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Abstract 

Stepped-Wedge Cluster Randomized Trials (SW-CRTs) are typically analyzed using 

mixed effects models. The fixed effects model is a useful alternative that controls for all time-

invariant cluster-level confounders and has proper control of type I error when the number of 

clusters is small. In principle, all clusters in SW-CRTs are designed to eventually receive the 

intervention, but in real-world research, some trials can end with unexposed clusters (clusters 

that never received the intervention), such as when a trial is terminated early based on interim 

analysis results. Typically, unexposed clusters are expected to contribute no information to the 

fixed effects intervention effect estimator and are excluded from fixed effects analyses. In this 

article we mathematically prove that inclusion of unexposed clusters improves the precision of 

the fixed effects least squares dummy variable (LSDV) intervention effect estimator, re-analyze 

data from a recent SW-CRT of a novel palliative care intervention containing an unexposed 

cluster, and evaluate the methods by simulation. We found that including unexposed clusters 

improves the precision of the fixed effects LSDV intervention effect estimator in both real and 

simulated datasets. Our simulations also reveal an increase in power and decrease in root mean 

square error. These improvements are present even if the assumptions of constant residual 

variance and period effects are violated. In the case that a SW-CRT concludes with unexposed 

clusters, these unexposed clusters can be included in the fixed effects LSDV analysis to improve 

precision, power, and root mean square error. 
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1. Introduction 

In a cluster randomized trial (CRT), randomization is carried out on the cluster-level 

rather than the individual-level. The stepped-wedge cluster randomized trial (SW-CRT) is a 

specific type of CRT where clusters begin the trial unexposed to the intervention and are 

randomized to start the intervention across different periods or “steps”. The crossover is uni-

directional and continues until all clusters are exposed to the intervention.1,2 The logistical 

advantage of the phased implementation makes the SW-CRT an increasingly popular design.1,3 

Due to its unique features as a uni-directional crossover CRT, different statistical models have 

been proposed and applied to SW-CRT data.3  

The most popular statistical model for cross-sectional SW-CRT designs, where each 

individual is only observed during one period, is the “Hussey and Hughes” mixed effects model.3 

This mixed effects model treats clusters as random and periods as fixed effects.2 Extensions to 

the Hussey and Hughes mixed effects model have been proposed and applied over the past few 

years with new models adjusting for cluster-by-period random interaction effects,4,5 between-

period correlation that decays over time,6 and more.3 Alternatively, previous studies have also 

treated clusters as fixed effects in a fixed effects least squares dummy variable (LSDV) model.7–

11 While different mixed effects models with additional random effects terms have been 

proposed, developed, and studied in the context of SW-CRTs,3 there have been comparatively 

few methodological developments in fixed effects methods for stepped-wedge designs. 

The Hussey & Hughes mixed effects model is often preferred over the fixed effects 

LSDV model due to reduced standard error (SE) for the intervention effect estimates.12,13 Mixed 

effects models, in general, treat clusters as random effects that are uncorrelated with both the 

residual error term and other model covariates.14 If the cluster random effect terms are correlated 

with the other model covariates, as is the case when there are unmeasured cluster-level time-

invariant confounders, the mixed effects intervention effect estimator becomes biased, 

inconsistent, and fails to remove the confounding.12,14–17 Since mixed effects models rely on 

randomization to control for known and unknown confounders, the benefits of randomization 

may be lost when the number of clusters is small, making it difficult to balance cluster 

characteristics.18,19  

In contrast, the fixed effects LSDV model treats clusters as fixed effects using dummy 

variables and estimates the intervention effect using ordinary least squares (OLS).12,17 

Accordingly, the fixed effects LSDV model estimates the intervention effect using within-cluster 

comparisons and controls for all cluster-level time-invariant confounders.12 Therefore, a major 

distinction between modelling clusters as random or fixed depends on whether such confounders 

may exist.15  

Furthermore, modelling clusters as random effects in a mixed effects model tends to lead 

to inflated type I error rates and overly narrow confidence intervals for the intervention effect 

estimates when the number of clusters is small.13,20,21 Due to real world constraints, it is not 

uncommon for SW-CRTs to have such low numbers of clusters.22 This inflated type I error rate 

is not observed in fixed effects models, making it an attractive alternative.13 



Previous studies have elected to use a fixed effects LSDV model to analyze data collected 

from a SW-CRT, citing difficulties that arise from small number of clusters,9,23 practical and 

logistical issues that prevented randomization,24 and concerns over confounding between cluster 

and outcomes.8 Under such conditions, the fixed effects model has been an effective 

complementary approach to the more widely adopted mixed effects models for analyzing SW-

CRTs. 

A potential drawback of the fixed effects LSDV model is its inability to estimate 

coefficients for variables that have no within-cluster variation.12 In principle, all clusters in a 

SW-CRT spend periods unexposed and exposed to the intervention over the duration of the trial. 

Therefore, all clusters are designed to have within-cluster variation in intervention status. In 

reality, however, some clusters may end the trial without having received the intervention. For 

example, a SW-CRT of seasonal malaria chemoprevention was stopped following interim 

analysis and clusters that were randomized to receive the intervention at later periods ended the 

trial unexposed to the intervention.25 In Section 3, we will introduce and discuss a motivating 

and illustrative case study that encountered an unexposed cluster due to hospital management 

restructuring.  

