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ABSTRACT 

Type 1 diabetes is the result of an autoimmune reaction against insulin-producing 
beta cells in the pancreas, leading to the eventual termination of insulin production. 
Since the body can no longer control blood glucose levels, lifetime insulin therapy is 
required. The causes and mechanisms are still relatively unknown, but the emergence 
of specific autoantibodies in blood circulation signifies islet autoimmunity 
development. Genetics and environmental triggers, such as diet, might affect 
inflammation markers, which either induce or suppress autoimmune reactions and 
further lead to development type 1 diabetes. 

The aim of this thesis was to explore whether plasma vitamin C status in 
childhood is associated with the risk of type 1 diabetes development and whether 
vitamin C metabolism-related genotypes modify the association. Furthermore, the 
aim was to explore whether maternal intake of vitamin C, iron, nitrate, and nitrite 
during pregnancy is associated with the risk of developing type 1 diabetes. 

This thesis was a part of multinational The Environmental Determinants of 
Diabetes in the Young (TEDDY) Study (n = 8,677) and Finnish Type 1 Diabetes 
Prediction and Prevention (DIPP) Study (n = 7,782). The children studied carry a 
high or moderate genetic risk for type 1 diabetes. Children were monitored for the 
emergence of autoantibodies associated with type 1 diabetes and the development 
of clinical type 1 diabetes between 3- and 12-month intervals up to 15 years of age 
(DIPP) or up to the diagnosis of type 1 diabetes (TEDDY). Childhood plasma 
vitamin C status was measured up to 6 years of age, and the genotypes related to 
vitamin C metabolism were assessed in the TEDDY Study. Maternal diet was 
assessed using a semiquantitative validated food frequency questionnaire (FFQ) 
covering total diet during 8th month of pregnancy in the DIPP Study. The statistical 
methods used were the Cox proportional-hazards model and condition logistic 
regression. 

Childhood plasma vitamin C status was associated with a decreased risk of islet 
autoimmunity. Vitamin C metabolism-related genotypes did not modify this 
association. Maternal intake of vitamin C, iron, nitrate, or nitrite during pregnancy 
was not associated with the risk of islet autoimmunity or type 1 diabetes in offspring.  
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The results suggest that a high plasma vitamin C status in the early childhood 
might protect against islet autoimmunity. Maternal intake of vitamin C, iron, nitrate, 
or nitrite during pregnancy was not associated with childhood type 1 diabetes 
development. This may result from tightly regulated nutrient transportation in the 
placenta. 

 
Keywords: vitamin C, children, pregnancy, islet autoimmunity, type 1 diabetes, 
autoantibodies, epidemiology, nutrition 
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TIIVISTELMÄ 

Tyypin 1 diabetes on autoimmuunisairaus, jossa elimistön puolustusjärjestelmä 
tuhoaa haiman insuliinia tuottavia saarekesoluja johtaen lopulta insuliinin tuotannon 
loppumiseen. Kun elimistö ei kykene enää säätelemään veren sokeripitoisuutta, 
tarvitaan hoidoksi eliniän kestävää insuliinin annostelua. Toistaiseksi ei tarkasti 
tiedetä sairastumisen syitä eikä mekanismeja, mutta tiettyjen autovasta-aineiden 
ilmaantuminen verenkiertoon kuvastaa beetasoluauto-immuniteetin kehittymistä. 
Perimä ja ympäristötekijät kuten ravinto voivat vaikuttaa elimistön 
tulehdustekijöihin, jotka joko edistävät tai ehkäisevät autoimmuunireaktion ja 
edelleen kliiniseen tyypin 1 diabeteksen kehittymistä.  

Väitöskirjatutkimuksessani selvitettiin lapsuusiän veren C-vitamiinipitoisuuden 
yhteyttä tyypin 1 diabeteksen kehittymiseen sekä muokkaavatko C-vitamiinin 
aineenvaihduntaa säätelevät genotyypit tätä yhteyttä. Lisäksi selvitettiin äidin 
raskaudenaikaisen ravinnon C-vitamiinin, raudan, nitraatin ja nitriitin saannin 
yhteyttä tyypin 1 diabeteksen kehittymiseen. 

Aineistoni kerättiin kansainvälisestä The Environmental Determinants of 
Diabetes in the Young (TEDDY) (n=8,677) sekä suomalaisesta Type 1 Diabetes 
Prediction and Prevention (DIPP) (n=7,782) seurantatutkimuksista. Tutkimuksessa 
olevilla lapsilla on geneettisesti suurentunut sairastumisalttius tyypin 1 diabetekseen. 
Lapsilta seurattiin tyypin 1 diabetekseen liitettyjen autovasta-aineiden ilmaantumista 
sekä kliinisen tyypin 1 diabeteksen kehittymistä 3–12 kuukauden välein 15-vuotiaaksi 
asti (DIPP) tai kunnes tyypin 1 diabetes diagnosoitiin (TEDDY). TEDDY-
tutkimuksessa veren C-vitamiinipitoisuus mitattiin vuosittain 6-vuotiaaksi asti ja 
lapsilta kerättiin tiedot C-vitamiinin aineenvaihduntaa säätelevistä geeneistä. DIPP-
tutkimuksessa äitien ruoankäyttötiedot mitattiin validoidulla ruoankäytön 
kyselylomakkeella kahdeksannen raskauskuukauden aikana, mikä kuvailee koko 
raskaudenaikaisetta ruoankäyttöä. Tilastollisina analyyseinä käytettiin Cox 
regressioanalyysia sekä logistista regressioanalyysia. 

Veren korkea C-vitamiininpitoisuus lapsuusiässä oli suojaavassa yhteydessä 
beetasolu-autoimmuniteetin riskiin. C-vitamiinin aineenvaihduntaa säätelevät 
genotyypit eivät muokanneet tätä yhteyttä. Äidin raskaudenaikainen C-vitamiinin, 
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raudan, nitraatin tai nitriitin saanti ei näyttäisi olevan yhteydessä lapsen beetasolu-
autoimmuniteetin tai kliinisen tyypin 1 diabeteksen riskiin.  

Tulokset viittaavat siihen, että korkea veren C-vitamiininpitoisuus 
varhaislapsuudessa saattaa suojata beetasolu-autoimmuniteetin kehittymiseltä. Äidin 
raskaudenaikaisen C-vitamiinin, raudan, nitraatin tai nitriitin saanti ei ole yhteydessä 
lapsen riskiin sairastua tyypin 1 diabetekseen. Ravintoaineiden tarkkaan säädelty 
kuljetus istukassa voi olla mahdollinen selittävä tekijä.  

 
Avainsanat: C-vitamiini, lapset, raskaus, beetasolu-autoimmuniteetti, tyypin 1 
diabetes, autovasta-aineet, epidemiologia, ravitsemus 
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1 INTRODUCTION 

Type 1 diabetes is a chronic autoimmune disease, and its incidence is increasing at 3–5% 
per year (Atkinson et al., 2014; Forlenza & Rewers, 2011). Finland has the highest incidence 
of type 1 diabetes (Harjutsalo, et al., 2013; Patterson et al., 2019). A steady increase 
continued from 1950 to 2006, after which the worldwide incidence rate became steadier 
(Patterson et al., 2019). Genetic susceptibility plays a substantial role in disease 
development, particularly genes in the human leukocyte antigen (HLA) region (Barrett et 
al., 2009; Noble & Erlich, 2012). Studies have observed different disease outcomes between 
identical twins, incidence variations between populations, and seasonal differences in 
disease development (Barrett et al., 2009; Knip & Simell, 2012). This strongly suggests that 
environmental exposure, in conjunction with genes, influences disease development (Knip 
& Simell, 2012; Moltchanova e al., 2009; Nisticò et al., 2012). Furthermore, the incidence 
in Finland began to decrease from 2003 to 2018, suggesting changes in environmental 
factors (Parviainen et al., 2020). 

Several environmental factors have been suggested as causes for this decrease, such as 
diet, environmental toxins, reduced or changed exposure to environmental microbes 
(improved hygiene), viral infections, alteration in gut microbiota, obesity, and increased 
growth (Virtanen, 2016; Forlenza & Rewers, 2011; Craig et al., 2019; Knip & Simell, 2012; 
Lindberg et al., 1999; Moltchanova et al., 2009). Nutritional factors might influence the 
development of type 1 diabetes through several mechanisms, such as increased oxidative 
stress, decreased insulin response, increased inflammation, beta cell apoptosis, or impaired 
immune function (Bodin et al., 2015).  

Nitrate and nitrite are naturally occurring compounds in foods and drinking water, but 
they are also used as food additives. A high intake of nitrate and nitrite might lead to the 
generation of peroxynitrite, reactive nitrogen intermediates, and N-nitroso compounds, 
which are suggested to be toxic to beta cells (de la Monte et al., 2009; Longnecker & 
Daniels, 2001; Wilson et al., 1983). However, previous studies on humans have been mostly 
ecological surveys and case-control studies which have turned out inconsistent results 
(Dahlquist et al., 1990; Helgason & Jonasson, 1981; Kostraba et al., 1992; Muntoni et al., 
2013; Parslow et al., 1997; Virtanen et al., 1994).  

Beta cells have low activity of free-radical detoxifying and redox-regulating enzymes; 
thus, dietary antioxidants might play an important role in protecting against oxidative 
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damage (Lazo-de-la-Vega-Monroy & Fernández-Mejía, 2013; Lei & Vatamaniuk, 2011). 
Vitamin C, as a dietary antioxidant, might protect against type 1 diabetes (al-Zuhair & 
Mohamed, 1998; Kaneto et al., 1999). However, the available results from retrospective 
case-control studies are inconsistent and limited (Benson et al., 2010; Dahlquist et al., 1990; 
Glatthaar et al., 1988). It is also suggested that in addition to assessment of dietary intake, 
plasma vitamin C status might also be required since it more accurately represents vitamin 
C availability in the body (Dehghan et al., 2007). Furthermore, plasma and tissue vitamin 
C availability differs between individuals due to genetic variations in vitamin C metabolism-
related genes (Michels et al., 2013); thus, certain genotypes might contribute to the risk of 
type 1 diabetes. 

Iron is an essential trace mineral required for oxygen transport in circulation and as a 
component of cellular enzymes. Maintaining iron balance is crucial, as iron has the ability 
to donate and accept electrons; thus, it functions as a catalyst for reactive oxygen species 
(ROS) (Conrad & Umbreit, 2000). It has been postulated that the generation of iron-
induced ROS in beta cells might lead to beta cell dedifferentiation or cell death via 
apoptosis or ferroptosis, which could increase the risk of developing type 1 diabetes 
(Hansen et al., 2014). 

The development of type 1 diabetes may be influenced as early as the fetal period 
(Lindberg et al., 1999; Oresic et al., 2013). Only one previous study explored the association 
between maternal intake of vitamin C during pregnancy and the risk of islet autoimmunity, 
and they found no association (Uusitalo et al., 2008). One previous cohort study suggested 
that maternal use of iron supplements during pregnancy might increase the risk of type 1 
diabetes in offspring (Stordal et al., 2018). Furthermore, a nationwide case-control study 
suggested that a high maternal intake of nitrate and nitrite during pregnancy might increase 
the risk of type 1 diabetes in offspring (Virtanen et al., 1994).  

Prospective studies are limited, and the results are inconsistent, which highlights the 
fact that more studies exploring the association between vitamin C, iron, nitrate, and nitrite 
intake and the development of type 1 diabetes are needed. The first aim of this dissertation 
is to study whether childhood high plasma vitamin C status protects against the 
development of islet autoimmunity or type 1 diabetes. Whether vitamin C metabolism-
related genetic variations influence the outcome was the second objective of the study. The 
third main objective was to evaluate whether the maternal intake of nitrate, nitrite, vitamin 
C, or iron during pregnancy is associated with the development of islet autoimmunity or 
type 1 diabetes in childhood. 
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2 REVIEW OF LITERATURE 

2.1 Pathogenesis of type 1 diabetes 

Type 1 diabetes results from an autoimmune reaction in which the immune system attacks 
and destroys beta cells in pancreatic islets. Beta cells produce the insulin hormone that 
regulates the uptake of glucose in tissues; thus, beta-cell death leads to a progressive 
decrease in insulin. This further results in impaired glucose tolerance and ultimately 
hyperglycemia and loss of insulin production (Atkinson et al., 2014). Clinical symptoms of 
type 1 diabetes, such as fatigue, thirst, and polyuria, appear at the very end of disease 
development, which has most likely continued several months from the initiation of 
autoimmune reaction (Gan et al., 2012). The disease can occur at any age but is commonly 
triggered during childhood, and the incidence increases with age, peaking at around 10–14 
years of age. The incidence in children under 15 years old can range from 1 to 3 per 100,000 
people per year in Asian and South American countries and up to 30–60 per 100,000 people 
in Scandinavia (DIAMOND Project Group, 2006; Patterson et al., 2019). The global 
incidence rate has increased since the 1960s (Figure 1).  

 

 

Figure 1.  Incidence rates of type 1 diabetes from 1960–2015. Abbreviations: GDR, German Democratic 
Republic; BW, Baden-Württemberg (Data from Norris, et al., 2020) 
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2 REVIEW OF LITERATURE 

2.1 Pathogenesis of type 1 diabetes 

Type 1 diabetes results from an autoimmune reaction in which the immune system attacks 
and destroys beta cells in pancreatic islets. Beta cells produce the insulin hormone that 
regulates the uptake of glucose in tissues; thus, beta-cell death leads to a progressive 
decrease in insulin. This further results in impaired glucose tolerance and ultimately 
hyperglycemia and loss of insulin production (Atkinson et al., 2014). Clinical symptoms of 
type 1 diabetes, such as fatigue, thirst, and polyuria, appear at the very end of disease 
development, which has most likely continued several months from the initiation of 
autoimmune reaction (Gan et al., 2012). The disease can occur at any age but is commonly 
triggered during childhood, and the incidence increases with age, peaking at around 10–14 
years of age. The incidence in children under 15 years old can range from 1 to 3 per 100,000 
people per year in Asian and South American countries and up to 30–60 per 100,000 people 
in Scandinavia (DIAMOND Project Group, 2006; Patterson et al., 2019). The global 
incidence rate has increased since the 1960s (Figure 1).  

 

 

Figure 1.  Incidence rates of type 1 diabetes from 1960–2015. Abbreviations: GDR, German Democratic 
Republic; BW, Baden-Württemberg (Data from Norris, et al., 2020) 
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The preclinical phase, called islet autoimmunity, is determined by the emergence of 
specific autoantibodies in the blood and the gradual loss of beta cells before the symptoms 
occur. Five disease-related autoantibodies have been found to predict type 1 diabetes: islet 
cell (ICA), insulin (IAA), glutamic acid decarboxylase (GADA), protein tyrosine 
phosphatase-related islet antigen 2 (IA-2A), and zinc transporter 8 (ZnT8A) autoantibodies 
(Knip, 2002; Knip & Siljander, 2008). Islet autoimmunity is staged according to the number 
of detectable autoantibodies (Mrena et al., 1999). Positivity for a single autoantibody is a 
marker of early islet autoimmunity, whereas two antibodies are a marker of advanced islet 
autoimmunity, and three to four antibodies suggest late progressive islet autoimmunity. 
ICA was discovered over 40 years ago and later confirmed to comprise a heterogenous 
group of autoantibodies: GADA, IA-2A, and ZnT8A (Knip et al., 2016). Islet 
autoimmunity observed in the first to second years of life is usually initiated by IAA (Ilonen 
et al., 2013). GADA is often the first-appearing antibody at 3–5 years of age or later (Ilonen 
et al., 2013), suggesting that positivity to GADA might precede a type 1 diabetes diagnosis 
in later childhood or adulthood. IA-2A and ZnT8A primarily appear in the later stage of 
autoimmunity development and suggest advanced beta-cell destruction rather than early 
autoimmunity development (Siljander & Knip, 2011; Williams & Long, 2019). 
Autoantibodies signal that disease development is ongoing, but they are not the cause of 
the disease. What triggers autoimmune reactions is still unknown. 

Genetic variations play a substantial role in transnational differences in the incidence of 
type 1 diabetes. Distributions of specific DQ genotypes relate to a high risk for type 1 
diabetes in the general population (Ronningen et al., 2001). Genes encoding class II HLA 
molecules suggest genetic risk; more closely, alleles DQB1*0302/0302 are associated with 
an increased risk for type 1 diabetes, and DQB1*0301, 0602, and 0603 are associated with 
a decreased risk in the Finnish population (Ilonen et al., 1996). As much as over 60% of 
Finnish subjects with type 1 diabetes carry high (DQB1 *0201/*0302) or moderate 
(DQB1*0302 without protecting alleles) risk compared to the general population, with a 
14% prevalence of these genes.  

Although genetic factors predict the risk of developing type 1 diabetes, the prevalence 
of high-risk HLA haplotypes has not increased over time. This suggests that environmental 
factors play a role in the development of type 1 diabetes (Gillespie et al., 2012; Norris et 
al., 2020). Environmental factors contribute to disease progression by either initiating the 
destruction of beta cells or modifying the progression of the pathogenetic process. 
Suggested early-life triggers might target children in utero, perinatally, or in the early years 
of life. It has been observed that autoantibody appearance has specific patterns depending 
on age; therefore, the environmental factors that trigger autoimmune reactions might also 
vary at different age points (Ilonen et al., 2013; Krischer et al., 2015). Proposed triggers 
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include virus infections, bacteria, diet, and toxins, which are suggested to influence gut 
development, gut permeability, or inflammation, either inducing or suppressing 
autoimmunity reaction (Bodin et al., 2015; Norris et al., 2020; Vaarala, 2011). Diet is also a 
subject of ongoing studies since it is a frequent daily exposure. Nutrients are required for 
normal development and well-being, but excessive amounts of certain nutrients might 
increase the risk of type 1 diabetes development by, for example, accelerating oxidative 
stress and apoptosis in beta cells (Bodin et al., 2015). Conversely, certain nutrients function 
as antioxidants, which might protect against developing type 1 diabetes (al-Zuhair & 
Mohamed, 1998). 

2.2 Epidemiologic evidence on dietary factors in the development of 
type 1 diabetes  

2.2.1 Vitamin C and the development of type 1 diabetes  

A study performed on male albino rats showed that vitamin C suppressed the activity of 
interferon alpha, which is suggested to be cytotoxic to pancreatic islets (al-Zuhair & 
Mohamed, 1998). However, evidence in humans is limited. Studies exploring the 
association between maternal vitamin C intake during pregnancy and the development of 
type 1 diabetes in offspring are also scarce. One previous study within the Finnish Type 1 
Diabetes Prediction and Prevention (DIPP) Nutrition Study found no association between 
maternal intake of vitamin C and the risk of islet autoimmunity in offspring (Uusitalo et al., 
2008) (Table 1). However, the association between vitamin C supplements exclusively and 
the risk of islet autoimmunity was not studied. In addition, type 1 diabetes as an outcome 
was not assessed in the study, and the follow-up time was short (median 4.4 y) (range: 0.2–
8.8 y). 
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Table 1.  Epidemiologic evidence from study exploring the association between maternal intake of 
vitamin C during pregnancy and the risk of type 1 diabetes-related outcomes in offspring 

Study 
design 

No. of 
participants 

Country / 
Population 

Exposure  Outcome Association 
HR (95% CI) 

Reference 

Cohort 165 with 
diagnosed IA 
4,132 without 

Finland / 
genetic risk 
for T1D 

Vitamin C (mg / day) IA 
 

 Adjusted HR Uusitalo et 
al., 2008 

   Diet  0.96 (0.76, 1.22)1  
     0.92 (0.72, 1.18)2  
   Diet + supplement  0.97 (0.80, 1.18)1  
     0.96 (0.78, 1.17)2  

Abbreviations: IA, islet autoimmunity; T1D, type 1 diabetes 
1 Adjusted for energy by the residual method, HLA genotype, and family history of diabetes. 
2 Adjusted for energy by the residual method, HLA genotype, and family history of diabetes, sex, gestational 
age, maternal age, maternal education, maternal parity, maternal smoking during pregnancy, degree of 
urbanization, and region of birth (Oulu vs. Tampere area). 

 
Epidemiologic studies exploring the association between childhood vitamin C intake 

and the development of type 1 diabetes are summarized in Table 2. An Australian case-
control study observed that the use of vitamin C supplements was less common in type 1 
diabetes case children than in control children, but dietary intake was not measured 
(Glatthaar et al., 1988). A Swedish case-control study observed that a higher dietary intake 
of vitamin C was associated with an increased risk of type 1 diabetes, but the association 
was no longer significant when stratified for intake of nitrate and nitrite (Mantel-Haenszel 
risk estimate, > 75th centile vitamin C intake: odds ratio [OR] 1.04, p = 0.86) (Dahlquist 
et al., 1990). Furthermore, a Canadian case-control study assessing nutrients from both diet 
and drinking water found no association between the dietary intake of vitamin C and the 
risk of type 1 diabetes (Benson et al., 2010). However, none of the previous studies assessed 
plasma vitamin C status. 

25 

Table 2.  Epidemiologic evidence from studies exploring the association between childhood intake of 
vitamin C and the risk of type 1 diabetes-related outcomes in offspring 

Study 
design 

No. of 
participants 

Country / 
Population 

Exposure  Outcome Association 
OR (95% CI) 

Reference 

Case-
control 

194 cases 
753 controls 

Australia / 
GP 

Use of vitamin C supplements 
more than one month 

T1D Unadjusted OR  Glatthaar et 
al., 1988 

   yes vs. no  0.46 (0.30, 0.70)  
       
Case-
control 

339 cases 
528 controls 

Sweden / 
GP 

Vitamin C from food, (frequency 
of intake) 

T1D Unadjusted OR Dahlquist et 
al., 1990 

   < 25th centile  1.00  
   25–50th centile  0.79 (0.56, 1.13)  
   > 75th centile  1.54 (1.06, 2.23)  
       
Case-
control 

57 cases 
105 controls 

Canada / 
GP 

Vitamin C from food (mg / day) T1D Adjusted OR1 Benson et 
al., 2010 

   < 81.2  1.00  
   81.2–130.9  0.73 (0.25, 2.17)  
   130.9–203.9   0.58 (0.17, 1.97)  
   ≥ 203.90  0.61 (0.16, 2.34)  

Abbreviations: GP, general population; T1D, type 1 diabetes  
1 Adjusted for a third-generation family history of T1D, number of infections during the first 2 years of life, 
residential area, father’s education level, child’s age, sex, and energy intake. 

2.2.2 Nitrate and nitrite and the development of type 1 diabetes 

Mice fed with smoked cured mutton containing N-nitroso compounds, such as 
nitrosamines and nitrosamides, developed insulin-dependent diabetes (Helgason et al., 
1982), suggesting that dietary intake of these compounds might play a role in disease 
development. Ecological surveys have suggested that a high intake of nitrate and nitrite 
from drinking water could increase the risk of type 1 diabetes (Kostraba et al., 1992; 
Parslow et al., 1997; van Maanen et al., 2000), but others have found no association 
(Moltchanova et al., 2009; Muntoni et al., 2006). Observational studies in humans exploring 
nitrate and nitrite intake on the development of type 1 diabetes have been inconsistent. 
One study has assessed maternal intake of nitrate and nitrite and the childhood risk of type 
1 diabetes (Table 3). In a Finnish case-control study, the highest quartile of maternal nitrite 
intake was associated with an increased risk of type 1 diabetes in offspring when adjusted 
for mother’s education, age, smoking, and place of residence (Virtanen et al., 1994). 
Although only the highest quartile was statistically significant, the risk estimate increased 
as nitrite intake increased (Table 3). Furthermore, the dietary intake of nitrite was higher in 
the case children’s mothers than in the control children’s mothers (0.9 mg/d vs. 0.8 mg/d). 
Studies in general are few; no prospective studies have been conducted so far, and no 
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studies have explored the association between nitrate and nitrite intake and the risk of islet 
autoimmunity. 

Table 3.  Epidemiologic evidence from study exploring the association between maternal intake of 
nitrate and nitrite and the risk of type 1 diabetes-related outcomes in offspring 

Study 
design 

No. of 
participants 

Country / 
Population 

Exposure  Outcome Association 
OR (95% CI) 

Reference 

Case-
control 

684 cases 
595 controls 

Finland / GP Maternal diet (mg / day) T1D Adjusted OR1 Virtanen et al., 
1994 

   Nitrate     
   1st quartile  1.00  
   2nd quartile  0.62 (0.42, 0.91)  
   3rd quartile  0.87 (0.61, 1.26)  
   4th quartile  0.80 (0.56, 1.16)  
   Nitrite    
   1st quartile  1.00  
   2nd quartile  1.15 (0.76, 1.74)  
   3rd quartile   1.29 (0.87, 1.91)  
   4th quartile  1.98 (1.35, 2.90)  

Abbreviations: GP, general population; T1D, type 1 diabetes 
1 Adjusted for maternal education, smoking, child’s age, and place of residence. 

 
Studies assessing the intake of nitrate and nitrite during childhood and the risk of type 

1 diabetes are summarized in Table 4. A Swedish study observed that a high intake of 
nitrate and nitrite from food in childhood could increase the risk of type 1 diabetes 
(Dahlquist et al., 1990). The associations remained similar when standardized for the child’s 
age, sex, family history of insulin-dependent diabetes, maternal education, and maternal 
age. Similarly, a Finnish study found a positive association between a high dietary intake of 
nitrite in childhood and an increased risk of type 1 diabetes (Virtanen et al., 1994). 
Conversely, an Australian case-control study found no association between childhood 
nitrosamine (a form of N-nitroso compound) intake from diet and the risk of type 1 
diabetes (Verge et al., 1994). Furthermore, a Canadian case-control study found no 
association between nitrite and nitrosamine intake from diet and the risk of type 1 diabetes 
in childhood (Benson et al., 2010). Other studies assessed nitrate and nitrite intake from 
drinking water but not from diet (Table 4). Nitrite, which is used as a preservative in 
processed meat products along with animal protein, might accelerate N-nitroso compound 
formation. In addition to animal study (Helgason et al., 1982), high consumption of red 
meat and especially processed meat products in childhood were found to increase the risk 
of type 1 diabetes in a Sardinian case-control study (Muntoni et al., 2013). Childhood intake 
of nitrosamines was associated with an increased risk of type 1 diabetes in a Swedish case-
control study (Dahlquist et al., 1990). When stratified by the intake of protein, an increased 
risk of type 1 diabetes was observed in children with the highest intake of both N-nitroso 
compounds and protein (OR 2.12, 95% Cl 1.11, 4.04). 
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Table 4.  Epidemiologic evidence from studies exploring the association between intake of nitrate, 
nitrite, and nitrosamines during childhood and type 1 diabetes-related outcomes 

Study design No. of 
participants 

Country / 
Population 

Exposure  Outcome Association 
OR, HR, or SIR 
(95% CI) 

Reference 

Case-control 339 cases 
528 controls 

Sweden / 
GP 

Diet (% of intake) T1D Unadjusted OR Dahlquist et 
al., 1990 

   Nitrate or nitrite    
   < 25%   1.00  
   25–75%  0.84 (0.59, 1.19)  
   > 75%  2.41 (1.64, 3.54)  
   Nitrosamines    
   < 25%   1.00  
   25–75%  1.73 (1.23, 2.44)   
   > 75%  2.56 (1.83, 3.59)  
       
Case-control 684 cases 

595 controls 
Finland / GP Diet (mg / day) T1D Adjusted OR1 Virtanen et 

al., 1994 
   Nitrate     
   1st quartile  1.00  
   2nd quartile  0.82 (0.59, 1.14)  
   3rd quartile   0.99 (0.72, 1.36)  
   4th quartile  0.94 (0.68, 1.29)  
   Nitrite    
   1st quartile  1.00  
   2nd quartile  1.16 (0.82, 1.65)  
   3rd quartile   1.49 (1.06, 2.10)  
   4th quartile  2.32 (1.67, 3.24)  
       
Case-control 217 cases 

258 controls 
Australia / 
GP 

Nitrosamines from 
diet 

T1D Adjusted OR2 Verge et al., 
1994 

   lowest tertile  1.00  
   middle tertile  0.71 (0.44, 1.14)  
   highest tertile  1.07 (0.66, 1.74)  
       
Retrospective 
cohort 

517 with T1D UK / GP Nitrate from tap water 
(mg / L) 

T1D SIR 
111.8 (96, 129) 

Zhao et al., 
2001 

       
Nested case-
control 

95 cases 
139 controls  

Germany / 
family 
history of 
T1D 

Nitrate from tap water 
(mg / L) 

T1D Adjusted OR3 

0.6 (0.4, 1.0) 
Winkler et 
al., 2008 

Abbreviations: GP, general population; SIR, standardized incidence ratio; T1D, type 1 diabetes 
1 Adjusted for maternal education, age, smoking, and place of residence. 
2 Adjusted for intake of fluids, cow’s milk protein, and/or cereal protein.  
3 Adjusted for HLA-DR 3/4 genotype, HLA-DR 4/4 genotype, and maternal type 1 diabetes.
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Table 4.          Continue 

Study design No. of 
participants 

Country / 
Population 

Exposure  Outcome Association 
OR, HR, or SIR 
(95% CI) 

Reference 

Case-control 57 cases 
105 controls 

Canada / GP Diet T1D Adjusted OR4 Benson et al., 
2010 

   Nitrate (mg / day)    
   < 5.66  1.00  
   5.66–7.27   1.01 (0.28, 3.61)  
   7.28–9.00   1.19 (0.31, 4.52)  
   ≥ 9.01  2.25 (0.45, 11.14)  
   Nitrite (mg / day)    
   < 1.83   1.00  
   1.83–3.26   0.19 (0.28, 3.18)  
   3.27–4.81  1.24 (0.35, 4.47)  
   ≥ 4.82  1.30 (0.30, 5.59)  
   Nitrosamine (µg / day)    
   < 0.01  1.00  
   0.01–0.029   0.57 (0.21, 1.57)  
   0.03–0.039   0.66 (0.18, 2.45)  
   ≥ 0.04  0.62 (0.19, 2.00)  
   Diet and drinking 

water 
   

   Nitrate (mg / day)    
   < 7.20  1.00  
   7.20–9.86   3.22 (0.93, 11.17)  
   9.87–11.88   1.02 (0.23, 4.46)  
   ≥ 11.89  2.81 (0.60, 13.23)  
   Nitrate and nitrite (mg 

/ day)  
   

   < 9.56  1.00  
   9.56–13.20  2.70 (0.77, 9.43)  
   13.21–16.72  1.66 (0.42, 6.58)  
   ≥ 16.73  2.39 (0.46, 12.37)  
       
Case-control 130 cases  

323 controls 
Finland / 
high and low 
risk 
popluation1 

Nitrate from tap water 
(mg / L) 

T1D Adjusted OR5 Samuelsson et 
al., 2011 

   Nitrate   1.32 (1.06, 1.64)  
   Nitrite   0.36 (0.06, 2.03)  

Abbreviations: GP, general population; SIR, standardized incidence ratio; T1D, type 1 diabetes 
4 Adjusted for a third-generation family history of T1D, number of infections during the first 2 years of life, 
residential area, father’s education level, child’s age, sex, and energy intake. 
5 Adjusted for municipality of residents. A total of seven municipalities with high annual incidence of type 1 
diabetes and six municipalities with lowest incidence. 
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Table 4.  Epidemiologic evidence from studies exploring the association between intake of nitrate, 
nitrite, and nitrosamines during childhood and type 1 diabetes-related outcomes 

Study design No. of 
participants 

Country / 
Population 

Exposure  Outcome Association 
OR, HR, or SIR 
(95% CI) 

Reference 
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   > 75%  2.56 (1.83, 3.59)  
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Finland / GP Diet (mg / day) T1D Adjusted OR1 Virtanen et 
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258 controls 
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GP 
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control 

95 cases 
139 controls  
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family 
history of 
T1D 

Nitrate from tap water 
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T1D Adjusted OR3 

0.6 (0.4, 1.0) 
Winkler et 
al., 2008 

Abbreviations: GP, general population; SIR, standardized incidence ratio; T1D, type 1 diabetes 
1 Adjusted for maternal education, age, smoking, and place of residence. 
2 Adjusted for intake of fluids, cow’s milk protein, and/or cereal protein.  
3 Adjusted for HLA-DR 3/4 genotype, HLA-DR 4/4 genotype, and maternal type 1 diabetes.
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Abbreviations: GP, general population; SIR, standardized incidence ratio; T1D, type 1 diabetes 
4 Adjusted for a third-generation family history of T1D, number of infections during the first 2 years of life, 
residential area, father’s education level, child’s age, sex, and energy intake. 
5 Adjusted for municipality of residents. A total of seven municipalities with high annual incidence of type 1 
diabetes and six municipalities with lowest incidence. 
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2.2.3 Iron and the development of type 1 diabetes 

Studies have suggested that prenatal exposure to iron might increase the risk of type 1 
diabetes in offspring. In a Danish case-control study, a high cord blood iron status was 
associated with an increased risk of type 1 diabetes in offspring (Kyvsgaard et al., 2017). 
Studies assessing maternal iron intake on the risk of type 1 diabetes are summarized in 
Table 5. The Norwegian Mother and Child Cohort study found no association between 
cord plasma iron biomarkers and the risk of type 1 diabetes, but maternal use of iron 
supplements was associated with an increased risk of type 1 diabetes in offspring 
(Stordal et al., 2018). A Danish National Birth Cohort study found no association 
between maternal iron supplement use and type 1 diabetes risk in offspring (Thorsen et 
al., 2019). The association between maternal iron intake and the childhood risk of islet 
autoimmunity was not assessed in these studies. 

