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Abstract

Among the environmental factors associated with type 1 diabetes (T1D), viral in-

fections of the gut and pancreas has been investigated most intensely, identifying

enterovirus infections as the prime candidate trigger of islet autoimmunity (IA) and

T1D development. However, the association between respiratory tract infections

(RTI) and IA/T1D is comparatively less known. While there are significant amounts

of epidemiological evidence supporting the role of respiratory infections in T1D,

there remains a paucity of data characterising infectious agents at the molecular

level. This gap in the literature precludes the identification of the specific infectious

agents driving the association between RTI and T1D. Furthermore, the effect of

severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infections on the

development of IA/T1D remains undeciphered. Here, we provide a comprehensive

overview of the evidence to date, implicating RTIs (viral and non‐viral) as potential

risk factors for IA/T1D.

Abbreviations: ABIS, all babies in Southeast Sweden study; CDC, centres for diseases control and prevention; CI, confidence interval; COVID‐19, coronavirus disease 2019; DIPP‐novum,

type 1 diabetes prediction and prevention study; DKA, diabetes ketoacidosis; ECHO, enteric cytopathic human orphan virus; ENDIA, environmental determinants of islet autoimmunity study;

EV, enterovirus; EV‐B, Enterovirus B; GADA, glutamic acid decarboxylase 6 antibodies; IA, islet autoimmunity; IAA, insulin autoantibodies; HLA, human leucocyte antigen; MIDIA, Norwegian

environmental triggers of type 1 diabetes study; NGS, next‐generation sequencing; OR, odds ratio; P, p‐value; RTI, respiratory tract infection; SARS‐CoV‐2, severe acute respiratory syndrome

related coronavirus 2; T1D, type 1 diabetes; TEDDY, the environmental determinants of diabetes in the young study; TRIGR, Trial to reduce insulin‐dependent diabetes mellitus; VirCapSeq,

virome capture sequencing.
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1 | INTRODUCTION

Type 1 diabetes (T1D) is a chronic autoimmune condition affecting

over nine million worldwide,1 characterised by the loss of functional

pancreatic islet β‐cells. This ultimately results in the lifelong de-

pendency on exogenous insulin.2–4 Although the pathophysiology of

T1D is well characterised and understood, its aetiology remains un-

clear. However, it is well established that the mechanisms underlying

the development of T1D is multifaceted and likely involves the

complex interplay between genetic and environmental factors.2,5,6

Among the environmental factors associated with T1D, infections

with viruses are identified as prime candidate triggers of islet auto-

immunity (IA) which precedes most clinical onset of T1D.

2 | VIRAL AETIOLOGY OF TYPE 1 DIABETES

The reduced prevalence of T1D‐associated high‐risk human leuco-

cyte antigen (HLA) genotypes among newly diagnosed individuals,

increasing global incidence of T1D,6–9 seasonal variations6,10 and

geographical differences6,11 in genetically similar individuals as well

as the convergence of IA/T1D incidence of migrants to their new

country of residence12,13 all strongly support the growing contribu-

tion of environmental factors in the pathogenesis of T1D.

Several hypotheses have been proposed on how environmental

factors may influence the progression of T1D. The ‘β‐cell overload’

hypothesis postulates that factors increasing insulin demand such as

infection, growth, traumaandother physiological stressesmay result in

β‐cell dysfunction and insulin resistance, instigating and accelerating

thedevelopmentof IA/T1D.6,14–16The ‘hygienehypothesis’ conversely

states that a decrease in childhood infections due to improved hygiene

may increase the incidence of autoimmune diseases like T1D.6,9 The

hygiene hypothesis proposes that a lack of childhood infections can

limit immune system's exposure to various microorganisms and stunt

its development, leading to an inappropriate response to future in-

fections that may cause T1D.9 Another hypothesis, the ‘polio hypoth-

esis’, suggests that the decreasing incidence of certain virus infections

over time (such as enterovirus or poliovirus infections) has increased

the proportion of infants who become infected in the absence of

maternal antibodies that could protect against that virus, increasing

the risk of complications such as β‐cell damage and T1D.17,18

Among the environmental factors associated with T1D to date,

viral infection has been investigated most thoroughly and hypoth-

esised as the prime trigger of IA and progression to T1D, especially in

utero and during childhood.2,13 This is supported by a large body of

molecular6,19,20 and epidemiological21–25 evidence, and multiple non‐
mutually exclusive mechanisms have been proposed to explain how