Fixed effects analyses are often referred to as only making “within-unit comparisons”26 

where “only covariates that vary within-subjects at the observational level should be used in the 

model”,15 and “cases that do not change either (1) do not contribute much information to the 

analysis or (2) are altogether omitted by design”.27 Under such phrasing and guidance, one may 

have the impression that an unexposed cluster would not contribute meaningfully to the fixed 

effects intervention effect estimate. While these authors15,27 did not explicitly state whether 

unexposed units should or should not be included in the fixed effects analysis, others have 

explicitly stated that “Comparisons are made within individuals [units] rather than between 

individuals [units]… Thus, only those who have experienced both the outcome and the exposure 

of interest are included”.28 

However, research on the conditional Poisson model for drug safety assessment, which 

relies on within-subject comparisons, has shown that the inclusion of unexposed subjects 

provides useful information about time-varying covariates and reduces confounding by these 

covariates.29 Ma, Lam and Cheung further show that the inclusion of unexposed subjects in the 

conditional Poisson model improves the precision of the exposure effect estimator when the 

analysis adjusts for time-varying covariates.30 Likewise, models for SW-CRTs need to adjust for 

periods as time-varying covariates. Drawing on this similarity, we hypothesize that including 

clusters that are never exposed to the intervention (hereon referred to as “unexposed clusters”) in 

a fixed effects LSDV analysis of cross-sectional SW-CRT data will improve the precision of the 

intervention effect estimator.  

In Section 2, we mathematically prove that the inclusion of unexposed clusters in the 

analysis of a SW-CRT design increases the precision of the fixed effects LSDV intervention 

effect estimator. In Section 3, we illustrate the benefits of including unexposed clusters in a fixed 

effects LSDV model by re-analyzing a SW-CRT of a novel palliative care model that had four 

exposed clusters and one unexposed cluster. In Section 4, we conduct extensive simulations to 



assess the impact of including unexposed clusters on the fixed effects LSDV intervention effect 

estimator in terms of precision, bias, coverage probability, power, type I error, and root mean 

square error. In Section 5 we end with some concluding remarks.  

2. Analysis Model and Precision 

We begin with a 5-cluster, 5-period SW-CRT design (Figure 1) based on the motivating 

case study to be described in Section 3. Let 𝑛𝑖,𝑗 be the number of individuals in the 𝑖th cluster 

(𝑖 = 1, 2, 3, 4, 5) during the 𝑗th period (𝑗 = 1, 2, 3, 4, 5). Note that individuals in Cluster 5 are 

never exposed to the intervention (an unexposed cluster). 

The outcome of the SW-CRT is modelled using the fixed effects LSDV model: 

𝑌𝑖𝑗𝑘 = 𝛿𝑍𝑖𝑗 + ∑ 𝜙𝑗
5
𝑝=2 I[𝑗=𝑝] + ∑ 𝛼𝑖I[𝑖=𝑐] +5

𝑐=1 𝑒𝑖𝑗𝑘  

where 𝑌𝑖𝑗𝑘 is the health outcome of the 𝑘th individual (𝑘 = 1, … , 𝑛𝑖,𝑗) in the 𝑖th cluster (𝑖 =

1, … , 5) and 𝑗th period (𝑗 = 1, … , 5), 𝛿 is the intervention effect, 𝑍𝑖𝑗 is the intervention indicator 

for the 𝑖th cluster during the 𝑗th period (𝑍𝑖𝑗 = 1, if exposed to intervention, 𝑍𝑖𝑗 = 0 otherwise), 

𝜙𝑗 is the fixed effect for the categorical 𝑗th period (𝜙1 = 0 for identifiability), 𝛼𝑖 is the fixed 

effect for the 𝑖th cluster, I[𝑗=𝑝] and I[𝑖=𝑐] are dummy variables for periods and clusters, 

respectively, and 𝑒𝑖𝑗𝑘 is the residual error assumed to be independently and identically 

distributed with variance σ2. 

Writing the model in the matrix form: 

𝑌 = 𝑋𝛽 + 𝑒 

where 𝑋 is an 𝑁 × 10 design matrix, with 𝑁 being the total number of study participants, and 

𝛽 = (𝛿, 𝜙2, . . , 𝜙5, 𝛼1, . . , 𝛼5)′. Since all variables in the model are dummy coded, the entire 

matrix 𝑋 is composed of 0’s and 1’s with column 1 containing data on the intervention status, 

columns 2 to 5 on whether a participant is in period 2 to 5, and columns 6 to 10 on whether a 

participant is in cluster 1 to 5. For example, a participant from cluster 2 who received the 

intervention in period 2 would contribute a row of (1, 1, 0, 0, 0, 0, 1, 0, 0, 0). 

Using OLS, the intervention effect estimator 𝛿 is the first element in the vector of 

coefficients:  

𝜷̂ = (𝑋′𝑋)−1𝑋′𝑌, 

where 𝑋′𝑋 is a matrix product assumed to be positive definite. Given the OLS variance-

covariance matrix: 

Var(𝜷̂) = σ2(𝑋′𝑋)−1. 

The variance of the intervention effect estimator Var(𝛿) is Var(𝜷̂)1,1 and 

Precision(𝛿) = 1/Var(𝛿). Since OLS assumes constant σ2, Var(𝜷̂) ∝ (𝑋′𝑋)−1. 



Specifically, to distinguish different ways of using the data collected from the unexposed 

cluster, let 𝑋̌ be the 𝑁̌ × 10 design matrix for the fixed effects LSDV analysis containing 

observations from all 5 periods in all 5 clusters (including unexposed Cluster 5), and 𝑋̇ be the 

𝑁̇ × 9 design matrix containing observations from all 5 periods in the 4 exposed clusters only 

(Clusters 1 to 4), where 𝑁̌ and 𝑁̇ are the total sample sizes in the two models, respectively. 

Furthermore, let 𝑋̃ be the 𝑁̃ × 10 design matrix for the analysis containing observations from all 

5 periods in the 4 exposed clusters and observations from only period 1 of the unexposed Cluster 

5. The construction of this design matrix 𝑋̃ with a sample of size 𝑁̃ serves two purposes. First, it 

helps demonstrate that unless the unexposed cluster provides information for estimating period 

effects, which requires observations from at least two periods, its inclusion will not improve the 

precision of the intervention effect estimate beyond analyzing only the exposed clusters with 𝑁̇ 

observations. Second, as will be seen later, it facilitates the proof by providing a same-sized 

product matrix for comparison with the product matrix based on the sample of 𝑁̌ observations 

from all clusters and all periods. Assuming 𝑛5,1 > 0 and ∑ 𝑛5,𝑗 > 05
𝑗=2 , 𝑁̌ > 𝑁̃ > 𝑁̇. 