Table 5.  Epidemiologic evidence from studies exploring the association between maternal intake of 
iron during pregnancy and the risk of type 1 diabetes-related outcomes in offspring 

Study 
design 

No. of 
participants 

Country / 
Population 

Exposure  Outcome Association  
OR HR (95% Cl) 

Reference 

Cohort 373 with T1D 
93,872 without 

Norway / 
GP 

 
Use of iron supplement 
Cord plasma ferritin 
(+50mg/l) 
Cord plasma transferrin (0,5 
mg/l) 

T1D Adjusted HR or OR1 

HR 1.33 (1.06, 1.67)  
OR 1.05 (0.99, 1.13) 

OR 0.91 (0.81, 1.01) 

Størdal et 
al., 2018 

       
Cohort 238 with T1D 

63,693 without 
Denmark / 
GP 

Use of pure iron supplements 
Yes vs. no 

T1D Adjusted HR2 

1.05 (0.76, 1.45) 
Thorsen et 
al., 2019 

Abbreviations: GP, general population; T1D, type 1 diabetes 
1 Adjusted for maternal age and education, smoking, parity, birth weight and prematurity, pre-pregnancy 
body mass index (BMI), mode of delivery, diagnosed maternal anemia, maternal type 1 diabetes, and 
maternal celiac disease. 
2 Adjusted for socioeconomic status, mode of delivery, pre-pregnancy BMI, age, smoking during 
pregnancy, parity, gestational age, maternal age, and breastfeeding. 
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The epidemiologic studies exploring association between childhood iron intake and 
the development of type 1 diabetes are summarized in Table 6. Primarily, studies have 
assessed iron intake only from drinking water or iron supplements. The results of these 
studies have been inconsistent. In a US case-control study, dietary iron intake during 
the first 4 months of age was associated with an increased risk of type 1 diabetes (Ashraf 
et al., 2010). In contrast, a Canadian case-control study observed no association between 
dietary intake of iron and the risk of type 1 diabetes (Benson et al., 2010). Furthermore, 
a Norwegian cohort study found no association between children’s iron supplement use 
up to 18 months of age and the risk of type 1 diabetes (Stordal et al., 2018). However, 
a Danish cohort study observed an association between iron droplet use at the age of 
18 months and a decreased risk of type 1 diabetes (Thorsen et al., 2019). Childhood 
dietary intake was not assessed in these studies.
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Table 6.  Epidemiologic evidence from studies exploring the association between childhood intake 
of iron and type 1 diabetes-related outcomes 

Study 
design 

No. of 
participants 

Country / 
Population 

Exposure  Outcome Association 
OR, HR, or IRR 
(95% CI) 

Reference 

Retrospectiv
e cohort1 

517 with T1D UK / GP Iron from tap water 
(mg / L) 

T1D  IRR 
 98.2 (84, 115)  

Zhao et al., 
2001 

       
Nested case-
control1 

95 cases 
139 controls 

Germany / 
family 
history of T1D 

Iron from tap water 
(mg / L) 

T1D  Adjusted OR2 

 1.0 (0.4, 2.3) 
Winkler et 
al., 2008 

       
Case-control1 128 cases 

67 controls 
US. / GP and 
high risk 
poplulation4 

Iron from diet (mg / 
day) 

T1D Adjusted OR5 

2.01 (1.18, 3.41) 
Ashraf et al., 
2010 

       
Case-control 57 cases 

105 controls 
Canada / GP Iron from diet (mg / 

day) 
T1D Adjusted OR7 Benson et 

al., 2010 
   <10.00  1.00  
   10.00–13.27  1.19 (0.34, 4.20)  
   13.28–16.11  0.87 (0.20, 3.75)  
   ≥16.12  1.22 (0.22, 6.85)  
       
Case-control1 130 cases 

323 controls 
Finland / high 
and low risk 
population 

Iron from tap water 
(mg / L) 

T1D Adjusted OR3  
1.56 (0.99, 2.44) 

Samuelsson 
et al., 2011 

       
Cohort 373 with T1D 

93,872 without 
Norway / GP Iron supplement 

(yes vs. no) 
T1D Adjusted HR8 

 
Størdal et 
al., 2018 

   < 6 mo. of age  1.43 (0.80, 2.56)  
   < 18 mo. of age  1.20 (0.49, 2.91)  
   Any use by 0–18 

mo. 
 1.36 (0.82, 2.25)  

       
Cohort 191 with T1D  

51,668 without 
Denmark / GP Iron droplets at 18 

mo. of age 
T1D Adjusted HR9 

 
Thorsen et 
al., 2019 

   Yes vs. no  0.74 (0.55, 1.00)  
Abbreviations: IRR, incidence rate ratio; GP, general population; T1D, type 1 diabetes 
1 Meta-analysis of three case-control and one retrospective cohort study indicating inconsistent results 
between childhood iron intake and type 1 diabetes (Sogaard et al., 2017). 
2 Adjusted for HLA-DR 3/4 genotype, HLA-DR 4/4 genotype, and maternal type 1 diabetes. 
3 Adjusted for municipality of residents. A total of seven municipalities with high annual incidence of type 
1 diabetes and six municipalities with lowest incidence. 
4 Cases and controls were selected based on whether or not the sibling had type 1 diabetes. 
5 Adjusted for birth weight, birth order, and age at the time of the survey. 
6 Adjusted for age, sex, and energy intake. 
7 Adjusted for a third-generation family history of T1D, number of infections during the first 2 years of 
life, residential area, father’s education level, child’s age, sex, and energy intake. 
8 Adjusted for parity, smoking, birth weight, prematurity, pre-pregnancy BMI, mode of delivery, maternal 
anemia, maternal age, maternal education, maternal type 1 diabetes, and maternal celiac disease. 
9 Adjusted for socioeconomic status, mode of delivery, pre-pregnancy BMI, age, smoking during 
pregnancy, parity, gestational age, maternal age, breastfeeding. 
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2.3 Characteristics of vitamin C and possible mechanisms of 
action in the development of type 1 diabetes 

Water-soluble vitamin C is an essential nutrient for humans because the human body 
cannot synthesize it endogenously (Frei et al., 2012). It was first shown to prevent 
scurvy, but several other functions were later identified Table 7. Vitamin C occurs in 
three forms l-ascorbic acid, intermediate ascorbate radical, and l-dehydroascorbic acid 
(DHA) which are interchangeable enzymatically. The function of vitamin C is based on 
ascorbate recycling, which is the ability to circulate between ascorbic acid and DHA.  

Table 7.  Vitamin C functions, formulated from (Padayatty & Levine, 2016) 
Vitamin C functions 

Cofactor of enzymes (mammals) 

Biosynthesis 
• Norepinephrine  
• Carnitine  

Hydroxylation 
• Collagen  
• Hypoxia-inducible factor (HIF) 

Metabolism 
• Tyrosine  

Amidation 
• Peptide hormones  

Demethylation 
• Histone 

Reducing agent 
• Enhanced iron absorption in the small intestine 

Antioxidant 
• Gene expression and mRNA translation regulation 
• Oxidant damage prevention to DNA and intracellular proteins 
• Prevention of N-nitroso compounds formation in the stomach 

Pro-oxidant 
• Damage to DNA 
• Damage to cancer cells via hydrogen peroxide formation 
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Table 6.  Epidemiologic evidence from studies exploring the association between childhood intake 
of iron and type 1 diabetes-related outcomes 
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Abbreviations: IRR, incidence rate ratio; GP, general population; T1D, type 1 diabetes 
1 Meta-analysis of three case-control and one retrospective cohort study indicating inconsistent results 
between childhood iron intake and type 1 diabetes (Sogaard et al., 2017). 
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2.3.1 Dietary sources of vitamin C  

Vitamin C is found in many fruits, berries, and vegetables (Table 8). Vitamin C is 
sensitive to decline during food preparation. Transportation, storage conditions and 
time, peeling, cutting, and cooking can reduce the vitamin C content in vegetables and 
fruits via ascorbate oxidase enzyme (World Health Organization [WHO], 2004). 
Blanching vegetables and acidity, such as pickling, prevent enzyme activity.  

In general, the Finnish adult population reaches the recommended 75 mg/day of 
vitamin C, but one out of five men does not due to low consumption of vegetables, 
according to the National FinDiet 2017 Survey (Valsta et al., 2018). During pregnancy, 
the requirement for vitamin C increases moderately, and an approximately 10 mg/day 
increase in vitamin C intake is suggested to supply the need for growing fetuses in the 
last trimester (WHO, 2004).  

Table 8.  Vitamin C content of selected foods (Finnish Institute for Health and Welfare, 2019b) 
Food source Vitamin C mg/100g 
Rose hip 601  
Red sweet pepper 185 
Blackcurrant 128 
Orange 51 
Strawberry 46 
Swede / rutabaga, cooked 30 
Tomato 14 
Lingonberry 11 
Bilberry 7 
Potato, boiled 6 

2.3.2 Metabolism of vitamin C 

Vitamin C is absorbed in the intestine as ascorbic acid or DHA via specific membrane 
transporters in the apical brush border membrane (Lykkesfeldt & Tveden-Nyborg, 
2019). Ascorbic acid is transported actively through a sodium L-ascorbic acid 
transporter (SVCT), which has two isoforms: hSVCT1 and hSVCT2. In the basolateral 
membrane, ascorbic acid is transported to plasma by diffusion but possibly also by 
facilitated diffusion or active transporter protein. DHA is transported to the epithelium 
by facilitating diffusion via glucose transporters (GLUT): GLUT1 or GLUT3. It is then 
either converted to ascorbic acid or transported to the bloodstream via GLUT1 and 
GLUT2 transporters in the basolateral membrane.  
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SVCT1 maintains systemic ascorbic acid homeostasis, while SVCT2 accounts for 
ascorbic acid locally demands (Eck et al., 2013). High capacity/low affinity SVCT1 is 
an absorptive transporter regulating the uptake and reuptake of ascorbic acid; thus, 
these are found in the intestinal membrane, renal tubules, and liver (Padayatty & Levine, 
2016). Transport of ascorbic acid from the bloodstream to various tissues is primarily 
regulated by low capacity/high affinity SVCT2. DHA is transported to various tissues 
by facilitated diffusion via GLUTs (Shaghaghi et al., 2016). A total of 5 transporters 
have been identified: SLC2A1 (GLUT1), SLC2A2 (GLUT 2), SLC2A3 (GLUT3), 
SLC2A4 (GLUT4), and SLC2A8 (GLUT8), from which GLUT1, GLUT3, and GLUT4 
are the most important DHA transporters in humans (Wilson, 2005). Inside the cell, 
DHA is immediately reduced to ascorbic acid, as DHA has a half-life of only a few 
minutes. As ascorbic acid is oxidized intracellularly, the resulting DHA is transported 
out of the cell or reduced back to ascorbic acid (Lykkesfeldt & Tveden-Nyborg, 2019). 
DHA transport is important, especially during inflammation, during which the 
antioxidant reaction of ascorbic acid results in increased oxidation to DHA (Schorah, 
1992). DHA competes with glucose in transportation; thus, DHA diffusion is inhibited 
in some cells by excessive glucose in the plasma (Rumsey et al., 2000, 1997). However, 
clinical significance in humans requires further evidence. 

In healthy individuals, the plasma steady-state vitamin C status, primarily in the form 
of ascorbic acid, reaches a maximum of about 70–80 µM when the intake is increasing 
(Padayatty & Levine, 2016). It has been suggested that a daily intake of 200–400 mg of 
vitamin C is needed to keep the plasma status saturated (Frei et al., 2012). Vitamin C is 
absorbed completely when intake is under 30 mg/day but when the intake is between 
30–180 mg/day, the absorption decreases to 80–90% (Mutanen et al., 2021) (Table 9). 

Although diet is the only source of vitamin C in humans, the relationship between 
dietary intake and plasma vitamin C status may be more complex. Based on 
observational studies, several factors influence the diet–plasma relationship, such as 
smoking, pregnancy, infection, stress, body size, and intake of some other nutrients 
(Dehghan et al., 2007). Furthermore, diet-recording methods and food databases cannot 
reliably take into account the declining vitamin C content during the processing of 
vegetables, fruits, and berries. As a water-soluble vitamin, vitamin C is prone to decline 
due to long storage times, peeling, cutting, cooking, and other types of processing (Frei 
et al., 2012). Thus, it has been proposed that plasma vitamin C can reflect vitamin C 
function more accurately than intake (Dehghan et al., 2007).
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2.3.1 Dietary sources of vitamin C  

Vitamin C is found in many fruits, berries, and vegetables (Table 8). Vitamin C is 
sensitive to decline during food preparation. Transportation, storage conditions and 
time, peeling, cutting, and cooking can reduce the vitamin C content in vegetables and 
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2.3.2 Metabolism of vitamin C 

Vitamin C is absorbed in the intestine as ascorbic acid or DHA via specific membrane 
transporters in the apical brush border membrane (Lykkesfeldt & Tveden-Nyborg, 
2019). Ascorbic acid is transported actively through a sodium L-ascorbic acid 
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membrane, ascorbic acid is transported to plasma by diffusion but possibly also by 
facilitated diffusion or active transporter protein. DHA is transported to the epithelium 
by facilitating diffusion via glucose transporters (GLUT): GLUT1 or GLUT3. It is then 
either converted to ascorbic acid or transported to the bloodstream via GLUT1 and 
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SVCT1 maintains systemic ascorbic acid homeostasis, while SVCT2 accounts for 
ascorbic acid locally demands (Eck et al., 2013). High capacity/low affinity SVCT1 is 
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absorbed completely when intake is under 30 mg/day but when the intake is between 
30–180 mg/day, the absorption decreases to 80–90% (Mutanen et al., 2021) (Table 9). 

Although diet is the only source of vitamin C in humans, the relationship between 
dietary intake and plasma vitamin C status may be more complex. Based on 
observational studies, several factors influence the diet–plasma relationship, such as 
smoking, pregnancy, infection, stress, body size, and intake of some other nutrients 
(Dehghan et al., 2007). Furthermore, diet-recording methods and food databases cannot 
reliably take into account the declining vitamin C content during the processing of 
vegetables, fruits, and berries. As a water-soluble vitamin, vitamin C is prone to decline 
due to long storage times, peeling, cutting, cooking, and other types of processing (Frei 
et al., 2012). Thus, it has been proposed that plasma vitamin C can reflect vitamin C 
function more accurately than intake (Dehghan et al., 2007).
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Table 9.  The absorption efficiency of ascorbic acid (formulated from Mutanen et al., 2021) 
Ingested ascorbic acid (mg) Absorption efficiency (%) Absorbed amount (mg) 
180 90 160 
1 000 75 750 
3 000 40 1 200 
5 000 24 1 200 
12 000 16 1 920 

2.3.3 Vitamin C transport across the placenta 

The nutrients from maternal to fetal circulation are transferred via the 
syncytiotrophoblast, which is the primary barrier between maternal and fetal circulation 
(Prasad et al., 1998). Fetus rely solely on maternal vitamin C, most likely by transport 
via SVCT2 (Lykkesfeldt & Tveden-Nyborg, 2019). Maternal vitamin C status declines 
gradually from the first to the third trimester due to the increased volume of distribution 
and selective accumulation across the placenta (Juhl et al., 2016). Vitamin C is shown to 
be important for the development of brain and cognition in child (Lykkesfeldt & 
Tveden-Nyborg, 2019), and deficiency is observed to increase the risk of pre-eclampsia 
via oxidative stress. However, supplementation trials have not been shown to be 
beneficial (Conde-Agudelo et al., 2011). 

2.3.4 Plasma vitamin C status and the impact of genetic variation 

It has been suggested that plasma and tissue vitamin C availability differ between 
individuals due to genetic variation-induced alterations in proteins regulating vitamin C 
transport (Michels et al., 2013). The two SVCT proteins regulating ascorbic acid 
transport are encoded by the genes SLC23A1 (Solute Carrier Family 23 Member 1) and 
SLC23A2 (Solute Carrier Family 23 Member 2). Single nucleotide polymorphisms 
(SNPs) in these genes occur worldwide, some of which are ineffective, while others 
have been found to affect plasma ascorbic acid status. The most prominent is 
rs33972313, a low-frequency missense variant in SLC23A1, which has been consistently 
associated with a lower circulating ascorbic acid status (Timpson et al., 2010). Two 
intronic SNPs, rs6596473 and rs4257763, and one promoter SNP, rs10063949 in 
SLC23A1, have also been associated with ascorbic acid status, although not uniformly 
(Amir Shaghaghi et al., 2014; Cahill & El-Sohemy, 2009; Skibola et al., 2008; Timpson 
et al., 2010). SLC23A2 intronic SNP rs6053005 has been associated with increased 
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plasma ascorbic acid status (Skibola et al., 2008), and rs1279683 has been associated 
with decreased plasma ascorbic acid status (Zanon-Moreno et al., 2011).  

GLUTs managing the facilitated diffusion of DHA are encoded by members of the 
SLC2A solute carriers’ gene family. The importance of SLC2A polymorphisms in 
vitamin C status homeostasis remains unknown (Michels et al., 2013). Genetic variants 
of GLUTs have been associated with diabetes complications and cancer (Shaghaghi et 
al., 2016). Whether these associations are the result of impaired vitamin C function is 
inconclusive, as plasma vitamin C status might not reflect tissue-specific vitamin C 
function (Banhegyi et al., 2014). However, since the interplay between ascorbic acid and 
DHA plays a substantial role in vitamin C function, it can be hypothesized that 
alterations in GLUTs could influence vitamin C status in the body. 

Studies have suggested an association between vitamin C status–related genotypes 
and vitamin C status or oxidative stress–related diseases (Amir Shaghaghi et al., 2014; 
Michels et al., 2013). However, no studies have explored whether these genotypes are 
associated with the development of type 1 diabetes. 

2.3.5 Oxidative stress in pancreatic beta cells and antioxidant properties of 
vitamin C 

Mitochondria in cells produce energy by respiration and oxidative phosphorylation (Lei 
& Vatamaniuk, 2011). However, this also generates byproducts which are oxygen, 
nitrogen, or sulfur-based molecules with unpaired electrons known as free radicals. 
These molecules are also generated via external sources such as environmental toxins 
and infections. These active unstable molecules are prone to chemical reactions with 
other molecules and attack nearby cell molecules, causing damage. Oxygen-centered 
free radicals are called ROS, and nitrogen-centered ones are called reactive nitrogen 
species (RNS). Accumulation of these molecules would be detrimental for tissues and 
thus antioxidant mechanisms are required to regulate oxidative damage. The imbalance 
of the free radical accumulation and antioxidant defense causes oxidative stress. 

Most tissues have intracellular free radical detoxifying and redox-regulating enzymes, 
such as catalase, glutathione peroxidase, and superoxide dismutase (Lei & Vatamaniuk, 
2011). The intracellular formation of ROS in pancreatic beta cells is partly accountable 
for the release of pro-inflammatory cytokines from immune cells and further beta-cell 
death (Donath et al., 2008; Lenzen et al., 1996). Pancreatic beta cells are vulnerable to 
ROS accumulation because the activity of antioxidant enzymes is low. In comparison 
to the liver, islet cells contain only 1% catalase, 2% glutathione peroxidase, and 29% 
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superoxide dismutase activities (Lenzen et al., 1996; Tiedge et al., 1997). Thus, dietary 
antioxidants might be vital for beta-cell protection (Lei & Vatamaniuk, 2011; Miki et al., 
2018).  

Vitamin C is a strong antioxidant, as ascorbic acid scavenges oxygen and nitrogen 
radicals, during which it donates electrons and oxidizes to acerbate radicals further to 
DHA (Carr & Frei, 1999; Frei et al., 2012; Padayatty & Levine, 2016). In the 
endoplasmic reticulum, acerbate radical and DHA are reduced back to ascorbic acid 
by glutathione and other thiols. DHA is reduced within minutes; thus, very low levels 
can be detected in plasma in comparison to ascorbic acid. Studies in both animals 
and humans have suggested that vitamin C could be essential for the management of 
beta cells from oxidative stress and the further development of type 1 diabetes (al-
Zuhair & Mohamed, 1998; Davison et al., 2008; Kaneto et al., 1999; Lei & 
Vatamaniuk, 2011; Miki et al., 2018). As hyperglycemia itself induces oxidative stress, 
vitamin C may also prevent progression from islet autoimmunity to type 1 diabetes 
(Acharya & Ghaskadbi, 2010). However, vitamin C can also reduce metals, such as 
iron and copper, which leads to the formation of superoxide and hydrogen peroxide 
(Padayatty & Levine, 2016; Valko et al., 2005). Nevertheless, vitamin C has not been 
shown to function as a pro-oxidant (Valko et al., 2005). 

2.4 Characteristics of nitrate and nitrite and possible mechanisms 
of action in the development of type 1 diabetes  

Nitrate (NO3−) and nitrite (NO2−) are essential inorganic nutrient compounds and 
primary sources of nitric oxide, which is required for the regulation of vasodilation and 
neurotransmitters (Kobayashi, 2018). Nitrate occurs in the soil after lightning or when 
soil microbes convert nitrogen to nitrate. Naturally occurring nitrite is much lower and 
is mostly found in drinking water. A prominent exposure to nitrite is from food 
additives, sodium, or potassium nitrite used as a preservative (European Food Safety 
Authority [EFSA], 2008; Hord et al., 2009).  
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2.4.1 Dietary sources of nitrate and nitrite 

The sources of nitrate in the selected foods are shown in Table 10. The main source of 
nitrate is vegetables with the highest amounts in beets, radishes, and green leafy 
vegetables, whereas tubers, fruit vegetables, and seeds contain lower amounts (Hord et 
al., 2009). Drinking water can be a substantial source of nitrate and nitrite, but the 
contents vary depending on the location or source (Hord et al., 2009). Therefore, the 
WHO has determined acceptable concentrations of < 50 mg/L of nitrate and < 3 mg/L 
nitrite in drinking water (WHO, 2003). 

Table 10.  Mean nitrate content of selected foods (Suomi et al., 2013) 
Food source Nitrate mg/100g 
Leaf lettuce (Finnish) 280 
Beetroot 152 
Spinach (Finnish) 122 
Cabbage 29 
Carrot 19 
Potato (import) 18 
Potato (Finnish) 6 
Strawberry 6 
Tomato 4 
Orange 1 

 
Nitrite contents in foods are shown in Table 11. The highest amount of nitrite is 

observed in processed meat products, where it is added as a preservative to prevent 
botulism (EFSA, 2008; Hord et al., 2009). There is no recommendation for nitrate and 
nitrite intake, but acceptable daily intake values are set as 3.7 mg/kg body weight for 
nitrate and 0.07 mg/kg body weight for nitrite (EFSA Panel on Food Additives and 
Nutrient Sources added to Food [ANS] et al., 2017). The acceptable amounts of nitrite 
added to meat products are regulated and monitored. However, high consumption of 
these products can exceed the acceptable daily intake of nitrite, particularly in children 
due to their smaller body size (Suomi et al., 2013, 2016). This can lead to 
methemoglobinemia, where increased methemoglobin causes poor capacity for oxygen 
transport and anemia.  
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Table 11.  Mean nitrite content of selected foods (EFSA Panel on ANS et al., 2017) 
Food source Nitrite mg/100g 
Bacon 2.2 
Cooked smoked sausage 2.0 
Ham 1.1 
Meat, poultry 1.1 
Fruit vegetables 1.1 
Meat, pork 1.0 
Meat, beef 0.9 
Leaf vegetables 0.9 
Grains and cereal products 0.08 
Milk 0.02 

2.4.2 Metabolism of nitrate and nitrite and endogenous formation of N-nitroso 
compounds 

Exogenous nitrite from food accounts for approximately 60–80% of the total nitrate 
intake (Archer, 2002). Exogenous nitrite accounts for only under 10% of the total 
intake, as 80–85% is obtained from endogenous conversion from nitrate (Mensinga et 
al., 2003). Nitrite from the diet is almost completely absorbed in the duodenum and 
jejunum (Hunault et al., 2009). After ingestion of nitrate, plasma levels of nitrate increase 
to its peak around 15–30 minutes. Ingested nitrite is converted to nitrate in the blood. 

Nitrite is formed endogenously in the stomach from reduction of saliva nitrate 
(EFSA, 2008). Nitrite is partially reduced to nitric oxide, and the remaining nitrate and 
nitrite are absorbed in the small intestine into the bloodstream and kidneys for excretion 
(Suomi et al., 2013). Nitrite, both derived from diet or reduction of salivary nitrate, is 
converted in the acidic stomach to nitroso compounds, such as S-nitroso, N-nitroso, 
O-nitroso compounds, and nitric oxide (Kobayashi, 2018). Low pH in the stomach 
(Caulfield et al., 1996), ascorbic acid in the gastric juice (Sobala et al., 1989), and intake 
of vegetables and fruits high in antioxidants, polyphenols, vitamin C, and vitamin E 
(Helser et al., 1992; Tannenbaum et al., 1991)—favor the formation of S-nitroso 
compounds and nitric oxide. S-nitroso compounds, which favor stable nitric oxide 
activity, have been suggested to have a beneficial influence on cardiovascular health and 
the prevention of cancer (Kobayashi et al., 2015), which could address the benefits of 
consuming vegetables rich in nitrate. On the contrary, increased gastric pH due to 
helicobacter pylori infection, intake of proton pump inhibitors, and low ascorbic acid 
status in the stomach favors N-nitroso compound formation in the stomach (Leach et 
al., 1987; Sobala et al., 1989), which has been associated with increased risk of gastric 
cancer (Ruddell et al., 1976).  
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Nitrate and nitrite are primarily circulated and catalyzed into nitroso-related 
compounds in the stomach and small intestine, but these compounds are also formed 
in the large intestine. High consumption of dietary nitrate, nitrite, and heme protein 
enchases the nitrosylation of heme, while high consumption of meat provides 
undigested protein residues, which are converted to amines by microbial fermentation. 
As a nitrosating agent, nitrosyl-heme reacts with nitrosatable amines, which could lead 
to the formation of N-nitroso compounds (Lakshmi et al., 2005; Mirvish et al., 2008). 
Furthermore, the composition of the diet could influence intestinal microbe 
composition, favoring N-nitroso compound formation. An animal-based diet has been 
suggested to increase Bacteroides, while plant-based diets favor Firmicutes, but the bacteria 
that increase the formation of N-nitroso compounds have yet to be elucidated in vivo 
(Kobayashi, 2018). Although more studies are warranted, the formation of N-nitroso 
compounds, especially in the large intestine, is suggested to be influenced by the high 
consumption of red meat. N-nitroso compounds per se are also ingested from the diet 
(e.g., from processed meat and beer, in which the compounds are formed during food 
processing) (Lijinsky, 1999). 

2.4.3 Nitrate and nitrite transport across the placenta 

Nitrate is transplacentally transferred through an active transport system. Nitric oxide 
is required in several stages of placental development, such as implantation, embryo 
development, and placental vascular tone (Krause et al., 2011). Nitric oxide is produced 
endogenously, and it is unclear how large a portion of nitric oxide is as a result of dietary 
nitrate and nitrite intake. Nitrite content is similar in maternal and fetal blood before 
birth (Jones et al., 2015). 

2.4.4 N-nitroso compound formation and its potential toxicity to beta cells  

Animal studies have demonstrated that streptozotocin, a glucosamine-nitrosourea 
compound, is toxic to pancreatic beta cells and induces diabetes (Wilander & 
Gunnarsson, 1975). An in vitro study using animal cultures observed that 1-methyl-1-
nitrosourea, bis-chloroethylnitrosourea, streptozotocin, and its analogue chlorozotocin 
damaged beta cells (Wilson et al., 1983). However, the formation of these specific 
compounds in humans in vivo has not been demonstrated. Exposure to N-nitroso 
compounds has been suggested to induce DNA damage, oxidative stress, and lipid 
peroxidation (de la Monte et al., 2009). 
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status in the stomach favors N-nitroso compound formation in the stomach (Leach et 
al., 1987; Sobala et al., 1989), which has been associated with increased risk of gastric 
cancer (Ruddell et al., 1976).  
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Nitrate and nitrite are primarily circulated and catalyzed into nitroso-related 
compounds in the stomach and small intestine, but these compounds are also formed 
in the large intestine. High consumption of dietary nitrate, nitrite, and heme protein 
enchases the nitrosylation of heme, while high consumption of meat provides 
undigested protein residues, which are converted to amines by microbial fermentation. 
As a nitrosating agent, nitrosyl-heme reacts with nitrosatable amines, which could lead 
to the formation of N-nitroso compounds (Lakshmi et al., 2005; Mirvish et al., 2008). 
Furthermore, the composition of the diet could influence intestinal microbe 
composition, favoring N-nitroso compound formation. An animal-based diet has been 
suggested to increase Bacteroides, while plant-based diets favor Firmicutes, but the bacteria 
that increase the formation of N-nitroso compounds have yet to be elucidated in vivo 
(Kobayashi, 2018). Although more studies are warranted, the formation of N-nitroso 
compounds, especially in the large intestine, is suggested to be influenced by the high 
consumption of red meat. N-nitroso compounds per se are also ingested from the diet 
(e.g., from processed meat and beer, in which the compounds are formed during food 
processing) (Lijinsky, 1999). 

2.4.3 Nitrate and nitrite transport across the placenta 

Nitrate is transplacentally transferred through an active transport system. Nitric oxide 
is required in several stages of placental development, such as implantation, embryo 
development, and placental vascular tone (Krause et al., 2011). Nitric oxide is produced 
endogenously, and it is unclear how large a portion of nitric oxide is as a result of dietary 
nitrate and nitrite intake. Nitrite content is similar in maternal and fetal blood before 
birth (Jones et al., 2015). 

2.4.4 N-nitroso compound formation and its potential toxicity to beta cells  

Animal studies have demonstrated that streptozotocin, a glucosamine-nitrosourea 
compound, is toxic to pancreatic beta cells and induces diabetes (Wilander & 
Gunnarsson, 1975). An in vitro study using animal cultures observed that 1-methyl-1-
nitrosourea, bis-chloroethylnitrosourea, streptozotocin, and its analogue chlorozotocin 
damaged beta cells (Wilson et al., 1983). However, the formation of these specific 
compounds in humans in vivo has not been demonstrated. Exposure to N-nitroso 
compounds has been suggested to induce DNA damage, oxidative stress, and lipid 
peroxidation (de la Monte et al., 2009). 
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Observational studies in humans have presented inconsistent results on the 
association between N-nitroso compounds and the development of type 1 diabetes. A 
previous ecological survey suggested that foods containing high amounts of N-nitroso 
compounds in childhood might increase the risk of type 1 diabetes (Helgason & 
Jonasson, 1981). Furthermore, a case-control study observed that a high intake of 
nitrosamines from diet in childhood might increase the risk of type 1 diabetes, 
particularly in the presence of high consumption of protein (Dahlquist et al., 1990). 
However, two population-based case-control studies found no association between the 
intake of N-nitroso compounds or the consumption of foods high in N-nitroso 
compounds and the risk of type 1 diabetes (Benson et al., 2010; Verge et al., 1994). 

2.5 Characteristics of iron and possible mechanisms of action in 
the development of type 1 diabetes  

Iron is a trace metal with the ability to transfer electrons. Iron can transit between two 
oxidative states: ferrous (Fe2+) and ferric (Fe3+), from which it takes part in several 
biological processes (Duck & Connor, 2016). Iron is primarily found in hemoglobin and 
myoglobin, which are proteins that transport oxygen in blood and muscle tissues. Iron 
is also the metal nucleus in redox enzymes; thus, it is required to maintain a balance in 
cell signaling and homeostasis. To maintain adequate body iron status, iron is needed 
from the diet, where it is found in two forms: heme iron and non-heme iron. Iron, as 
an active metal, can also function as a catalyst in the production of ROS, which leads to 
oxidative stress in large amounts. Thus, the absorption and excretion of iron in the body 
must be tightly regulated. 

2.5.1 Dietary sources of iron  

Dietary sources of iron in the selected foods are shown in Table 12. Heme iron is found 
in animal flesh, organs, and blood, while non-heme iron occurs in plant-based foods, 
such as vegetables, legumes, whole grains, nuts, and seeds. According to the National 
FinDiet 2017 Survey, the mean iron intake of adult Finnish women was 10 mg/day, 
which is under the recommended 15 mg/day (Valsta et al., 2018). Conversely, the iron 
intake of men was 11 mg/day, which exceeded the recommended 9 mg/day for men. 
The main source of iron was cereal products, followed by meat and egg-based dishes. 
During pregnancy, iron requirement is increased and approximately 500 mg iron stores 
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are required for iron balance in early pregnancy, based on Finnish recommendation 
(Finnish Institute for Health and Welfare, 2019a). Iron supplements may be needed 
after the first trimester due to the increased need for iron. 