viral infections can induce and/or accelerate the development of IA/

T1D.26–29

To date, multiple viruses have been associated with T1D. Of the

viruses investigated, enteroviruses (EV) have been the most deeply

studied and now widely accepted as the prime candidate trigger of

IA/T1D.2,29–31 In total, over 26 different EV types have been asso-

ciated with IA/T1D, mostly comprised of Enterovirus B (EV‐B) species

members within the coxsackievirus B and enteric cytopathic human

orphan virus (ECHO virus) groups.2,32 EVs have been detected more

frequently in the blood,22 gut33,34 and pancreas24,35,36 of individuals

with T1D compared to without, and are associated with an increased

risk of T1D in prospective studies.37–39

3 | RESPIRATORY TRACT INFECTIONS AND ISLET
AUTOIMMUNITY/TYPE 1 DIABETES

Although most research to date on the infectious aetiology of IA/T1D

have focussed heavily on viral infections in the gut and pancreas,2,5,30

respiratory tract infections (RTI), particularly within the first

12 months after birth,26,40–42 have also been investigated as a po-

tential risk factor for childhood T1D. Both lower RTIs (including

pneumonia, bronchitis and bronchiolitis) and upper RTIs (including

rhinitis, pharyngitis and laryngitis) have been examined by at least 19

observational studies as potential triggers for IA/T1D development

(Figure 1, Table 1).

Three retrospective case‐control and cohort studies reported a

significant association between RTIs and T1D,26,43,44 while two re-

ported no association.44,45 Limited sampling methods and heteroge-

neity in study design between studies may have contributed to

inconsistent results. These studies relied on insurance claims or

medical consultation data to ascertain RTI exposure, which only

capture clinically overt symptomatic infections. Hence, such studies

are likely to have underestimated the cumulative exposure to RTIs.

Only one retrospective study included molecular testing to confirm

the infectious agent, reporting a significant association between

laboratory confirmed pandemic influenza A (H1N1) and T1D, but not

between clinically diagnosed H1N1 and T1D.44 All these studies

lacked IA testing, precluding the examination of IA as an outcome

associated with RTIs.

Prospective birth cohort studies investigating IA as an outcome

have reported that early‐life RTIs increased the risk of IA.40,41,46–48

These studies followed genetically at‐risk children from birth (as

determined by HLA genotype and/or family history of T1D), pro-

spectively collecting data on RTIs through questionnaires and health

event logs, and performing regular blood tests to monitor the timing

of seroconversion to IA. Norwegian and German studies reported a

higher prevalence of IA in children with ≥1 RTI in the first 4 years of

life [odds ratio (OR) 3.4, 95% confidence interval (CI) 1.6–7.1, p‐value
(p) = 0.001]46 and first 6 months of life (OR 2.27, 95% CI 1.32–3.91,

p < 0.05).40 These findings were supported by two large‐scale
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American/European birth cohort studies, the Environmental De-

terminants of Diabetes in the Young, which reported the risk of IA

increased by 5.6% for every RTI recorded in children up to 4 years of

age,47 and the Trial to Reduce Insulin‐Dependent Diabetes Mellitus,

which reported that upper RTIs in the first 12 months of life was

associated with IA (OR 1.20, 95% CI 1.00–1.44, p = 0.04).48 In

contrast, other large European49 and American50 studies found no

significant association between early‐life RTIs and IA. These con-

flicting results may be partly due to the limitations of analysing

subjective data types, necessitating further research using molecular

methods to definitively confirm and characterise infections and any

viruses causing these infections.