Then, 𝑋̌′𝑋̌, 𝑋̇′𝑋̇ and 𝑋̃′𝑋̃ are the 10 × 10, 9 × 9 and 10 × 10 product matrices explicitly 

defined in terms of 𝑛𝑖,𝑗 in the Online Supplementary Material S1a, S1b, and S1c, respectively. 

The similarities and differences in the elements of these three product matrices will be detailed in 

Sections 2.1 and 2.2. Furthermore, let 𝛿, 𝛿̇, and 𝛿 be the least-square estimators of intervention 

effect based on the three models.  

 The proof that inclusion of the unexposed cluster reduces the variance and increases the 

precision of the fixed effects LSDV intervention effect estimator 𝛿 proceeds in two steps: 

1. We demonstrate that the variance of the intervention effect estimator Var(𝛿̇) obtained 

from 𝑋̇′𝑋̇ (exposed clusters only) is equal to Var(𝛿) obtained from 𝑋̃′𝑋̃ (exposed clusters 

and one period in the unexposed cluster): 

Var(𝛿̇) = 𝜎2(𝑋̇′𝑋̇)1,1
−1 = 𝜎2(𝑋̃′𝑋̃)1,1

−1 = Var(𝛿). 

2. We demonstrate that the variance of the intervention effect estimator Var(𝛿) obtained 

from 𝑋̌′𝑋̌ (all clusters, all periods) is smaller than Var(𝛿) obtained from 𝑋̃′𝑋̃: 

Var(𝛿̌) = 𝜎2(𝑋̌′𝑋̌)1,1
−1 < 𝜎2(𝑋̃′𝑋̃)1,1

−1 = Var(𝛿). 

Altogether, we prove Var(𝛿) < Var(𝛿̇). 

2.1 Proof of 𝐕𝐚𝐫(𝜹̇) = 𝐕𝐚𝐫(𝜹̃) 

Since 𝑋̃′𝑋̃ contains observations from the four exposed clusters and only period 1 of the 

unexposed Cluster 5, the upper-left block of the 9 × 9 elements of 𝑋̃′𝑋̃ (Online Supplementary 

Material S1c) is equal to 𝑋̇′𝑋̇ (Online Supplementary Material S1b), where 𝑋̇′𝑋̇ can interpreted 

as a submatrix of 𝑋̃′𝑋̃: 



𝑋̃′𝑋̃ = (
𝑋̇′𝑋̇ 0

0 𝑛5,1
). 

The blockwise inverted matrix (𝑋̃′𝑋̃)−1 can then be defined as: 

(𝑋̃′𝑋̃)−1 = (
𝑋̇′𝑋̇ 0

0 𝑛5,1
)

−1

 

= (
(𝑋̇′𝑋̇)−1 0

0 1 𝑛5,1⁄
). 

Therefore, (𝑋̃′𝑋̃)1,1
−1 = (𝑋̇′𝑋̇)1,1

−1 and on the OLS model assumption of constant 𝜎2:  

Var(𝛿) = 𝜎2(𝑋̃′𝑋̃)1,1
−1 = 𝜎2(𝑋̇′𝑋̇)1,1

−1 = Var(𝛿̇). 

 

2.2 Proof of 𝐕𝐚𝐫(𝜹̌) < 𝐕𝐚𝐫(𝜹̃) 

For brevity, we present a slightly abbreviated proof of Var(𝛿) < Var(𝛿). The complete 

proof can be found in the Online Supplementary Material S2.  

First, we represent 𝑋̌′𝑋̌ (Online Supplementary Material S1a) and 𝑋̃′𝑋̃ in terms of 

submatrices: 

𝑋̌′𝑋̌ = (𝐴̌ 𝐵̌′
𝐵̌ 𝐷̌

), 

𝑋̃′𝑋̃ = (𝐴̃ 𝐵̃′
𝐵̃ 𝐷̃

). 

Submatrix 𝐴̌ is a scalar that equals the dot product of the first row of 𝑋̌′ by the first column of 𝑋̌. 

Since the first column of 𝑋̌ indicates the intervention status of each participant, 𝐴̌ equals the total 

number of trial participants who receive the intervention.  

Submatrix 𝐵̌ is a column vector of length 9 that equals the dot product of all rows but the 

first of 𝑋̌′ (containing dummy variables for the four period and five cluster effects) by the first 

column of 𝑋̌ (indicating intervention status). Therefore, 𝐵̌ equals the marginal numbers of 

participants who receive the intervention in each period and each cluster. Since Cluster 5 is 

unexposed, the marginal number of participants who receive the intervention under the two study 

designs are the same, 𝐴̌ = 𝐴̃ and 𝐵̌ = 𝐵̃. 

The 9 × 9 submatrix 𝐷̌ equals the matrix product of the rows of 𝑋̌′ and columns of 𝑋̌ that 

represent dummy variables for the periods and clusters. 

With these submatrices, the blockwise inverted matrix (𝑋̌′𝑋̌)−1 is defined as: 



(𝑋̌′𝑋̌)−1 = (
(𝐴̌ − 𝐵̌′𝐷̌−1𝐵̌)−1 −(𝐴̌ − 𝐵̌′𝐷̌−1𝐵̌)−1𝐵̌′𝐷̌−1

−𝐷̌−1𝐵̌(𝐴̌ − 𝐵̌′𝐷̌−1𝐵̌)−1 𝐷̌−1 + 𝐷̌−1𝐵̌(𝐴̌ − 𝐵̌′𝐷̌−1𝐵̌)−1𝐵̌′𝐷̌−1
), 

where: 

Var(𝛿̌) = 𝜎2(𝑋̌′𝑋̌)1,1
−1 = 𝜎2(𝐴̌ − 𝐵̌′𝐷̌−1𝐵̌)−1. 

The blockwise inverted matrix (𝑋̃′𝑋̃)−1 and Var(𝛿) are similarly defined.  