Table 12.  Iron content of selected foods (Finnish Institute for Health and Welfare, 2019b) 
Food source Iron mg/100g 
Blood pancake 22 
Liver, cooked 21 
Wheat bran 20 
Liver sausage 10 
Oat bran 8 
Blood sausage 7 
Rye crisp bread 4–5 
Liver casserole  4 
Rye bread 2–3 
Pasta, whole wheat, cooked 1 

2.5.2 Metabolism and distribution of iron 

The mean absorption efficiency of iron in women is 13% for ingestion and 6% for men 
(Mutanen et al., 2021). The absorption efficiency is dependent on the iron status. Iron 
is absorbed as heme or free ferrous (non-heme) iron in the duodenal intestine (Hansen 
et al., 2014). Non-heme iron is less readily absorbed in the gastrointestinal track than 
heme iron. Other plant-based compounds, such as fiber, phytates, and tannins, and 
ingestion of other micronutrients, such as zinc, copper, and calcium, inhibit absorption. 
Ingestion of heme iron or vitamin C along with non-heme iron improves the absorption 
of non-heme iron. Ferrous iron is transported into erythrocytes by divalent metal 
transporter, while heme form is transported via heme carrier protein 1 (Andrews & 
Schmidt, 2007; Evstatiev & Gasche, 2012). Iron is then transported from erythrocytes’ 
basolateral membrane into the bloodstream by ferroportin, where it is bound to plasma 
protein transferrin for transportation into circulation (Andrews & Schmidt, 2007; 
Donovan et al., 2005). Iron is stored in the liver as ferritin and hemosiderin and is 
transferred to other tissues via transferrin.  

Excess iron is toxic; therefore, absorption is tightly controlled. Iron absorption is 
regulated by the hepatic peptide hormone hepcidin to maintain iron homeostasis (Qiao 
et al., 2012; Sangkhae & Nemeth, 2017). Absorption is decreased during sufficient iron 
status to prevent iron overload in circulation. Hepcidin expression is regulated by 
plasma iron status, body iron stores, infection, and inflammation (Sangkhae & Nemeth, 
2017). In addition to absorption, hepcidin also regulates cellular iron transport and thus 
plasma iron status. Impaired hepcidin regulation can induce iron overload, such as in 
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hereditary hemochromatosis, while increased expression can result in iron-restricted 
anemia. Although absorption is regulated, excretion of excess iron is not possible; thus, 
iron accumulation is possible (Woodman et al., 2017).  

2.5.3 Iron transport across the placenta 

During pregnancy, maternal red cell mass expansion, fetal development, and placental 
development and function require approximately 1 g of iron throughout the pregnancy 
(Fisher & Nemeth, 2017). A fetal requirement of around 270 mg of iron is maintained 
through the placenta, which itself requires approximately 90 mg of iron (Bothwell, 
2000). 

The main transport of nutrients through the placenta occurs via the 
syncytiotrophoblast. Iron from maternal circulation is delivered to the placenta in the 
form of ferritin and heme, but the main transportation is suggested to occur in the form 
of transferrin (Sangkhae & Nemeth, 2019). Transferrin receptor 1 is highly expressed in 
the syncytiotrophoblast apical side facing maternal circulation (Bastin et al., 2006; 
Seligman et al., 1979; Wada et al., 1979). Transferrin is dissociated in the acidic 
endosome, where ferric iron is reduced to soluble ferrous iron by ferrireductase 
(Sangkhae & Nemeth, 2019). It is then exported into the cytoplasm via endosomal iron 
transporter and stored as ferritin or transferred to ferroportin in the basal membrane 
toward fetal circulation. Iron may also be transferred from maternal circulation to the 
placenta in the form of ferritin or heme. However, the exact mechanisms of placental 
iron transport remain unknown. 

Placental iron transport is tightly regulated, and neonatal iron stores depend on 
maternal iron status (Radlowski & Johnson, 2013). Maternal hepcidin regulates the 
bioavailability of iron by suppressing the iron flow in the circulation (Nemeth et al., 
2004). Pregnancy affects hepcidin expression (Sangkhae & Nemeth, 2017), and hepcidin 
levels decrease substantially during the second and third trimesters of pregnancy, most 
likely to ensure iron bioavailability to fetal development (Koenig et al., 2014). 

Iron supplementation is often used during pregnancy to maintain adequate iron 
stores. However, if the mother is iron-replete per se, supplement use during pregnancy 
can lead to excess iron overload.  
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2.5.4 Iron in beta-cell function and excess iron-induced oxidative stress  

In pancreatic beta cells, iron is required for insulin secretion and glucose metabolism, 
but in large amounts, iron might increase the generation of ROS (Hansen et al., 2012; 
Sampaio et al., 2014). The generation of ROS might lead to dedifferentiation of beta 
cells, activation of apoptosis or ferroptosis, and further beta-cell death (Hansen et al., 
2014). Markers of oxidative stress have been found in placental tissues after iron 
supplementation during pregnancy (Devrim et al., 2006). Elevated ferritin levels in 
mothers have been shown to increase the risk of pre-eclampsia (Scholl, 2005), which in 
turn could increase the risk of type 1 diabetes in offspring, but evidence so far is very 
limited (Henry et al., 2011). Whether a high maternal intake of iron during pregnancy 
influences a baby’s pancreatic beta cells has not been studied. 

2.6 Summary and basis of the current study 

Figure 2 presents the suggestive mechanisms of dietary nitrate, nitrite, vitamin C, and 
iron intake in the development of islet autoimmunity and type 1 diabetes. There is 
suggestive case-control evidence that maternal high consumption of nitrite during 
pregnancy might increase the risk of type 1 diabetes. The use of iron supplements during 
pregnancy has been suggested to increase the risk of type 1 diabetes in offspring, but 
studies are few. Vitamin C is a dietary antioxidant, which might be beneficial for the 
protection of beta cells from oxidative damage since they lack antioxidant enzymes. 
However, studies on humans are 1) limited, 2) include case-control studies that have 
produced inconsistent results, and 3) have not assessed plasma ascorbic acid status. 
Prospective studies with comprehensive dietary assessments of maternal intake of these 
dietary components and their association with islet autoimmunity and type 1 diabetes 
are limited.  
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3 AIMS OF THE STUDY 

The purpose of this study was to assess the association between plasma status of 
ascorbic acid during early life and the development of islet autoimmunity and type 1 
diabetes. The second aim was to assess the association between maternal intake of 
vitamin C, iron, nitrate, and nitrite during pregnancy and islet autoimmunity and the 
development of type 1 diabetes in offspring. The specific research questions were as 
follows: 

• Is high plasma ascorbic acid status in childhood associated with a decreased 
risk of islet autoimmunity, islet autoimmunity starting with IAA or GADA, and 
type 1 diabetes, and do polymorphisms in the vitamin C metabolism-related 
genetic variation affect the associations (study I)? 

• Is maternal high vitamin C intake during pregnancy associated with a decreased 
risk of islet autoimmunity and type 1 diabetes in offspring (study III)? 

• Is maternal high intake of nitrate and nitrite during pregnancy associated with 
an increased risk of islet autoimmunity and type 1 diabetes in offspring (study 
II)? 

• Is maternal high iron intake during pregnancy associated with an increased risk 
of islet autoimmunity and type 1 diabetes in offspring (study III)? 
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3 AIMS OF THE STUDY 

The purpose of this study was to assess the association between plasma status of 
ascorbic acid during early life and the development of islet autoimmunity and type 1 
diabetes. The second aim was to assess the association between maternal intake of 
vitamin C, iron, nitrate, and nitrite during pregnancy and islet autoimmunity and the 
development of type 1 diabetes in offspring. The specific research questions were as 
follows: 

• Is high plasma ascorbic acid status in childhood associated with a decreased 
risk of islet autoimmunity, islet autoimmunity starting with IAA or GADA, and 
type 1 diabetes, and do polymorphisms in the vitamin C metabolism-related 
genetic variation affect the associations (study I)? 

• Is maternal high vitamin C intake during pregnancy associated with a decreased 
risk of islet autoimmunity and type 1 diabetes in offspring (study III)? 

• Is maternal high intake of nitrate and nitrite during pregnancy associated with 
an increased risk of islet autoimmunity and type 1 diabetes in offspring (study 
II)? 

• Is maternal high iron intake during pregnancy associated with an increased risk 
of islet autoimmunity and type 1 diabetes in offspring (study III)? 
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4 STUDY POPULATION 

The subjects for the current study were collected from two prospective cohort studies: 
one multinational and one Finnish. Since the risk of type 1 diabetes is small in the 
general population, subjects were collected from a population with an increased genetic 
risk of the disease.  

4.1 The Environmental Determinants of Diabetes in the Young 
(TEDDY) Study (study I) 

The Environmental Determinants of Diabetes in the Young (TEDDY) Study is a 
multinational observational study identifying environmental exposures associated with 
the development of islet autoimmunity and type 1 diabetes in genetically at-risk children 
based on the HLA genotype (The TEDDY Study Group, 2007, 2008). The study was 
conducted in six research centers in four countries: the United States (Colorado, 
Georgia/Florida, and Washington State), Finland, Sweden, and Germany. If families 
consented, a cord blood sample was collected to assess the genetic risk. The eligibility 
criteria for the first contact were one of the HLA class II genotypes: HLA-DR3/4, -
DR4/4, -DR4/8, -DR3/3, and -DR4/4. Furthermore, HLA-DR genotypes—DR4/1, -
DR4/13, -DR4/9, and -DR3/9—were included only if children had a first-degree 
relative (FDR)—mother, father, or sibling—with type 1 diabetes (Hagopian et al., 2011). 
Clinic visits were scheduled every 3 months until the child’s age of 4 years and thereafter 
every 6 months up to 15 years of age or until being diagnosed with type 1 diabetes. 
Children who had type 1 diabetes-related autoantibodies were followed up every 3 
months throughout the study. Children were excluded from the study if they had birth 
defects or illnesses that required long-term follow-up, or if they had had treatment that 
might alter the natural development of diabetes, such as the use of steroids or insulin. 
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4.2 Type 1 Diabetes Prediction and Prevention (DIPP) Study 
(studies II & III) 

The DIPP Study is a Finnish population-based birth cohort of children with an 
increased genetic risk of type 1 diabetes based on HLA-conferred susceptibility (Ilonen 
et al., 1996; Kupila et al., 2001). Cord blood samples from all newborn infants were 
screened for HLA-DQB1 alleles in the university hospitals of Turku, Oulu, and 
Tampere. Families of children with HLA-DQB1-conferred genetic susceptibility to type 
1 diabetes (HLA-DQB1*02/0302 heterozygous and DQB1*0302/x-positive 
individuals, x standing for homozygosity or a neutral allele) were invited to participate 
in a prospective follow-up study. HLA-DQB1 (*02/*03:02) were determined as high-
risk genotypes, and HLA-DQB1*03: 02/x (x ≠ *02, *03:01, *06:02) were determined 
to be moderate-risk genotypes for type 1 diabetes. The follow-up visits were scheduled 
at the child’s ages of 3, 6, 12, 18, and 24 months and annually thereafter. Children were 
excluded from the study if they had severe systemic diseases or congenital anomalies. 
Furthermore, children whose parents were not Finnish origin or did not speak Finnish, 
Swedish, or English fluently were excluded.  

4.3 Ethical aspects 

The TEDDY Study was approved by local institutional review or ethics boards at each 
study site (University of Washington, Seattle; University of Colorado; Medical College 
of Georgia, Augusta; University of South Florida, Tampa; University of Turku, Finland; 
Technische Universität, Munich, Germany; and Lund University, Malmö, Sweden). The 
study is monitored by an external evaluation committee formed by the National 
Institutes of Health. Written informed consent for genetic screening and participation 
in prospective follow-up was obtained from the participating families. 

The DIPP Study adheres to the Declaration of Helsinki, and the ethical committees 
of Oulu and Tampere University Hospitals approved the study protocol. Parents gave 
their written informed consent for genetic testing of their newborn infants from the 
cord blood sample and another one for participation in the follow-up. Since newborns 
were screened for genetic susceptibility to type 1 diabetes in the DIPP Study, the 
generalizability of the current results to the general population may be limited. However, 
children recruited for the study do benefit from the study due to constant medical and 
nutritional guidance and screening.  
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5 METHODS 

5.1 Measurement of type 1 diabetes associated autoantibodies 

The children in the TEDDY Study were monitored for the appearance of 
autoantibodies to IAA, GADA, or IA-2A, which were measured in two laboratories by 
radiobinding assays (The TEDDY Study Group, 2007, 2008). In the United States, sera 
samples were analyzed at the Barbara Davis Center for Childhood Diabetes at the 
University of Colorado Denver, while sera samples in Europe were analyzed at the 
University of Bristol, UK. Both laboratories have demonstrated high sensitivity, 
specificity, and concordance (Bonifacio et al., 2010). All positive islet autoimmunity and 
5% of negative samples were retested in the other reference laboratory and considered 
confirmed if concordant. 

In the DIPP Study, ICA was screened at 3- to 12-month intervals (Kupila et al., 
2001). If a child was observed to be positive for ICA, all available samples from the 
child in question were analyzed for IAA, GADA, and IA-2A, and the follow-up interval 
was narrowed to 3 months. Autoantibodies were measured in the Research Laboratory, 
Department of Pediatrics, University of Oulu. The standard indirect 
immunofluorescence method was used for the quantification of ICA (Kimpimaki et al., 
2000). A microassay was used for the IAA, and specific radiobinding assays were used 
for GADA and IA-2A quantification. If autoantibodies were present in the cord blood 
but disappeared during infancy, they were considered maternally transferred and 
excluded from the analyses (Hamalainen et al., 2000). 

5.2 Definition of type 1 diabetes-related outcomes 

The ethological analyses included two outcomes: 1) islet autoimmunity and 2) the 
diagnosis of type 1 diabetes. In the TEDDY Study, persistent confirmed islet 
autoimmunity was defined by the appearance of at least one of the type 1 diabetes-
related autoantibodies, IAA, GADA, and IA-2A, confirmed at two subsequent clinical 
visits. Islet autoimmunity with persistent multiple autoantibodies was defined as the 
appearance of two or more autoantibodies at a single clinical visit. The current studies 
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included three secondary outcomes within islet autoimmunity outcomes: 1) islet 
autoimmunity with IAA as the first only observed autoantibody (IAA first), 2) islet 
autoimmunity with GADA as the first only observed autoantibody (GADA first), and 
3) islet autoimmunity with multiple autoantibodies (multiple autoantibodies). The type 
1 diabetes outcome definition was based on American Diabetes Association criteria 
(American Diabetes Association, 2014). 

In the DIPP Study, islet autoimmunity was defined by repeated positivity for ICA 
and at least one other autoantibody (IAA, GADA, or IA-2A) or having a type 1 diabetes 
diagnosis. Type 1 diabetes is included in the islet autoimmunity outcome, as the majority 
of the children had one or more autoantibodies detected from a single sample before 
or at the time of diagnosis. Furthermore, blood samples were not available for some 
children. The type 1 diabetes outcome included only children with diagnosed type 1 
diabetes obtained from the Finnish Pediatric Diabetes Register and University Hospitals 
(Parkkola et al., 2013), and diagnosis was defined according to World Health 
Organization criteria (Alberti & Zimmet, 1998). 

5.3 Plasma ascorbic acid measurement 

Plasma samples for ascorbic acid measurement were collected at the ages of 6 and 12 
months and onwards annually up to 6 years of age or until seroconversion of the islet 
autoimmunity cases. For the type 1 diabetes cases, samples were collected up to 6 years 
of age or up to the visit just preceding the type 1 diabetes diagnosis (with corresponding 
time for matched controls). The case samples were paired with matched control 
samples. 

Ascorbic acid measurements were performed at the Biochemistry Laboratory, 
Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, 
Finland. Ascorbic acid was determined by an ion-paired, reversed-phase, high-
performance liquid chromatographic method using electrochemical detection (Salminen 
& Alfthan, 2008). Isoascorbic acid was used as an internal standard for the quantitation 
of ascorbic acid.  
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5.4 Assessment of dietary intake  

In the DIPP Study, maternal dietary intake during pregnancy was assessed using a 
validated semi-quantitative FFQ customized for the study (Erkkola et al., 2001). The 
FFQs were mailed to the mothers after delivery and checked at their children’s 3-month 
follow-up visits. Mothers were asked retrospectively to describe their diet during the 8th 
month of pregnancy, the last month preceding maternity leave in Finland. The FFQ 
comprised a list of 181 food items and mixed dishes. Mothers were instructed to report 
the use of dietary supplements during the entire pregnancy, including brand names and 
manufacturers of the supplements, in addition to frequency of use. Each nutrient intake 
was summed from all supplements used. The nutrient intake calculation was made using 
the in-house software Finessi of the Finnish Institute for Health and Welfare, Finland, 
using Fineli as the source of food composition data (Reinivuo et al., 2010). FFQs with 
more than 10 missing items were excluded.  

For study II, the special Fineli database was updated to contain recently measured 
nitrate and nitrite values in foods, which were based on analyses by the Finnish Customs 
Laboratory and Finnish Food Authority during 2008–2012 (Suomi et al., 2013, 2016). 
For the foods not included in these analyses, the nitrate and nitrite contents were 
determined from the scientific literature (EFSA Panel on ANS et al., 2017; 
Foedevaredirektoratet., 1999; Laitinen et al., 1993; Susin et al., 2006; Ysart et al., 1999). 
The highest priority was given for the latest scientific literature from the year 2000 
onwards, followed by literature from 1980–2000. Preferably, European food items were 
chosen for analytical values, if possible. Values not found in the literature were derived 
from aggregation, recipe calculation, or imputation from similar foods. 

5.5 Assessment of sociodemographic characteristics 

For study I within TEDDY, the data on basic demographic characteristics and family 
history of type 1 diabetes were received from the infant screening form. The chosen 
characteristics were clinical center, sex, and family history of type 1 diabetes, which were 
used as matching variables in a nested case-control design (Lee et al., 2014). A family 
history of type 1 diabetes was defined as having an FDR (mother, father, or sibling) 
with type 1 diabetes. Otherwise, the child was categorized as the general population. 
Weight and height z-scores were received from the Centers for Disease Control and 
Prevention standardized growth charts. 
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In the DIPP Study, mothers were asked to fill out a questionnaire after delivery 
inquiring about maternal education, height and weight at antenatal visits, diabetes (type 
not specified), and family history of diabetes among FDRs. Birth registers of the 
hospitals provided information on offspring sex, maternal age, and smoking during 
pregnancy. 

5.6 Genotyping of single nucleotide polymorphisms related to 
plasma vitamin C status 

For study I, the SNPs were genotyped using Illumina Infinium ImmunoChip custom 
microarray, based upon robust genome-wide association analyses in 12 autoimmune 
diseases, including type 1 diabetes. The ImmunoChip array included 195,806 SNPs 
genotyped on TEDDY DNA samples, from which one SNP from ascorbic acid 
transport gene SLC23A1 and three from DHA transport genes SLC2A1 and SLC2A2 
were selected for the analyses Table 13. All the included SNPs passed the quality control 
metrics and were therefore selected for analysis. Principal component analysis (PCA) 
using EIGENSTRAT software was performed using each unrelated TEDDY 
participant to estimate ancestry. Two most significant principal components were used 
as covariates in the analytic models. 

Table 13.  Vitamin C metabolism-related SNPs genotyped with ImmunoChip microarray. 
Gene SNP (minor allele) 
SLC23A1 rs33972313 (A) 
SLC2A1  rs1105297 (A) 
SLC2A1  rs3754223 (A) 
SLC2A2 rs5400 (A) 

Abbreviations: SNP, single nucleotide polymorphism 

5.7 Study designs 

5.7.1 Plasma ascorbic acid status in childhood and risk of islet autoimmunity 
and type 1 diabetes (study I) 

The study flow chart for the TEDDY participants included in study I is presented in 
Figure 3. The primary outcomes were persistent and confirmed islet autoimmunity 
(defined as positivity for at least one of the type 1 diabetes-related autoantibodies) and 
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type 1 diabetes. The association between plasma ascorbic acid status and the outcomes 
was analyzed using a nested case-control design. Three matched controls were selected 
per case, and children were matched for family history of type 1 diabetes, clinical center, 
and sex. The islet autoimmunity data set included 350 cases with a median 
seroconversion age of 23 months (range 6–72 months). A control child was defined as 
a participant who had not developed persistent islet autoimmunity by the time the 
corresponding matched case plus 45 days. The type 1 diabetes dataset consisted of 102 
cases with a median age of 31 months at diagnosis (range 8–75 months). A control child 
was defined as a participant who had not developed type 1 diabetes by the time the 
corresponding matched case plus 45 days. Secondary outcome analyses were performed 
within the islet autoimmunity outcome (Figure 3). The data set included 163 IAA first 
cases with a median seroconversion age of 18 months (range 6–72 months). From the 
islet autoimmunity cases, there were 120 GADA first cases with a median 
seroconversion age of 28 months (range 6–68 months).  

The islet autoimmunity case-control set included 3,371 ascorbic acid samples. 
Samples from the controls were processed only when the matched case had an available 
sample at a corresponding visit. The mean childhood ascorbic acid status for each child 
was calculated from all available measurements. 
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5.7.2 Maternal vitamin C, iron, nitrate, and nitrite intake and the risk of islet 
autoimmunity and type 1 diabetes in offspring (studies II & III) 

The DIPP study flow chart of studies II and III is presented in Figure 4. The DIPP 
study sample included 4,943 children born in Tampere and Oulu University hospitals 
between October 1997 and September 2004. Maternal dietary data were available from 
4,879 mothers because 64 mothers had twin pregnancies. For the analysis, separate 
outcome datasets were formed for islet autoimmunity (4,887 children) and type 1 
diabetes (4,943 children). During the 15-year follow-up, 312 children developed islet 
autoimmunity at a median (interquartile range [IQR]) age of 3.5 (1.7–6.6) years, and 178 
developed type 1 diabetes at the age of 7.1 (4.3–10.6) years. Among the 4,887 
participants, the dropout rates in the autoantibody follow-up at the 1- and 5-year follow-
ups were 10% and 34%, respectively. 
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5.8 Statistical analyses 

In study I, a linear mixed-effects model adjusted for the case-control status was used to 
test whether the plasma ascorbic acid over time differed by background factors 
(country, age points, sex, breastfeeding at the age of 6 months vs. not, the study-specific 
SNPs, and the use of standard vs. long-distance protocol). The association between the 
plasma ascorbic acid status and the outcomes was analyzed using conditional logistic 
regression adjusted for HLA-DQ genotype (DR3/4 vs. other) and two principal 
components of ancestry to control for population stratification. The plasma ascorbic 
acid status variable includes plasma measures from all visits prior to and including the 
seroconversion visit, which is the first of two consecutive visits at which the child tested 
positive for an autoantibody, and for type 1 diabetes all visits prior to diagnosis. Growth 
variables—height, weight, and breastfeeding—have been associated with plasma 
ascorbic acid status and type 1 diabetes. Thus, mean height and weight z-scores prior to 
the outcome and breastfeeding status at 3 and 6 months were assessed in the study 
(Elding Larsson et al., 2016). To test the effect modification, an interaction term with 
the matching factors was included in the model. The log-linearity of the characteristics 
with each outcome was examined using the supremum test (Borgan & Zhang, 2015). 
All analyses were performed using SAS 9.4 (SAS Institute, Inc.). A two-sided p-value < 
0.05 was considered statistically significant. 

In studies II and III, a one-way analysis of variance (ANOVA) was used to test the 
differences in maternal vitamin C, iron, nitrate, and nitrite intake by confounding 
background factors. Differences in supplement use vs. nonuse by background variables 
were tested using the t-test and Pearson’s chi-square test. The maternal intake of vitamin 
C, iron, nitrate, and nitrite was energy-adjusted using Willett’s residual method for the 
analyses of outcomes (Willett et al., 1997). The dietary intake was analyzed as continuous 
variables and then categorized into quartiles. Two middle quartiles were combined, and 
the combination was used as the reference category. The use of supplements with 
vitamin C and iron at any time during pregnancy was categorized as yes/no. The Cox 
proportional hazards regression adjusted for sex (female vs. male), family history of type 
1 diabetes (FDR vs. no), and HLA genotype (high vs. moderate risk) was used for the 
outcome analyses. Additional analysis was performed in study II, where the association 
between maternal nitrate and nitrite intake and the outcomes were further adjusted for 
the intake of dietary antioxidants: vitamin C, vitamin E, and selenium. Similarly, in study 
III, additional analyses, the association between maternal vitamin C and iron intake, 
were further adjusted for maternal education (none vs. vocational school/course, 
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secondary vocational education, or university studies/degree), pre-pregnancy BMI, and 
smoking during pregnancy (yes vs. no). To test whether protein intake modifies the 
association between nitrate and nitrite intake and the development of type 1 diabetes 
outcomes, an interaction term was used. The interaction term was also used to test 
whether total vitamin C intake modifies the association between total iron intake and 
outcomes. 

Analyses in studies II and III were performed using SAS software version 9.3 and 
IBM SPSS Statistics version 25.0 (IBM Corporation, NY, USA). Statistical significance 
was set at 2-sided P < 0.05. 
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6 RESULTS 

6.1 The TEDDY cohort 

6.1.1 Characteristics of the TEDDY cohort 

The background characteristics of participants by background variables in TEDDY 
study are presented in Table 14. In the nested case-control design within the TEDDY 
cohort, the mean plasma ascorbic acid status for islet autoimmunity cases and controls 
was 10.21 mg/l (SD 3.33) and 10.76 mg/l (SD 3.54), respectively. For the type 1 diabetes 
cases and controls, the mean plasma ascorbic acid status was 9.73 mg/l (SD 3.18) and 
10.58 mg/l (SD 3.57), respectively. High weight was associated with islet autoimmunity 
(OR 1.23; 95% CI 1.07, 1.41), IAA first (OR 1.24; 95% CI 1.01, 1.51), and GADA first 
(OR 1.32; 95% CI 1.05, 1.65). Therefore, the association between plasma ascorbic acid 
status and outcomes was adjusted for the mean weight z-score. Breastfeeding was 
associated with lower plasma ascorbic acid status but not with the outcomes. 

Table 14.  Background characteristics of participants by background variables in TEDDY study, n (%) 
Characteristic Islet autoimmunity 

Cases, n = 350 (%) 
Type 1 diabetes 

Cases, n = 102 (%) 
Sex   

Female 157 (44.9) 47 (46.1) 
Male 193 (55.1) 55 (53.9) 

Country   
US 109 (31.2) 28 (27.5) 
Finland 105 (30.0) 35 (34.3) 
Germany 26 (7.4) 15 (14.7) 
Sweden 110 (31.4) 24 (23.5) 

Family history of type 1 diabetes   
FDR 76 (21.7) 36 (35.3) 
GP 274 (78.3) 66 (64.7) 

Abbreviations: FDR, first-degree relative of an individual with type 1 diabetes; GP, from the general 
population (no first-degree relative with type 1 diabetes) 
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6.1.2 Plasma ascorbic acid status, the risk of type 1 diabetes development 
and effect modification by vitamin C metabolism-related SNPs 

Plasma ascorbic acid was associated with a decreased risk of islet autoimmunity and 
IAA first when adjusted for ancestry and HLA-DQ genotype (Table 15). When adjusted 
for mean weight z-score prior to the outcome, the association was significant only for 
IAA first (islet autoimmunity: OR 0.96; 95% CI 0.92, 1.00, IAA first: OR 0.93; 95% CI 
0.88, 0.99). 

None of the vitamin C metabolism-related SNPs modified the association between 
plasma ascorbic acid status and outcomes (Table 16). 

Table 15.  The association between plasma ascorbic acid status and vitamin C intake on the risk of 
islet autoimmunity and type 1 diabetes 

 Islet autoimmunity IAA first GADA first Type 1 diabetes 
 N = 1,324, n = 350 N = 1,324, n = 163 N = 1,324, n = 120 N = 384, n = 102 
 OR (95% CI)a OR (95% CI)a OR (95% CI)a OR (95% CI)a 

Mean plasma ascorbic acid 
status (per 1 mg/L increase) 

0.96 (0.92, 0.99) 0.94 (0.88, 0.99) 0.99 (0.93, 1.07) 0.93 (0.86, 1.02) 

a Adjusted for two largest principal components for ethnicity and HLA genotype DR3/4. 
 

Table 16.  Effect modification between the vitamin C transport genes and plasma ascorbic acid status 
on the islet autoimmunity and type 1 diabetes risk 

Gene SNP (minor allele) Islet autoimmunity  Type 1 diabetes  
 % of minor allele, cases / 

controls 
p 

Valuea 
% of minor allele, cases / 

controls 
p 

Valuea 
SLC23A1 rs33972313 (A) 3.4 / 2.8 0.16 5.4 / 1.6 0.10 
SLC2A1 rs1105297 (A) 33.7 / 32.8 0.09 33.8 / 32.6 0.17 
SLC2A1 rs3754223 (A) 21.9 / 22.7 0.96 25.5 / 21.6 0.66 
SLC2A2 rs5400 (A) 12.7 / 13.7 0.46 18.6 / 11.7 0.78 

b Interaction between plasma ascorbic acid status with vitamin C transport gene SNP on the risk of islet 
autoimmunity and type 1 diabetes, adjusted for two largest principal components for ethnicity and HLA 
genotype DR3/4 
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6.1.3 Vitamin C metabolism-related SNPs and the risk of developing type 1 
diabetes  

In the TEDDY nested case-control study, none of the vitamin C metabolism-related 
SNPs were associated with islet autoimmunity, but SLC2A2 rs5400 was associated with 
an increased risk of type 1 diabetes (Table 17). The association was significant even after 
adjusting for plasma ascorbic acid status, ethnicity, and HLA DR3/4 genotype (OR 
1.77; 95% Cl 1.12, 2.80). 

Table 17.  Association between vitamin C metabolism-related SNPs and the risk of islet autoimmunity 
and type 1 diabetes 

Gene SNP (minor allele) Islet autoimmunity  Type 1 diabetes  
 % of minor allele, 

cases / controls 
OR (95% CI)a % of minor allele, cases / 

controls 
OR (95% CI)a 

SLC23A1 rs33972313 (A) 3.4 / 2.8 1.18 (0.70, 1.99) 5.4 / 1.6 2.52 (0.96, 6.59) 
SLC2A1 rs1105297 (A) 33.7 / 32.8 1.04 (0.86, 1.26) 33.8 / 32.6 1.09 (0.75, 1.56) 
SLC2A1 rs3754223 (A) 21.9 / 22.7 0.92 (0.74, 1.15) 25.5 / 21.6 1.40 (0.93, 2.11) 
SLC2A2 rs5400 (A) 12.7 / 13.7 0.90 (0.69, 1.16) 18.6 / 11.7 1.66 (1.06, 2.60) 

a Adjusted for two largest principal components for ethnicity and HLA genotype DR3/4 

6.1.4 Vitamin C metabolism-related SNPs and plasma ascorbic acid status 

The SLC23A1 rs33972313 minor allele carriers had lower mean plasma ascorbic acid 
status than non-carriers (mixed model regression parameter estimate (standard error): -
2.22 (0.46), p < 0.001). None of the other studied SNPs was associated with plasma 
ascorbic acid status.  

6.2 The DIPP cohort 

6.2.1 Characteristics of the DIPP cohort 

A total of 312 (6.4%) children developed islet autoimmunity at a median age of 3.5 (IQR 
1.7–6.6) years, and 178 (3.6%) had type 1 diabetes at a median age of 7.1 (IQR 4.3–10.6) 
years during the 15-year follow-up. The dropout rates among the 4,887 children at 1- 
and 5-year autoantibody follow-up were 5.7% (279 children) and 30% (1,415 children), 
respectively. 
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6.2.2 Maternal nitrate, nitrite, vitamin C, and iron intakes and their food 
sources  

Maternal vitamin C, nitrate, nitrite, and iron intake by background variables are 
presented in Table 18. The maternal primary dietary sources of nitrate, nitrite, vitamin 
C, and iron are presented in Figures 5-8. The mean (SD) maternal dietary intake of 
nitrate during pregnancy was 151 (97.4) mg/day, while intake of nitrite was 3.00 (1.06) 
mg/day, respectively. The mean (SD) intake of vitamin C from foods was 198 (116) 
mg/day, while vitamin C intake from supplements was 23 (82) mg/day, which 
comprised 11% of the total intake. A total of 1,555 mothers (32%) reported the use of 
dietary supplements containing vitamin C at any time during pregnancy. The mean (SD) 
intake of iron from foods during pregnancy was 17 (5) mg/day. The iron intake from 
supplements was 26 (33) mg/day, which was the main source of iron (62% of the total 
intake). Of the mothers, 3,375 (69%) reported the use of iron supplements at any time 
during pregnancy. 
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6.2.2 Maternal nitrate, nitrite, vitamin C, and iron intakes and their food 
sources  

Maternal vitamin C, nitrate, nitrite, and iron intake by background variables are 
presented in Table 18. The maternal primary dietary sources of nitrate, nitrite, vitamin 
C, and iron are presented in Figures 5-8. The mean (SD) maternal dietary intake of 
nitrate during pregnancy was 151 (97.4) mg/day, while intake of nitrite was 3.00 (1.06) 
mg/day, respectively. The mean (SD) intake of vitamin C from foods was 198 (116) 
mg/day, while vitamin C intake from supplements was 23 (82) mg/day, which 
comprised 11% of the total intake. A total of 1,555 mothers (32%) reported the use of 
dietary supplements containing vitamin C at any time during pregnancy. The mean (SD) 
intake of iron from foods during pregnancy was 17 (5) mg/day. The iron intake from 
supplements was 26 (33) mg/day, which was the main source of iron (62% of the total 
intake). Of the mothers, 3,375 (69%) reported the use of iron supplements at any time 
during pregnancy. 
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Figure 5.  Maternal intake of nitrate during pregnancy from food groups, mg/day (% of total intake) 

Figure 6.  Maternal intake of nitrite during pregnancy from food groups, mg/day (% of total intake)
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Figure 7.  Maternal intake of vitamin C during pregnancy from food groups, mg/day (% of total intake) 

Figure 8.  Maternal intake of iron during pregnancy from food groups, mg/day (% of total intake)
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Figure 7.  Maternal intake of vitamin C during pregnancy from food groups, mg/day (% of total intake) 

Figure 8.  Maternal intake of iron during pregnancy from food groups, mg/day (% of total intake)
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6.2.3 Maternal nitrate and nitrite intakes and the risk of developing type 1 
diabetes in offspring 

Maternal energy-adjusted intake of nitrate and nitrite during pregnancy was not 
associated with the risk of islet autoimmunity or type 1 diabetes (Figure 9). Results were 
similar when further adjusted for sex, family history of diabetes, and HLA genotype. 
Additional adjustments for the intake of dietary antioxidants (vitamin C, vitamin E, and 
selenium) did not change the results.  

