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Abstract. High-voltage and high-frequency alternating current (HV-HF-AC) excitation of 

piezoelectric properties of Quartz is a potential method to induce cracks in granite. This was 

recently shown in a numerical feasibility study [6], where cracking was induced on cylindrical 

rock samples made of granite by sinusoidal AC excitation at the frequency of 100 kHz and 

the amplitude of 10 kV. However, this study did not investigate the weakening effect due to 

this cracking on the tensile strength of the sample. The present study addresses this topic 

numerically. For this end, a numerical method based on 3D embedded discontinuity finite 

elements for rock fracture and an explicit time stepping scheme to solve the coupled 

piezoelectro-mechanical problem is adopted. Rock heterogeneity and anisotropy are accounted 

for at the mineral mesotructure level. A preliminary numerical simulation demonstrates that the 

HV-HF-AC treatment reduces the tensile strength of a cylindrical granite sample by 12 %, 

making it thus a potential non-conventional pre-treatment method in comminution and 

excavation of Quartz bearing rocks and ores.   

1.  Introduction 

Low energy efficiency and excessive tool wear are the major problems in comminution and excavation 

of rocks and ores [1, 2]. For this reason, new energy efficient methods are presently being intensively 

searched. In particular, the unconventional techniques, i.e. nonmechanical or noncontact techniques, 

especially those exploiting electricity, used either alone or as a rock weakening pre-treatment prior to 

mechanical comminution have drawn extensive attention lately [3, 4, 5].  

One such method uses high-voltage and high-frequency alternating current (HV-HF-AC) excitation 

of piezoelectric properties of Quartz in granite to induce cracking by the converse piezoelectric effect. 

Saksala [6] carried out a numerical feasibility study on this new method and showed that it has some 

promise. Namely, damage in the form of cracks was inflicted on cylindrical rock samples made of 

granite by sinusoidal AC excitation at the frequency of 100 kHz and the amplitude of 10 kV. In 

order to induce cracks, the frequency of the excitation needed to match one of the natural frequencies 

of the sample. The fracture mechanism was thus related to the resonance phenomenon appearing in 

forced vibration of the sample. It was also shown in this study that inducing cracks by converse 

piezoelectric effect using direct current is impossible, as the voltage required exceeds the electric 

breakdown strength (100–150 kV/cm for granite) of the rock. In this case, the sample would thus 

fracture due to the plasma channel spallation effect. 

However, the study by Saksala [6] did not investigate the weakening effect due to the cracking 

induced by piezoelectric excitation on the tensile strength of the sample. Therefore, the present study 

addresses this important topic by a numerical study. More specifically, a cylindrical specimen is first 

treated by piezoelectric excitation and then subjected to uniaxial tension test. For this end, the 

numerical method based on 3D embedded discontinuity finite elements for rock fracture and the 

explicit time stepping scheme to solve the coupled piezoelectro-mechanical problem developed in ref. 

[6] is employed. This method accounts for rock heterogeneity and anisotropy at the mineral 

mesotructure level. Numerical simulations are carried out to demonstrate the weakening effect. 
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2.  Theory of the modelling approach 

2.1.  Discontinuity plane in a finite element discretized piezoelectric material 

Consider a 3D body made of piezoelectric material discretized with 4-node tetrahedral elements under 

electric field E. Assume the body also to be split into two (or more) disjoint parts by a displacement 

discontinuity, i.e. a crack, as illustrated in Figure 1. Displacement discontinuity ( 1,2)di i =  is defined 

by the normal nd and tangent vectors m1, m2. 

 

 

Figure 1. 4-node tetrahedron with two intersecting discontinuity planes 

 

With the small deformation assumption (valid for rock at room temperature and low confinement 

pressure), the displacement and strain fields for such element are     
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where the symbols meaning are: dkα  is the displacement jump; Ni and e

iu  are the standard 

interpolation functions for the linear tetrahedron and nodal displacements (i = 1,..,4 with summation 

on repeated indices), respectively; d is piezoelectric coefficients matrix; e

i  is the nodal value of the 

electric potential; 
dk

H  and 
dk

  denote the Heaviside function and its gradient, the Dirac delta 

function; 
dk

eM   is a function, which, through function 
dk

 , restricts the effect of dkα  inside the 

corresponding finite element (for more details see [6]). It should be noted that as the displacement 

jump is assumed elementwise constant, so that the expression for strain in (1) follows taking the 

gradient and adding the piezoelectric strain. Moreover, the term containing the Dirac’s delta function, 

in (1), is non-zero only at the discontinuity plane. As this term is zero at the element nodes, it can be 

neglected at the global level when solving the discretized equations of motion. 