Viral exposures in utero have been hypothesised as possible

causes of IA/T1D. While most studies did not find an association

between gestational RTI and IA/T1D,46,51,52 a recent report from the

All Babies in Southeast Sweden Study showed that gestational RTIs

during the first trimester were associated with higher risk of T1D in

offspring (OR 2.31, CI 1.32–4.04, p = 0.002).53 A plausible explana-

tion is that since the first trimester coincides with the embryological

development of the pancreas, a congenital infection during early

pregnancy may prime the offspring's immune system and pancreas to

produce islet autoantibodies during a second infection postnatally,

whereas a more developed pancreas would be less susceptible.53

However, as no other studies have replicated these results, external

validation in other prospective cohorts with maternal data and res-

piratory samples collected longitudinally during pregnancy is needed.

Specific respiratory viruses including parechoviruses and influ-

enza virus have been associated with T1D in retrospective studies

and animal studies. One mouse study found an association between a

strain of parechovirus (Ljungan virus) and T1D.54 While one Japanese

retrospective cohort study reported an increased risk of T1D after

the diagnosis of influenza,55 and an Italian study found increased

incidence of T1D diagnoses during the 2009 H1N1 pandemic,56 most

observational studies did not find an association between influ-

enza57–60 or parechoviruses61 and T1D in humans. In addition, many

EV species replicate in the respiratory tract, and the most common

manifestation of EV infection is a common cold‐type disease. These

EV species include rhinoviruses which are responsible for over 50%

of all RTIs,2 EV‐B,62 and members belonging to Enterovirus C63 and

D,64 that replicate primarily in the respiratory tract. Despite this, no

epidemiological studies have examined EVs from respiratory samples

in the context of IA/T1D.

The lack of molecular data in most retrospective and prospective

studies is a key limitation to the identification of specific infectious

F I GUR E 1 Graphic summary of studies reporting association between RTIs and islet autoimmunity (IA)/type 1 diabetes (T1D) grouped by
participant age during period of infection.26,39–53,59,68 Measures of exposure are categorised by insurance/medical claims data, self‐reported
data and molecular data. Each study is represented by the region(s) of the study setting, with the study group or first author in brackets.
ABIS = All Babies in Southeast Sweden study; DIPP = Type 1 Diabetes Prediction and Prevention study; MIDIA = Norwegian Environmental
Triggers of Type 1 Diabetes study; TEDDY = the Environmental Determinants of Diabetes in the Young study; TRIGR = Trial to Reduce
Insulin‐Dependent Diabetes Mellitus.
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TAB L E 1 Studies that investigated the relationship between respiratory tract infections (RTI) and islet autoimmunity (IA)/type 1 diabetes
(T1D).

Study (year/region) Cases (controls) Outcome Exposure OR (95% CI) p‐value

Insurance/Medical claims

Beyerlein (2016/Germany)26 720 (294424) T1D ≥1 RTI in the first 6 months of life 1.17 (1.00‐1.37) <0.05

Cardwell (2008/United

Kingdom)45

367 (4579) T1D Medical consultations in first year of life for

Upper RTI 0.84 (0.67‐1.04) 0.11

Lower RTI 0.81 (0.55‐1.20) 0.28

Lee (2015/Taiwan)43 632 (6320) T1D ≥1 acute RTI 1.74 (1.30‐2.33) <0.05

≥1 episode of pneumonia or influenza 1.80 (1.35‐2.41) <0.05

Ruiz (2018/Norway)44 2376 (2284274) T1D Pandemic influenza infection 1.19 (0.97‐1.46) >0.05

Laboratory confirmed pandemic influenza infection 2.26 (1.51‐3.38) <0.05

Self‐reported (postnatal)

BABYDIET (2013/Germany)40 26 (122) IA RTI in the first 6 months of life 2.27 (1.32‐3.91) <0.05