Maternal intake of protein during pregnancy did not modify the association between 
intake of nitrate or nitrite and the risk of islet autoimmunity (nitrate*protein interaction 
P = 0.23, nitrite*protein interaction: P = 0.99) or type 1 diabetes (nitrate*protein 
interaction P = 0.24, nitrite*protein interaction: P = 0.86). 
 

Figure 9.  The association between maternal intake of nitrate and nitrite during pregnancy and the risk of 
islet autoimmunity and type 1 diabetes in offspring: Cox proportional hazard regression model. 

Model 1: Energy adjusted with Willett’s residual method 
Model 2: Adjusted for energy residual method, sex, family history of diabetes, and HLA genotype 
Model 3: Adjusted for energy residual method, sex, family history of diabetes, HLA genotype, and intake 
of vitamin C, vitamin E, and selenium
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6.2.4 Maternal vitamin C and iron intake and the risk of development of type 1 
diabetes in offspring 

Maternal energy-adjusted vitamin C intake from food, dietary supplements, or 
combined during pregnancy was not associated with the development of islet 
autoimmunity or type 1 diabetes (Figure 10). Adjustments for sex, family history of 
diabetes, and HLA genotype did not change the results, nor did further adjustments for 
maternal education, pre-pregnancy BMI, and maternal smoking. Similarly, there was no 
association between energy-adjusted maternal intake of iron during pregnancy and the 
risk of islet autoimmunity or type 1 diabetes (Figure 10). The additional adjustment did 
not change the results. Energy-adjusted total vitamin C intake did not modify the 
association between total iron intake and the risk of islet autoimmunity (total iron 
intake*total vitamin C intake interaction P = 0.23) or type 1 diabetes (total iron 
intake*total vitamin C intake interaction P = 0.59). 
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Figure 10.  The association between maternal intake of vitamin C and iron during pregnancy and the risk 
of islet autoimmunity and type 1 diabetes in offspring: Cox proportional hazard regression model.  

Model 1: Energy adjusted with Willett’s residual method 
Model 2: Adjusted for energy, sex, family history of diabetes, and HLA genotype 
Model 3: Adjusted for energy residual method, sex, family history of diabetes, HLA genotype, 
maternal education, pre-pregnancy BMI, and smoking 
* p = 0.06 
† p = 0.09 
‡ p = 0.06
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7 DISCUSSION 

7.1 Summary of results 

In the present prospective multinational birth cohort study with children at risk for type 
1 diabetes, a high plasma ascorbic acid status in childhood was associated with a 
decreased risk of islet autoimmunity and, specifically, the islet autoimmunity endotype, 
in which IAA is the first appearing autoantibody. In addition, a SNP in DHA transport 
gene SLC2A2 rs5400 was associated with an increased risk of type 1 diabetes. 

In the Finnish prospective birth cohort study, the maternal intake of nitrate, nitrite, 
iron, or vitamin C during pregnancy was not associated with the risk of islet 
autoimmunity or type 1 diabetes in children genetically at risk for type 1 diabetes.  

7.2 Comparison of results with previous studies 

7.2.1 Childhood plasma ascorbic acid status and the risk of islet autoimmunity 
and type 1 diabetes 

In the present study, high plasma ascorbic acid was associated with a decreased risk of 
islet autoimmunity, particularly starting with IAA. Our novel finding suggests that high 
plasma ascorbic acid could protect against islet autoimmunity, particularly during 
infancy or in the early stages of autoimmunity development. The type of first-appearing 
autoantibody has been shown to vary depending on the age at seroconversion, and 
different autoantibodies may reflect different disease processes (Ilonen et al., 2013). IAA 
is usually the first autoantibody to appear during the first 2 years of age. In a previous 
DIPP study, certain dietary fatty acids were associated with the risk of islet 
autoimmunity, starting with IAA (Niinistö et al., 2017). Thus, there is evidence that 
dietary factors might play a role in autoantibody-specific islet autoimmunity.  
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7.2.2 Child’s vitamin C metabolism-related SNPs and the risk of islet 
autoimmunity and type 1 diabetes 

We assessed whether vitamin C metabolism-related SNPs modify the association 
between plasma ascorbic acid status and the risk of developing type 1 diabetes for the 
first time. Furthermore, our study was first to assessed whether these SNPs are 
associated with type 1 diabetes development.  

The studied SNPs did not modify the association between plasma ascorbic acid and 
islet autoimmunity or type 1 diabetes. However, we observed that the minor allele for 
SLC2A2/GLUT2 gene SNP rs5400 was associated with an increased risk of type 1 
diabetes. This SNP has been associated with an increase in the risk of type 2 diabetes 
(Laukkanen et al., 2005; Willer et al., 2007), possibly via impaired glucose-stimulated 
insulin secretion. Interestingly, SNP rs5400 carriers have been suggested to have an 
increased preference for sugar intake, possibly due to altered glucose-sensing 
mechanisms and food intake regulation (Eny et al., 2008). A significant source of 
vitamin C during the early years of life might be fruit juices, which are also high in sugar, 
but we were unable to explore specific food groups at the time of this study. The 
association between SNP rs5400 and the risk of type 1 diabetes has not been previously 
studied; thus, further studies are needed to confirm whether our findings are due to 
chance. 

Besides genotypes involved in vitamin C transport, genetic variations in proteins 
regulating oxidative stress and detoxification have been associated with vitamin C status 
such as glutathione S-transferase (GST), superoxide dismutase 2 (SOD2), and 
haptoglobin (HP) (Michels et al., 2013). However, these genes were not available in our 
current study. 

7.2.3 Child’s vitamin C metabolism-related SNPs and plasma ascorbic acid 
status 

We observed that the minor allele for ascorbic acid transporter gene SLC23A1 SNP 
rs33972313 was associated with lower plasma ascorbic acid status, which is in line with 
previous observation (Timpson et al., 2010). However, the SNP was not associated with 
islet autoimmunity or the development of type 1 diabetes, and the SNP did not modify 
the association between plasma ascorbic acid status or vitamin C intake and the risk of 
islet autoimmunity or type 1 diabetes. Our results suggests that high plasma ascorbic 
acid status might protect against islet autoimmunity even in minor allele carriers of 
SLC23A1 SNP rs33972313. 
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7.2.4 Maternal intake of vitamin C during pregnancy and the risk of islet 
autoimmunity and type 1 diabetes 

Maternal intake of vitamin C from diet and dietary supplements was not associated with 
the risk of islet autoimmunity or type 1 diabetes in our study. We assessed this 
association in a previous DIPP Nutrition Study, in which we also did not observe an 
association between maternal intake of vitamin C during pregnancy and the risk of islet 
autoimmunity (Uusitalo et al., 2008). However, in that study, type 1 diabetes was not 
explored as an outcome; the study included fewer mothers than in our current study, 
and the exclusive use of vitamin C supplements was not assessed.  

Vitamin C absorption and excretion are efficiently regulated (Lykkesfeldt & Tveden-
Nyborg, 2019). Intestinal absorption is enhanced and excretion in kidneys is suppressed 
during vitamin C deficiency and vice versa during sufficiency. The majority of the 
mothers in our study represent a well-nourished population, as only 5% of the mothers 
were vitamin C deficient at the time of dietary assessment. Thus, a higher intake of 
vitamin C might not provide extra benefits for type 1 diabetes prevention. However, we 
cannot conclude whether maternal intake of vitamin C would protect against islet 
autoimmunity or the development of type 1 diabetes in a vitamin C-deficient 
population. Fetus depends on maternal vitamin C intake, and it is required for normal 
child development (Lykkesfeldt & Tveden-Nyborg, 2019). Therefore, more studies are 
warranted, particularly in vitamin C-deficient populations.  

Vitamin C has been suggested to function as a pro-oxidant in the presence of iron, 
although this association has been disputed based on in vitro studies on humans. (Valko 
et al., 2005). Vitamin C enhances the absorption of non-heme iron, which could 
contribute to increased iron status and further increased oxidative stress, but studies so 
far have shown that a high intake of vitamin C does not lead to iron overload (Gerster, 
1999). This is in line with our current study, as we did not observe an interaction 
between maternal vitamin C and iron intake and the risk of islet autoimmunity or type 
1 diabetes. 

7.2.5 Maternal intake of nitrate and nitrite during pregnancy and the risk of 
islet autoimmunity and type 1 diabetes 

Maternal intake of nitrate or nitrite during pregnancy was not associated with the risk 
of islet autoimmunity or type 1 diabetes in the offspring. Our current study provides 
new prospective evidence, as the only previous retrospective Childhood Diabetes in 
Finland study was conducted as far as 20 years ago (Virtanen et al., 1994). They observed 
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that the consumption of foods, which are a major source of nitrate and nitrite during 
pregnancy, was associated with an increased risk of type 1 diabetes in offspring. The 
high consumption of nitrate and nitrite is suggested to increase the endogenous 
formation of N-nitroso compounds in the gastrointestinal track (Kobayashi, 2018). Our 
current study included a more comprehensive dietary assessment, which could explain 
why we did not observe an association, as N-nitroso compound formation is influenced 
by other dietary components. 

Vegetables and fruits naturally contains nitrate and nitrite but also other components 
such as vitamin C which is suggested to inhibit nitrosation (Bradbury et al., 2014; 
Wagner et al., 1985). Furthermore, N-nitroso compound formation in the 
gastrointestinal tract is influenced by gastric acidity and intestinal microbial flora 
(Kobayashi, 2018). Thus, the consumption of nitrate or nitrite does not exclusively lead 
to the formation of N-nitroso compounds. 

Another potential mechanism for the endogenous formation of N-nitroso 
compounds is the use of nitrosatable drugs, which include common drugs, such as 
antibiotics and antihistamines. The ingestion of these drugs together with a nitrosating 
agent, such as nitrite, may enchase the formation of N-nitroso compounds. The use of 
nitrosatable drugs has been associated with an increased risk of preterm birth (Vuong 
et al., 2016, 2015), stillbirth (Thomsen et al., 2019), and neural tube defects (Brender et 
al., 2011). These results suggest that N-nitroso compound formation in the digestive 
tract of the mother during pregnancy might expose the unborn child to these 
compounds. 

Nitrate and nitrite in the diet are sources of nitric oxide. Novel studies have also 
highlighted the potential dual role of nitric oxide. During islet inflammation, cytokine-
induced nitric oxide production is suggested to induce DNA damage in beta cells and 
inhibit insulin secretion and oxidative metabolism (Oleson & Corbett, 2018). However, 
nitric oxide has also been suggested to protect beta cells from the aforementioned 
adverse outcomes. Whether sufficient vs. excess nitric oxide exposure results in 
different outcomes requires more studies. 

Previous studies have suggested that childhood consumption of nitrate and nitrite 
might play a role in type 1 diabetes (Dahlquist et al., 1990; Virtanen et al., 1994). 
Furthermore, the Finnish Food Authority reported that some Finnish children exceeded 
the acceptable daily intake of nitrite due to the high consumption of processed meat 
products (Suomi et al., 2013, 2016). We could not assess childhood diet at the time of 
our current study, which is an important next step in the DIPP study. The EFSA 
reported that exposure to volatile nitrosamines in Finnish adults is equal to the 
European median, whereas in 3–9-year-old children, exposure is above the European 
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median (EFSA Panel on ANS et al., 2017). Thus, data on N-nitroso compounds intake 
during childhood could also be important in future studies. 

7.2.6 Maternal intake of iron during pregnancy and the risk of islet 
autoimmunity and type 1 diabetes 

We observed no association between maternal intake of iron from diet and dietary 
supplements and the risk of islet autoimmunity or type 1 diabetes in offspring. Increased 
iron status is suggested to result from excessive dietary iron since iron is required from 
diet (Sogaard et al., 2017). Excessive iron generates ROS accumulation and oxidative 
stress, to which beta cells are vulnerable. Since iron supplements are commonly used 
during pregnancy in our study, even though the majority of mothers were well-
nourished, it could be possible that the majority of mothers already had sufficient iron 
status. However, we did not have data on maternal iron status. Similar to our study, the 
Danish National Birth Cohort Study found no association between the maternal use of 
pure iron supplements and the risk of type 1 diabetes in offspring, although dietary 
intake was not assessed (Thorsen et al., 2019). The researchers discussed that placental 
iron transport regulation or maternal iron absorption regulation via hepcidin might 
explain the findings. In contrast, the Norwegian Mother and Child Cohort Study 
observed that maternal use of iron supplements during pregnancy was associated with 
an increased risk of type 1 diabetes, but dietary intake was not (Stordal et al., 2018). 
Based on their secondary studies, the researchers suggested that the association might 
result from iron-induced maternal inflammation, as the maternal cytokines of the pro-
inflammatory M1 macrophages increased in supplement users (Stordal et al., 2018). 
Excess iron due to supplement use has been observed to induce oxidative stress in 
placental tissue (Devrim et al., 2006). However, the implications for offspring have yet 
to be studied. A major limitation is that previous studies, including ours that assessed 
dietary iron intake and the risk of type 1 diabetes, did not include plasma iron status. 

Another potential mechanism could be increased serum ferritin status (Milman et al., 
1991; Preziosi et al., 1997). Cord serum ferritin status is suggested to be a strong 
predictor of iron status during the first 2 years of life (Hay et al., 2007), and a high cord 
blood iron concentration has been associated with an increased risk of type 1 diabetes 
in offspring (Kyvsgaard et al., 2017). The Norwegian study group observed a 
nonsignificant, although suggestive, association between increasing cord blood ferritin 
status and the risk of type 1 diabetes (Stordal et al., 2018). Our study did not include 
iron measurements from cord blood. 
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Genetics might also play a role in the association between iron and the development 
of type 1 diabetes. Hereditary (HFE-related) hemochromatosis is a disorder in which 
iron is absorbed in the intestine, resulting in an excessive pathological increase in iron 
stores. The disorder is caused by a mutation in the HFE gene. A Norwegian study 
suggested that the maternal HFE genotype might increase the risk of type 1 diabetes in 
offspring (Stordal et al., 2018). Increased iron stores due to HFE hemochromatosis 
could cause iron accumulation in the endocrine area of the pancreas and injury to beta 
cells (Cooksey et al., 2004; Huang et al., 2011).  

Finally, excess iron has been suggested to alter the gut microbiota (Dostal et al., 
2012) observed in patients with inflammatory bowel disease (Lee et al., 2017). However, 
the implications for healthy mothers and the development of type 1 diabetes in 
offspring require further study. 

7.3 Strengths and limitations 

The major strength of this study was the data from two large and well-defined birth 
cohorts containing children genetically at risk for type 1 diabetes. The prospective 
design ensures that the measurement of dietary exposure precedes type 1 diabetes 
outcomes. Furthermore, both cohorts assessed the development of islet autoimmunity 
following the emergence of specific type 1 diabetes-related autoantibodies. However, at 
the time of this study, specific autoantibody-initiated islet autoimmunity outcomes were 
available only in the TEDDY study.  

Our study assessed plasma ascorbic acid status in childhood. Since plasma levels of 
DHA are very low and ascorbate radical is undetectable in healthy humans (Doseděl et 
al., 2021), ascorbic acid is an appropriate marker of plasma vitamin C status. 

The FFQ used to assess maternal diet was validated (Erkkola et al., 2001). The 
validation study of the FFQ showed correlations of 0.65 for vitamin C, 0.60 for iron, 
0.63 for nitrate, and 0.79 for nitrite in comparison to food records, indicating that the 
FFQ is appropriate for the assessment of these dietary factors in question. However, 
since FFQ tends to overestimate food, nutrient, and energy intake, we used energy-
adjusted intake by the residual method in the outcome analyses (Willett et al., 1997). 

Our food composition database considers the loss of vitamin C in vegetables and 
fruits during cooking, which can range from 20% to 90%, depending on vegetable or 
cooking time and method (Armstrong et al., 2019). Furthermore, the food composition 
database used in the study was updated recently by nitrate and nitrite contents in foods 
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based on recent assessments and literature (Foedevaredirektoratet., 1999; Laitinen et al., 
1993; Suomi et al., 2013, 2016; Susin et al., 2006; Ysart et al., 1999). 

We were able to include several potential confounding factors as adjustments in our 
analysis, such as the child’s sex, HLA genotype, and family history of type 1 diabetes. 
In the TEDDY study analyses, we used principal component analysis for population 
stratification adjustment because SNPs are widely distributed in populations. In the 
DIPP study, we were also able to consider other dietary factors, such as antioxidants, 
and sociodemographic characteristics that could confound our results. 

This study has some limitations. The array platform for measuring genetic 
information on SNPs might not accurately determine the target genes. The TEDDY 
study cohort included only children who developed type 1 diabetes at a very early age 
(mean age of diagnosis 29 months), and the follow-up time up to 10 years of age for 
type 1 diabetes was relatively short. Furthermore, plasma ascorbic acid status might be 
affected by other confounding factors not assessed in our study, such as endogenous 
stress and infection. 

Besides cooking, we could not consider other processing of vegetables and fruits 
that could result in a loss of vitamin C, such as long storage (9–78% of loss), chilling 
(3–73%), and reheating (3–90%) (Armstrong et al., 2019). Nitrate content in vegetables 
can also decrease during washing (10–15%) and cooking (51%) (EFSA, 2008). Vitamin 
C and nitrate dissolve in the cooking liquid, and the consumption of the cooking liquid 
also influences intake. Furthermore, the nitrate content in vegetables varies depending 
on, for example, season, cultivation method (open field vs. greenhouse), use of 
fertilizers, and climate (Suomi et al., 2013). 

The retrospective FFQ was used for the assessment of maternal diet during 
pregnancy since participating children were identified by cord blood genotype screening 
after birth. Since the maternal diet during pregnancy could not be recorded in real time, 
it could result in some recall bias. However, the validation study correlation coefficients 
were similar for the pregnancy FFQ, and a second FFQ was assessed 1 month after 
delivery (Erkkola et al., 2001). Furthermore, 8th month of pregnancy is a well identifiable 
time right before pregnancy leave, and it reflects the maternal diet throughout the 
pregnancy well. Although we did not have an accurate assessment of diet in early 
pregnancy, it is not known whether there is a critical period during pregnancy in relation 
to the development of autoimmune diseases. 

Another limitation is that fruit and vegetable consumption may also be confounded 
by several socioeconomic and lifestyle factors not assessed in our study (Dehghan et al., 
2007). Furthermore, our food composition database did not include nitrate content in 
drinking water, which could be high in some well waters in Finland (Ahonen et al., 
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2008). However, nitrate content in Finnish drinking water in general is below the WHO 
standard (< 50 mg/l) (Ahonen et al., 2008; WHO, 2003). In addition, our food 
composition database did not include the N-nitroso compound contents in foods 
(Bahadoran et al., 2016). 

Finally, observational studies explore associations, but they cannot confirm causality. 
Additionally, since the children included in the study have a genetic risk for type 1 
diabetes, the generalizability of these results should be interpreted cautiously. 
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8 SUMMARY AND CONCLUSIONS 

The current study provides novel evidence that a high plasma ascorbic acid status might 
protect against islet autoimmunity, starting with IAA, in children at risk for type 1 
diabetes. Since there are no similar previous studies, these associations should be 
explored further. 

Our study does not support the hypothesis that a high maternal intake of nitrate and 
nitrite during pregnancy increases the risk of islet autoimmunity and type 1 diabetes in 
offspring. However, the hypothesis is by no means conclusive. A more detailed 
assessment of exposure would require the assessment of maternal dietary intake of N-
nitroso compounds, nitrate and nitrite intake from drinking water, and the use of 
nitrosatable drugs during pregnancy. As previous studies have suggested, the childhood 
consumption of nitrate and nitrite might play a role in type 1 diabetes, and the intake of 
nitrite and N-nitroso compounds is suggested to be higher than recommended in 
Finnish children. Therefore, the assessment of the association between nitrate, nitrite, 
and N-nitroso compound intake during childhood and the risk of islet autoimmunity 
and type 1 diabetes is an important next step.  

Diet is the sole source of vitamin C. A more comprehensive assessment of vitamin 
C activity in the development of type 1 diabetes would require an assessment of both 
dietary intake and plasma status from both mother and child. Furthermore, the role of 
vitamin C metabolism-related genes on the risk of type 1 diabetes development requires 
further assessment. 

It is apparent that evidence of an association between maternal iron intake and the 
development of type 1 diabetes is inconclusive. In our current study, we assessed dietary 
intake of iron during pregnancy, but it’s implication on fetal iron status is more complex. 
The mothers in our study and previous studies are from well-nourished populations, 
and the use of iron supplements is common. Therefore, we cannot confirm our results 
for populations with iron deficiency. For a more comprehensive risk assessment of iron 
in the development of type 1 diabetes, iron biomarkers and possibly genetic data, in 
addition to dietary assessments, are needed. Our study was the first to explore the 
association between prenatal iron intake and the risk of islet autoimmunity and thus 
requires further study. 
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composition database did not include the N-nitroso compound contents in foods 
(Bahadoran et al., 2016). 
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diabetes, the generalizability of these results should be interpreted cautiously. 
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development of type 1 diabetes is inconclusive. In our current study, we assessed dietary 
intake of iron during pregnancy, but it’s implication on fetal iron status is more complex. 
The mothers in our study and previous studies are from well-nourished populations, 
and the use of iron supplements is common. Therefore, we cannot confirm our results 
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9 IMPLICATIONS FOR FUTURE DIRECTIONS 

The current study has provided novel results and a foundation for further research. 
Here I present some of the planned next steps. 

At the current TEDDY study, we were unable to assess vitamin C intake in 
childhood. We will be exploring the association between childhood dietary intake of 
vitamin C and the risk of islet autoimmunity and type 1 diabetes in the future TEDDY 
study. We will also assess whether the vitamin C metabolism-related genes modify the 
association between vitamin C intake and the risk of type 1 diabetes outcomes. In this 
study we have more comprehensive genetic data available which includes not only 
genotypes for vitamin C transport proteins but also proteins regulating oxidative stress 
and detoxification: glutathione S-transferase, superoxide dismutase 2, and haptoglobin.  

During the current study, we updated our food composition database with nitrate 
and nitrite content of foods. Therefore, in the DIPP study, we will be exploring the 
association between nitrate and nitrite intake during childhood and the risk of islet 
autoimmunity and type 1 diabetes. In the statistical analyses we will be using joint model 
which provides more robust results in comparison to Cox regression. Joint model allows 
the inclusion of all food records available for each child which decreases potential bias 
caused by missing data. 

In the DIPP Study, we will also explore the association between the consumption of 
vegetables, fruits, and berries in childhood and the risk of islet autoimmunity and type 
1 diabetes. Since vegetables, fruits, and berries are major source of vitamin C and nitrate, 
this new study might provide interesting new findings that support the thesis and 
subsequent studies. 
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Abstract
Aims/hypothesis We studied the association of plasma ascorbic acid with the risk of developing islet autoimmunity and type 1
diabetes and examined whether SNPs in vitamin C transport genes modify these associations. Furthermore, we aimed to
determine whether the SNPs themselves are associated with the risk of islet autoimmunity or type 1 diabetes.
Methods We used a risk set sampled nested case–control design within an ongoing international multicentre observational study:
The Environmental Determinants of Diabetes in the Young (TEDDY). The TEDDY study followed children with increased
genetic risk from birth to endpoints of islet autoantibodies (350 cases, 974 controls) and type 1 diabetes (102 cases, 282 controls)
in six clinical centres. Control participants were matched for family history of type 1 diabetes, clinical centre and sex. Plasma
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transport genes were genotyped using the ImmunoChip custom microarray. Comparisons were adjusted for HLA genotypes and
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risk (adjusted OR 0.96 [95%CI 0.92, 0.99] per +1mg/l), particularly islet autoimmunity, starting with insulin autoantibodies (OR 0.94
[95% CI 0.88, 0.99]), but not with type 1 diabetes risk (OR 0.93 [95% Cl 0.86, 1.02]). The SLC2A2 rs5400 SNP was associated with
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Conclusions/interpretation Higher plasma ascorbic acid levels may protect against islet autoimmunity in children genetically at
risk for type 1 diabetes. Further studies are warranted to confirm these findings.
Data availability The datasets generated and analysed during the current study will be made available in the NIDDK Central
Repository at https://www.niddkrepository.org/studies/teddy.
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Introduction

Oxidative stress may play a role in the pathogenesis of type 1
diabetes for several reasons. The cells in pancreatic islets are
more vulnerable to oxidative damage than many other cells
due to the low activity of free-radical detoxifying and redox-
regulating enzymes such as catalase, superoxide dismutase
and glutathione peroxidase [1]. It has been hypothesised that
dietary antioxidants might improve the islets’ capacity to cope
with oxidative stress (e.g. induced by hyperglycaemia) [1–4].

Vitamin C (ascorbic acid) is a water-soluble vitamin obtain-
ed from vegetables, fruits and berries [5]. As a dietary

antioxidant vitamin C might protect against the development
of type 1 diabetes [6]. However, only two case–control studies
have investigated the issue. In an Australian study, use of vita-
min C supplements was less frequent in children with type 1
diabetes before onset [7]. On the other hand, a Swedish study
found no differences in dietary vitamin C intake before onset
between type 1 diabetes cases and controls [8]. The association
between plasma ascorbic acid concentration and islet autoim-
munity or the subsequent development of type 1 diabetes has
not been investigated. Plasma ascorbic acid represents the most
accurate measure of available vitamin C in the body [9, 10].

Genetic variation in vitamin C metabolic pathways causes
inter-individual differences in plasma and tissue ascorbic acid
availability [9], which might similarly contribute to type 1
diabetes risk. The metabolism of ascorbic acid is regulated
by key proteins called sodium L-ascorbic acid transporters
(SVCTs). Two isoforms, hSVCT1 and hSVCT2, encoded by
the genes SLC23A1 and SLC23A2, respectively, control the
active transport of ascorbic acid across cell membranes and
uptake to tissues [11]. hSVCT1 expression is confined to
epithelia in renal, intestinal and hepatic tissues, while
hSVCT2 is responsible for tissue-specific uptake.

The SNP rs33972313, a low-frequency missense variant in
SLC23A1, has been consistently associated with lower circu-
lating ascorbic acid status [11]. Other SNPs in SLC23A1
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(intronic SNPs rs6596473 and rs4257763, and promoter SNP
rs10063949) have also been associated with ascorbic acid
concentration, but less consistently. Furthermore, intronic
SNPs (rs6053005 and rs1279683) in SLC23A2 have been
associated with ascorbic acid concentration [11–14]. Less is
known about the importance of the second pathway, the solute
carrier family 2 (SLC2A; also called GLUT) family proteins
that transport dehydroascorbic acid (DHA) into cells where it
is converted into ascorbic acid [15].

The aim of this study was to examine the association of
plasma ascorbic acid concentration with the risk of islet auto-
immunity and type 1 diabetes in children with a high genetic
risk of type 1 diabetes. Furthermore, we studied the associa-
tion of plasma ascorbic acid with the risk of islet autoimmu-
nity relative to the first autoantibody to be observed (either
insulin autoantibody [IAA] or GAD autoantibody [GADA],
referred to hereafter as IAA first and GADA first, respective-
ly), because the type of autoantibody appearing first may
reflect different disease processes [16–18]. In addition, we
examined whether vitamin C metabolism genes available on
the ImmunoChip are associated with, or modify, the associa-
tion between plasma ascorbic acid and the development of
islet autoimmunity and type 1 diabetes. This included a
protein-coding missense SNP in SLC23A1 (rs33972313),
two intronic SLC2A1 (also known as GLUT1, 1p34.2) SNPs
(rs1105297 and rs3754223), and an SLC2A2 (also known as
GLUT2, 3q26.2) SNP (rs5400) in the dehydro-L-ascorbic acid
transport genes.

Methods

Study design The study was performed as a nested case–
control study within The Environmental Determinants of
the Diabetes in the Young (TEDDY) study. The TEDDY
study is an international multicentre observational cohort
study that prospectively follows children from birth in the
search for environmental factors involved in the develop-
ment of islet autoimmunity and subsequent type 1 diabetes
in genetically susceptible children (based upon HLA geno-
type), as described in detail previously [19, 20]. Written
informed consents have been obtained for all study partic-
ipants, from a parent or primary caretaker, separately, for
genetic screening and participation in prospective follow-
up visits. The study is funded by the National Institutes of
Health (NIH) and the National Institute of Diabetes and
Digestive and Kidney Diseases (NIDDK) and approved
by local Institutional Review Boards and monitored by an
External Advisory Board. The TEDDY study is conducted
in clinical research centres in the USA (Colorado, Georgia/
Florida, Washington State), Finland, Sweden and
Germany.

Study population Between 1 September 2004 and 28
February 2010, a total of 424,788 new-born infants were
screened for type 1 diabetes-associated HLA genotypes.
Eligibility criteria for initial contact was one of the following
HLA class II genotypes: HLA-DR3/4; HLA-DR4/4; HLA-
DR4/8; HLA-DR3/3 and HLA-DR4/4. Infants with HLA-DR
genotypes HLA-DR4/1, HLA-DR4/13, HLA-DR4/9 and HLA-
DR3/9 were included only if they had a first-degree relative
(i.e. mother, father or sibling) with type 1 diabetes [21]. Of the
eligible infants, 21,589 had type 1 diabetes genetic risk based
on HLA genotyping and 8676 children were enrolled.
Children were followed every 3 months with a scheduled
clinic visit until the age of 4 years, and every 6 months there-
after until being diagnosed with type 1 diabetes. Children with
islet autoimmunity were followed every 3 months throughout
the study. Of the enrolled children, 2211 (25.5% of the 8676)
were withdrawn or lost to follow-up by 6 years of age at the
time of the design.

Outcomes The primary outcomes in this study were persistent
confirmed islet autoimmunity and the diagnosis of type 1
diabetes. Persistent confirmed islet autoimmunity was defined
by appearance of one or more islet cell autoantibodies (IAA,
GAD, or autoantibody to tyrosine phosphatase-related islet
antigen 2 [IA-2A], also known as insulinoma antigen-2 anti-
body) confirmed at two consecutive visits. Type 1 diabetes
diagnosis was based on American Diabetes Association
criteria [22]. Different autoantibodies may be associated with
different disease processes [16–18] and therefore secondary
analyses were conducted regarding timing of autoantibodies:
IAA first and GADA first.

Nested case–control design

The current study was performed with risk set sampling
described previously [23]. The study was conducted in two
nested case–control designs within the TEDDY study: (1) for
islet autoimmunity outcome; and (2) for type 1 diabetes
outcome. Three matched controls were selected per islet auto-
immunity and type 1 diabetes case. Children were matched for
family history of type 1 diabetes, clinical centre and sex. The
nested case–control study sets were based on the data collect-
ed as of 31 May 2012 [23].

The islet autoimmunity outcome analysis included 350
cases with median seroconversion age of 23 months (range
6–72 months) and 974 matched controls. Islet autoimmunity
cases were defined as a participant with persistent islet auto-
immunity. A control was defined as a participant who had not
developed persistent islet autoimmunity by the time that the
corresponding matched case had done, plus 45 days. The islet
autoimmunity case–control set used for the statistical analyses
consisted of 3371 plasma samples taken for ascorbic acid
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is converted into ascorbic acid [15].

The aim of this study was to examine the association of
plasma ascorbic acid concentration with the risk of islet auto-
immunity and type 1 diabetes in children with a high genetic
risk of type 1 diabetes. Furthermore, we studied the associa-
tion of plasma ascorbic acid with the risk of islet autoimmu-
nity relative to the first autoantibody to be observed (either
insulin autoantibody [IAA] or GAD autoantibody [GADA],
referred to hereafter as IAA first and GADA first, respective-
ly), because the type of autoantibody appearing first may
reflect different disease processes [16–18]. In addition, we
examined whether vitamin C metabolism genes available on
the ImmunoChip are associated with, or modify, the associa-
tion between plasma ascorbic acid and the development of
islet autoimmunity and type 1 diabetes. This included a
protein-coding missense SNP in SLC23A1 (rs33972313),
two intronic SLC2A1 (also known as GLUT1, 1p34.2) SNPs
(rs1105297 and rs3754223), and an SLC2A2 (also known as
GLUT2, 3q26.2) SNP (rs5400) in the dehydro-L-ascorbic acid
transport genes.