2.2.  Traction-separation model for solving the crack opening vector 

In the present approach, the rock material is taken as linear elastic, but heterogeneous and anisotropic, 

up to fracture, which is modelled by the embedded discontinuity technology. A fixed (nonrotating) 

discontinuity (crack) is introduced to an element upon violation of the first principal stress criterion 

with the discontinuity normal conforming to the first principal direction. Moreover, the Cauchy 

relation, 
d d = t σ n , between the stress  and traction 

d
t over the discontinuity plane holds in this 

approach. The softening process is controlled by a traction-separation law. The present formulation 

imitates plasticity theory as the crack opening (displacement jump) is irreversible. Furthermore, a 

loading function is needed for judging between elastic and inelastic stress states. The model 

components for each crack are (written without the subindex k indicating crack number):   
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where the symbols are as follows: d is the loading function (equivalent to yield function in 

plasticity); ,  are the internal variable and its rate related to the softening law q for the discontinuity; 

t  is the tensile strength; s is the viscosity modulus meaning that the model is strain rate dependent; 

GIc is the mode I fracture energy; h is the softening modulus;   is the crack opening increment; eC is 

the elasticity tensor;  (= 1 in this study) is the shear control parameter. The third row in (2) shows the 

evolution laws for traction, crack opening and the internal variable. As the fourth row shows the 

consistency conditions, the model in (2) can be solved by the standard stress integration (return 

mapping) algorithm.  

2.3.  Global solution of the piezoeletro-mechanical problem  

The finite element form of the piezoelectro-mechanical problem at time t (ignoring the irrelevant 

terms) is written as [6]: 
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where the symbol meanings are as follows: M is the consistent mass matrix (which is lumped by the 

row sum technique); C is the material damping matrix and  is a coefficient; int

tf is the internal force 

vector; , ,t t tu u u are the acceleration, velocity and displacement vectors, respectively; t is the electric 

potential vector; ε= I is the (diagonal) dielectric constants matrix; e= e d C is the piezoelectric 

coupling matrix; A is the standard finite element assembly operator; 
u

e
N and

u

e
B  are the displacement 

interpolation matrix and the kinematic matrix (mapping the nodal displacement into element 

strains);
e

N  and
e

B are the electric potential interpolation matrix and its gradient.  

The first Equation in (3) is the balance of linear momentum while the second is the piezoelectro-

static balance. It should be noted that there is no forcing or loading terms in these equations as the 

loading comes from the essential boundary conditions, i.e., either displacement (in tension test) or the 

electrical potential (in piezoelectric excitation) which are specified at a part of the model boundary. 

This problem is solved with a staggered explicit time marching scheme [6]. Finally, the constitutive 

equation is  

   
d

2

1 d
ˆ: ( ( ) )

k

sym

e k k= = −   − σ C ε α d E    (4) 

where ˆ ( )e sym

i iN=  ε u  is the standard FE strain, and the second term is the strain due to crack 

opening dα , while the third term is the strain due to piezoelectric excitation, i.e. the loading term (note 

that e

i iN= −E ). A new discontinuity (the second cracks) is needed to handle the situation where the 

first crack in an element due to the piezoelectric treatment is oriented so that it cannot open during the 

consequent uniaxial tension test. Without another crack, such an element would withstand 
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unrealistically high stresses. In the present approach, another crack is introduced if the present major 

principal stress exceeds the tensile strength of the element, and the corresponding principal direction 

deviates from the first crack orientation more than 45 . The strength of the new crack is a convex 

combination of the strength of the intact mineral and the strength of the first crack with the convexity 

constant being the dot product of the new principal direction and the old crack normal. 

2.4.  Heterogeneous and anisotropic rock material description 

The numerical granitic rock, consisting of -Quartz (33%), Feldspar (59%) and Biotite (8%), is 

described as heterogeneous, anisotropic linear elastic fracturing material. The crystal systems for these 

minerals are trigonal (-Quartz), triclinic (Plagioclase Feldspar) and monoclinic (Biotite) [7-10]. 

However, Biotite is considered here as pseudo-hexagonal, and the hexagonal values measured by 

Alexandrov and Ryzhov [7] are used. The corresponding elasticity matrices and the piezoelectric 

constants matrix for Quartz are [10]:                            
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The rock heterogeneity is described by random clusters of finite elements (see Figure 2c) in the 

mesh so that each mineral is allotted the percentage of elements in the mesh corresponding to the 

percentage of each mineral in the rock.  

3.  Numerical examples 

The numerical simulations of uniaxial tension test on the intact and HV-HF-AC-treated samples are 

described here. The material properties for the minerals, taken from [7-9], used in the simulations are 

given in Table 1 and 2.  

 

                           Table 1. Elasticity [GPa] and piezoelectric constants [pC/N] for rock minerals  

Quartz C11 C33 C44 C12 C13 C14 d11 d14 

 87.3 105.8 57.2 6.6 12.0 -17.2 2.27 -0.67 

Biotite C11 C33 C44 C12 C13    

 186.0 54.0 5.8 32.4 11.6    

Feldspar C11 C22 C33 C44 C55 C66 C12 C13 

 104.8 190.1 169.3 23.6 32.5 35.6 50.2 42.2 

 C23 C15 C25 C35 C46 C14 C16 C26 

 18.6 1.13 -0.99 4.14 -2.6 7.34 -4.3 -4.6 

 C36 C45 C56      

 -5.2 -0.14 2.6      
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 Table 2. Material and model parameters for simulations. 