RTI in 6–12 months of life 1.32 (1.08‐1.61) <0.05

Upper RTI in 6 months prior to seroconversion 1.57 (1.26‐1.95) <0.05

Lower RTI in 6 months prior to seroconversion 1.28 (0.51‐3.17) >0.05

DAISY (2012/USA)50 109 (1620) IA Upper respiratory symptoms (cough, cold, runny nose,

stuffy nose, sinus infection, ear infection) in first

9 months of life

1.00 (0.98‐1.01) 0.65

Respiratory disease (croup, pneumonia, bronchitis) in first

9 months of life

0.99 (0.67‐1.74) 0.98

Diabimmune (2018/Estonia,

Finland, Russia)41

46 (744) IA & T1D Number of respiratory infections per child in the first

year of life (IA cases vs. controls)

0.003

Number of respiratory infections per child in the first

year of life (T1D cases vs. controls)

0.002

MIDIA (2011/Norway)46 42 (843) IA ≥1 lower RTI by 4 years of life 3.4 (1.6‐7.1) 0.001

Norwegian Mother and child

(2018/Norway)49

286 (70154) IA Upper RTI in first 18 months of life

0‐3 1.00 (reference)

4‐5 0.97 (0.69‐1.38) 0.88

6‐7 0.99 (0.69‐1.42) 0.97

≥8 1.96 (0.77‐1.45) 0.50

≥1 lower RTI in first 18 months of life 0.85 (0.59‐1.21) 0.36

Ponsonby (2011/Australia)42 26 (10602) T1D ≥1 upper RTI by 5 weeks of life 2.74 (1.19‐6.32) 0.02

≥1 upper RTI by 12 weeks of life 1.55 (0.65‐3.69) 0.32

Sipetic (2003/Serbia)59 105 (210) T1D Frequent (≥3 infections per year) RTI 2.65 (1.37‐5.11) <0.01

TEDDY (2003/USA)52 52 (1210) IA ≥1 episode of RTI symptoms during pregnancy 0.66 (0.38‐1.15) >0.05

TEDDY (2017/Finland,

Germany, Sweden, USA)47

454 (7415) IA Respiratory infectious episodes during winter 1.43 (1.17‐1.75) 0.0005

Common cold 1.38 (1.11‐1.71) 0.004

Influenza‐like illness 2.37 (1.35‐4.15) 0.003

Sinusitis 2.63 (1.22‐5.67) 0.01

Laryngitis/tracheitis 1.76 (1.04‐2.98) 0.04

TRIGR (2022/Europe, USA,

Canada, Australia)48

842 (1175) IA & T1D Upper RTI in first 12 months of life (IA as outcome) 1.20 (1.00‐1.44) 0.044

Upper RTI in first 12 months of life (T1D as outcome) 1.05 (0.73‐1.50) 0.797
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agents (viral or non‐viral) that may be driving the association be-

tween RTIs and T1D. Molecular characterisation of infectious agents

using comprehensive next‐generation sequencing (NGS) methods

such as virome capture sequencing (VirCapSeq) can overcome this

limitation by enabling sensitive characterisation of all viruses in a

given specimen, with minimal investigation bias.2,7 Despite this, there

remains no comprehensive molecular study to date that has inves-

tigated the respiratory virome in at‐risk individuals.65–67 Hence,

large‐scale molecular research involving NGS that focuses on the

association between RTI and IA/T1D is needed to support existing

epidemiological studies. Current birth cohort studies including the

Environmental Determinants of Islet Autoimmunity (ENDIA)68 and

Diabetes Prediction and Prevention novum (DIPP‐novum)69 study

are in progress that prospectively follow participants from in utero

throughout childhood with molecular testing of the respiratory

virome, which may shed further information on the relationship be-

tween RTI and T1D.