Methods

Study design The study was performed as a nested case–
control study within The Environmental Determinants of
the Diabetes in the Young (TEDDY) study. The TEDDY
study is an international multicentre observational cohort
study that prospectively follows children from birth in the
search for environmental factors involved in the develop-
ment of islet autoimmunity and subsequent type 1 diabetes
in genetically susceptible children (based upon HLA geno-
type), as described in detail previously [19, 20]. Written
informed consents have been obtained for all study partic-
ipants, from a parent or primary caretaker, separately, for
genetic screening and participation in prospective follow-
up visits. The study is funded by the National Institutes of
Health (NIH) and the National Institute of Diabetes and
Digestive and Kidney Diseases (NIDDK) and approved
by local Institutional Review Boards and monitored by an
External Advisory Board. The TEDDY study is conducted
in clinical research centres in the USA (Colorado, Georgia/
Florida, Washington State), Finland, Sweden and
Germany.

Study population Between 1 September 2004 and 28
February 2010, a total of 424,788 new-born infants were
screened for type 1 diabetes-associated HLA genotypes.
Eligibility criteria for initial contact was one of the following
HLA class II genotypes: HLA-DR3/4; HLA-DR4/4; HLA-
DR4/8; HLA-DR3/3 and HLA-DR4/4. Infants with HLA-DR
genotypes HLA-DR4/1, HLA-DR4/13, HLA-DR4/9 and HLA-
DR3/9 were included only if they had a first-degree relative
(i.e. mother, father or sibling) with type 1 diabetes [21]. Of the
eligible infants, 21,589 had type 1 diabetes genetic risk based
on HLA genotyping and 8676 children were enrolled.
Children were followed every 3 months with a scheduled
clinic visit until the age of 4 years, and every 6 months there-
after until being diagnosed with type 1 diabetes. Children with
islet autoimmunity were followed every 3 months throughout
the study. Of the enrolled children, 2211 (25.5% of the 8676)
were withdrawn or lost to follow-up by 6 years of age at the
time of the design.

Outcomes The primary outcomes in this study were persistent
confirmed islet autoimmunity and the diagnosis of type 1
diabetes. Persistent confirmed islet autoimmunity was defined
by appearance of one or more islet cell autoantibodies (IAA,
GAD, or autoantibody to tyrosine phosphatase-related islet
antigen 2 [IA-2A], also known as insulinoma antigen-2 anti-
body) confirmed at two consecutive visits. Type 1 diabetes
diagnosis was based on American Diabetes Association
criteria [22]. Different autoantibodies may be associated with
different disease processes [16–18] and therefore secondary
analyses were conducted regarding timing of autoantibodies:
IAA first and GADA first.

Nested case–control design

The current study was performed with risk set sampling
described previously [23]. The study was conducted in two
nested case–control designs within the TEDDY study: (1) for
islet autoimmunity outcome; and (2) for type 1 diabetes
outcome. Three matched controls were selected per islet auto-
immunity and type 1 diabetes case. Children were matched for
family history of type 1 diabetes, clinical centre and sex. The
nested case–control study sets were based on the data collect-
ed as of 31 May 2012 [23].

The islet autoimmunity outcome analysis included 350
cases with median seroconversion age of 23 months (range
6–72 months) and 974 matched controls. Islet autoimmunity
cases were defined as a participant with persistent islet auto-
immunity. A control was defined as a participant who had not
developed persistent islet autoimmunity by the time that the
corresponding matched case had done, plus 45 days. The islet
autoimmunity case–control set used for the statistical analyses
consisted of 3371 plasma samples taken for ascorbic acid
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measurement. Three hundred and sixty-five samples failed the
laboratory’s internal quality control. Samples from controls
were processed only when the matched case had an available
sample at a corresponding visit. The mean ascorbic acid level
for each child was calculated from all available measurements.

Type 1 diabetes outcome analysis consisted of 102 caseswith
median age of 31 months at diagnosis (range 8–75 months) and
282 matched controls. A control for a type 1 diabetes case was
defined as a participant who had not developed type 1 diabetes
by the time the corresponding matched case had done so, plus
45 days. Of the 350 islet autoimmunity cases, 74 were also
analysed as type 1 diabetes cases. Those islet autoimmunity
cases who developed type 1 diabetes but had seroconverted
already before the first plasma sample was collected for ascorbic
acid measurement (collection started at 6 months of age) were
included only in the type 1 diabetes analysis. Thus, 28 type 1
diabetes cases were included only for type 1 diabetes analysis.

Secondary outcome analyses were performed within the
islet autoimmunity nested case–control design. The islet auto-
immunity dataset included 163 IAA first cases with median
seroconversion age of 18 months (range 6–72 months) and
450 controls. Within the islet autoimmunity dataset there were
120 GADA first cases with median seroconversion age of
28 months (range 6–68 months) with 336 controls.

Plasma ascorbic acid measurements Plasma samples for
ascorbic acid measurement were collected at the age of
6 months and 12 months, and then annually until 6 years of
age or until and including the time of seroconversion of the
islet autoimmunity cases, and for type 1 diabetes cases the
visit just preceding the type 1 diabetes diagnosis (with corre-
sponding time for matched controls). Stabilisers were added to
plasma samples intended for ascorbic acid analysis before
freezing to minimise degradation of ascorbic acid [24]. After
sample collection at the clinical centres, 50 μl of sodium
citrate plasma (in BD Vacutainer CPT Cell Preparation
Tubes [Becton Dickinson, Franklin Lakes, NJ, USA]) was
transferred into cryovials and 0.2 ml of 5% (wt/vol.) trichlo-
roacetic acid and 200 mg disodium EDTA was added, with
subsequent freezing at −70°C. A long-distance protocol was
developed for the collection of blood samples from families
living away from their nearest TEDDY study clinic (most
frequently being the case in Germany compared with the other
countries). In the long-distance collection protocol, blood
samples were obtained by a family paediatrician and
transported within 24 h to the TEDDY study clinic site.
Case samples were paired with matched control samples and
randomly placed within a batch before samples were
transported to the laboratory.

Ascorbic acid measurements were performed at the
Biochemistry Laboratory, Genomics and Biomarkers Unit,
National Institute for Health and Welfare (THL), Helsinki,
Finland. Ascorbic acid was determined by an ion-paired,

reversed-phase, high-performance liquid chromatographic
method using electrochemical detection, as described [24].
Isoascorbic acid was used as internal standard for the quantifi-
cation of ascorbic acid. The laboratory staff were blinded to the
case–control status of samples. The laboratory included three
internal quality control samples of three ascorbic acid levels in
each run (altogether nine samples). Precision within the project,
expressed as the CV of the quality control samples, was 9.2–
12.6% at a concentration range of 4.6–11.2 mg/l. During the
project, the laboratory participated three times in an external
quality assessment scheme (National Institute of Standards and
Technology (NIST) Micronutrients Measurement Quality
Assurance Program for Total Ascorbic Acid). The results were
in excellent concordance with NIST values.

Genotyping Illumina Infinium ImmunoChip custom microar-
ray was used for SNP genotyping, based upon robust genome-
wide association analyses (GWAS) in 12 autoimmune
diseases (including type 1 diabetes). The ImmunoChip array
contained 195,806 SNPs that were genotyped on TEDDY
study DNA samples. Principal components analysis (PCA)
using EIGENSTRAT software (Department of Genetics,
Harvard Medical School, Boston, MA, USA) was performed
using each unrelated TEDDY study participant to estimate
ancestry, with the two most significant principal components
used as covariates in analytical models. For our primary
hypothesis on SNPs in ascorbic acid pathways, SLC23A1
(rs33972313), SLC2A1 (rs1105297 and rs3754223) and
SLC2A2 (rs5400) were on the ImmunoChip, passed quality
control metrics and were selected for analysis.

Statistical analyses A linear mixed effects model adjusted for
the case–control status was used to examine whether plasma
ascorbic acid over time was different by the use of standard vs
long-distance protocol, country, SNPs and other risk factors
for type 1 diabetes. The random effects for participant were
nested within the random effects for case–control set in the
model. Weight z score and height z score were derived from
Centers for Disease Control and Prevention standardised
growth charts.

Plasma ascorbic acid was analysed up to the case’s event age
specific to each nested case–control set. The measures were
from all visits prior to and including the first of two consecutive
visits at which the child tested positive for an autoantibody for
islet autoimmunity analysis and prior to the diagnosis for type 1
diabetes analysis. The mean of the corresponding measures for
each participant (childhood ascorbic acid) was compared
between matched case and control children. Conditional logis-
tic regression was used to assess the association between the
characteristics of interest and the case–control status.
Interaction term with the matching factors was tested for the
effect modification. All analyses were adjusted for HLA geno-
type (HLA-DR3/4 vs other) and two principal components of
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ancestry to control for population stratification. The log-
linearity of the characteristic with each outcome was examined
using the supremum test [25]. All analyses were performed
using SAS 9.4 (SAS Institute, Cary, NC, USA). A two-sided
p value <0.05 was considered statistically significant.

Results

Background characteristics The mean and SD of childhood
plasma ascorbic acid concentrations are shown according to
matching variables in islet autoimmunity and type 1 diabetes
case–control children in Table 1. The mean (± SD) plasma
ascorbic acid concentration for islet autoimmunity cases and
controls was 10.21 ± 3.33 mg/l and 10.76 ± 3.54 mg/l, respec-
tively. For the type 1 diabetes cases and controls, the mean
(± SD) plasma ascorbic acid concentration was 9.73 ±
3.18 mg/l and 10.58 ± 3.57 mg/l, respectively.

Plasma ascorbic acid concentrations did not differ by the
use of standard protocol vs long-distance protocol. As poten-
tial risk factors for type 1 diabetes, we examined growth vari-
ables (mean height and weight z score prior to the outcome),
as well as breastfeeding status at 3 and 6 months.
Breastfeeding was associated with lower plasma ascorbic acid
status (mixed model regression variables estimate [SE]: −0.96
[0.26], p < 0.001 for breastfeeding vs not breastfeeding at

3 months and −0.77 [0.23], p < 0.001 for breastfeeding vs
not breastfeeding at 6 months) but no significant association
was found with the outcomes. Higher weight or height z
scores were associated with lower plasma ascorbic acid
concentration (−0.28 [0.10], p = 0.006 and −0.12 [0.04], p =
0.001, respectively). Because weight was also associated with
islet autoimmunity (OR [95% CI]: 1.23 [1.07, 1.41] for any
islet autoimmunity; 1.24 [1.01, 1.51] for IAA first; 1.32 [1.05,
1.65] for GADA first), we adjusted for mean weight z score in
the models examining ascorbic acid concentration vs
outcomes.

Primary outcomes: islet autoimmunity and type 1 diabetes
Childhood plasma ascorbic acid status was inversely associ-
ated with islet autoimmunity (OR 0.96 [95% CI 0.92, 0.99],
p = 0.04) but the association with type 1 diabetes risk was not
significant (OR 0.93 [95% CI 0.86 1.02], p = 0.11) (Table 2).
Adjustment for mean weight z score prior to the outcome
showed a similar pattern: islet autoimmunity OR 0.96 (95%
CI 0.92, 1.00), p = 0.06; type 1 diabetes OR 0.93 (95% CI
0.86, 1.02), p = 0.11. All the outcome analyses were adjusted
for ethnicity and HLA-DR3/4 genotype. The association
between plasma ascorbic acid concentration and risk of islet
autoimmunity and type 1 diabetes was not modified by the
participant HLA-DR3/4 genotype, clinical centre, sex or fami-
ly history of type 1 diabetes.

Table 1 Mean childhood plasma
ascorbic acid in islet autoimmu-
nity and type 1 diabetes cases and
controls

Matching variable Islet autoimmunity Type 1 diabetes

No. (%) of cases Plasma ascorbic acid
concentration (mg/l)a

No. (%)
of cases

Plasma ascorbic acid
concentration (mg/l)a

Cases Controls Cases Controls

Clinical centre

Colorado 51 (14.6) 11.7 ± 3.0 12.2 ± 3.3 15 (14.7) 12.0 ± 2.5 12.2 ± 3.1

Georgia 24 (6.9) 12.5 ± 3.5 12.3 ± 3.4 6 (5.9) 13.1 ± 4.2 13.6 ± 4.1

Washington State 34 (9.7) 11.4 ± 4.3 11.8 ± 4.4 7 (6.9) 9.8 ± 3.5 11.6 ± 3.2

Finland 105 (30.0) 10.5 ± 2.8 10.7 ± 3.0 35 (34.3) 9.8 ± 2.7 10.7 ± 3.6

Germany 26 (7.4) 9.2 ± 2.5 9.7 ± 3.4 15 (14.7) 10.2 ± 3.2 10.3 ± 3.8

Sweden 110 (31.4) 8.7 ± 3.0 9.5 ± 3.6 24 (23.5) 7.9 ± .9 8.8 ± 3.0

Sex

Female 157 (44.9) 10.0 ± 3.4 10.7 ± 3.5 47 (46.1) 10.2 ± 3.1 10.2 ± 3.1

Male 193 (55.1) 10.4 ± 3.2 10.8 ± 3.7 55 (53.9) 9.7 ± 3.3 11.2 ± 4.0

FDR/GP status

FDR 76 (21.7) 10.8 ± 3.1 11.1 ± 3.7 36 (35.3) 10.8 ± 2.8 11.0 ± 3.8

GP 274 (78.3) 10.0 ± 3.4 10.7 ± 3.5 66 (64.7) 9.5 ± 3.4 10.6 ± 3.6

Plasma ascorbic acid concentrations are presented as mean ± SD
aMean childhood plasma ascorbic acid; includes measures from all visits prior to and including the seroconver-
sion visit, which is the first of two consecutive visits at which the child tested positive for an autoantibody. To
convert ascorbic acid concentration to μmol/l, multiply values in mg/l by 5.678

FDR, first-degree relative of an individual with type 1 diabetes; GP, from the general population (no first-degree
relative with type 1 diabetes)
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measurement. Three hundred and sixty-five samples failed the
laboratory’s internal quality control. Samples from controls
were processed only when the matched case had an available
sample at a corresponding visit. The mean ascorbic acid level
for each child was calculated from all available measurements.

Type 1 diabetes outcome analysis consisted of 102 caseswith
median age of 31 months at diagnosis (range 8–75 months) and
282 matched controls. A control for a type 1 diabetes case was
defined as a participant who had not developed type 1 diabetes
by the time the corresponding matched case had done so, plus
45 days. Of the 350 islet autoimmunity cases, 74 were also
analysed as type 1 diabetes cases. Those islet autoimmunity
cases who developed type 1 diabetes but had seroconverted
already before the first plasma sample was collected for ascorbic
acid measurement (collection started at 6 months of age) were
included only in the type 1 diabetes analysis. Thus, 28 type 1
diabetes cases were included only for type 1 diabetes analysis.

Secondary outcome analyses were performed within the
islet autoimmunity nested case–control design. The islet auto-
immunity dataset included 163 IAA first cases with median
seroconversion age of 18 months (range 6–72 months) and
450 controls. Within the islet autoimmunity dataset there were
120 GADA first cases with median seroconversion age of
28 months (range 6–68 months) with 336 controls.

Plasma ascorbic acid measurements Plasma samples for
ascorbic acid measurement were collected at the age of
6 months and 12 months, and then annually until 6 years of
age or until and including the time of seroconversion of the
islet autoimmunity cases, and for type 1 diabetes cases the
visit just preceding the type 1 diabetes diagnosis (with corre-
sponding time for matched controls). Stabilisers were added to
plasma samples intended for ascorbic acid analysis before
freezing to minimise degradation of ascorbic acid [24]. After
sample collection at the clinical centres, 50 μl of sodium
citrate plasma (in BD Vacutainer CPT Cell Preparation
Tubes [Becton Dickinson, Franklin Lakes, NJ, USA]) was
transferred into cryovials and 0.2 ml of 5% (wt/vol.) trichlo-
roacetic acid and 200 mg disodium EDTA was added, with
subsequent freezing at −70°C. A long-distance protocol was
developed for the collection of blood samples from families
living away from their nearest TEDDY study clinic (most
frequently being the case in Germany compared with the other
countries). In the long-distance collection protocol, blood
samples were obtained by a family paediatrician and
transported within 24 h to the TEDDY study clinic site.
Case samples were paired with matched control samples and
randomly placed within a batch before samples were
transported to the laboratory.

Ascorbic acid measurements were performed at the
Biochemistry Laboratory, Genomics and Biomarkers Unit,
National Institute for Health and Welfare (THL), Helsinki,
Finland. Ascorbic acid was determined by an ion-paired,

reversed-phase, high-performance liquid chromatographic
method using electrochemical detection, as described [24].
Isoascorbic acid was used as internal standard for the quantifi-
cation of ascorbic acid. The laboratory staff were blinded to the
case–control status of samples. The laboratory included three
internal quality control samples of three ascorbic acid levels in
each run (altogether nine samples). Precision within the project,
expressed as the CV of the quality control samples, was 9.2–
12.6% at a concentration range of 4.6–11.2 mg/l. During the
project, the laboratory participated three times in an external
quality assessment scheme (National Institute of Standards and
Technology (NIST) Micronutrients Measurement Quality
Assurance Program for Total Ascorbic Acid). The results were
in excellent concordance with NIST values.

Genotyping Illumina Infinium ImmunoChip custom microar-
ray was used for SNP genotyping, based upon robust genome-
wide association analyses (GWAS) in 12 autoimmune
diseases (including type 1 diabetes). The ImmunoChip array
contained 195,806 SNPs that were genotyped on TEDDY
study DNA samples. Principal components analysis (PCA)
using EIGENSTRAT software (Department of Genetics,
Harvard Medical School, Boston, MA, USA) was performed
using each unrelated TEDDY study participant to estimate
ancestry, with the two most significant principal components
used as covariates in analytical models. For our primary
hypothesis on SNPs in ascorbic acid pathways, SLC23A1
(rs33972313), SLC2A1 (rs1105297 and rs3754223) and
SLC2A2 (rs5400) were on the ImmunoChip, passed quality
control metrics and were selected for analysis.

Statistical analyses A linear mixed effects model adjusted for
the case–control status was used to examine whether plasma
ascorbic acid over time was different by the use of standard vs
long-distance protocol, country, SNPs and other risk factors
for type 1 diabetes. The random effects for participant were
nested within the random effects for case–control set in the
model. Weight z score and height z score were derived from
Centers for Disease Control and Prevention standardised
growth charts.

Plasma ascorbic acid was analysed up to the case’s event age
specific to each nested case–control set. The measures were
from all visits prior to and including the first of two consecutive
visits at which the child tested positive for an autoantibody for
islet autoimmunity analysis and prior to the diagnosis for type 1
diabetes analysis. The mean of the corresponding measures for
each participant (childhood ascorbic acid) was compared
between matched case and control children. Conditional logis-
tic regression was used to assess the association between the
characteristics of interest and the case–control status.
Interaction term with the matching factors was tested for the
effect modification. All analyses were adjusted for HLA geno-
type (HLA-DR3/4 vs other) and two principal components of
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ancestry to control for population stratification. The log-
linearity of the characteristic with each outcome was examined
using the supremum test [25]. All analyses were performed
using SAS 9.4 (SAS Institute, Cary, NC, USA). A two-sided
p value <0.05 was considered statistically significant.

Results

Background characteristics The mean and SD of childhood
plasma ascorbic acid concentrations are shown according to
matching variables in islet autoimmunity and type 1 diabetes
case–control children in Table 1. The mean (± SD) plasma
ascorbic acid concentration for islet autoimmunity cases and
controls was 10.21 ± 3.33 mg/l and 10.76 ± 3.54 mg/l, respec-
tively. For the type 1 diabetes cases and controls, the mean
(± SD) plasma ascorbic acid concentration was 9.73 ±
3.18 mg/l and 10.58 ± 3.57 mg/l, respectively.

Plasma ascorbic acid concentrations did not differ by the
use of standard protocol vs long-distance protocol. As poten-
tial risk factors for type 1 diabetes, we examined growth vari-
ables (mean height and weight z score prior to the outcome),
as well as breastfeeding status at 3 and 6 months.
Breastfeeding was associated with lower plasma ascorbic acid
status (mixed model regression variables estimate [SE]: −0.96
[0.26], p < 0.001 for breastfeeding vs not breastfeeding at

3 months and −0.77 [0.23], p < 0.001 for breastfeeding vs
not breastfeeding at 6 months) but no significant association
was found with the outcomes. Higher weight or height z
scores were associated with lower plasma ascorbic acid
concentration (−0.28 [0.10], p = 0.006 and −0.12 [0.04], p =
0.001, respectively). Because weight was also associated with
islet autoimmunity (OR [95% CI]: 1.23 [1.07, 1.41] for any
islet autoimmunity; 1.24 [1.01, 1.51] for IAA first; 1.32 [1.05,
1.65] for GADA first), we adjusted for mean weight z score in
the models examining ascorbic acid concentration vs
outcomes.

Primary outcomes: islet autoimmunity and type 1 diabetes
Childhood plasma ascorbic acid status was inversely associ-
ated with islet autoimmunity (OR 0.96 [95% CI 0.92, 0.99],
p = 0.04) but the association with type 1 diabetes risk was not
significant (OR 0.93 [95% CI 0.86 1.02], p = 0.11) (Table 2).
Adjustment for mean weight z score prior to the outcome
showed a similar pattern: islet autoimmunity OR 0.96 (95%
CI 0.92, 1.00), p = 0.06; type 1 diabetes OR 0.93 (95% CI
0.86, 1.02), p = 0.11. All the outcome analyses were adjusted
for ethnicity and HLA-DR3/4 genotype. The association
between plasma ascorbic acid concentration and risk of islet
autoimmunity and type 1 diabetes was not modified by the
participant HLA-DR3/4 genotype, clinical centre, sex or fami-
ly history of type 1 diabetes.

Table 1 Mean childhood plasma
ascorbic acid in islet autoimmu-
nity and type 1 diabetes cases and
controls

Matching variable Islet autoimmunity Type 1 diabetes

No. (%) of cases Plasma ascorbic acid
concentration (mg/l)a

No. (%)
of cases

Plasma ascorbic acid
concentration (mg/l)a

Cases Controls Cases Controls

Clinical centre

Colorado 51 (14.6) 11.7 ± 3.0 12.2 ± 3.3 15 (14.7) 12.0 ± 2.5 12.2 ± 3.1

Georgia 24 (6.9) 12.5 ± 3.5 12.3 ± 3.4 6 (5.9) 13.1 ± 4.2 13.6 ± 4.1

Washington State 34 (9.7) 11.4 ± 4.3 11.8 ± 4.4 7 (6.9) 9.8 ± 3.5 11.6 ± 3.2

Finland 105 (30.0) 10.5 ± 2.8 10.7 ± 3.0 35 (34.3) 9.8 ± 2.7 10.7 ± 3.6

Germany 26 (7.4) 9.2 ± 2.5 9.7 ± 3.4 15 (14.7) 10.2 ± 3.2 10.3 ± 3.8

Sweden 110 (31.4) 8.7 ± 3.0 9.5 ± 3.6 24 (23.5) 7.9 ± .9 8.8 ± 3.0

Sex

Female 157 (44.9) 10.0 ± 3.4 10.7 ± 3.5 47 (46.1) 10.2 ± 3.1 10.2 ± 3.1

Male 193 (55.1) 10.4 ± 3.2 10.8 ± 3.7 55 (53.9) 9.7 ± 3.3 11.2 ± 4.0

FDR/GP status

FDR 76 (21.7) 10.8 ± 3.1 11.1 ± 3.7 36 (35.3) 10.8 ± 2.8 11.0 ± 3.8

GP 274 (78.3) 10.0 ± 3.4 10.7 ± 3.5 66 (64.7) 9.5 ± 3.4 10.6 ± 3.6

Plasma ascorbic acid concentrations are presented as mean ± SD
aMean childhood plasma ascorbic acid; includes measures from all visits prior to and including the seroconver-
sion visit, which is the first of two consecutive visits at which the child tested positive for an autoantibody. To
convert ascorbic acid concentration to μmol/l, multiply values in mg/l by 5.678

FDR, first-degree relative of an individual with type 1 diabetes; GP, from the general population (no first-degree
relative with type 1 diabetes)
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Secondary outcomes: IAA first and GADA firstChildhood plas-
ma ascorbic acid status was inversely associated with the risk
of IAA first (OR 0.94 [95% CI 0.88, 0.99], p = 0.03).
Adjustment for mean weight z score prior to the outcome
produced similar results (OR 0.93 [95% CI 0.88, 0.99], p =
0.03). Plasma ascorbic acid concentration was not associated
with GADA first (OR 0.99 [95% CI 0.93, 1.07], p = 0.99). All
the outcome analyses were adjusted for ethnicity and HLA-
DR3/4 genotype. The HLA-DR3/4 genotype did not modify
the association between plasma ascorbic acid concentration
and the risk of IAA first or risk of GADA first.

SNPs and outcomes and effect modification by SNPs The
SLC23A1 rs33972313 minor allele carriers had lower mean
plasma ascorbic acid concentration than non-carriers (mixed
model regression variable estimate [SE]: −2.22 [0.46],
p < 0.001). However, the SNPwas not associated with the risk
of islet autoimmunity or type 1 diabetes (Table 3), nor with
IAA first or GADA first (data not shown). Furthermore,
SLC23A1 rs33972313 did not modify the association between
plasma ascorbic acid and the risk of islet autoimmunity or type
1 diabetes (Table 3), IAA first (interaction p = 0.43) or GADA
first (interaction p = 0.10). DHA transport gene SNPs in
SLC2A1 (rs1105297 and rs3754223) were not associated with
plasma ascorbic acid concentration (p = 0.32 and p = 0.76) or
the risk of islet autoimmunity, type 1 diabetes, IAA first or
GADA first, either alone or in conjunction with the plasma
ascorbate status. They did not modify the association between
plasma ascorbic acid and the risk of islet autoimmunity or type
1 diabetes (Table 3), IAA first or GADA first (data not
shown).

SLC2A2 rs5400 was not associated with plasma ascorbic
acid concentration (p = 0.54) or the risk of islet autoimmunity,

IAA first or GADA first; however, SLC2A2 rs5400 was asso-
ciated with increased risk of type 1 diabetes (OR 1.66 [95%CI
1.06, 2.60], p = 0.028) (Table 3). The association remained
even after adjusting for plasma ascorbic acid in addition to
the two largest principal components for ethnicity and HLA-
DR3/4 genotype. In this model, rs5400 was associated with
increased risk of type 1 diabetes (OR 1.77 [95% CI 1.12,
2.80], p = 0.015), while plasma ascorbic acid concentration
showed no association (OR 0.92 [95% CI 0.84, 1.00], p =
0.058). The SLC2A2 rs5400 SNP did not modify the associa-
tion of plasma ascorbic acid status with the risk of islet auto-
immunity or type 1 diabetes, IAA first or GADA first.

Discussion

In this relatively large prospective study, mean ascorbic acid
concentration in plasma was inversely associated with the risk
of islet autoimmunity, but not type 1 diabetes, in children with
increased genetic risk of type 1 diabetes. The association between
ascorbic acid and type 1 diabetes was, however, only marginally
different and showed a stronger point estimate compared with
islet autoimmunity. The SNPs investigated in our study (i.e.
SNPs in ascorbic acid or dehydroascorbic acid transport genes)
did notmodify the observed associationswith islet autoimmunity
and the SNPs themselves were not associated with islet autoim-
munity. However, the presence of the minor alleles in SLC2A2
rs5400 appeared to increase the risk of type 1 diabetes.
Furthermore, SNP rs33972313 in SLC23A1was associated with
lower plasma ascorbic acid concentrations, in line with previous
studies, and appeared to increase type 1 diabetes risk, although
the finding was of borderline significance (p = 0.06).

One of the strengths of our study is the large multinational
study sample with multiple measurements of plasma ascorbic
acid as well as genetic information. To our best knowledge,
our study is the first one to assess prospectively whether plas-
ma ascorbic acid concentration (and genetic variation related
to ascorbic acid) is associated with development of islet auto-
immunity and type 1 diabetes. Measurement of ascorbic acid
concentration in the plasma may more accurately reflect avail-
ability to tissues, as compared with dietary intake measure-
ments. Previous case–control studies have assessed ascorbic
acid intake from diet and supplements using questionnaire [7,
8]. Another strength is that we were able to investigate the
endpoints of IAA first and GADA first separately; this is
important because they may reflect different disease process-
es. IAA usually appears during the first to second year of life,
whereas GADA usually appears at 3–5 years of age or even
later [26, 27]. In other words, we were able to study associa-
tions of plasma ascorbic acid at very early stages of autoim-
munity development. A limitation of our study is the use of
array platform for measuring genetic information on SNPs, as
this might not determine the target genes accurately.

Table 2 Risk of type 1 diabetes-related outcomes associated with child-
hood plasma ascorbic acid

Outcome OR (95% CI)a p value

Islet autoimmunity
(cases, n = 350)

0.96 (0.92, 0.99) 0.041

Type 1 diabetes
(cases, n = 102)

0.93 (0.86, 1.02) 0.109

IAA first
(cases, n = 163)

0.94 (0.88, 0.99) 0.028

GADA first
(cases, n = 120)

0.99 (0.93, 1.07) 0.988

Data are presented as OR (95% CI) per 1 mg/l increase in childhood
ascorbic acid concentration

Mean childhood plasma ascorbic acid includes measures from all visits
prior to and including the seroconversion visit, which is the first of two
consecutive visits at which the child tested positive for an autoantibody,
and for type 1 diabetes all visits prior to diagnosis. To convert ascorbic
acid concentration to μmol/l, multiply values in mg/l by 5.678
aAdjusted for two largest principal components for ethnicity and HLA-
DR3/4 genotype
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Furthermore, besides HLA type and ethnicity, we could not
take into account other potential confounding factors that
might affect ascorbic acid status (e.g. endogenous stress such
as infection or genetic variation of proteins regulating oxida-
tive stress such as glutathione S-transferases and haptoglobin
[9, 10]). Other limitations of our study are that it included only
children who developed type 1 diabetes at a very early age
(mean age of diagnosis 29months) and that the follow-up time
(up to 6 years of age) for type 1 diabetes was relatively short.

Our prospective study shows that higher plasma ascorbic
acid concentration was associated with lower risk of islet auto-
immunity, in particular with lower risk of IAA first. The
results indicate that vitamin Cmight be protective, particularly
during the early stages of autoimmunity development or early
in life. This is in line with previous findings linking other early
dietary exposures to IAA [16, 28].

Our study confirms previous findings that carrying the
SLC23A1 gene SNP rs33972313 minor alleles results in
reduced plasma ascorbic acid concentration [11]. The pres-
ence of the minor ‘A’ allele, results in a change from the valine
(Val/GTG) form to the methionine (Meth/ATG) form [11].
This alters the function the vitamin C transport proteins,
impairing the active transport of ascorbic acid via decreased
renal reabsorption, increased excretion and altered dose–
response of plasma ascorbic acid [29].

Our study included SNPs in genes involved in the transport
of DHA as well as ascorbic acid. Genetic variation in ascorbic
acid transport would appear more important, because vitamin C
mainly enters cells as L-ascorbic acid. However, vitamin C is
also taken up as DHA, which is the oxidised form of ascorbic
acid and is reduced back to ascorbic acid intracellularly. DHA
transport occurs through five glucose transporters encoded by
the SLC2A solute carrier gene family [30–33]. SNPs in any of
these transport-protein-encoding genes could affect cellular
ascorbate status and they are therefore all of interest in our study.

None of the SNPs investigated modified the associations
between plasma ascorbic acid and the outcomes. In addition,
our results do not imply any association between the SNPs
and islet autoimmunity. However, a common variant in the
SLC2A2 gene (rs5400) was associated with an increased risk
of type 1 diabetes, while a less frequent variant in SLC23A1
(rs33972313) showed an association of borderline statistical
significance. More studies are needed to corroborate the find-
ings and to investigate the underlying mechanisms, because
they may be related to other functions of these proteins.

Of the SNPs investigated, only rs33972313 in the
SLC23A1 gene has been shown to reduce ascorbic acid status
[11]. SLC2A proteins are well-known glucose transporters,
with the proteins encoded by SLC2A1 and SLC2A3 being
more essential for pancreatic glucose transport in humans,
compared with proteins encoded by SLC2A2, because they
are expressed at higher levels. A previous study found an
association between SLC2A2 SNP rs5400 and an increased
risk of type 2 diabetes [34] but we are not aware of studies
linking the SNP to type 1 diabetes.