Parameter/mineral Quartz Feldspar Biotite 

 [kg/m3] 2650 2630 3050 

sd [MPas/m] 0.001 0.001 0.001 

t [MPa] 10 8 7 

GIc [J/m2] 40 40 28 

 [F/m] 4.50 6.30 7.750 

   0 = 8.854E-12 F/m  

 

In Table 2,  is the relative dielectric constant while 0 is that of the vacuum. Moreover, sd is the 

viscosity modulus. The boundary conditions and the finite element mesh are shown in Figure 2.  

 

 

Figure 2. Boundary conditions (Hcyl = 50 mm, Hele = 30 mm, Dcyl = 25 mm, 0 = 50 kV, f = 305 

kHz) (a), the finite element mesh with 206617 elements (b), numerical rock mineral texture (3 = 

Quartz, 2 = Feldspar, 1 = Biotite) (c). 

 

A sinusoidal excitation with 500 cycles was applied on the numerical rock sample, as indicated in 

Figure 2a. The mineral crystal orientations were assumed, for the sake of demonstration albeit 

somewhat unrealistically, to align with the global xyz-coordinate system so that matrices in (5) and (6) 

can be readily used (without rotation). Figure 3 shows the results.   

 

 

Figure 3. Normalized potential field (a) and the magnitude of electric field at the crest 1st of cycle 

(b); Major principal stress field (in the 1000 deformed mesh) (c), crack opening magnitude (d), and 

crack normal orientations (with every 50th plotted) (e) at the end of simulation. 
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Figure 3a and 3b show the normalized potential and the magnitude of the electric field in the sample 

surface at the crest of the first cycle of the excitation, i.e. when the excitation voltage is 50 kV. The 

excitation causes significant damage in the numerical rock, as attested in Figure 3d and 3e, which 

results from the major principal stress exceeding 10 MPa at many places. The failure is related to a 

resonance frequency of the sample, as demonstrated in [6]. The number of cracks, with every 50th 

normal plotted in Figure 3d, exceeds 100000. However, only some of them open significantly, as can 

be observed in Figure 3d.  

Next, the uniaxial tension test were carried out on intact and piezoelectrically treated samples. In 

the latter case, the sample after the treatment with the cracks and the softening variable values are set 

as the initial state for the tension test. However, the cracks were assumed to be closed so that no initial 

stresses exist in the sample, but only the cracks and their decreased tensile strengths. The results are 

shown in Figure 4.     

 

 

Figure 4. Uniaxial tension test: crack opening magnitude for intact (a) and piezoelectrically treated 

(b) numerical rock; tensile strength distribution in the piezoelectrically treated sample (c); 

corresponding stress-strain responses (d). 

 

The resulted failure modes due to pulling the upper surface of the numerical rock at a constant 

velocity of 5 mm/s attest the experimental transverse splitting of the sample. However, 

piezoelectrically treated sample (Figure 4b) exhibits the double crack configuration, which is due to 

the substantially opened initial cracks located at these locations in the piezoelectrically treated sample 

(see Figure 3d). The tensile strength, as can be read in Figure 4d, is 8.2 MPa for the intact rock and 7.2 

MPa for the pre-treated one, which means 12.2 % weakening effect. This is not as large effect as 

perhaps expected on the basis of the results in Figure 3. This can be explained by the fact that the 

orientation of the piezoelectrically induced cracks is not optimally favorable for the tension direction, 

i.e. having the normal parallel to the tension axis (z-axis). It should also be reminded that the tensile 

strength of a new crack in an element with an initial crack can be close to the strength of the intact 

mineral if the corresponding crack normals are close to perpendicular.     

4.  Conclusions 

The weakening of the tensile strength of granite by the HV-HF-AC piezoelectric excitation of Quartz 

was numerically studied. The simulation results suggest that the method has some promise as a 

potential pre-treatment method in comminution, as the tensile strength of cylindrical numerical granite 

sample was decreased by 12 % after 500 cycles of sinusoidal excitation at the voltage of 50 kV and 

frequency of 305 kHz. However, the orientation of cracks, induced by piezoelectric excitation with the 

positive electrode wrapped around the cylindrical rock sample, is not optimal, i.e. orthogonal, to the 

tensile loading direction. These finding suggests that more research is needed in order to design the 

electrode configuration, with respect to the sample shape, so that maximum weakening effect can be 

obtained. In any case, this work demonstrates the potential of the present method and warrants more 

research. Most importantly, experimental confirmation of the effect is sorely needed.  
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