Given that 𝑋̌′𝑋̌ and 𝑋̃′𝑋̃ are same-sized positive definite matrices (𝑋̌′𝑋̌ ≻ 0 and 𝑋̃′𝑋̃ ≻

0), the principal submatrices 𝐷̌ and 𝐷̃ are also positive definite matrices (𝐷̌ ≻ 0 and 𝐷̃ ≻ 0).31 𝐷̌ 

and 𝐷̃ are explicitly defined in terms of 𝑛𝑖,𝑗 in the Online Supplementary Material S1d.  

The difference between 𝐷̌ and 𝐷̃ is positive semi-definite, where 𝑥′(𝐷̌ − 𝐷̃)𝑥 ≥ 0 for all 

𝑥 in ℝ9,31 as proven in the Online Supplementary Material S2. Therefore, we can order the 

submatrices as induced by Loewner partial ordering31: 

𝐷̌ ≽ 𝐷̃, 

and: 

𝐷̌−1 ≼ 𝐷̃−1. 

Given that vector 𝐵̌ = 𝐵̃ (here on referred to as 𝔹) and scalar 𝐴̌ = 𝐴̃ (here on referred to as 𝔸): 

(𝔸 − 𝔹′𝐷̌−1𝔹)
−1

≤ (𝔸 − 𝔹′𝐷̃−1𝔹)
−1

. 

Therefore, on the OLS assumption of constant 𝜎2: 

Var(𝛿̌) ≤ Var(𝛿). 

Furthermore, in Online Supplementary Material S2, we provide a proof by contradiction 

revealing that Var(𝛿̌) ≠ Var(𝛿), therefore Var(𝛿) < Var(𝛿).  

Combining the proofs in Sections 2.1 and 2.2, we demonstrate that Var(𝛿̌) < Var(𝛿̇), 

where the inclusion of the unexposed cluster improves precision of the fixed effects LSDV 

intervention effect estimator. While this proof is demonstrated with a 5-cluster, 5-period SW-

CRT design, the proof’s utilization of submatrices implies that this result applies to SW-CRT 

designs with any number of exposed and unexposed clusters. A simple extension of the proof 

while maintaining the standard OLS assumption of equal variance demonstrates that the effect of 

including an always-exposed cluster (a cluster that never receives the control condition) on the 

precision of the intervention effect estimator is equivalent to the effect of including an unexposed 

cluster (Online Supplementary Material S3). 

3. Case Study 

We re-analyzed data from a recent SW-CRT comparing a standard palliative care 

delivery model (control) against a novel co-rounding model (intervention) for hospital inpatients 



with cancer.32 In the standard care model, oncologists conducted the daily ward rounds and 

referred patients to the palliative care department if considered appropriate. In the novel co-

rounding model, oncologists and palliative care specialists jointly conducted the ward rounds and 

initiated palliative care as per their consensus. The primary endpoint for this trial was hospital 

length of stay (LOS). It was hypothesized that LOS would be reduced under the novel co-

rounding model. 

The study was initially planned as a 4-cluster SW-CRT with 5 four-month periods. The 

clusters were different oncology teams in the Singapore General Hospital. However, due to the 

restructuring of hospital management, a fifth oncology team was developed and deployed by the 

hospital. This happened after randomization of the original 4 clusters and just before study 

initiation. Since this fifth cluster was not formally part of the trial or randomization process, it 

implemented the standard care model for the entire duration of the trial. As a result, this study 

resembles the 5-cluster, 5-period SW-CRT design described above (Section 2). 

The original publication on the efficacy of the novel co-rounding model used a fixed 

effects LSDV model to account for the cluster effects and control for confounding.32 The fixed 

effects LSDV model was used due to the difficulty in controlling for confounding (e.g. the 

clusters differed not only in patient characteristics but also in unmeasured clinician 

characteristics) and concerns on the robustness of applying the mixed effects model to a SW-

CRT with such a small number of clusters.13,20 The analysis did not include the unexposed 

cluster because it was not part of the original trial plan and it was not yet methodologically clear 

what the implications of including an unexposed cluster in a fixed effects LSDV model were. 

We re-analyzed the data using the fixed effects LSDV model, with and without the 

unexposed cluster. For the present purpose, we only kept the first admission if a participant was 

admitted more than once over the study duration. In total, there were 3462 admissions. We 

analyzed ln(LOS) as the outcome variable. As shown in Figure 2, which pooled data from all 5 

clusters, ln(LOS) was approximately normally distributed under both co-rounding and standard 

care models, but LOS was not. 

The pooled analysis was only sensible if the underlying pattern of period effects were 

expected to be the same between the exposed and unexposed clusters, an assumption of the fixed 

effects LSDV model.33 There are currently no standard practices for evaluating this assumption. 

As such, we applied multiple methods and confirmed that they gave consistent findings. First, we 

tested for equivalent period effects between the unexposed cluster and exposed clusters using an 

ANOVA to compare a typical fixed effects LSDV model against a fixed effects LSDV model 

with interaction terms between the unexposed cluster and period indicators. The ANOVA 

showed no evidence of difference, with P = 0.302 (on 4 degrees of freedom). We also estimated 

the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) of the models 

excluding and including the interaction terms (AIC: 9524.341 and 9527.461, respectively. BIC: 

9591.987 and 9619.705, respectively). Both favored the model that excluded the interaction 

terms and assumed same period effects between exposed and unexposed clusters.    



Table 1 shows the analysis results. We estimated the intervention effect among all cancer 

patients or among only stage III and stage IV cancer patients, who were expected to be the 

primary beneficiaries of palliative care. Without including the unexposed cluster, the standard 

errors of the intervention effect estimates were 0.073 and 0.077 among all patients and stage 

III/IV patients, respectively. In contrast, the inclusion of the unexposed cluster in the fixed 

effects LSDV analysis yielded ~12% smaller standard errors and narrower 95% Wald 

Confidence Intervals (95% CI), both in the analyses of all patients and only stage III/IV patients 

(Table 1). The inclusion of the unexposed cluster also altered the point estimate, from -0.101 to -

0.126 among all patients. Despite this change, the 95% confidence intervals of the analyses with 

and without the unexposed cluster continued to overlap substantially. The difference of 0.025 

between the point estimates was small compared to the standard errors both with and without the 

unexposed cluster. A similar pattern was seen among stage III/IV patients. Additional analyses 

of all patients and only stage III/IV patients from the exposed clusters and only period 1 of the 

unexposed cluster (resembling the 𝑋̃ design matrix described in Section 2) yielded intervention 

effect estimates and standard errors identical to the corresponding analyses of the exposed 

clusters only. 