In this study, children who were not breastfed at 3 or
6 months of age had higher plasma ascorbic acid concentra-
tion compared with children who were breastfed for longer.
This may result from early introduction of complementary
foods containing higher amounts of vitamin C. Although a
child’s plasma ascorbic acid status might be affected bymater-
nal intake of vitamin C, there are no studies assessing the
association between maternal intake of vitamin C during lacta-
tion and a child’s risk of islet autoimmunity and type 1 diabe-
tes. The mother’s adequate vitamin C status during pregnancy
is important to the development of the fetus [35] and may
affect the child’s risk of developing type 1 diabetes. However,
in a previous study, maternal vitamin C intake during pregnan-
cy was found not to be associated with the child’s risk of islet
autoimmunity or type 1 diabetes in a population with adequate
vitamin C intake [36]. It should be noted that the associations

Table 3 Risk of islet autoimmunity and type 1 diabetes associated with ascorbic acid transport gene polymorphisms and effect modification between
the genes and childhood plasma ascorbic acid on the islet autoimmunity and type 1 diabetes risk

Gene SNP (minor allele) Islet autoimmunity Type 1 diabetes

% of minor allele,
cases/controls

OR (95% CI)a p valuea p valueb % of minor
allele, cases
/controls

OR (95% CI)a p valuea p valueb

SLC23A1c rs33972313 (A) 3.4/2.8 1.18 (0.70, 1.99) 0.533 0.158 5.4/1.6 2.52 (0.96, 6.59) 0.060 0.101

SLC2A1c rs1105297 (A) 33.7/32.8 1.04 (0.86, 1.26) 0.690 0.094 33.8/32.6 1.09 (0.75, 1.56) 0.661 0.175

SLC2A1c rs3754223 (A) 21.9/22.7 0.92 (0.74, 1.15) 0.473 0.959 25.5/21.6 1.40 (0.93, 2.11) 0.107 0.665

SLC2A2c rs5400 (A) 12.7/13.7 0.90 (0.69, 1.16) 0.408 0.456 18.6/11.7 1.66 (1.06, 2.60) 0.028 0.785

aAdjusted for two largest principal components for ethnicity and HLA-DR3/4 genotype
b Indication of interaction of childhood plasma ascorbic acid with the number of transport gene SNP alleles on the risk of islet autoimmunity and type 1
diabetes, adjusted for two largest principal components for ethnicity and HLA-DR3/4 genotype
c Genetic data were missing from two islet autoimmunity cases, one type 1 diabetes case and five controls
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Secondary outcomes: IAA first and GADA firstChildhood plas-
ma ascorbic acid status was inversely associated with the risk
of IAA first (OR 0.94 [95% CI 0.88, 0.99], p = 0.03).
Adjustment for mean weight z score prior to the outcome
produced similar results (OR 0.93 [95% CI 0.88, 0.99], p =
0.03). Plasma ascorbic acid concentration was not associated
with GADA first (OR 0.99 [95% CI 0.93, 1.07], p = 0.99). All
the outcome analyses were adjusted for ethnicity and HLA-
DR3/4 genotype. The HLA-DR3/4 genotype did not modify
the association between plasma ascorbic acid concentration
and the risk of IAA first or risk of GADA first.

SNPs and outcomes and effect modification by SNPs The
SLC23A1 rs33972313 minor allele carriers had lower mean
plasma ascorbic acid concentration than non-carriers (mixed
model regression variable estimate [SE]: −2.22 [0.46],
p < 0.001). However, the SNPwas not associated with the risk
of islet autoimmunity or type 1 diabetes (Table 3), nor with
IAA first or GADA first (data not shown). Furthermore,
SLC23A1 rs33972313 did not modify the association between
plasma ascorbic acid and the risk of islet autoimmunity or type
1 diabetes (Table 3), IAA first (interaction p = 0.43) or GADA
first (interaction p = 0.10). DHA transport gene SNPs in
SLC2A1 (rs1105297 and rs3754223) were not associated with
plasma ascorbic acid concentration (p = 0.32 and p = 0.76) or
the risk of islet autoimmunity, type 1 diabetes, IAA first or
GADA first, either alone or in conjunction with the plasma
ascorbate status. They did not modify the association between
plasma ascorbic acid and the risk of islet autoimmunity or type
1 diabetes (Table 3), IAA first or GADA first (data not
shown).

SLC2A2 rs5400 was not associated with plasma ascorbic
acid concentration (p = 0.54) or the risk of islet autoimmunity,

IAA first or GADA first; however, SLC2A2 rs5400 was asso-
ciated with increased risk of type 1 diabetes (OR 1.66 [95%CI
1.06, 2.60], p = 0.028) (Table 3). The association remained
even after adjusting for plasma ascorbic acid in addition to
the two largest principal components for ethnicity and HLA-
DR3/4 genotype. In this model, rs5400 was associated with
increased risk of type 1 diabetes (OR 1.77 [95% CI 1.12,
2.80], p = 0.015), while plasma ascorbic acid concentration
showed no association (OR 0.92 [95% CI 0.84, 1.00], p =
0.058). The SLC2A2 rs5400 SNP did not modify the associa-
tion of plasma ascorbic acid status with the risk of islet auto-
immunity or type 1 diabetes, IAA first or GADA first.

Discussion

In this relatively large prospective study, mean ascorbic acid
concentration in plasma was inversely associated with the risk
of islet autoimmunity, but not type 1 diabetes, in children with
increased genetic risk of type 1 diabetes. The association between
ascorbic acid and type 1 diabetes was, however, only marginally
different and showed a stronger point estimate compared with
islet autoimmunity. The SNPs investigated in our study (i.e.
SNPs in ascorbic acid or dehydroascorbic acid transport genes)
did notmodify the observed associationswith islet autoimmunity
and the SNPs themselves were not associated with islet autoim-
munity. However, the presence of the minor alleles in SLC2A2
rs5400 appeared to increase the risk of type 1 diabetes.
Furthermore, SNP rs33972313 in SLC23A1was associated with
lower plasma ascorbic acid concentrations, in line with previous
studies, and appeared to increase type 1 diabetes risk, although
the finding was of borderline significance (p = 0.06).

One of the strengths of our study is the large multinational
study sample with multiple measurements of plasma ascorbic
acid as well as genetic information. To our best knowledge,
our study is the first one to assess prospectively whether plas-
ma ascorbic acid concentration (and genetic variation related
to ascorbic acid) is associated with development of islet auto-
immunity and type 1 diabetes. Measurement of ascorbic acid
concentration in the plasma may more accurately reflect avail-
ability to tissues, as compared with dietary intake measure-
ments. Previous case–control studies have assessed ascorbic
acid intake from diet and supplements using questionnaire [7,
8]. Another strength is that we were able to investigate the
endpoints of IAA first and GADA first separately; this is
important because they may reflect different disease process-
es. IAA usually appears during the first to second year of life,
whereas GADA usually appears at 3–5 years of age or even
later [26, 27]. In other words, we were able to study associa-
tions of plasma ascorbic acid at very early stages of autoim-
munity development. A limitation of our study is the use of
array platform for measuring genetic information on SNPs, as
this might not determine the target genes accurately.

Table 2 Risk of type 1 diabetes-related outcomes associated with child-
hood plasma ascorbic acid

Outcome OR (95% CI)a p value

Islet autoimmunity
(cases, n = 350)

0.96 (0.92, 0.99) 0.041

Type 1 diabetes
(cases, n = 102)

0.93 (0.86, 1.02) 0.109

IAA first
(cases, n = 163)

0.94 (0.88, 0.99) 0.028

GADA first
(cases, n = 120)

0.99 (0.93, 1.07) 0.988

Data are presented as OR (95% CI) per 1 mg/l increase in childhood
ascorbic acid concentration

Mean childhood plasma ascorbic acid includes measures from all visits
prior to and including the seroconversion visit, which is the first of two
consecutive visits at which the child tested positive for an autoantibody,
and for type 1 diabetes all visits prior to diagnosis. To convert ascorbic
acid concentration to μmol/l, multiply values in mg/l by 5.678
aAdjusted for two largest principal components for ethnicity and HLA-
DR3/4 genotype
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Furthermore, besides HLA type and ethnicity, we could not
take into account other potential confounding factors that
might affect ascorbic acid status (e.g. endogenous stress such
as infection or genetic variation of proteins regulating oxida-
tive stress such as glutathione S-transferases and haptoglobin
[9, 10]). Other limitations of our study are that it included only
children who developed type 1 diabetes at a very early age
(mean age of diagnosis 29months) and that the follow-up time
(up to 6 years of age) for type 1 diabetes was relatively short.

Our prospective study shows that higher plasma ascorbic
acid concentration was associated with lower risk of islet auto-
immunity, in particular with lower risk of IAA first. The
results indicate that vitamin Cmight be protective, particularly
during the early stages of autoimmunity development or early
in life. This is in line with previous findings linking other early
dietary exposures to IAA [16, 28].

Our study confirms previous findings that carrying the
SLC23A1 gene SNP rs33972313 minor alleles results in
reduced plasma ascorbic acid concentration [11]. The pres-
ence of the minor ‘A’ allele, results in a change from the valine
(Val/GTG) form to the methionine (Meth/ATG) form [11].
This alters the function the vitamin C transport proteins,
impairing the active transport of ascorbic acid via decreased
renal reabsorption, increased excretion and altered dose–
response of plasma ascorbic acid [29].

Our study included SNPs in genes involved in the transport
of DHA as well as ascorbic acid. Genetic variation in ascorbic
acid transport would appear more important, because vitamin C
mainly enters cells as L-ascorbic acid. However, vitamin C is
also taken up as DHA, which is the oxidised form of ascorbic
acid and is reduced back to ascorbic acid intracellularly. DHA
transport occurs through five glucose transporters encoded by
the SLC2A solute carrier gene family [30–33]. SNPs in any of
these transport-protein-encoding genes could affect cellular
ascorbate status and they are therefore all of interest in our study.

None of the SNPs investigated modified the associations
between plasma ascorbic acid and the outcomes. In addition,
our results do not imply any association between the SNPs
and islet autoimmunity. However, a common variant in the
SLC2A2 gene (rs5400) was associated with an increased risk
of type 1 diabetes, while a less frequent variant in SLC23A1
(rs33972313) showed an association of borderline statistical
significance. More studies are needed to corroborate the find-
ings and to investigate the underlying mechanisms, because
they may be related to other functions of these proteins.

Of the SNPs investigated, only rs33972313 in the
SLC23A1 gene has been shown to reduce ascorbic acid status
[11]. SLC2A proteins are well-known glucose transporters,
with the proteins encoded by SLC2A1 and SLC2A3 being
more essential for pancreatic glucose transport in humans,
compared with proteins encoded by SLC2A2, because they
are expressed at higher levels. A previous study found an
association between SLC2A2 SNP rs5400 and an increased
risk of type 2 diabetes [34] but we are not aware of studies
linking the SNP to type 1 diabetes.

In this study, children who were not breastfed at 3 or
6 months of age had higher plasma ascorbic acid concentra-
tion compared with children who were breastfed for longer.
This may result from early introduction of complementary
foods containing higher amounts of vitamin C. Although a
child’s plasma ascorbic acid status might be affected bymater-
nal intake of vitamin C, there are no studies assessing the
association between maternal intake of vitamin C during lacta-
tion and a child’s risk of islet autoimmunity and type 1 diabe-
tes. The mother’s adequate vitamin C status during pregnancy
is important to the development of the fetus [35] and may
affect the child’s risk of developing type 1 diabetes. However,
in a previous study, maternal vitamin C intake during pregnan-
cy was found not to be associated with the child’s risk of islet
autoimmunity or type 1 diabetes in a population with adequate
vitamin C intake [36]. It should be noted that the associations

Table 3 Risk of islet autoimmunity and type 1 diabetes associated with ascorbic acid transport gene polymorphisms and effect modification between
the genes and childhood plasma ascorbic acid on the islet autoimmunity and type 1 diabetes risk

Gene SNP (minor allele) Islet autoimmunity Type 1 diabetes

% of minor allele,
cases/controls

OR (95% CI)a p valuea p valueb % of minor
allele, cases
/controls

OR (95% CI)a p valuea p valueb

SLC23A1c rs33972313 (A) 3.4/2.8 1.18 (0.70, 1.99) 0.533 0.158 5.4/1.6 2.52 (0.96, 6.59) 0.060 0.101

SLC2A1c rs1105297 (A) 33.7/32.8 1.04 (0.86, 1.26) 0.690 0.094 33.8/32.6 1.09 (0.75, 1.56) 0.661 0.175

SLC2A1c rs3754223 (A) 21.9/22.7 0.92 (0.74, 1.15) 0.473 0.959 25.5/21.6 1.40 (0.93, 2.11) 0.107 0.665

SLC2A2c rs5400 (A) 12.7/13.7 0.90 (0.69, 1.16) 0.408 0.456 18.6/11.7 1.66 (1.06, 2.60) 0.028 0.785

aAdjusted for two largest principal components for ethnicity and HLA-DR3/4 genotype
b Indication of interaction of childhood plasma ascorbic acid with the number of transport gene SNP alleles on the risk of islet autoimmunity and type 1
diabetes, adjusted for two largest principal components for ethnicity and HLA-DR3/4 genotype
c Genetic data were missing from two islet autoimmunity cases, one type 1 diabetes case and five controls

Diabetologia (2020) 63:278–286284



between ascorbic acid and type 1 diabetes outcomes may be
different at different intake levels or plasma concentrations and
inter-individual differences could also play a role. Different
results may be observed in studies performed in vitamin C-
deficient populations or in supplementation trials.

It has been suggested that higher weight gain during infan-
cy and/or childhood is related to increased risk of islet auto-
immunity and type 1 diabetes [37, 38]. In the current study,
mean weight prior to islet autoimmunity was associated with
islet autoimmunity outcomes but adjustment for weight did
not change the association between plasma ascorbic acid
concentration and the outcomes.

The associations observed in this study are novel and rela-
tively weak. Further studies are therefore needed to corrobo-
rate the findings.

Conclusions Higher plasma ascorbic acid may reduce the risk
of islet autoimmunity in childrenwith increased genetic risk of
type 1 diabetes. Furthermore, genetic variation in vitamin C
and glucose transporters might play a role in the development
of type 1 diabetes. Further studies are warranted to elucidate
the role of vitamin C in type 1 diabetes development.
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between ascorbic acid and type 1 diabetes outcomes may be
different at different intake levels or plasma concentrations and
inter-individual differences could also play a role. Different
results may be observed in studies performed in vitamin C-
deficient populations or in supplementation trials.

It has been suggested that higher weight gain during infan-
cy and/or childhood is related to increased risk of islet auto-
immunity and type 1 diabetes [37, 38]. In the current study,
mean weight prior to islet autoimmunity was associated with
islet autoimmunity outcomes but adjustment for weight did
not change the association between plasma ascorbic acid
concentration and the outcomes.

The associations observed in this study are novel and rela-
tively weak. Further studies are therefore needed to corrobo-
rate the findings.

Conclusions Higher plasma ascorbic acid may reduce the risk
of islet autoimmunity in childrenwith increased genetic risk of
type 1 diabetes. Furthermore, genetic variation in vitamin C
and glucose transporters might play a role in the development
of type 1 diabetes. Further studies are warranted to elucidate
the role of vitamin C in type 1 diabetes development.
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ABSTRACT
Background: High dietary intake of nitrate and nitrite might increase the risk of type 1 diabetes. To our knowledge,

no earlier prospective study has explored whether maternal dietary intake of nitrate and nitrite during pregnancy is

associated with the risk of type 1 diabetes in the offspring.

Objective: Our aim was to study association between maternal intake of nitrate and nitrite during pregnancy and the

risk of islet autoimmunity and type 1 diabetes in the offspring.

Design: Children born between 1997 and 2004 at Oulu and Tampere University Hospitals in Finland and carrying

increased human leukocyte antigen (HLA)–conferred risk for type 1 diabetes were followed in the Type 1 Diabetes

Prediction and Prevention (DIPP) study from 3 mo of age. Islet autoantibodies were screened at 3- to 12-mo intervals

from serum samples. Of 4879 children, 312 developed islet autoimmunity and 178 developed type 1 diabetes during

a 15-y follow-up. Maternal intake of nitrate and nitrite during the eighth month of pregnancy was assessed after birth

using a validated self-administered FFQ. Cox proportional hazards regression was used for the statistical analyses.

Results: Maternal intake of nitrate and nitrite during pregnancy was not associated with the child’s risk of islet

autoimmunity [nitrate: HR 0.99 (95% CI: 0.88, 1.11); nitrite: HR 1.03 (95% CI: 0.92, 1.15)] or type 1 diabetes [nitrate:

HR 1.02 (95% CI: 0.88, 1.17); nitrite: HR 0.97 (95% CI: 0.83, 1.12)] when adjusted for energy (residual method), sex,

HLA risk group, and family history of diabetes. Further adjustment for dietary antioxidants (vitamin C, vitamin E, and

selenium) did not change the results.

Conclusion: Maternal dietary intake of nitrate or nitrite during pregnancy is not associated with the risk of islet

autoimmunity or type 1 diabetes in the offspring genetically at risk for type 1 diabetes. J Nutr 2020;150:2969–2976.

Keywords: pregnancy, islet autoimmunity, type 1 diabetes mellitus, cohort, child, diet, nitrate, nitrite, N-nitroso

compounds

Introduction

Type 1 diabetes results from the destruction or malfunction of
pancreatic β cells mediated by autoimmune mechanisms (1, 2).
Environmental triggers such as diet during early childhood (3,
4) and pregnancy (5, 6) might influence the disease development
in childhood. High intake of nitrate and nitrite from the
diet could increase their endogenous conversion to N-nitroso
compounds such as nitrosamine and nitrosamide (7), which
could potentially be toxic to β cells (8). Endogenously, 5–7%

of total ingested nitrate is reduced to nitrite by salivary bacteria
(9). In the stomach, nitrite is further reduced to nitric oxide,
which has several biological functions such as smooth muscle
dilation. However, excess nitrite can also increase the formation
of N-nitroso compounds (7).

Nitrate and nitrite are naturally found inorganic compounds.
Main dietary sources of nitrate are vegetables such as leafy
greens, root vegetables, tubers, and drinking water. Nitrate’s
reduced form, nitrite, is used as a preservative food additive in
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Introduction

Type 1 diabetes results from the destruction or malfunction of
pancreatic β cells mediated by autoimmune mechanisms (1, 2).
Environmental triggers such as diet during early childhood (3,
4) and pregnancy (5, 6) might influence the disease development
in childhood. High intake of nitrate and nitrite from the
diet could increase their endogenous conversion to N-nitroso
compounds such as nitrosamine and nitrosamide (7), which
could potentially be toxic to β cells (8). Endogenously, 5–7%

of total ingested nitrate is reduced to nitrite by salivary bacteria
(9). In the stomach, nitrite is further reduced to nitric oxide,
which has several biological functions such as smooth muscle
dilation. However, excess nitrite can also increase the formation
of N-nitroso compounds (7).

Nitrate and nitrite are naturally found inorganic compounds.
Main dietary sources of nitrate are vegetables such as leafy
greens, root vegetables, tubers, and drinking water. Nitrate’s
reduced form, nitrite, is used as a preservative food additive in
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various processed meats such as ham, sausages, and bacon
(10). Besides endogenous formation,N-nitroso compounds also
occur in foods such as processed meats and beer (11). In vitro,
animal, and observational studies suggest that high intake of
nitrate, nitrite, and N-nitroso compounds from the diet could
increase the risk of type 1 diabetes (8, 12, 13). Ecological surveys
and case-control studies in humans assessing intake of nitrate
and nitrite from drinking water have given inconsistent results
(14). Case-control studies have suggested that high dietary
intake of nitrites (15, 16) and N-nitroso compounds (15) in
childhood could increase the risk of type 1 diabetes, but results
are inconsistent (17).

High consumption of red meat and processed meat during
childhood could increase the risk of type 1 diabetes due to high
intake of nitrite and N-nitroso compounds (18–20). In a case-
control study, the risk of type 1 diabetes was higher in children
whose intake of both N-nitroso compounds and protein from
meat was high in comparison to only high intake of N-nitroso
compounds (15). Undigested protein residues in the gut are
converted to nitrosatable compounds, such as phenols, indoles,
ammonia, amines, and amides, via microbial fermentation.
When these compounds react with a nitrosating compound such
as nitrite, it could enhance formation of N-nitroso compounds.
(21).

High maternal intake of nitrite during pregnancy might also
increase the risk of type 1 diabetes in the offspring (16), but
this has not been assessed in prospective studies. The plasma
nitrite concentration of a newborn infant is lower than that
of an adult, but before birth, the maternal and fetal blood
nitrite concentration is similar due to passive exchange of anions
across the placenta (22). Thus, high maternal nitrate and nitrite
intakes could increase maternal plasma nitrite concentration
and expose the fetus to high nitrite concentrations. However,
little is still known about the regulation of nitrite exchange
via the placenta. In a prospective cohort study, maternal intake
of red meat and processed meat products during pregnancy
was not associated with islet autoimmunity or type 1 diabetes
(23), but whether nitrate and nitrite per se increase the risk
has not been explored in prospective studies. Furthermore,
whether maternal intake protein modifies the association
between maternal nitrate or nitrite intakes and the risk of
type 1 diabetes development in offspring has not been studied.
As dietary antioxidants such as vitamin C and vitamin E
inhibit the formation of N-nitroso compounds from nitrate
and nitrite, they were used as putative confounders in the
analysis (24, 25).
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The aim of this prospective birth cohort study was to investi-
gate associations between the maternal intake of dietary nitrate
and nitrite during pregnancy and the risk of islet autoimmunity
and type 1 diabetes in children genetically susceptible to type 1
diabetes. Furthermore, we explored whether maternal protein
intake modifies the association between nitrate and nitrite
intakes and type 1 diabetes outcomes.

Subjects and Methods
Subjects
The present study was a part of the Type 1 Diabetes Prediction and
Prevention (DIPP) nutrition study. The DIPP nutrition study is a part
of the larger DIPP study, a multidisciplinary prospective population-
based cohort study, in which all newborn infants at Oulu, Tampere,
and Turku University Hospitals in Finland are screened for human
leukocyte antigen class II histocompatibility antigen, DQ beta 1 (HLA-
DQB1)-conferred susceptibility to type 1 diabetes using cord blood
samples provided that the parents give their informed consent (26).
All infants carrying a high or moderate genetic risk are invited to a
follow-up study. Follow-up visits were scheduled for 3, 6, 12, 18, and
24 mo and thereafter annually up to 15 y of age or at the onset of
type 1 diabetes. The present study comprises mothers of children born
between October 1997 and September 2004 in the Oulu and Tampere
University Hospitals. The present report includes 4887 children with
data on islet autoimmunity and 4943 children with data on type 1
diabetes. Maternal diet during pregnancy was assessed by a FFQ, and
data were available for 4879 pregnancies due to twin pregnancies. The
flowchart of participation is presented in Figure 1. The study adheres to
the Declaration of Helsinki, and the local ethics committees approved
the study protocol. Families gave their written informed consent for the
genetic testing of the newborn infant and for their participation in the
follow-up study.

Islet cell antibodies (ICAs) were screened at 3- to 12-mo intervals
up to 15 y of age (27). If a participant was observed to test positive
for ICAs, all available samples from such a subject were analyzed for
insulin autoantibodies, glutamic acid decarboxylase, and islet antigen 2
autoantibodies. Islet autoimmunity was defined by repeated positivity
for ICAs and at least one other autoantibody. Type 1 diabetes was
defined according to World Health Organization criteria (28).

Genetic methods
Human leukocyte antigen DQ genotyping using panels of sequence-
specific oligonucleotide probes has been described previously (26).
The HLA-DQB1 (∗02/∗03:02) genotype represents “high” and HLA-
DQB1∗03:02/x (x �=∗02, ∗03:01, ∗06:02) indicates “moderate” risk for
type 1 diabetes.

Dietary methods
The mothers completed a validated 181-item semiquantitative FFQ
concerning their diet during pregnancy (29). The FFQs were mailed
to the mothers after delivery and checked at the child’s 3-mo follow-
up visit. Mothers were asked retrospectively after delivery to describe
their diet during the eighth month of pregnancy, which is the last
month preceding maternity leave in Finland (29). The FFQ comprised
a list of 181 food items and mixed dishes. Open-frequency categories
were used in increasing order: not at all and number of times per
month, week, or day. The serving sizes chosen for each item were
based on commonly used portions identified during earlier Finnish
dietary studies, and for some foods (e.g., eggs and beverages), natural
units were used. Information about supplement use during the whole
pregnancy was collected. Mothers were instructed to record the dietary
supplements with brand names; manufacturers of the supplements;
amounts of supplements per day, week, or month; and the month of
pregnancy when the supplements were used.

Maternal individual nutrient intakes were calculated using the data
gathered by FFQs. The calculation was made with the in-house software
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(Finessi) of the Finnish Institute for Health and Welfare using the
Finnish national food composition database (Fineli) as the source of
food composition data (30). Energy from dietary fiber was included
in the energy from carbohydrates and in the total energy. FFQs with
>10 missing items were excluded. Questionable values were double-
checked on the original FFQ and the database.

Finnish Customs Laboratory and Finnish Food Authority analyzed
nitrate and nitrite values of various vegetables and meat products
during 2008–2012 (9, 31). The data of these analyses were used
to add nitrate and nitrite values to the respective food items in
the Fineli database. The nitrate or nitrite values of foods, which
were not analyzed in the abovementioned analyses, were determined
from scientific literature (32–35). The latest scientific literature from
2000 onward had the highest priority followed by literature from
1980–2000. Analytical values representing predominantly European
food items were preferred. Values not found from literature were
derived from aggregation, recipe calculation, or imputation from similar
foods.

Sociodemographic characteristics
Information on type 1 diabetes status of the first-degree relatives,
child sex, and maternal education was collected from parents after
delivery using a structured questionnaire. Information on the gestational

age, birth weight and length, and maternal smoking during pregnancy
was acquired from the medical birth registers of the university
hospitals.

Statistical methods
One-factor ANOVA or t test was used to study the differences in
maternal nitrate/nitrite intake and background variables. Maternal
age, BMI (in kg/m2) in early pregnancy, and weight gain rate during
pregnancy were categorized into quartiles or tertiles (BMI) for the
analysis. Maternal intake of nitrate and nitrite was analyzed as a
continuous variable. Cox proportional hazards regression was applied
to estimate associations between maternal intake of nitrates and
nitrites and the risk of islet autoimmunity and type 1 diabetes in the
offspring. Analyses were adjusted for energy using Willett’s residual
method (36), maternal education, child’s genetic susceptibility to type
1 diabetes, and family history of type 1 diabetes. In a second model,
maternal intake of dietary antioxidants (vitamin C, vitamin E, and
selenium) was used as additional adjustments. Furthermore, we tested
whether protein intake modifies the association between both nitrate
and nitrite intakes and the development of type 1 diabetes outcomes,
including the interaction term protein × nitrate/nitrite in the Cox
proportional hazards regression models. SAS software version 9.3
(SAS Institute) was used in the outcome analyses. Analyses concerning
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(10). Besides endogenous formation,N-nitroso compounds also
occur in foods such as processed meats and beer (11). In vitro,
animal, and observational studies suggest that high intake of
nitrate, nitrite, and N-nitroso compounds from the diet could
increase the risk of type 1 diabetes (8, 12, 13). Ecological surveys
and case-control studies in humans assessing intake of nitrate
and nitrite from drinking water have given inconsistent results
(14). Case-control studies have suggested that high dietary
intake of nitrites (15, 16) and N-nitroso compounds (15) in
childhood could increase the risk of type 1 diabetes, but results
are inconsistent (17).

High consumption of red meat and processed meat during
childhood could increase the risk of type 1 diabetes due to high
intake of nitrite and N-nitroso compounds (18–20). In a case-
control study, the risk of type 1 diabetes was higher in children
whose intake of both N-nitroso compounds and protein from
meat was high in comparison to only high intake of N-nitroso
compounds (15). Undigested protein residues in the gut are
converted to nitrosatable compounds, such as phenols, indoles,
ammonia, amines, and amides, via microbial fermentation.
When these compounds react with a nitrosating compound such
as nitrite, it could enhance formation of N-nitroso compounds.
(21).

High maternal intake of nitrite during pregnancy might also
increase the risk of type 1 diabetes in the offspring (16), but
this has not been assessed in prospective studies. The plasma
nitrite concentration of a newborn infant is lower than that
of an adult, but before birth, the maternal and fetal blood
nitrite concentration is similar due to passive exchange of anions
across the placenta (22). Thus, high maternal nitrate and nitrite
intakes could increase maternal plasma nitrite concentration
and expose the fetus to high nitrite concentrations. However,
little is still known about the regulation of nitrite exchange
via the placenta. In a prospective cohort study, maternal intake
of red meat and processed meat products during pregnancy
was not associated with islet autoimmunity or type 1 diabetes
(23), but whether nitrate and nitrite per se increase the risk
has not been explored in prospective studies. Furthermore,
whether maternal intake protein modifies the association
between maternal nitrate or nitrite intakes and the risk of
type 1 diabetes development in offspring has not been studied.
As dietary antioxidants such as vitamin C and vitamin E
inhibit the formation of N-nitroso compounds from nitrate
and nitrite, they were used as putative confounders in the
analysis (24, 25).
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The aim of this prospective birth cohort study was to investi-
gate associations between the maternal intake of dietary nitrate
and nitrite during pregnancy and the risk of islet autoimmunity
and type 1 diabetes in children genetically susceptible to type 1
diabetes. Furthermore, we explored whether maternal protein
intake modifies the association between nitrate and nitrite
intakes and type 1 diabetes outcomes.

Subjects and Methods
Subjects
The present study was a part of the Type 1 Diabetes Prediction and
Prevention (DIPP) nutrition study. The DIPP nutrition study is a part
of the larger DIPP study, a multidisciplinary prospective population-
based cohort study, in which all newborn infants at Oulu, Tampere,
and Turku University Hospitals in Finland are screened for human
leukocyte antigen class II histocompatibility antigen, DQ beta 1 (HLA-
DQB1)-conferred susceptibility to type 1 diabetes using cord blood
samples provided that the parents give their informed consent (26).
All infants carrying a high or moderate genetic risk are invited to a
follow-up study. Follow-up visits were scheduled for 3, 6, 12, 18, and
24 mo and thereafter annually up to 15 y of age or at the onset of
type 1 diabetes. The present study comprises mothers of children born
between October 1997 and September 2004 in the Oulu and Tampere
University Hospitals. The present report includes 4887 children with
data on islet autoimmunity and 4943 children with data on type 1
diabetes. Maternal diet during pregnancy was assessed by a FFQ, and
data were available for 4879 pregnancies due to twin pregnancies. The
flowchart of participation is presented in Figure 1. The study adheres to
the Declaration of Helsinki, and the local ethics committees approved
the study protocol. Families gave their written informed consent for the
genetic testing of the newborn infant and for their participation in the
follow-up study.

Islet cell antibodies (ICAs) were screened at 3- to 12-mo intervals
up to 15 y of age (27). If a participant was observed to test positive
for ICAs, all available samples from such a subject were analyzed for
insulin autoantibodies, glutamic acid decarboxylase, and islet antigen 2
autoantibodies. Islet autoimmunity was defined by repeated positivity
for ICAs and at least one other autoantibody. Type 1 diabetes was
defined according to World Health Organization criteria (28).

Genetic methods
Human leukocyte antigen DQ genotyping using panels of sequence-
specific oligonucleotide probes has been described previously (26).
The HLA-DQB1 (∗02/∗03:02) genotype represents “high” and HLA-
DQB1∗03:02/x (x �=∗02, ∗03:01, ∗06:02) indicates “moderate” risk for
type 1 diabetes.

Dietary methods
The mothers completed a validated 181-item semiquantitative FFQ
concerning their diet during pregnancy (29). The FFQs were mailed
to the mothers after delivery and checked at the child’s 3-mo follow-
up visit. Mothers were asked retrospectively after delivery to describe
their diet during the eighth month of pregnancy, which is the last
month preceding maternity leave in Finland (29). The FFQ comprised
a list of 181 food items and mixed dishes. Open-frequency categories
were used in increasing order: not at all and number of times per
month, week, or day. The serving sizes chosen for each item were
based on commonly used portions identified during earlier Finnish
dietary studies, and for some foods (e.g., eggs and beverages), natural
units were used. Information about supplement use during the whole
pregnancy was collected. Mothers were instructed to record the dietary
supplements with brand names; manufacturers of the supplements;
amounts of supplements per day, week, or month; and the month of
pregnancy when the supplements were used.

Maternal individual nutrient intakes were calculated using the data
gathered by FFQs. The calculation was made with the in-house software
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(Finessi) of the Finnish Institute for Health and Welfare using the
Finnish national food composition database (Fineli) as the source of
food composition data (30). Energy from dietary fiber was included
in the energy from carbohydrates and in the total energy. FFQs with
>10 missing items were excluded. Questionable values were double-
checked on the original FFQ and the database.

Finnish Customs Laboratory and Finnish Food Authority analyzed
nitrate and nitrite values of various vegetables and meat products
during 2008–2012 (9, 31). The data of these analyses were used
to add nitrate and nitrite values to the respective food items in
the Fineli database. The nitrate or nitrite values of foods, which
were not analyzed in the abovementioned analyses, were determined
from scientific literature (32–35). The latest scientific literature from
2000 onward had the highest priority followed by literature from
1980–2000. Analytical values representing predominantly European
food items were preferred. Values not found from literature were
derived from aggregation, recipe calculation, or imputation from similar
foods.

Sociodemographic characteristics
Information on type 1 diabetes status of the first-degree relatives,
child sex, and maternal education was collected from parents after
delivery using a structured questionnaire. Information on the gestational

age, birth weight and length, and maternal smoking during pregnancy
was acquired from the medical birth registers of the university
hospitals.

