process service plans in manufacturing with ODERU,” Int. J. Web
Inf. Syst., vol. 14, no. 4, pp. 495-523, 2018.

B. Mayer and R. Weinreich, “An approach to extract the architecture
of microservice-based software systems,” in Proc. IEEE Symp. Service-
Oriented Syst. Eng. (SOSE), Mar. 2018, pp. 21-30.

R. Nakazawa, T. Ueda, M. Enoki, and H. Horii, ““Visualization tool for
designing microservices with the monolith-first approach,” in Proc. IEEE
Work. Conf. Softw. Visualizat. (VISSOFT), Sep. 2018, pp. 32-42.

A. R. Sampaio, H. Kadiyala, B. Hu, J. Steinbacher, T. Erwin, N. Rosa,
I. Beschastnikh, and J. Rubin, “Supporting microservice evolution,” in
Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2017,
pp. 539-543.

H. Fernandez, C. Tedeschi, and T. Priol, “Decentralized workflow
coordination through molecular composition,” in Proc. Int. Conf. Service-
Oriented Comput., in Lecture Notes in Computer Science, vol. 7221, 2011,
pp. 22-32.

4441

http://dx.doi.org/10.1145/3368089.3417066
http://dx.doi.org/10.5220/0010481902800287
http://dx.doi.org/10.1145/1294928.1294931

IEEE Access

G. Parker et al.: Visualizing Anti-Patterns in Microservices at Runtime: A Systematic Mapping Study

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

4442

A. Walker, D. Das, and T. Cerny, “Automated code-smell detection in
microservices through static analysis: A case study,” Appl. Sci., vol. 10,
no. 21, p. 7800, 2020. [Online]. Available: https://www.mdpi.com/2076-
3417/10/21/7800

J. Soldani, G. Muntoni, D. Neri, and A. Brogi, “The u TOSCA toolchain:
Mining, analyzing, and refactoring microservice-based architectures,”
Softw., Pract. Exper., vol. 51, no. 7, pp. 1591-1621, Jul. 2021.

F. Ponce, J. Soldani, H. Astudillo, and A. Brogi, “Smells and refac-
torings for microservices security: A multivocal literature review,”
J. Syst. Softw., vol. 192, Oct. 2022, Art. no. 111393. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016412122200111X
V. Bushong, A. S. Abdelfattah, A. A. Maruf, D. Das, A. Lehman,
E. Jaroszewski, M. Coffey, T. Cerny, K. Frajtak, P. Tisnovsky, and M.
Bures, ““On microservice analysis and architecture evolution: A systematic
mapping study,” Appl. Sci., vol. 11, no. 17, p. 7856, Aug. 2021.

K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting
systematic mapping studies in software engineering: An update,” Inf.
Softw. Technol., vol. 64, pp. 1-18, Aug. 2015.

T. Sharma. (May 2016). Designite—A Software Design Quality Assessment
Tool. [Online]. Available: http://www.designite-tools.com

J. Dietrich, “Upload your program, share your model,” in Proc. Annu.
Conf. Syst., Program., Appl., Softw. Humanity, 2012, pp. 21-22.

A. von Zitzewitz, “Mitigating technical and architectural debt with
sonargraph,” in Proc. IEEE/ACM Int. Conf. Tech. Debt (TechDebt),
May 2019, pp. 66-67.

L. Xiao, Y. Cai, and R. Kazman, “Titan: A toolset that connects software
architecture with quality analysis,” in Proc. 22nd ACM SIGSOFT Int.
Symp. Found. Softw. Eng., Nov. 2014, pp. 763-766.

R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot patterns: The formal
definition and automatic detection of architecture smells,” in Proc. 12th
Work. IEEE/IFIP Conf. Softw. Archit., May 2015, pp. 51-60.

D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian, and
N. Medvidovic, “An empirical study of architectural change in open-
source software systems,” in Proc. IEEE/ACM 12th Work. Conf. Mining
Softw. Repositories, May 2015, pp. 235-245.