4. Simulation 

4.1 Simulation Settings 

Realistic simulation parameters were generated with reference to the results from the case 

study of ln(LOS) under different palliative care models (Section 3). We examined scenarios 

where there were 4, 8, or 12 exposed clusters and 0, 1, 2, or 3 unexposed clusters. Accordingly, 

the total number of clusters in each simulation scenario was 𝐶 = 4+0, 4+1, 4+2, 4+3, 8+1, …, 

12+3. All scenarios had a fixed total of 5 periods (4 steps) with either 1, 2, or 3 clusters crossing 

from control to intervention at each step, depending on the number of exposed clusters (4, 8, or 

12) (Figure 3) 

4.1.1 Simulation based on the Hussey and Hughes Mixed Effects Model 

We simulated SW-CRT data based on the Hussey and Hughes mixed effects model2:  

𝑌𝑖𝑗𝑘 = 𝛿𝑍𝑖𝑗 + 𝜙𝑗 + 𝛼𝑖 + 𝑒𝑖𝑗𝑘 

for the 𝑘th individual (𝑘 = 1, … , 𝑛𝑖,𝑗) in the 𝑖th cluster (𝑖 = 1, … , 𝐶) and 𝑗th period (𝑗 = 1, … , 5), 

where 𝑌𝑖𝑗𝑘 was a continuous outcome, 𝛿 was the intervention effect, 𝑍𝑖𝑗 was the intervention 

indicator for the 𝑖th cluster during the 𝑗th period (𝑍𝑖𝑗 = 1, if exposed to intervention, 𝑍𝑖𝑗 = 0 

otherwise), 𝜙𝑗 was the fixed effect for the 𝑗th period (𝜙1 = 0 for identifiability), 

𝛼𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, τα
2 ) was the random effect for the 𝑖th cluster, and 𝑒𝑖𝑗𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(0, σ𝑒

2) was the 

residual independent of 𝛼𝑖.  

We generated the true intervention effects 𝛿 equal to 0, −0.1, and −0.2, and a linear 

period effect equal to an increase of 0.1 per period. We also considered scenarios where the true 

period effects 𝜙𝑗 = 0 (for all 𝑗) to examine the effects of including unexposed clusters when 

period effects are absent from the underlying data generating process. We generated residual 



error 𝑒𝑖𝑗𝑘 by setting 𝑒𝑖𝑗𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(0, 1). To simulate cluster effects, we set the between-cluster 

variance 𝜏𝛼
2 to 1/99, 1/19, and 1/9, to generate corresponding intracluster correlation (ICC) 

values of 0.01, 0.05, and 0.1, where ICC =
 𝜏𝛼

2

 𝜏𝛼
2 +σ𝑒

2.2  

For each of these scenarios, we used a range of different cluster sample sizes 𝑛𝑖 for each 

period in the 𝑖th cluster, where 𝑛𝑖~𝐺𝑎𝑚𝑚𝑎(𝑘, 𝜃) with 𝑘 = 30, 100, and 300, and 𝜃 = 1. This 

produces an average size of 30, 100 or 300. Realized sample sizes 𝑛𝑖,𝑗 for the 𝑖th cluster during 

the 𝑗th period were subsequently generated with 𝑛𝑖,𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛𝑖), so the sample size could 

vary between periods within a cluster. The trial’s total sample size was 𝑁 = ∑ ∑ 𝑛𝑖,𝑗𝑗𝑖 . 

In total, 324 scenarios were investigated (3 # of exposed clusters × 4 # of unexposed 

clusters × 3 intervention effect sizes × 3 values of 𝜏𝛼
2 × 3 cluster sample sizes). 

4.1.2 Misspecification with Non-constant Residual Variance across Clusters 

The fixed effects LSDV model assumes constant residual variance. To assess the model 

robustness and impact of including unexposed clusters in the presence of model misspecification, 

we simulated SW-CRT data by extending the mixed effects model in Section 4.1.1 to allow the 

standard deviation of the residuals to vary across clusters. The residual standard deviation in the 

𝑖th cluster, 𝜎𝑒,𝑖, was set to follow a gamma distribution, 𝜎𝑒,𝑖 ~ 𝐺𝑎𝑚𝑚𝑎(𝑘 = CV2, 𝜃 = 1 CV2⁄ ), 

with 𝐸[𝜎𝑒,𝑖] = 1 and coefficient of variation CV = 0.1, 0.5, or 1.  

For the purposes of these simulations, we fixed the true intervention effects 𝛿 to −0.1, 

between-cluster variance 𝜏𝛼
2 to 1/19, and the average cluster size 𝐸[𝑛𝑖] to 100. In total, 36 

scenarios were investigated (3 # of exposed clusters × 4 # of unexposed clusters × 3 CVs for 

cluster-specific residual standard deviation 𝜎𝑒,𝑖). 