Recently, a machine learning approach was used to rank tissue‐
specific transcription regulatory effects for single‐nucleotide poly-

morphisms in T1D associated genes, estimating their relative con-

tributions to the development of T1D by integrating T1D case and

autoantibody‐negative control genotypes with tissue‐specific quan-

titative trait loci (eQTL) data.70 The investigators found that the

largest gene regulatory contribution to the risk of T1D development

was made by the rs6679677 eQTL, which is associated with changes

to AP4B1‐AS1 transcript levels in lung tissues. Therefore, the stron-

gest tissue‐specific eQTL effects associated with T1D risk occurred in

the lung, supporting the potential contribution of respiratory in-

fections on the development of IA/T1D.

4 | CORONAVIRUS INFECTION AND TYPE 1
DIABETES

Severe acute respiratory syndrome related coronavirus 2 (SARS‐
CoV‐2) infection and its related disease, coronavirus disease

(COVID‐19), has an unclear relationship with T1D. Although several

recent studies have reported possible associations between SARS‐
CoV‐2 infection and IA/T1D,71–74 it remains too early to draw any

meaningful conclusions. Like other viruses, SARS‐CoV‐2 infections

can induce a stress response that may diminish insulin secretion,

release counter‐regulatory hormones like cortisol and adrenaline,

induce excessive gluconeogenesis and impair glucose disposal,

thereby causing transient hyperglycaemia. However, these mecha-

nisms may not necessarily cause diabetes.75–77

The mechanism of how SARS‐CoV‐2 may cause T1D has been

explored within in vitro and ex vivo studies. The detection of SARS‐
CoV‐2 in post‐mortem pancreatic samples78–80 and reduced pancre-

atic function in people with COVID‐1981 suggests SARS‐CoV‐2 and

its related virus SARS‐CoV‐1 may damage pancreatic β‐cell and cause

new‐onset diabetes via direct infection and the subsequent inflam-

matory response and interactions with the renin‐angiotensin sys-

tem.81–88 Nevertheless, whether the infection of pancreatic β‐cells in

tissue samples accurately mimics in vivo infection remains unclear.

Studies investigating associations between SARS‐CoV‐2 and T1D

have been steadily increasing across the last 3 years. Cross‐sectional
studies82–87 have reported an increase in incidence of T1D and dia-

betic ketoacidosis (DKA) during the pandemic, and there are case

reports89–94 of individuals with recent SARS‐CoV‐2 infection pre-

senting to hospital with new‐onset T1D and DKA, which suggest that

T A B L E 1 (Continued)

Study (year/region) Cases (controls) Outcome Exposure OR (95% CI) p‐value

Self‐reported (pregnancy)

ABIS (2022/Sweden)53 137 (16155) T1D ≥1 RTI during pregnancy 1.49 (1.01‐2.22) 0.04

≥1 RTI during first trimester 2.31 (1.32‐4.04) 0.002

≥1 RTI during second trimester 1.10 (0.59‐2.04) 0.77

≥1 RTI during third trimester 1.15 (0.56‐2.35) 0.71

MIDIA (2011/Norway)46 42 (843) IA RTI during pregnancy

1 1.23 (0.96‐1.58) 0.09

≥2 0.98 (0.74‐1.30) 0.87

TEDDY (2018/Finland,

Germany, Sweden, USA)51

438 (7034) IA Gestational RTI (IAA as outcome) 0.88 (0.67‐1.15) 0.35

Gestational RTI (GADA as outcome) 0.95 (0.73‐1.25) 0.73

Molecular

Ruiz (2018/Norway)44 2376 (2284274) T1D Laboratory confirmed pandemic influenza infection 2.26 (1.51‐3.38) <0.05

Abbreviations: ABIS, All Babies in Southeast Sweden study; CI, confidence interval; GADA, glutamic acid decarboxylase 6 antibodies; IA, islet

autoimmunity; IAA, insulin autoantibodies; MIDIA, Norwegian Environmental Triggers of Type 1 Diabetes study; OR, odds ratio; RTI, respiratory tract

infection; T1D, type 1 diabetes; TEDDY, the Environmental Determinants of Diabetes in the Young study; TRIGR, Trial to Reduce Insulin‐Dependent

Diabetes Mellitus.
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SARS‐CoV‐2 infection may accelerate T1D development or increase

the risk of its metabolic complications. However, the increased inci-

dence of DKA and T1D during the pandemic may be confounded by

reduced access or hesitancy to use healthcare services, leading to

delayed presentations of T1D and higher incidence of DKA,95,96 and

individuals presenting to hospital with COVID‐19 may have pre‐
existing undiagnosed T1D.