Statistical methods
One-factor ANOVA or t test was used to study the differences in
maternal nitrate/nitrite intake and background variables. Maternal
age, BMI (in kg/m2) in early pregnancy, and weight gain rate during
pregnancy were categorized into quartiles or tertiles (BMI) for the
analysis. Maternal intake of nitrate and nitrite was analyzed as a
continuous variable. Cox proportional hazards regression was applied
to estimate associations between maternal intake of nitrates and
nitrites and the risk of islet autoimmunity and type 1 diabetes in the
offspring. Analyses were adjusted for energy using Willett’s residual
method (36), maternal education, child’s genetic susceptibility to type
1 diabetes, and family history of type 1 diabetes. In a second model,
maternal intake of dietary antioxidants (vitamin C, vitamin E, and
selenium) was used as additional adjustments. Furthermore, we tested
whether protein intake modifies the association between both nitrate
and nitrite intakes and the development of type 1 diabetes outcomes,
including the interaction term protein × nitrate/nitrite in the Cox
proportional hazards regression models. SAS software version 9.3
(SAS Institute) was used in the outcome analyses. Analyses concerning
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TABLE 1 Nitrate and nitrite intakes of mothers during month 8 of pregnancy, stratified by various characteristics, Type 1 Diabetes
Prediction and Prevention nutrition study, Finland1

Variable n Nitrate, mg/d P value2 Nitrite, mg/d P value2

All mothers 4879 151 ± 97.4 3.00 ± 1.06
Age, y <0.001 <0.001
<24 926 127 ± 90.0 2.93 ± 1.12
25–29 1700 148 ± 96.4 2.94 ± 1.05
30–34 1412 159 ± 94.6 3.04 ± 1.04
≥35 841 172 ± 105 3.12 ± 1.04
Missing 0

BMI in early pregnancy, kg/m2 0.74 <0.001
<25 3025 150 ± 94.4 2.95 ± 1.02
25–29.9 1123 152 ± 90.2 3.07 ± 1.10
≥30 434 154 ± 119 3.13 ± 1.13
Missing 297

Weight gain rate, g/wk 0.48 0.78
First quarter<0.33 1136 153 ± 104 3.01 ± 1.11
Second quarter 0.33–0.41 1137 154 ± 94.5 2.98 ± 1.06
Third quarter 0.42–0.51 1137 149 ± 92.0 2.98 ± 1.01
Fourth quarter≥0.52 1136 148 ± 92.0 3.02 ± 1.04
Missing 333

Vocational education3 <0.001 0.001
None 294 115 ± 79.7 3.06 ± 1.14
Vocational school or course 1291 139 ± 96.0 3.05 ± 1.18
Secondary vocational education 2067 150 ± 93.4 3.02 ± 1.05
University studies or degree 1097 170 ± 104 2.89 ± 0.89
Missing 130

Smoking during pregnancy <0.001 0.91
Yes 467 120 ± 83.8 3.00 ± 1.20
No 4246 154 ± 98.1 3.00 ± 1.05
Missing 166

Diabetes4 <0.001 0.003
Yes 164 187 ± 134 3.24 ± 1.18
No 4611 150 ± 95.4 2.99 ± 1.06
Missing 103

1Values are means ± SDs.
2P values for difference between groups from one-factor ANOVA or t test.
3At the time of birth.
4Data on maternal diabetes from questionnaire completed after birth. Type of diabetes not specified.

background characteristics were done using IBM SPSS Statistics version
25.0 (IBM Corporation). Statistical significance was set at 2-sided
P < 0.05.

Results

Overall, 312 children (6.8%) developed islet autoimmunity at a
median (IQR) age of 3.5 (1.7–6.6) y, and 178 (3.6%) developed
type 1 diabetes at a median (IQR) age of 7.1 (4.3–10.6) y during
the 15-y follow-up. During the autoantibody follow-up of 4887
participants, the dropout rates were 279 children (5.7%) at 1 y
and 1415 children (30%) at 5-y follow-up.Mean (SD) maternal
intake of nitrate was 151 (97.4) mg/d and nitrite 3.00 (1.06)
mg/d (Table 1). Intake of nitrate was higher in older mothers,
nonsmokers, and well-educated mothers than younger mothers,
smokers, and mothers with poor education (Table 1). Intake of
nitrite was higher in older mothers, well-educated mothers, and
mothers with high BMI.

The main sources of nitrate were leaf vegetables (78.3 mg/d;
51.7% of total intake), root vegetables (17.9 mg/d; 11.8%), and
fruit vegetables (11.9 mg/d; 7.9%). The main sources of nitrite

were cereals 1.48 mg/d (49.2%) followed by processed meat
products (0.92 mg/d; 30.6%) (Table 2).

Maternal intake of nitrate and nitrite during pregnancy
was not associated with child’s risk of islet autoimmunity or
type 1 diabetes in an unadjusted model (not shown) or in a
model adjusted for energy by Willett’s residual method, sex,
family history of diabetes, and HLA genotype (Table 3). The
results remained similar in a model that was further adjusted
for the intake of dietary antioxidants (vitamin C, vitamin E,
and selenium) (Table 3). Maternal intake of protein during
pregnancy did not modify the association between intake of
nitrate or nitrite and the risk of islet autoimmunity (nitrate
× protein interaction, P = 0.23; nitrite × protein interaction,
P = 0.99) or type 1 diabetes (nitrate × protein interaction,
P = 0.24; nitrite × protein interaction, P = 0.86).

Discussion

In our prospective cohort, the maternal dietary intake of nitrate
and nitrite during pregnancy was not associated with the risk of
islet autoimmunity or type 1 diabetes in the offspring.Maternal
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TABLE 2 Maternal intake of nitrate and nitrite during pregnancy from food groups, Type 1 Diabetes Prediction and Prevention
nutrition study, Finland1

Food groups Nitrate mg/d % of total Nitrite mg/d % of total

Fruit and berries2 8.63 ± 6.69 5.70 0.05 ± 0.07 1.59
Fruit juices 5.46 ± 6.82 3.61 0 ± 0 0
Other sweetened fruit drinks 0.76 ± 1.39 0.50 0.03 ± 0.06 1.05
Vegetables

Leaf vegetables 78.3 ± 79.5 51.7 0.05 ± 0.05 1.59
Fruit vegetables 11.9 ± 9.93 7.88 0.12 ± 0.11 3.86
Root vegetables 17.9 ± 17.7 11.8 0.04 ± 0.04 1.23
Other vegetables3 8.07 ± 10.1 5.33 0.03 ± 0.04 1.11

Legumes, nuts, seeds, and soy products 0.31 ± 1.44 0.21 <0.01 ± 0.01 0.08
Potatoes and potato-based products 7.28 ± 3.45 4.81 0.14 ± 0.07 4.70
Dairy products 0.89 ± 0.65 0.59 0.05 ± 0.04 1.65
Cereals 8.46 ± 3.15 5.59 1.48 ± 0.55 49.2
Egg and egg dishes 0 ± 0 0 0 ± 0 0
Fish and fish dishes 0.16 ± 0.27 0.10 0.02 ± 0.03 0.68
Meat and meat dishes (beef, pork, lamb, poultry, game)

Unprocessed meat 0.45 ± 0.23 0.30 0.06 ± 0.03 2.05
Processed meat4 2.19 ± 1.58 1.44 0.92 ± 0.66 30.6

Other foods5 0.67 ± 0.55 0.44 0.02 ± 0.01 0.64
All foods 151 ± 97.4 100 3.00 ± 1.06 100

1Mean ± SD intake of 4879 mothers.
2Including canned and dried fruit and berries.
3Cabbages, onions, mushrooms, and canned vegetables.
4Sausages and cured meat products.
5Fats, oils, beverages, sugars, sweets, condiments, and dietary supplements.

intake of protein did not modify the association between intake
of nitrate or nitrite and the risk of islet autoimmunity or type 1
diabetes.

A strength of our study is that it was conducted in a well-
defined birth cohort of individuals with increased genetic risk
of type 1 diabetes. Our study is, as far as we are aware, the
first study to explore prospectively whether maternal intake of
nitrate and nitrite during pregnancy is associated with type 1
diabetes development as previous studies have been ecological
surveys or case-control studies (14). Furthermore, our study
explored the association between maternal nitrate and nitrite
intakes and the risk of islet autoimmunity, which has not been
studied previously, to our knowledge. We used a regularly
updated national food composition database in which nitrate
and nitrite contents were updated specifically for the current
study. The validation study of the FFQ used in our survey
suggested that the FFQ is appropriate for estimation of nitrate
and nitrite intakes from food. Intake calculated from FFQ
compared with food records showed a correlation of 0.63
for nitrate and 0.79 for nitrite (29). In addition, our study
took into account the intake of dietary antioxidants, which

could confound association between nitrate and risk of type 1
diabetes-related outcomes (15, 37–39).

A major limitation in our study was the imprecision in
the calculation of nitrate content from vegetables. The food
composition database used in the current study does not
take into account the cooking or food preparation losses
for nitrate or nitrite (9). Washing leaf vegetables decreases
the nitrate content ∼10–15% while cooking decreases the
nitrate content in vegetables and potatoes ∼51% depending on
cooking method (40). Since nitrate is water soluble, consuming
or discarding the cooking liquid also affects the exposure. Our
food composition database also did not include nitrate or nitrite
content of drinking water. Another limitation in our study was
that the children’s diet during infancy was not available for the
current study.

In our study, maternal intake of nitrate and nitrite during
pregnancy was not associated with the risk of type 1 diabetes
development, which is not in line with the previous Childhood
Diabetes in Finland (DiMe) case-control study (16). In addition
to the different study design, the maternal intake of nitrate
and nitrite focused on a different time period and was asked

TABLE 3 HRs (95% CIs) for the association between maternal intake of nitrate and nitrite during pregnancy and the risk of islet
autoimmunity and type 1 diabetes in the offspring1

Islet autoimmunity Type 1 diabetes

Characteristic Model 1 n= 4706 (305)2 Model 2 n= 4706 (305)2 Model 1 n= 4757 (174)2 Model 2 n= 4757 (174)2

Nitrate from diet
per 1 SD 0.99 (0.88, 1.11) 1.00 (0.88, 1.14) 1.02 (0.88, 1.17) 1.02 (0.87, 1.20)

Nitrite from diet
per 1 SD 1.03 (0.92, 1.15) 1.03 (0.92, 1.16) 0.97 (0.83, 1.12) 0.99 (0.85, 1.16)

1Values are HRs (95% CIs) analyzed using Cox proportional hazard regression model. Model 1: adjusted for energy with residual method, sex, family history of diabetes, and
human leukocyte antigen genotype. Model 2: like model 1 and further adjusted for the intakes of vitamin C, vitamin E, and selenium.
2n represents total number of children, and number in parentheses represents numbers of children with the outcome.
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TABLE 1 Nitrate and nitrite intakes of mothers during month 8 of pregnancy, stratified by various characteristics, Type 1 Diabetes
Prediction and Prevention nutrition study, Finland1

Variable n Nitrate, mg/d P value2 Nitrite, mg/d P value2

All mothers 4879 151 ± 97.4 3.00 ± 1.06
Age, y <0.001 <0.001
<24 926 127 ± 90.0 2.93 ± 1.12
25–29 1700 148 ± 96.4 2.94 ± 1.05
30–34 1412 159 ± 94.6 3.04 ± 1.04
≥35 841 172 ± 105 3.12 ± 1.04
Missing 0

BMI in early pregnancy, kg/m2 0.74 <0.001
<25 3025 150 ± 94.4 2.95 ± 1.02
25–29.9 1123 152 ± 90.2 3.07 ± 1.10
≥30 434 154 ± 119 3.13 ± 1.13
Missing 297

Weight gain rate, g/wk 0.48 0.78
First quarter<0.33 1136 153 ± 104 3.01 ± 1.11
Second quarter 0.33–0.41 1137 154 ± 94.5 2.98 ± 1.06
Third quarter 0.42–0.51 1137 149 ± 92.0 2.98 ± 1.01
Fourth quarter≥0.52 1136 148 ± 92.0 3.02 ± 1.04
Missing 333

Vocational education3 <0.001 0.001
None 294 115 ± 79.7 3.06 ± 1.14
Vocational school or course 1291 139 ± 96.0 3.05 ± 1.18
Secondary vocational education 2067 150 ± 93.4 3.02 ± 1.05
University studies or degree 1097 170 ± 104 2.89 ± 0.89
Missing 130

Smoking during pregnancy <0.001 0.91
Yes 467 120 ± 83.8 3.00 ± 1.20
No 4246 154 ± 98.1 3.00 ± 1.05
Missing 166

Diabetes4 <0.001 0.003
Yes 164 187 ± 134 3.24 ± 1.18
No 4611 150 ± 95.4 2.99 ± 1.06
Missing 103

1Values are means ± SDs.
2P values for difference between groups from one-factor ANOVA or t test.
3At the time of birth.
4Data on maternal diabetes from questionnaire completed after birth. Type of diabetes not specified.

background characteristics were done using IBM SPSS Statistics version
25.0 (IBM Corporation). Statistical significance was set at 2-sided
P < 0.05.

Results

Overall, 312 children (6.8%) developed islet autoimmunity at a
median (IQR) age of 3.5 (1.7–6.6) y, and 178 (3.6%) developed
type 1 diabetes at a median (IQR) age of 7.1 (4.3–10.6) y during
the 15-y follow-up. During the autoantibody follow-up of 4887
participants, the dropout rates were 279 children (5.7%) at 1 y
and 1415 children (30%) at 5-y follow-up.Mean (SD) maternal
intake of nitrate was 151 (97.4) mg/d and nitrite 3.00 (1.06)
mg/d (Table 1). Intake of nitrate was higher in older mothers,
nonsmokers, and well-educated mothers than younger mothers,
smokers, and mothers with poor education (Table 1). Intake of
nitrite was higher in older mothers, well-educated mothers, and
mothers with high BMI.

The main sources of nitrate were leaf vegetables (78.3 mg/d;
51.7% of total intake), root vegetables (17.9 mg/d; 11.8%), and
fruit vegetables (11.9 mg/d; 7.9%). The main sources of nitrite

were cereals 1.48 mg/d (49.2%) followed by processed meat
products (0.92 mg/d; 30.6%) (Table 2).

Maternal intake of nitrate and nitrite during pregnancy
was not associated with child’s risk of islet autoimmunity or
type 1 diabetes in an unadjusted model (not shown) or in a
model adjusted for energy by Willett’s residual method, sex,
family history of diabetes, and HLA genotype (Table 3). The
results remained similar in a model that was further adjusted
for the intake of dietary antioxidants (vitamin C, vitamin E,
and selenium) (Table 3). Maternal intake of protein during
pregnancy did not modify the association between intake of
nitrate or nitrite and the risk of islet autoimmunity (nitrate
× protein interaction, P = 0.23; nitrite × protein interaction,
P = 0.99) or type 1 diabetes (nitrate × protein interaction,
P = 0.24; nitrite × protein interaction, P = 0.86).

Discussion

In our prospective cohort, the maternal dietary intake of nitrate
and nitrite during pregnancy was not associated with the risk of
islet autoimmunity or type 1 diabetes in the offspring.Maternal
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TABLE 2 Maternal intake of nitrate and nitrite during pregnancy from food groups, Type 1 Diabetes Prediction and Prevention
nutrition study, Finland1

Food groups Nitrate mg/d % of total Nitrite mg/d % of total

Fruit and berries2 8.63 ± 6.69 5.70 0.05 ± 0.07 1.59
Fruit juices 5.46 ± 6.82 3.61 0 ± 0 0
Other sweetened fruit drinks 0.76 ± 1.39 0.50 0.03 ± 0.06 1.05
Vegetables

Leaf vegetables 78.3 ± 79.5 51.7 0.05 ± 0.05 1.59
Fruit vegetables 11.9 ± 9.93 7.88 0.12 ± 0.11 3.86
Root vegetables 17.9 ± 17.7 11.8 0.04 ± 0.04 1.23
Other vegetables3 8.07 ± 10.1 5.33 0.03 ± 0.04 1.11

Legumes, nuts, seeds, and soy products 0.31 ± 1.44 0.21 <0.01 ± 0.01 0.08
Potatoes and potato-based products 7.28 ± 3.45 4.81 0.14 ± 0.07 4.70
Dairy products 0.89 ± 0.65 0.59 0.05 ± 0.04 1.65
Cereals 8.46 ± 3.15 5.59 1.48 ± 0.55 49.2
Egg and egg dishes 0 ± 0 0 0 ± 0 0
Fish and fish dishes 0.16 ± 0.27 0.10 0.02 ± 0.03 0.68
Meat and meat dishes (beef, pork, lamb, poultry, game)

Unprocessed meat 0.45 ± 0.23 0.30 0.06 ± 0.03 2.05
Processed meat4 2.19 ± 1.58 1.44 0.92 ± 0.66 30.6

Other foods5 0.67 ± 0.55 0.44 0.02 ± 0.01 0.64
All foods 151 ± 97.4 100 3.00 ± 1.06 100

1Mean ± SD intake of 4879 mothers.
2Including canned and dried fruit and berries.
3Cabbages, onions, mushrooms, and canned vegetables.
4Sausages and cured meat products.
5Fats, oils, beverages, sugars, sweets, condiments, and dietary supplements.

intake of protein did not modify the association between intake
of nitrate or nitrite and the risk of islet autoimmunity or type 1
diabetes.

A strength of our study is that it was conducted in a well-
defined birth cohort of individuals with increased genetic risk
of type 1 diabetes. Our study is, as far as we are aware, the
first study to explore prospectively whether maternal intake of
nitrate and nitrite during pregnancy is associated with type 1
diabetes development as previous studies have been ecological
surveys or case-control studies (14). Furthermore, our study
explored the association between maternal nitrate and nitrite
intakes and the risk of islet autoimmunity, which has not been
studied previously, to our knowledge. We used a regularly
updated national food composition database in which nitrate
and nitrite contents were updated specifically for the current
study. The validation study of the FFQ used in our survey
suggested that the FFQ is appropriate for estimation of nitrate
and nitrite intakes from food. Intake calculated from FFQ
compared with food records showed a correlation of 0.63
for nitrate and 0.79 for nitrite (29). In addition, our study
took into account the intake of dietary antioxidants, which

could confound association between nitrate and risk of type 1
diabetes-related outcomes (15, 37–39).

A major limitation in our study was the imprecision in
the calculation of nitrate content from vegetables. The food
composition database used in the current study does not
take into account the cooking or food preparation losses
for nitrate or nitrite (9). Washing leaf vegetables decreases
the nitrate content ∼10–15% while cooking decreases the
nitrate content in vegetables and potatoes ∼51% depending on
cooking method (40). Since nitrate is water soluble, consuming
or discarding the cooking liquid also affects the exposure. Our
food composition database also did not include nitrate or nitrite
content of drinking water. Another limitation in our study was
that the children’s diet during infancy was not available for the
current study.

In our study, maternal intake of nitrate and nitrite during
pregnancy was not associated with the risk of type 1 diabetes
development, which is not in line with the previous Childhood
Diabetes in Finland (DiMe) case-control study (16). In addition
to the different study design, the maternal intake of nitrate
and nitrite focused on a different time period and was asked

TABLE 3 HRs (95% CIs) for the association between maternal intake of nitrate and nitrite during pregnancy and the risk of islet
autoimmunity and type 1 diabetes in the offspring1

Islet autoimmunity Type 1 diabetes

Characteristic Model 1 n= 4706 (305)2 Model 2 n= 4706 (305)2 Model 1 n= 4757 (174)2 Model 2 n= 4757 (174)2

Nitrate from diet
per 1 SD 0.99 (0.88, 1.11) 1.00 (0.88, 1.14) 1.02 (0.88, 1.17) 1.02 (0.87, 1.20)

Nitrite from diet
per 1 SD 1.03 (0.92, 1.15) 1.03 (0.92, 1.16) 0.97 (0.83, 1.12) 0.99 (0.85, 1.16)

1Values are HRs (95% CIs) analyzed using Cox proportional hazard regression model. Model 1: adjusted for energy with residual method, sex, family history of diabetes, and
human leukocyte antigen genotype. Model 2: like model 1 and further adjusted for the intakes of vitamin C, vitamin E, and selenium.
2n represents total number of children, and number in parentheses represents numbers of children with the outcome.
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later in life when the offspring had developed type 1 diabetes.
In the DiMe study, the consumption frequency of the most
important dietary sources of nitrate and nitrite was inquired,
whereas the current study included detailed calculation of
total nitrate and nitrite intakes using a recently updated food
composition database. In the DiMe study, maternal intake of
nitrate and nitrite from diet focused on the time of conception
while the FFQ in the current study represented the dietary
intake during the eighth month of pregnancy. Our validation
study showed that mothers were able to report their food
consumption reliably for the eighth month of pregnancy even
if the assessment was done after delivery (29). The eighth
month of pregnancy is a very well-identifiable time point
for Finnish pregnant women as most of the women work
and are requested to start the pregnancy leave 1 mo before
estimated delivery. For a person, it is difficult to estimate food
consumption during periods of changing diet like during the
whole pregnancy as nausea, for example, in the beginning of
pregnancy is common. We think that this eighth month of
pregnancy reflects also earlier pregnancy. Furthermore, it is not
known whether there are critical time points during pregnancy
that are related to the development of autoimmune diseases in
offspring.

The maternal dietary protein intake did not modify the
risk between nitrate or nitrite intakes and type 1 diabetes
outcomes in our study. A previous Swedish case-control study
suggested that the combination of high intake of N-nitroso
compounds and protein from meat in childhood could further
increase the risk of type 1 diabetes in comparison to high
intake of N-nitroso compounds alone (15). Our study assessed
the intake of nitrate and nitrite, not N-nitroso compounds,
and thus the exposure was different, which might contribute
to different outcomes. Furthermore, we explored total protein
intake instead of protein from specific dietary sources. In
the European Food Safety Authority report, the median total
exposure to volatile nitrosamines from meat products was
2.5 ng/kg of body weight (BW) per day in Finnish children aged
3–9 y, which was above the European median, 2.0 ng/kg (41). In
the Finnish adult population, the intake was 0.9 ng/kg, which is
same as the European median (41). Furthermore, we found no
association between maternal consumption of processed meat
during pregnancy and the risk of type 1 diabetes outcomes in
our previous study (23). Thus, the childhood consumption of
processed meat products may play a bigger role than maternal
consumption.

In our study, the mean daily nitrite intake was 3 mg, and
the last measured mean maternal weight during pregnancy was
79 kg,which corresponds to 0.04 mg/kg BW/d. This is similar to
a recent European Food Safety Authority report of 0.04 mg/kg
BW/d in a Finnish adult population (41). In our study, the
mean nitrate intake was rather high (151 mg/d) compared with
previous studies in adults. An earlier Finnish study reported a
nitrate intake of 77 mg/d based on dietary history interview
method (42). In a Danish survey, mean nitrate intake was
61 mg/d, and in a Dutch study, 80 mg/d was measured from
duplicate 24-h diet samples (43, 44). Different nitrate intake
estimates between studies may be explained by methodologic
differences.

In our study, the main sources of nitrate were leaf and root
vegetables, which contributed to more than three-fourths of the
daily intake. In our previous study, the maternal consumption of
vegetables during pregnancy was not associated with the risk of
islet autoimmunity (5), which is in line with our current study.
Surprisingly, the main source of nitrite was cereals, comprising

almost half of the daily intake, followed by processed meat,
with 31% of the daily intake. Maternal consumption of cereals
during pregnancy was not associated with the risk of islet
autoimmunity in our previous study (5). However, 2 recent
studies have observed that maternal (45) and childhood (46)
intake of gluten-containing cereals might increase the risk of
type 1 diabetes development. Although the nitrite content in
cereals is lower than in processed meats, the proportion of
cereals in the diet is higher than of that of meat in DIPP study
mothers (47). Although processed meats are generally suggested
as the main source of nitrite (41, 48), cereals also have been
observed to be the main source of nitrite in the adult population
(49). Studies analyzing nitrate and nitrite content in cereals
in Europe are rather limited, and nitrite content in cereals in
Finland has not been analyzed, to our knowledge. Therefore,
we cannot rule out the possibility of overestimation.

Our study did not include the contents of N-nitroso
compounds in foods as the Fineli food composition database
used in our study does not contain these values. In addition
to endogenous formation, the direct exposure to N-nitroso
compounds from diet and drinking water could also influence
the risk of type 1 diabetes (15, 19). Food preparation can induce
N-nitroso compound formation in the food before consumption
(e.g., cooking nitrite-containing bacon at high temperature)
(50). Thus, future studies should consider both endogenous
and exogenous exposure to these compounds. Furthermore, the
maternal intake of N-nitroso compounds in association with
type 1 diabetes in offspring has not been previously studied, to
our knowledge.

In our study, we could not consider the maternal use
of nitrosatable drugs. These drugs, along with nitrosating
compounds such as nitrite from the diet, may enhance the
endogenous formation of N-nitroso compounds. Prenatal use
of these drugs has been associated with several unfavorable
pregnancy outcomes (51–53), but their association with type
1 diabetes development in offspring has not been studied,
to our knowledge. Nitrosatable drugs include antibiotics and
antihistamines, for example. Since these drugs are rather
commonly used, their use during pregnancy might be important
to consider in future studies.

In conclusion, our prospective study suggests that maternal
intake of nitrate and nitrite is not associated with the risk of
islet autoimmunity or type 1 diabetes in the offspring.
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later in life when the offspring had developed type 1 diabetes.
In the DiMe study, the consumption frequency of the most
important dietary sources of nitrate and nitrite was inquired,
whereas the current study included detailed calculation of
total nitrate and nitrite intakes using a recently updated food
composition database. In the DiMe study, maternal intake of
nitrate and nitrite from diet focused on the time of conception
while the FFQ in the current study represented the dietary
intake during the eighth month of pregnancy. Our validation
study showed that mothers were able to report their food
consumption reliably for the eighth month of pregnancy even
if the assessment was done after delivery (29). The eighth
month of pregnancy is a very well-identifiable time point
for Finnish pregnant women as most of the women work
and are requested to start the pregnancy leave 1 mo before
estimated delivery. For a person, it is difficult to estimate food
consumption during periods of changing diet like during the
whole pregnancy as nausea, for example, in the beginning of
pregnancy is common. We think that this eighth month of
pregnancy reflects also earlier pregnancy. Furthermore, it is not
known whether there are critical time points during pregnancy
that are related to the development of autoimmune diseases in
offspring.

The maternal dietary protein intake did not modify the
risk between nitrate or nitrite intakes and type 1 diabetes
outcomes in our study. A previous Swedish case-control study
suggested that the combination of high intake of N-nitroso
compounds and protein from meat in childhood could further
increase the risk of type 1 diabetes in comparison to high
intake of N-nitroso compounds alone (15). Our study assessed
the intake of nitrate and nitrite, not N-nitroso compounds,
and thus the exposure was different, which might contribute
to different outcomes. Furthermore, we explored total protein
intake instead of protein from specific dietary sources. In
the European Food Safety Authority report, the median total
exposure to volatile nitrosamines from meat products was
2.5 ng/kg of body weight (BW) per day in Finnish children aged
3–9 y, which was above the European median, 2.0 ng/kg (41). In
the Finnish adult population, the intake was 0.9 ng/kg, which is
same as the European median (41). Furthermore, we found no
association between maternal consumption of processed meat
during pregnancy and the risk of type 1 diabetes outcomes in
our previous study (23). Thus, the childhood consumption of
processed meat products may play a bigger role than maternal
consumption.

In our study, the mean daily nitrite intake was 3 mg, and
the last measured mean maternal weight during pregnancy was
79 kg,which corresponds to 0.04 mg/kg BW/d. This is similar to
a recent European Food Safety Authority report of 0.04 mg/kg
BW/d in a Finnish adult population (41). In our study, the
mean nitrate intake was rather high (151 mg/d) compared with
previous studies in adults. An earlier Finnish study reported a
nitrate intake of 77 mg/d based on dietary history interview
method (42). In a Danish survey, mean nitrate intake was
61 mg/d, and in a Dutch study, 80 mg/d was measured from
duplicate 24-h diet samples (43, 44). Different nitrate intake
estimates between studies may be explained by methodologic
differences.

In our study, the main sources of nitrate were leaf and root
vegetables, which contributed to more than three-fourths of the
daily intake. In our previous study, the maternal consumption of
vegetables during pregnancy was not associated with the risk of
islet autoimmunity (5), which is in line with our current study.
Surprisingly, the main source of nitrite was cereals, comprising

almost half of the daily intake, followed by processed meat,
with 31% of the daily intake. Maternal consumption of cereals
during pregnancy was not associated with the risk of islet
autoimmunity in our previous study (5). However, 2 recent
studies have observed that maternal (45) and childhood (46)
intake of gluten-containing cereals might increase the risk of
type 1 diabetes development. Although the nitrite content in
cereals is lower than in processed meats, the proportion of
cereals in the diet is higher than of that of meat in DIPP study
mothers (47). Although processed meats are generally suggested
as the main source of nitrite (41, 48), cereals also have been
observed to be the main source of nitrite in the adult population
(49). Studies analyzing nitrate and nitrite content in cereals
in Europe are rather limited, and nitrite content in cereals in
Finland has not been analyzed, to our knowledge. Therefore,
we cannot rule out the possibility of overestimation.

Our study did not include the contents of N-nitroso
compounds in foods as the Fineli food composition database
used in our study does not contain these values. In addition
to endogenous formation, the direct exposure to N-nitroso
compounds from diet and drinking water could also influence
the risk of type 1 diabetes (15, 19). Food preparation can induce
N-nitroso compound formation in the food before consumption
(e.g., cooking nitrite-containing bacon at high temperature)
(50). Thus, future studies should consider both endogenous
and exogenous exposure to these compounds. Furthermore, the
maternal intake of N-nitroso compounds in association with
type 1 diabetes in offspring has not been previously studied, to
our knowledge.

In our study, we could not consider the maternal use
of nitrosatable drugs. These drugs, along with nitrosating
compounds such as nitrite from the diet, may enhance the
endogenous formation of N-nitroso compounds. Prenatal use
of these drugs has been associated with several unfavorable
pregnancy outcomes (51–53), but their association with type
1 diabetes development in offspring has not been studied,
to our knowledge. Nitrosatable drugs include antibiotics and
antihistamines, for example. Since these drugs are rather
commonly used, their use during pregnancy might be important
to consider in future studies.

In conclusion, our prospective study suggests that maternal
intake of nitrate and nitrite is not associated with the risk of
islet autoimmunity or type 1 diabetes in the offspring.
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Abstract: Our aim was to study the associations between maternal vitamin C and iron intake during
pregnancy and the offspring’s risk of developing islet autoimmunity and type 1 diabetes. The
study was a part of the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) prospective birth
cohort including children genetically at risk of type 1 diabetes born between 1997–2004. The diets of
4879 mothers in late pregnancy were assessed with a validated food frequency questionnaire. The
outcomes were islet autoimmunity and type 1 diabetes. Cox proportional hazards regression analysis
adjusted for energy, family history of diabetes, human leukocyte antigen (HLA) genotype and sex
was used for statistical analyses. Total intake of vitamin C or iron from food and supplements was not
associated with the risk of islet autoimmunity (vitamin C: HR 0.91: 95% CI (0.80, 1.03), iron: 0.98 (0.87,
1.10)) or type 1 diabetes (vitamin C: 1.01 (0.87, 1.17), iron: 0.92 (0.78, 1.08)), neither was the use of
vitamin C or iron supplements associated with the outcomes. In conclusion, no association was found
between maternal vitamin C or iron intake during pregnancy and the risk of islet autoimmunity or
type 1 diabetes in the offspring.

Keywords: pregnancy; nutrition; vitamin C; ascorbic acid; iron; islet autoimmunity; type 1 diabetes;
birth cohort
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Abstract: Our aim was to study the associations between maternal vitamin C and iron intake during
pregnancy and the offspring’s risk of developing islet autoimmunity and type 1 diabetes. The
study was a part of the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) prospective birth
cohort including children genetically at risk of type 1 diabetes born between 1997–2004. The diets of
4879 mothers in late pregnancy were assessed with a validated food frequency questionnaire. The
outcomes were islet autoimmunity and type 1 diabetes. Cox proportional hazards regression analysis
adjusted for energy, family history of diabetes, human leukocyte antigen (HLA) genotype and sex
was used for statistical analyses. Total intake of vitamin C or iron from food and supplements was not
associated with the risk of islet autoimmunity (vitamin C: HR 0.91: 95% CI (0.80, 1.03), iron: 0.98 (0.87,
1.10)) or type 1 diabetes (vitamin C: 1.01 (0.87, 1.17), iron: 0.92 (0.78, 1.08)), neither was the use of
vitamin C or iron supplements associated with the outcomes. In conclusion, no association was found
between maternal vitamin C or iron intake during pregnancy and the risk of islet autoimmunity or
type 1 diabetes in the offspring.

Keywords: pregnancy; nutrition; vitamin C; ascorbic acid; iron; islet autoimmunity; type 1 diabetes;
birth cohort
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1. Introduction

Dietary factors during the fetal period, infancy and childhood are implicated to trigger,
inhibit or modify the autoimmune processes leading to type 1 diabetes [1]. Vitamin C
(ascorbic acid) and iron are essential micronutrients that human body cannot produce,
and therefore, they are needed from the diet [2,3]. Vitamin C might have a protective role
against type 1 diabetes due to its antioxidant properties [4,5]. In contrast, an excessive
amount of iron might lead to the generation of oxygen radicals and increased inflammation
and, thus, increase the risk of type 1 diabetes [3,6]. However, prospective studies assessing
these nutrients in the disease process of type 1 diabetes are scarce.

In two retrospective case-control studies, the child’s intake of dietary vitamin C
was not associated with type 1 diabetes [7,8], whereas in one study, dietary vitamin C
supplementation was associated with decreased risk of type 1 diabetes [9]. A recent study
conducted by The Environmental Determinants of Diabetes in the Young (TEDDY) Study
group suggested that high plasma ascorbic acid status during childhood could decrease the
risk of islet autoimmunity [10]. The maternal intake of vitamin C during pregnancy and the
risk of islet autoimmunity have so far been analyzed only in the Finnish Type 1 Diabetes
Prediction and Prevention (DIPP) Nutrition Study by us [11]. The intake of vitamin C
from diet only or from diet and vitamin C supplementation combined was not associated
with the risk of developing islet autoimmunity. We or, to our knowledge, others have not
reported the association of maternal vitamin C intake with clinical type 1 diabetes before.