4.1.3 Misspecification with Non-constant Period Effects across Clusters 

We evaluated whether varying the period effects between clusters affects the impact of 

including unexposed clusters on the precision and other properties of the fixed effects LSDV 

estimator. We varied period effects between clusters by simulating SW-CRT data based on the 

“Hooper-Girling” mixed effects model4,5: 

𝑌𝑖𝑗𝑘 = 𝛿𝑍𝑖𝑗 + 𝜙𝑗 + 𝛼𝑖 + 𝛾𝑖𝑗 + 𝑒𝑖𝑗𝑘 

Along with the cluster random effect 𝛼𝑖 and period fixed effect 𝜙𝑗, we simulated a cluster-by-

period random interaction effect, 𝛾𝑖𝑗~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜏𝛾
2). We set 𝜏𝛾

2 to 0, 1/76, and 2/57, to 

generate corresponding realistic cluster autocorrelation (CAC) values of 1, 0.8, 0.6, where CAC 

=
 𝜏𝛼

2

 𝜏𝛼
2 +𝜏𝛾

2.4,34,35  

As in Section 4.1.2, we fixed the true intervention effects 𝛿 to −0.1, between-cluster 

variance 𝜏𝛼
2 to 1/19, and the average cluster size 𝐸[𝑛𝑖] to 100. In total, 36 scenarios were 

investigated (3 # of exposed clusters × 4 # of unexposed clusters × 3 values of 𝜏𝛾
2). 



4.1.4 Analysis of Simulated data 

In each simulation scenario, we generated 𝑠 = 10,000 simulated data sets and estimated 

the intervention effect 𝛿𝑠 using the fixed effects LSDV model. We present the properties of the 

intervention effect estimator in terms of bias, precision, power, coverage probability (CP), and 

root mean squared error (RMSE). We present the absolute bias (Abs Bias =

[∑ 𝛿𝑠
10,000
𝑠=1 10,000⁄ ] − 𝛿) when 𝛿 = 0, and the relative bias (Rel Bias = [Absolute bias 𝛿⁄ ] ×

100) when 𝛿 ≠ 0. Precision is the reciprocal of the average estimated variance (Precision =

1 [∑ Var(𝛿̂𝑠)10,000
𝑠=1 10,000⁄ ]⁄ ). Power is the empirical power (if 𝛿 < 0) or empirical type I error 

rate (if 𝛿 = 0) for rejecting the null hypothesis of 𝛿 ≥ 0 at the one-sided significance level of 

0.05. CP is the probability that the 95% confidence interval contains the true effect. RMSE is the 

square root of the average squared difference between the estimated effect 𝛿𝑠 and the true effect 

𝛿 over the 10,000 simulated data sets for each scenario (RMSE = √∑ [𝛿𝑠 − 𝛿]10,000
𝑠=1

2
/10,000). 

The Monte Carlo standard errors (standard deviation of the 10,000 estimated intervention effects 

𝛿𝑠 for each scenario) are included in the Online Supplementary Material S4. 

4.2 Simulation Results 

4.2.1 Simulation based on the Hussey and Hughes Mixed Effects Model 

Figure 4 shows the simulation results in the scenarios with true intervention effect 𝛿 =

−0.1 and between-cluster variance 𝜏𝛼
2 = 1 19⁄ . Among the scenarios considered, the inclusion of 

unexposed clusters generally increased the precision, power, and decreased the RMSE of the 

fixed effects LSDV intervention effect estimator. Within the range considered, the more 

unexposed clusters included, the better the improvement. Overall, the fixed effects LSDV 

method yielded practically unbiased estimates with CP of 95% confidence interval (0.945-0.955) 

close to the nominal level. The inclusion of unexposed clusters had no impact on these two 

properties.  

The results across all values of 𝛿 (𝛿 = 0, −0.1, −0.2) and 𝜏𝛼
2 (𝜏𝛼

2 = 1 99⁄ , 1 19⁄ , 1/9) 

were qualitatively similar to those reported above, details in the Online Supplementary Material 

S5. Scenarios when 𝛿 = 0 all maintained near 5% type I error rates, regardless of the inclusion 

of unexposed clusters (Online Supplementary Material S5). Additionally, the benefits of 

including up to 3 unexposed clusters are still observed when there are large numbers of 

randomized clusters across 5 periods (4 steps), although the relative improvements in precision 

were milder (Online Supplementary Material S6). 

Similar to Figure 4, Figure 5 shows the simulation results in the scenarios with true 

intervention effect 𝛿 = −0.1, between-cluster variance 𝜏𝛼
2 = 1/19, but where the true period 

effects 𝜙𝑗 = 0 (for all 𝑗). These simulation results reveal that the improvements from including 

unexposed cases in a fixed effects LSDV model (adjusting for period effects) are unaffected by 

the absence of period effects in the underlying data generating process (Figure 5). 

4.2.2 Misspecification with Non-constant Residual Variance across Clusters 



Figure 6 shows the properties of the intervention effect estimator when the true 

intervention effect 𝛿 = −0.1, the between-cluster variance 𝜏𝛼
2 = 1 19⁄ , the average cluster 

sample size 𝐸[𝑛𝑖] = 100, and CV of the cluster-specific residual standard deviation = 0.1, 0.5 

or 1.0.  

Despite violating OLS assumptions, the inclusion of unexposed clusters generally 

increased the precision, power, and decreased the RMSE of the fixed effects LSDV intervention 

effect estimator (Figure 6). Within the range considered, the more unexposed clusters included, 

the better the improvement. These improvements are observed across different amounts of 

heterogeneity in the residual standard deviation 𝜎𝑒,𝑖.  

Relative bias and CP were largely unaffected by the inclusion of unexposed clusters. 

Furthermore, increasing the CV of the residual standard deviation had little effect on the relative 

bias and CP of the fixed effects LSDV intervention effect estimates (Figure 6). However, 

increasing the CV of the residual standard deviation resulted in reduced precision and power. 

This occurred regardless of the inclusion of unexposed clusters, and the inclusion of unexposed 

clusters did not make it worse. On the contrary, the inclusion of unexposed clusters improved 

precision, power, and RMSE despite variable cluster-specific residual standard deviation 𝜎𝑒,𝑖. 

4.2.3 Misspecification with Non-constant Period Effects across Clusters 

Figure 7 shows the properties of the intervention effect estimator when the true 

intervention effect 𝛿 = −0.1, the between-cluster variance 𝜏𝛼
2 = 1 19⁄ , the average cluster 

sample size 𝐸[𝑛𝑖] = 100, and 𝜏𝛾
2 = 0, 1/76, or 2/57.  