National retrospective cohort studies based on medical claims

databases have reported mixed results regarding the incidence of

T1D following SARS‐CoV‐2 infections. A US Centres for Disease

Control and Prevention (CDC) paper97 using two US medical claims

databases reported a significantly higher risk of new‐onset diabetes

30 days or more after SARS‐CoV‐2 infection in persons under

18 years. While the CDC report included all types of diabetes which

lowers specificity, another national retrospective cohort in the US

found higher risk of new‐onset T1D and DKA in individuals with

previous SARS‐CoV‐2 infection.98 A similar retrospective cohort in

Scotland also reported an association between SARS‐CoV‐2 infection

and T1D, but only for infection within the 30 days of T1D onset.99 It

is plausible that SARS‐CoV‐2 infection may acutely contribute to the

accelerated progression of symptomatic T1D and diagnosis in at risk

individuals, which aligns with the role of other viruses, such as en-

teroviruses, in the progression to clinical T1D.100 However, since

transient hyperglycaemia is associated with SARS‐CoV‐2 infection,76

T1D may have been misdiagnosed during the acute stages of SARS‐
CoV‐2 infection. Furthermore, higher opportunistic testing rates

around the time of presentation of either SARS‐CoV‐2 or T1D may

have also contributed to incidental diagnosis of the secondary con-

dition, and SARS‐CoV‐2 may trigger metabolic decompensation that

precipitates diagnosis of nascent T1D,97,99 limiting the strength of

these associations.

A meta‐analysis of eight retrospective cohort studies comprising

3700 hospitalised COVID‐19 patients found 14.4% had new‐onset
T1D.101 However, the meta‐analysis101 of retrospective studies

included individuals ranging from 47.0 to 64.9 years in age, outside of

the typical age range when T1D is diagnosed, which may suggest an

alternative pathogenesis. Indeed, several case reports feature in-

dividuals with new‐onset autoantibody‐negative T1D on a back-

ground of COVID‐19.90,93 A prospective study that followed people

with DKA and autoantibody‐negative T1D after COVID‐19 reported

that most individuals achieved β‐cell recovery and insulin indepen-

dence, suggesting an autoantibody‐negative T1D in contrast with the

IA pathway classically seen in T1D.102 Nevertheless, additional

mechanistic studies are needed to validate this pathogenic

hypothesis.

The relationship between COVID‐19 and T1D remains a poorly

understood and rapidly evolving area of research, with its long‐term
diabetogenic effects likely to be unknown until after many years of

extensive research. To this end, a global registry (CoviDiab) was

established to investigate their interaction.103 Long‐term prospective

analysis is needed to decipher any relationship between COVID‐19

and T1D.

5 | CONCLUSION

There is an enormous body of accumulated evidence, both molecular

and epidemiological, that support the hypothesised role of viral in-

fections in the development of IA and T1D. By comparison, there re-

mains a major gap in understanding and paucity of data, especially

molecular data where infectious agents are characterised at the

nucleic acid or protein level, that elucidates the relationship between

RTI and IA/T1D. To address this gap, the use of comprehensivemetage

detection methods, and the prospective collection of respiratory

samples and IA testing during pregnancy and early life in large pro-

spective cohorts such as the ENDIA,68 TEDDY47 and DIPP‐novum39

will be important. If a clinically significant association between specific

respiratory viruses and T1D are established in the future, primary

prevention of T1D may be possible through antiviral vaccines.
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