I. Pigazzini, F. A. Fontana, V. Lenarduzzi, and D. Taibi, ‘“Towards
microservice smells detection,” in Proc. 3rd Int. Conf. Tech. Debt,
Jun. 2020, pp. 92-97.

GARRETT PARKER is currently a Junior Student
in computer science with Baylor University. Since
Fall 2020, he has been featured on the Baylor Uni-
versity Dean’s List. His research interests include
static and dynamic code analysis and visualization.
In addition, he received the Computer Science
Scholarship Award, in Spring 2022.

SAMUEL KIM is currently pursuing the bach-
elor’s degree in computer science with Bay-
lor University. He has been recognized on the
Baylor University Dean’s List and with schol-
arship awards, including the Baylor Computer
Science Scholarship and the Baylor Association of
Computing Machinery Scholarship. His research
interests include the visualization of distributed
systems and the security of computer systems.

ABDULLAH AL MARUF (Member, IEEE)
received the bachelor’s degree from the Depart-
ment of Computer Science and Engineering,
Chittagong University of Engineering and Tech-
nology, Bangladesh. He is currently pursuing the
master’s degree in computer science with Baylor
University. He has four years of professional
experience as a Software Developer and a DevOps
Engineer. He is an Open-Source Enthusiast. His
research interests include software engineering,
code analysis, and runtime log analysis.

TOMAS CERNY received the master’s and Ph.D.
degrees from the Faculty of Electrical Engineering
(FEE), Czech Technical University in Prague,
and the M.S. degree from Baylor University.
In 2009, he started his academic career at the
FEE, Czech Technical University, from where he
transferred to Baylor University, in 2017. He is
currently a Professor of computer science with
Baylor University. He worked more than ten
years as the Lead Developer for the International
Collegiate Programming Contest Management System. He authored over
100 publications, mostly related to code analysis and enterprise systems.
His research interests include software engineering, cloud systems, and code
analysis. Among his awards are best papers at Microservices 2022, IEEE
SOSE 2022, Closer 2022, LXNLP 2022, the Outstanding Service Award
ACM SIGAPP 2018 and 2015, and the 2011 ICPC Joseph S. DeBlasi
Outstanding Contribution Award. He served on the committee of multiple
conferences in the past few years, including Program Chair or Conference
Chair at ACM SAC, ACM RACS, and ICITCS.

KAREL FRAIJTAK received the master’s and Ph.D.
degrees from the Faculty of Electrical Engineer-
ing, Czech Technical University in Prague. He is
currently a Lecturer and a Researcher with the
System Testing Intelligent Laboratory (STILL),
Department of Computer Science, Faculty of Elec-
trical Engineering, Czech Technical University in
Prague.

PAVEL TISNOVSKY received the Ph.D. degree
from the Brno University of Technology, Czech
Republic. He was an Assistant Professor,
from 1999 to 2005. He is currently a Principal
Quality Engineer with Red Hat Inc., with over
ten years of experience. He is a programming
language enthusiast and the author of many articles
and series at Linux magazine ROOT.cz. He holds
one software patent on testing and also works
on tools for OpenShift.io—open development
services for creating, building, and testing container applications.

DAVIDE TAIBlI (Member, IEEE) has been a
member of the International Software Engineering
Network (ISERN), since 2018. He is currently
a Full Professor with the University of Oulu,
Finland, where he is also the Head of the
M3S Cloud Research Group. Before moving to
Finland, he was an Assistant Professor at the Free
University of Bozen/Bolzano, from 2015 to 2017;
a Postdoctoral Research Fellow at the Technical
University of Kaiserslautern and Fraunhofer Insti-
tute for Experimental Software Engineering—IESE, from 2013 to 2014;
and a Research Fellow at the University of Insubria, from 2007 to 2011.
His research interests include empirical software engineering applied to
cloud-native systems, with a special focus on the migration from monolithic
to cloud-native applications. He is investigating processes and techniques
for developing cloud native applications, identifying cloud-native specific
patterns and anti-patterns.

VOLUME 11, 2023