Despite the random cluster-by-period interaction effects 𝛾𝑖𝑗, the inclusion of unexposed 

clusters increased the precision, power, and decreased the RMSE of the intervention effect 

estimator (Figure 7). Across different amounts of 𝜏𝛾
2 and number of unexposed clusters 

considered, the more unexposed clusters included, the better the improvement. 

Figure 7 also reveals that the magnitude of 𝜏𝛾
2 had little effect on the relative bias, 

precision, and power of the intervention effect estimators. However, CP decreased and RMSE 

increased substantially in relation to increase in 𝜏𝛾
2. Nevertheless, this occurred regardless of 

whether unexposed clusters were included in the analysis and the inclusion of unexposed clusters 

did not worsen the CP. 

5. Discussion 

Unexposed clusters (clusters never exposed to intervention) are seen in SW-CRTs in real-

world research.25,32 For example, SW-CRTs that are terminated early can result in clusters that 

are never exposed to intervention. SW-CRTs with unexposed clusters somewhat resemble the 

“optimal design” discussed by Thompson et al.36 and Girling and Hemming.4 However, the 

analysis of the “optimal design” is based on the mixed effects model which, in addition to 

horizontal within-cluster comparisons, also makes vertical within-period comparisons. This 

differs from the use of fixed effects LSDV (Least Squares Dummy Variable) model. 



 The fixed effects LSDV model for estimating the intervention effect in a SW-CRT 

design uses within-cluster comparisons and controls for all unmeasured cluster-level time-

invariant confounders.12 The more commonly used mixed effects models, in contrast, are unable 

to control for these confounders12,14–17 and struggle with inflated type I error rates when the 

number of clusters is small.13,20 However, a potential drawback of the fixed effects LSDV model 

is its inability to estimate coefficients for variables that have no within-cluster variation.12 Some 

articles recommend that clusters should only be modelled as fixed if they are the only clusters 

that exist or of interest, otherwise the variability of the cluster effects will be underestimated and 

results may not be generalizable to unsampled clusters.37 This concern is largely irrelevant in the 

context of SW-CRTs where the primary interest is to estimate the coefficient of the intervention 

effect rather than cluster effects.26 Furthermore, clusters are often selected due to practical 

reasons instead of randomly sampled.24 In such cases, it is appropriate to consider them the only 

clusters of interest and use the fixed effects LSDV model.  

Previous publications on fixed effects and other methods that make within-unit 

comparisons imply that unexposed units (in this case, clusters) should not be included in the 

analysis.12,15,28 The SW-CRT of palliative care models that motivated this work did not include 

the unexposed cluster in its original analysis due to the lack of methodological guidance at the 

time.32 

In this paper, we demonstrated that the inclusion of unexposed clusters in a fixed effects 

LSDV model is a viable strategy for improving the precision of the intervention effect estimate 

in a SW-CRT design. We mathematically proved this in Section 2. Furthermore, we re-analyzed 

data from the SW-CRT of a novel palliative care model in Section 3 and conducted simulations 

of a variety of realistic scenarios in Section 4. We found that including unexposed clusters 

improves the precision, power, and decreases the RMSE of the fixed effects LSDV intervention 

effect estimator. These improvements are unaffected by the absence of true period effects (𝜙𝑗 =

0, for all 𝑗) in the data generating process and persist provided the fixed effects LSDV model 

adjusts for period effects as per standard practice. Furthermore, these improvements persist even 

if the OLS assumptions of constant residual variance and period effects are violated. It is 

straightforward to generalize the results here, on the inclusion of unexposed clusters, to the 

inclusion of always-exposed clusters (Online Supplementary Material S3). This may happen, for 

example, when intervention is provided to a small number of clusters from the beginning to pilot 

the logistics of distributing the intervention in a large-scale study.25  

Unexposed clusters may be included in the analysis if they arise from the same study 

population or share the same underlying pattern of period effects as the exposed clusters. In the 

example of a trial that was terminated early following the results of an interim analysis, the 

unexposed clusters were clusters randomized to receive the intervention in the last period. Here, 

the unexposed clusters certainly arise from the same study population and there is strong 

motivation to include them in the analysis. Alternatively, in the palliative care trial case study, 

reorganization of hospital management introduced an additional fifth cluster that ran 

concurrently alongside the other study clusters to serve the existing target population and reduce 

the patient load of some of the original clusters.32 There was no expansion of study population 



and no change to the case-mix. In this case, we consider it appropriate to include the fifth cluster 

as an unexposed cluster in our fixed effects analysis. In contrast, if an unexposed cluster arises 

from expansion of service coverage, one should exercise caution and carefully consider the 

comparability of the new clusters.  

The fixed effects LSDV model operates under the assumption that exposed and 

unexposed clusters have the same underlying pattern of period effects.33 Currently, there are no 

standard practices for testing this assumption in the context of fixed effects analyses for SW-

CRTs. In the palliative care case study, we elected to test these assumptions using an ANOVA, 

AIC, and BIC to determine whether including interaction terms between an unexposed cluster 

and period effects improves the model fit. Future research can explore the operating 

characteristics of these or other methods for the detection of differences in period effects, and 

whether a level of difference that is difficult to detect with these methods can cause any material 

bias in the point estimation.   

In the palliative care case study, the inclusion of the unexposed cluster was shown to 

reduce the standard error and change the magnitude of the intervention effect estimate. Given 

that we did not detect any differences in the pattern of period effects between exposed and 

unexposed clusters, the inclusion of unexposed clusters is not expected to affect the point 

estimate of the intervention effect more than by chance. Although in this case study, the relative 

change of the point estimates when including the unexposed cluster was substantial (about 25%), 

it could be the result of the small absolute value of the point estimate as the denominator in 

calculating the relative change. Nevertheless, the absolute difference of the point estimates when 

including versus excluding unexposed clusters was small compared to the level of uncertainty in 

the point estimates as reflected by the standard errors. Notably, our simulations showed that 

including unexposed clusters did not affect the unbiasedness of the point estimate of the fixed 

effects LSDV analysis, even with non-constant period effects between clusters in the data 

generating process. 

However, our simulation results also revealed that non-constant period effects between 

clusters resulted in low coverage probability of the fixed effects LSDV intervention effect 

estimate. The fixed effects LSDV is a useful model for SW-CRTs when cluster-level 

confounding is suspected but is susceptible to additional heterogeneity in the period effect. 

Thompson et al.21 pointed out that the Hussey and Hughes mixed effects model is also 

susceptible to misspecification of the period effect and instead recommends a non-parametric 

vertical within-period estimator when period effect varies between clusters.21 The final decision 

as to which model to use ultimately depends on the conditions of the SW-CRT and where the 

sources of heterogeneity and confounding lie. 

The CONSORT extension to SW-CRTs suggests including the intraclass correlation 

coefficient (ICC) estimates in results reporting to help inform future studies.38 Unlike mixed 

effects models, the fixed effects LSDV model is unable to automatically estimate the ICC 

between clusters.17 However, there are alternative ways to estimate the ICC alongside a fixed 

effects analysis. For example, researchers can estimate the ICC through a one-way ANOVA of 

cluster effects during the first time-period of the SW-CRT when all clusters are still 



unexposed.39,40 The use of fixed effects analysis for the estimation of the intervention effect does 

not preclude the estimation of ICC which can be accomplished with additional analyses. 

In this paper, we consider the fixed effects LSDV model for the analysis of continuous 

outcomes. Recent work by Ma, Lam and Cheung shows that inclusion of unexposed subjects in 

the conditional Poisson model, which is equivalent to a fixed effects Poisson model,41 improves 

the precision of the exposure effect estimator when the analysis adjusts for time-varying 

covariates.30 It is intuitive to assume by extension that the inclusion of unexposed clusters will 

also improve the precision of the fixed effects intervention effect estimate in SW-CRTs with 

discrete and binary outcomes. Future research is needed to confirm this. 

Until now, we have restricted our attention to cluster randomized trials. However, the 

concepts and findings here are applicable to other research settings. Examples include 

observational studies of child health, which are susceptible to confounding by family socio-

economic status. As such, fixed effects models have been proposed to study the impact of risk 

factors that are variable between children within families and remove confounding by 

unmeasured family-level covariates.42 If all children in a family are exposed (or unexposed) to 

the measured risk factors, they contribute no information to fixed effects models that do not 

involve adjustment for child-level covariates. However, such analyses often require adjustment 

for child-level covariates, such as age. Based on the observations in the present study, we expect 

that the inclusion of families that contain only children exposed (or unexposed) to the measured 

risk factors may result in a more precise fixed effects exposure effect estimate when adjusting for 

time-varying covariates. The magnitude of precision gained in such situations requires further 

investigation. 

In conclusion, cross-sectional SW-CRTs may conclude with clusters that are never or 

always exposed to the intervention of interest in scenarios where a fixed effects LSDV analysis 

may be preferred. In such cases, it is preferable to include these clusters in the fixed effects 

LSDV analysis due to the improvements in precision, power, and RMSE of the intervention 

effect estimator.  
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Analysis Patients 𝜹̂ SE 95% CI 

− unexposed cluster All  -0.101 0.073 (-0.243, 0.042) 
+ unexposed cluster All  -0.126 0.064 (-0.251, -0.001) 
− unexposed cluster Stage III/IV -0.112 0.077  (-0.262, 0.038) 
+ unexposed cluster Stage III/IV -0.141 0.067  (-0.273, -0.009) 

 

Table 1. Intervention effect estimates 𝛿 in analyses excluding (−) and including (+) the 

unexposed cluster in a fixed effects LSDV analysis of data from a SW-CRT testing a novel co-

rounding model of palliative care. The intervention effect 𝛿, standard errors, and 95% Wald 

Confidence Intervals were estimated for all cancer patients or Stage III/IV cancer patients only. 

 



 

            

 

Figure 1. A SW-CRT design with 4 exposed clusters and 1 unexposed cluster across 5 periods (4 
steps). Cluster-period cross-sections that receive the intervention are shaded in gray;  is the 

sample size for the  cluster and  period. 

 

  



 

  

  
 

Figure 2. Distribution of hospital length of stay (LOS) and ln(LOS) for cancer patients who 
received either the standard palliative care delivery model (control) or a novel co-rounding 
model (intervention). 

 

  



 

     
 

Figure 3. Simulation of three different designs with 4, 8, or 12 exposed clusters. There are 5 
periods (4 steps) in each design. Cluster-period cross-sections that are receiving the intervention 
are shaded in gray. 

 

  



 

  

 

Figure 4. The impact of including unexposed clusters on properties of the fixed effects LSDV 
intervention effect estimator, presented across number of exposed clusters, unexposed clusters, 
and average cluster size , with fixed true intervention effect  and between-cluster 
variability . 

 

 

  



 

Figure 5. The impact of including unexposed clusters on properties of the fixed effects LSDV 
intervention effect estimator when there are no period effects ( ) in the data generating 
process, presented across number of exposed clusters, unexposed clusters, and average cluster 
size , with fixed true intervention effect  and between-cluster variance . 

  



 

   

 

Figure 6. The impact of including unexposed clusters on properties of the fixed effects LSDV 
intervention effect estimator when clusters have unique within-cluster variability  in the 
residual errors. Properties of the intervention effect estimator are presented across number of 
exposed clusters, unexposed clusters, and coefficient of variation of the within-cluster variability 
CV( ), with fixed true treatment effect , between-cluster variability , and 
average cluster size  . 

 

  



 

  

 

Figure 7. The impact of including unexposed clusters on properties of the fixed effects LSDV 
intervention effect estimator when period effect varies between different clusters. Properties of 
the intervention effect estimator are presented across number of exposed clusters, unexposed 
clusters, and between-period variability , with fixed true treatment effect , between-

cluster variability , and average cluster size  . 