High cord blood iron concentration [12] and maternal use of iron supplementation
during pregnancy [13] have been linked to increased risk of type 1 diabetes. Mechanisms
are not yet known, but iron overload was suggested to generate reactive oxygen species that
might lead to beta-cell apoptosis or ferroptosis, i.e., cell death depended on iron [3]. Beta
cells are lacking sufficient antioxidant enzymes that are available in other tissues [14,15].
Vitamin C enhances the absorption of non-heme iron from diet [16]. Furthermore, in
pregnant women, the use of vitamin C supplements in addition to iron supplements has
increased maternal plasma iron status [17]. However, the interaction between vitamin C
and iron intake on the risk of type 1 diabetes development has not been studied previously.

Our aim was to study the associations between maternal intake of vitamin C and iron
during pregnancy as well as use of dietary supplements with vitamin C or iron on the risk
of islet autoimmunity and type 1 diabetes in a prospective birth cohort. We hypothesized
that high maternal vitamin C intake is associated with decreased risk, while high iron
intake is associated with increased risk of islet autoimmunity and type 1 diabetes in the
offspring. Since vitamin C enhances the absorption of iron, we also studied interaction
between maternal iron and vitamin C intake on the risk of outcomes.

2. Materials and Methods

The DIPP Study is a large population-based birth cohort study of children with
human leukocyte antigen (HLA)-conferred genetic risk of type 1 diabetes [18]. In the DIPP
Nutrition Study within the DIPP cohort, 7782 children born in the Tampere and Oulu
University Hospitals between October 1997 and September 2004 were invited for follow-
up. Children with the genotypes HLA-DQB1*02/*03:02 and DQB1*03:02/x (x stands for
alleles other than DQB1*02 or DQB1*06:02) were eligible for the follow-up. At the time of
screening, 99% of the Finnish population was of ethnic Finnish origin. Migrant children
with parents that could not speak either Finnish or Swedish and those with severe diseases
or anomalies were excluded. The children were invited to study visits at the age of 3, 6,
12, 18 and 24 months and then annually up to the age of 15 years or until type 1 diabetes
diagnosis. The visit interval of autoantibody positive children was 3 months. In the current
report, the inclusion criteria for the analyses was the available maternal dietary assessment.
Parents gave written informed consent for both genetic testing of their newborn infant
from cord blood sample and for participation in the follow-up. The study adheres to
the Declaration of Helsinki, and the ethics committees of Oulu and Tampere University
Hospitals approved the study protocol (ETL 97193M).
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2.1. Maternal Vitamin C and Iron Intake

The mothers were asked to report their diet during pregnancy with a validated
181-item semi-quantitative food frequency questionnaire (FFQ) [19]. These pregnancy
FFQs were sent to the mothers after delivery and checked at the 3-month follow-up
visit. Mothers were asked to answer retrospectively about their diet during the eighth
month of pregnancy (the last month preceding maternity leave in Finland) [19]. The
frequency (not at all, number of times per month, week or day) and the amounts (units
of common serving sizes) of consumed foods were inquired. General units were used
for some foods such as eggs and beverages. Mothers were also asked about the use of
nutritional supplements over the whole time of pregnancy. The name of supplement, the
manufacturer and the dosage per day, week or month were asked. The vitamin C and iron
intake from vitamin C and iron only supplements and multivitamin supplements were
combined in the calculation. Individual vitamin C and iron intakes were calculated based
on the Finnish Food Composition Database (Fineli) using the in-house software (Finessi)
of the Finnish Institute for Health and Welfare, Finland [20]. The nutrient intakes were
calculated from unprocessed vegetables and fruits, which does not consider the loss of
vitamin C due to processing and cooking. Energy from dietary fiber was included in the
total energy. FFQs with >10 missing items were excluded. Any implausible values were
double checked on the original FFQ and from the database.

2.2. Definiton of Type 1 Diabetes-Related Outcomes

Children were screened for islet cell autoantibodies (ICA) at intervals of 3–12 months
as described before [18]. When participant had seroconversion for ICA for the first time, all
of the previous and subsequent samples were analyzed for insulin autoantibodies (IAA),
glutamic acid decarboxylase antibodies (GADA) and islet antigen-2 antibodies (IA-2A). ICA
was quantified by a standard indirect immunofluorescence method, IAA, GADA and IA-2A
with specific radiobinding assays. Transplacentally transferred autoantibodies were not
considered as the child’s endogenous autoantibodies. The definition for islet autoimmunity
was repeated positively for ICA and at least one biochemical autoantibody (IAA, GADA,
IA-2A) or having type 1 diabetes (one child was diagnosed with type 1 diabetes without
information on autoantibody positivity). Data on the diagnosis of type 1 diabetes were
obtained in May 2015 from Finnish Pediatric Diabetes Register and University Hospitals.
The diagnosis of type 1 diabetes was defined according to World Health Organization
criteria [21]. In the present study, children were considered free from type 1 diabetes if
they were not found in the register. Of the children invited, two datasets were formed. The
islet autoimmunity cohort included 4887 children, and the type 1 diabetes cohort included
4943 children. Data on maternal diet during pregnancy were available for 4879 pregnancies,
as 64 mothers had twin pregnancies. The mothers who were invited to the study but
had insufficient data on maternal diet were more likely to be in the lowest or highest age
category, more likely to be smokers and had more previous deliveries and a less education
than those mothers with dietary data [22].

2.3. Genetic Methods

HLA-DQ was genotyped using panels of sequence-specific oligonucleotide probes,
as described before [18]. Genotypes HLA-DQB1 (*02/*03:02) represent “high” and HLA-
DQB1*03:02/x (x �= *02, *03:01, *06:02) “moderate” risk for type 1 diabetes.

2.4. Background Characteristics

Information on maternal education, diabetes (unspecified type) and family history
of diabetes among the first-degree relatives was collected with a questionnaire after the
delivery. Information on the offspring’s sex, maternal age and maternal smoking during
pregnancy was obtained from the birth registers of the hospitals. Maternal BMI was
determined from the mother’s weight at the first prenatal visit as described previously [23].
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1. Introduction

Dietary factors during the fetal period, infancy and childhood are implicated to trigger,
inhibit or modify the autoimmune processes leading to type 1 diabetes [1]. Vitamin C
(ascorbic acid) and iron are essential micronutrients that human body cannot produce,
and therefore, they are needed from the diet [2,3]. Vitamin C might have a protective role
against type 1 diabetes due to its antioxidant properties [4,5]. In contrast, an excessive
amount of iron might lead to the generation of oxygen radicals and increased inflammation
and, thus, increase the risk of type 1 diabetes [3,6]. However, prospective studies assessing
these nutrients in the disease process of type 1 diabetes are scarce.

In two retrospective case-control studies, the child’s intake of dietary vitamin C
was not associated with type 1 diabetes [7,8], whereas in one study, dietary vitamin C
supplementation was associated with decreased risk of type 1 diabetes [9]. A recent study
conducted by The Environmental Determinants of Diabetes in the Young (TEDDY) Study
group suggested that high plasma ascorbic acid status during childhood could decrease the
risk of islet autoimmunity [10]. The maternal intake of vitamin C during pregnancy and the
risk of islet autoimmunity have so far been analyzed only in the Finnish Type 1 Diabetes
Prediction and Prevention (DIPP) Nutrition Study by us [11]. The intake of vitamin C
from diet only or from diet and vitamin C supplementation combined was not associated
with the risk of developing islet autoimmunity. We or, to our knowledge, others have not
reported the association of maternal vitamin C intake with clinical type 1 diabetes before.

High cord blood iron concentration [12] and maternal use of iron supplementation
during pregnancy [13] have been linked to increased risk of type 1 diabetes. Mechanisms
are not yet known, but iron overload was suggested to generate reactive oxygen species that
might lead to beta-cell apoptosis or ferroptosis, i.e., cell death depended on iron [3]. Beta
cells are lacking sufficient antioxidant enzymes that are available in other tissues [14,15].
Vitamin C enhances the absorption of non-heme iron from diet [16]. Furthermore, in
pregnant women, the use of vitamin C supplements in addition to iron supplements has
increased maternal plasma iron status [17]. However, the interaction between vitamin C
and iron intake on the risk of type 1 diabetes development has not been studied previously.

Our aim was to study the associations between maternal intake of vitamin C and iron
during pregnancy as well as use of dietary supplements with vitamin C or iron on the risk
of islet autoimmunity and type 1 diabetes in a prospective birth cohort. We hypothesized
that high maternal vitamin C intake is associated with decreased risk, while high iron
intake is associated with increased risk of islet autoimmunity and type 1 diabetes in the
offspring. Since vitamin C enhances the absorption of iron, we also studied interaction
between maternal iron and vitamin C intake on the risk of outcomes.

2. Materials and Methods

The DIPP Study is a large population-based birth cohort study of children with
human leukocyte antigen (HLA)-conferred genetic risk of type 1 diabetes [18]. In the DIPP
Nutrition Study within the DIPP cohort, 7782 children born in the Tampere and Oulu
University Hospitals between October 1997 and September 2004 were invited for follow-
up. Children with the genotypes HLA-DQB1*02/*03:02 and DQB1*03:02/x (x stands for
alleles other than DQB1*02 or DQB1*06:02) were eligible for the follow-up. At the time of
screening, 99% of the Finnish population was of ethnic Finnish origin. Migrant children
with parents that could not speak either Finnish or Swedish and those with severe diseases
or anomalies were excluded. The children were invited to study visits at the age of 3, 6,
12, 18 and 24 months and then annually up to the age of 15 years or until type 1 diabetes
diagnosis. The visit interval of autoantibody positive children was 3 months. In the current
report, the inclusion criteria for the analyses was the available maternal dietary assessment.
Parents gave written informed consent for both genetic testing of their newborn infant
from cord blood sample and for participation in the follow-up. The study adheres to
the Declaration of Helsinki, and the ethics committees of Oulu and Tampere University
Hospitals approved the study protocol (ETL 97193M).
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2.1. Maternal Vitamin C and Iron Intake

The mothers were asked to report their diet during pregnancy with a validated
181-item semi-quantitative food frequency questionnaire (FFQ) [19]. These pregnancy
FFQs were sent to the mothers after delivery and checked at the 3-month follow-up
visit. Mothers were asked to answer retrospectively about their diet during the eighth
month of pregnancy (the last month preceding maternity leave in Finland) [19]. The
frequency (not at all, number of times per month, week or day) and the amounts (units
of common serving sizes) of consumed foods were inquired. General units were used
for some foods such as eggs and beverages. Mothers were also asked about the use of
nutritional supplements over the whole time of pregnancy. The name of supplement, the
manufacturer and the dosage per day, week or month were asked. The vitamin C and iron
intake from vitamin C and iron only supplements and multivitamin supplements were
combined in the calculation. Individual vitamin C and iron intakes were calculated based
on the Finnish Food Composition Database (Fineli) using the in-house software (Finessi)
of the Finnish Institute for Health and Welfare, Finland [20]. The nutrient intakes were
calculated from unprocessed vegetables and fruits, which does not consider the loss of
vitamin C due to processing and cooking. Energy from dietary fiber was included in the
total energy. FFQs with >10 missing items were excluded. Any implausible values were
double checked on the original FFQ and from the database.

2.2. Definiton of Type 1 Diabetes-Related Outcomes

Children were screened for islet cell autoantibodies (ICA) at intervals of 3–12 months
as described before [18]. When participant had seroconversion for ICA for the first time, all
of the previous and subsequent samples were analyzed for insulin autoantibodies (IAA),
glutamic acid decarboxylase antibodies (GADA) and islet antigen-2 antibodies (IA-2A). ICA
was quantified by a standard indirect immunofluorescence method, IAA, GADA and IA-2A
with specific radiobinding assays. Transplacentally transferred autoantibodies were not
considered as the child’s endogenous autoantibodies. The definition for islet autoimmunity
was repeated positively for ICA and at least one biochemical autoantibody (IAA, GADA,
IA-2A) or having type 1 diabetes (one child was diagnosed with type 1 diabetes without
information on autoantibody positivity). Data on the diagnosis of type 1 diabetes were
obtained in May 2015 from Finnish Pediatric Diabetes Register and University Hospitals.
The diagnosis of type 1 diabetes was defined according to World Health Organization
criteria [21]. In the present study, children were considered free from type 1 diabetes if
they were not found in the register. Of the children invited, two datasets were formed. The
islet autoimmunity cohort included 4887 children, and the type 1 diabetes cohort included
4943 children. Data on maternal diet during pregnancy were available for 4879 pregnancies,
as 64 mothers had twin pregnancies. The mothers who were invited to the study but
had insufficient data on maternal diet were more likely to be in the lowest or highest age
category, more likely to be smokers and had more previous deliveries and a less education
than those mothers with dietary data [22].

2.3. Genetic Methods

HLA-DQ was genotyped using panels of sequence-specific oligonucleotide probes,
as described before [18]. Genotypes HLA-DQB1 (*02/*03:02) represent “high” and HLA-
DQB1*03:02/x (x �= *02, *03:01, *06:02) “moderate” risk for type 1 diabetes.

2.4. Background Characteristics

Information on maternal education, diabetes (unspecified type) and family history
of diabetes among the first-degree relatives was collected with a questionnaire after the
delivery. Information on the offspring’s sex, maternal age and maternal smoking during
pregnancy was obtained from the birth registers of the hospitals. Maternal BMI was
determined from the mother’s weight at the first prenatal visit as described previously [23].
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2.5. Statistical Methods

Differences in maternal vitamin C and iron intake (in mg/MJ) between groups of
potentially confounding background characteristics were tested using one-way ANOVA.
Differences in characteristics between supplement users and non-users were tested using
t-test and Pearson Chi-square test. In the analyses exploring the risk of islet autoimmunity
and type 1 diabetes, maternal vitamin C and iron intakes from diet and total intake
(including the intake from supplements) were energy-adjusted using Willett’s residual
method [24]. Maternal vitamin C and iron intake were analyzed both as continuous
and categorized variables. The intakes were categorized into quartiles, from which the
combined twomiddle quartiles were used as the reference category. The use of supplements
with vitamin C and iron at any time during pregnancy was categorized as yes/no. The risk
of islet autoimmunity and type 1 diabetes was assessed with Cox proportional hazards
regression analysis.

The main analyses were energy-adjusted with the Willett’s residual method and
further adjusted for sex (boy or girl), family history of diabetes (yes or no) and HLA
genotype (high or moderate risk). Another model was also adjusted for maternal education,
pre-pregnancy BMI and smoking.

We tested whether child’s sex modified the association between the vitamin C and
iron intake and the outcomes. The results indicated no interaction, and therefore, main
analyses included girls and boys together. To test whether total vitamin C intake modified
the association between total iron intake and the outcomes, an interaction term was added
into the model.

SAS software version 9.3 (SAS Institute, Cary, NC, USA) and IBM SPSS Statistics
version 25.0 (IBM Corporation, Armonk, NY, USA) were used in the analyses. Statistical
significance was set at 2-sided p < 0.05.

3. Results
3.1. Background Characteristics

Altogether 312 (6.4%) children developed a positive islet autoimmunity at a median
age of 3.5 (IQR 1.7–6.6) years, and 178 (3.6%) had type 1 diabetes at the median age
of 7.1 (IQR 4.3–10.6) years during the 15-year follow-up. The dropout rates among the
4887 children at 1- and 5-year autoantibody follow-up were 5.7% (279 children) and 30%
(1415 children), respectively.

Maternal total vitamin C and iron intake by background variables are presented in
Table 1. Mothers with lower education had lower vitamin C intake during pregnancy than
those with higher education (Table 1). Mothers who smoked had lower iron intake than
non-smokers. Lower maternal BMI in early pregnancy was associated with higher iron
intake and non-linearly with vitamin C and iron intake (Table 1).

Mothers who used supplementation with vitamin C (1555 mothers, 32%) had lower
BMI (23.8 vs. 24.5 kg/m2, p < 0.001), higher education (overall p < 0.001), were more
often non-smokers (92 vs. 89%, p = 0.001) and had a higher intake of dietary iron (16.9
vs. 16.5 mg/day, p < 0.001) compared to those who did not use supplementation with
vitamin C.

Mothers who used iron supplementation during pregnancy (3375 mothers, 69%) had
lower BMI (23.9 vs. 25.2 kg/m2, p < 0.001), were more often highly educated (overall
p < 0.001) and non-smokers (92% vs. 86%, p < 0.001) and had a higher total energy (11.8 vs.
11.5 MJ/day, p = 0.01) and higher iron intake from food (16.2 vs. 15.8 mg/day, p < 0.001), in
comparison to those who did not use iron supplementation.
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Table 1. Characteristics of 4879 mothers in relation to mean (standard deviation) total intake of
vitamin C during and iron 8th month of pregnancy.

Maternal Intake during Pregnancy

Vitamin C, mg/MJ Iron, mg/MJ

Characteristic n Mean (SD) Mean (SD)

Maternal age, years
≤24 926 18.7 (11.1) 3.8 (3.4)

25–29.9 1700 18.8 (10.3) 3.7 (3.0)
30–34.9 1412 19.3 (13.4) 3.9 (3.2)
≥35 841 19.1 (12.2) 3.8 (2.9)

p-value b 0.46 0.72

Maternal BMI in early pregnancy, kg/m2

<25 3025 19.3 (11.9) 4.0 (3.3)
25–29.9 1123 18.1 (10.5) 3.6 (2.9)
≥30 434 18.7 (11.1) 3.4 (2.9)

Missing 297
p-value a 0.01 <0.001

Maternal weight gain rate, kg/week c

1st quarter < 0.33 1136 19.4 (13.6) 3.9 (3.2)
2nd quarter 0.33–0.41 1137 18.4 (9.8) 3.9 (3.3)
3rd quarter 0.42–0.52 1137 18.8 (10.9) 3.8 (3.0)
4th quarter > 0.52 1136 19.1 (11.3) 3.8 (3.1)

Missing 333
p-value a 0.14 0.48

Maternal vocational education d

None 294 18.2 (13.5) 3.6 (3.2)
Vocational School or Course 1291 18.4 (11.5) 3.9 (3.5)

Secondary Vocational Education 2067 18.9 (11.7) 3.8 (3.0)
University Studies or Degree 1097 20.1 (11.8) 3.8 (3.1)

Missing 130
p value a 0.001 0.40

Maternal smoking during pregnancy
Yes 467 18.1 (12.7) 3.5 (3.6)
No 4246 19.1 (11.7) 3.9 (3.1)

Missing 166
p value a 0.10 0.04

Maternal diabetes d

Yes 164 19.0 (11.9) 4.0 (3.1)
No 4611 19.0 (11.8) 3.8 (3.1)

Missing 104
p value a 0.89 0.49

a total intake based on diet and dietary supplements during 8th month of pregnancy. b p values for difference
between groups from one-factor ANOVA. c At the time of birth. d Based on a questionnaire completed after birth.
Type of diabetes not specified.

3.2. Intake and Dietary Sources of Vitamin C and Iron

Mean (SD) maternal intake of vitamin C from foods during pregnancy was 198 (116)
mg/day and from supplements 23 (82) mg/day. The most important sources of vitamin C
were juices, vegetables, fruits, and dietary supplements (Table 2). A total of 240 (5%) of the
mothers consumed less than 70 mg/day of vitamin C, which was the recommended intake
of pregnant mothers in Finland during the time of dietary assessment. Only five (0.1%)
mothers had insufficient vitamin C intake < 20 mg/day.

Mean (SD) maternal intake of iron from foods during pregnancy was 17 (5) mg/day
and from supplements 26 (33) mg/day. Dietary supplements, cereals and meats were the
main source of iron (Table 2).
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2.5. Statistical Methods

Differences in maternal vitamin C and iron intake (in mg/MJ) between groups of
potentially confounding background characteristics were tested using one-way ANOVA.
Differences in characteristics between supplement users and non-users were tested using
t-test and Pearson Chi-square test. In the analyses exploring the risk of islet autoimmunity
and type 1 diabetes, maternal vitamin C and iron intakes from diet and total intake
(including the intake from supplements) were energy-adjusted using Willett’s residual
method [24]. Maternal vitamin C and iron intake were analyzed both as continuous
and categorized variables. The intakes were categorized into quartiles, from which the
combined twomiddle quartiles were used as the reference category. The use of supplements
with vitamin C and iron at any time during pregnancy was categorized as yes/no. The risk
of islet autoimmunity and type 1 diabetes was assessed with Cox proportional hazards
regression analysis.

The main analyses were energy-adjusted with the Willett’s residual method and
further adjusted for sex (boy or girl), family history of diabetes (yes or no) and HLA
genotype (high or moderate risk). Another model was also adjusted for maternal education,
pre-pregnancy BMI and smoking.

We tested whether child’s sex modified the association between the vitamin C and
iron intake and the outcomes. The results indicated no interaction, and therefore, main
analyses included girls and boys together. To test whether total vitamin C intake modified
the association between total iron intake and the outcomes, an interaction term was added
into the model.

SAS software version 9.3 (SAS Institute, Cary, NC, USA) and IBM SPSS Statistics
version 25.0 (IBM Corporation, Armonk, NY, USA) were used in the analyses. Statistical
significance was set at 2-sided p < 0.05.

3. Results
3.1. Background Characteristics

Altogether 312 (6.4%) children developed a positive islet autoimmunity at a median
age of 3.5 (IQR 1.7–6.6) years, and 178 (3.6%) had type 1 diabetes at the median age
of 7.1 (IQR 4.3–10.6) years during the 15-year follow-up. The dropout rates among the
4887 children at 1- and 5-year autoantibody follow-up were 5.7% (279 children) and 30%
(1415 children), respectively.

Maternal total vitamin C and iron intake by background variables are presented in
Table 1. Mothers with lower education had lower vitamin C intake during pregnancy than
those with higher education (Table 1). Mothers who smoked had lower iron intake than
non-smokers. Lower maternal BMI in early pregnancy was associated with higher iron
intake and non-linearly with vitamin C and iron intake (Table 1).

Mothers who used supplementation with vitamin C (1555 mothers, 32%) had lower
BMI (23.8 vs. 24.5 kg/m2, p < 0.001), higher education (overall p < 0.001), were more
often non-smokers (92 vs. 89%, p = 0.001) and had a higher intake of dietary iron (16.9
vs. 16.5 mg/day, p < 0.001) compared to those who did not use supplementation with
vitamin C.

Mothers who used iron supplementation during pregnancy (3375 mothers, 69%) had
lower BMI (23.9 vs. 25.2 kg/m2, p < 0.001), were more often highly educated (overall
p < 0.001) and non-smokers (92% vs. 86%, p < 0.001) and had a higher total energy (11.8 vs.
11.5 MJ/day, p = 0.01) and higher iron intake from food (16.2 vs. 15.8 mg/day, p < 0.001), in
comparison to those who did not use iron supplementation.
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≤24 926 18.7 (11.1) 3.8 (3.4)

25–29.9 1700 18.8 (10.3) 3.7 (3.0)
30–34.9 1412 19.3 (13.4) 3.9 (3.2)
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25–29.9 1123 18.1 (10.5) 3.6 (2.9)
≥30 434 18.7 (11.1) 3.4 (2.9)

Missing 297
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1st quarter < 0.33 1136 19.4 (13.6) 3.9 (3.2)
2nd quarter 0.33–0.41 1137 18.4 (9.8) 3.9 (3.3)
3rd quarter 0.42–0.52 1137 18.8 (10.9) 3.8 (3.0)
4th quarter > 0.52 1136 19.1 (11.3) 3.8 (3.1)

Missing 333
p-value a 0.14 0.48

Maternal vocational education d

None 294 18.2 (13.5) 3.6 (3.2)
Vocational School or Course 1291 18.4 (11.5) 3.9 (3.5)

Secondary Vocational Education 2067 18.9 (11.7) 3.8 (3.0)
University Studies or Degree 1097 20.1 (11.8) 3.8 (3.1)

Missing 130
p value a 0.001 0.40

Maternal smoking during pregnancy
Yes 467 18.1 (12.7) 3.5 (3.6)
No 4246 19.1 (11.7) 3.9 (3.1)

Missing 166
p value a 0.10 0.04

Maternal diabetes d

Yes 164 19.0 (11.9) 4.0 (3.1)
No 4611 19.0 (11.8) 3.8 (3.1)

Missing 104
p value a 0.89 0.49

a total intake based on diet and dietary supplements during 8th month of pregnancy. b p values for difference
between groups from one-factor ANOVA. c At the time of birth. d Based on a questionnaire completed after birth.
Type of diabetes not specified.

3.2. Intake and Dietary Sources of Vitamin C and Iron

Mean (SD) maternal intake of vitamin C from foods during pregnancy was 198 (116)
mg/day and from supplements 23 (82) mg/day. The most important sources of vitamin C
were juices, vegetables, fruits, and dietary supplements (Table 2). A total of 240 (5%) of the
mothers consumed less than 70 mg/day of vitamin C, which was the recommended intake
of pregnant mothers in Finland during the time of dietary assessment. Only five (0.1%)
mothers had insufficient vitamin C intake < 20 mg/day.

Mean (SD) maternal intake of iron from foods during pregnancy was 17 (5) mg/day
and from supplements 26 (33) mg/day. Dietary supplements, cereals and meats were the
main source of iron (Table 2).
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Table 2. Maternal intake of vitamin C and iron during pregnancy from food groups, DIPP Nutrition Study, Finland.

Vitamin C and Iron Intake from Food Groups Mean Vitamin C mg/day % of Intake Mean Iron mg/day % Of Intake

Fruits and berries 1 41.0 18.7 0.69 1.6
Fruit juices 84.8 38.6 0.28 0.6

Other sweetened fruit drinks 2.1 1.0 0.32 0.7
Vegetables 46.5 21.2 1.14 2.7

Leaf vegetables 3.4 1.6 0.19 0.5
Fruit vegetables 20.9 9.5 0.31 0.7
Root vegetables 8.7 4.0 0.29 0.7

Other vegetables 2 13.4 6.1 0.35 0.8
Legumes, nuts, seeds and soy products 0.8 0.4 0.32 0.8
Potatoes and potato-based products 10.3 4.7 0.83 1.9

Dairy products 9.7 4.4 0.54 1.3
Cereals 0.01 0 6.52 15.3

Egg and egg dishes 0 0 0.70 1.6
Fish and fish dishes 0 0 0.23 0.5

Meat and meat dishes (beef, pork, lamb, poultry, game) 0.5 0.2 3.42 8.1
Unprocessed meat 0 0 1.64 3.9
Processed meat 3 0.5 0.2 1.78 4.2
Other foods 4 0.6 0.3 1.21 2.8

Dietary supplements 5 23.1 10.5 26.31 61.9
Total 219.4 100 42.50 100

1 Including canned and dried fruits and berries. 2 Cabbages, onions, mushrooms and canned vegetables. 3 Sausages and cured meat
products. 4 Fats, oils, beverages, sugars, sweets and condiments. 5 Contains vitamin C or iron exclusively supplements and multivitamins.

3.3. Maternal Vitamin C and Iron Intake and Risk of Type 1 Diabetes-Realted Outcomes

Energy-adjusted maternal intake of vitamin C or iron from food and total intake
(from food and supplements together) during pregnancy were not associated with islet
autoimmunity or type 1 diabetes (Table 3). Results were similar for both continuous
and categorized intake. Further adjustment for sex, family history of diabetes and HLA
genotype did not change the risk significantly (Table 3) nor did the adjustment for maternal
education, pre-pregnancy BMI and smoking (Supplementary Table S1). Thematernal use vs.
non-use of dietary supplements with vitamin C during pregnancy was not associated with
the risk of islet autoimmunity (HR 1.08 (95% CI 0.86, 1.37), p = 0.51) or type 1 diabetes (1.18
(0.87, 1.61), p = 0.28). Adjustment for sex, family history of diabetes and HLA genotype did
not change the results for islet autoimmunity (1.05 (0.83, 1.33), p = 0.67) or type 1 diabetes
(1.14 (0.84, 1.56), p = 0.39). Further adjustment for maternal education, pre-pregnancy BMI
and smoking did not change the results for islet autoimmunity (1.07 (0.83, 1.36), p = 0.61)
or type 1 diabetes (1.14 (0.82, 1.58), p = 0.43). Maternal use of supplements with iron
during pregnancy was not associated with the risk of islet autoimmunity (1.18 (0.91, 1.51),
p = 0.21) or type 1 diabetes (1.17 (0.84, 1.62), p = 0.36). Adjustment for sex, family history
of diabetes and HLA genotype did not change the results for islet autoimmunity (1.11
(0.86, 1.43), p = 0.43) or type 1 diabetes (1.14 (0.82, 1.58), p = 0.45). Further adjustment for
maternal education, pre-pregnancy BMI and smoking did not change the results for islet
autoimmunity (1.20 (0.91, 1.58), p = 0.20) or type 1 diabetes (1.18 (0.82, 1.69), p = 0.37).

3.4. Interaction Analyses

We observed no interaction between energy-adjusted total vitamin C intake and total
iron intake on the risk of islet autoimmunity or type 1 diabetes.
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Table 2. Maternal intake of vitamin C and iron during pregnancy from food groups, DIPP Nutrition Study, Finland.

Vitamin C and Iron Intake from Food Groups Mean Vitamin C mg/day % of Intake Mean Iron mg/day % Of Intake

Fruits and berries 1 41.0 18.7 0.69 1.6
Fruit juices 84.8 38.6 0.28 0.6

Other sweetened fruit drinks 2.1 1.0 0.32 0.7
Vegetables 46.5 21.2 1.14 2.7

Leaf vegetables 3.4 1.6 0.19 0.5
Fruit vegetables 20.9 9.5 0.31 0.7
Root vegetables 8.7 4.0 0.29 0.7

Other vegetables 2 13.4 6.1 0.35 0.8
Legumes, nuts, seeds and soy products 0.8 0.4 0.32 0.8
Potatoes and potato-based products 10.3 4.7 0.83 1.9

Dairy products 9.7 4.4 0.54 1.3
Cereals 0.01 0 6.52 15.3

Egg and egg dishes 0 0 0.70 1.6
Fish and fish dishes 0 0 0.23 0.5

Meat and meat dishes (beef, pork, lamb, poultry, game) 0.5 0.2 3.42 8.1
Unprocessed meat 0 0 1.64 3.9
Processed meat 3 0.5 0.2 1.78 4.2
Other foods 4 0.6 0.3 1.21 2.8

Dietary supplements 5 23.1 10.5 26.31 61.9
Total 219.4 100 42.50 100

1 Including canned and dried fruits and berries. 2 Cabbages, onions, mushrooms and canned vegetables. 3 Sausages and cured meat
products. 4 Fats, oils, beverages, sugars, sweets and condiments. 5 Contains vitamin C or iron exclusively supplements and multivitamins.

3.3. Maternal Vitamin C and Iron Intake and Risk of Type 1 Diabetes-Realted Outcomes

Energy-adjusted maternal intake of vitamin C or iron from food and total intake
(from food and supplements together) during pregnancy were not associated with islet
autoimmunity or type 1 diabetes (Table 3). Results were similar for both continuous
and categorized intake. Further adjustment for sex, family history of diabetes and HLA
genotype did not change the risk significantly (Table 3) nor did the adjustment for maternal
education, pre-pregnancy BMI and smoking (Supplementary Table S1). Thematernal use vs.
non-use of dietary supplements with vitamin C during pregnancy was not associated with
the risk of islet autoimmunity (HR 1.08 (95% CI 0.86, 1.37), p = 0.51) or type 1 diabetes (1.18
(0.87, 1.61), p = 0.28). Adjustment for sex, family history of diabetes and HLA genotype did
not change the results for islet autoimmunity (1.05 (0.83, 1.33), p = 0.67) or type 1 diabetes
(1.14 (0.84, 1.56), p = 0.39). Further adjustment for maternal education, pre-pregnancy BMI
and smoking did not change the results for islet autoimmunity (1.07 (0.83, 1.36), p = 0.61)
or type 1 diabetes (1.14 (0.82, 1.58), p = 0.43). Maternal use of supplements with iron
during pregnancy was not associated with the risk of islet autoimmunity (1.18 (0.91, 1.51),
p = 0.21) or type 1 diabetes (1.17 (0.84, 1.62), p = 0.36). Adjustment for sex, family history
of diabetes and HLA genotype did not change the results for islet autoimmunity (1.11
(0.86, 1.43), p = 0.43) or type 1 diabetes (1.14 (0.82, 1.58), p = 0.45). Further adjustment for
maternal education, pre-pregnancy BMI and smoking did not change the results for islet
autoimmunity (1.20 (0.91, 1.58), p = 0.20) or type 1 diabetes (1.18 (0.82, 1.69), p = 0.37).

3.4. Interaction Analyses

We observed no interaction between energy-adjusted total vitamin C intake and total
iron intake on the risk of islet autoimmunity or type 1 diabetes.
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4. Discussion

In this large prospective birth cohort of children with increased genetic risk for type 1
diabetes, the maternal intake of vitamin C or iron during pregnancy and use of supplemen-
tation with vitamin C or iron were not associated with the risk of islet autoimmunity or
type 1 diabetes.

The strengths of this study include a large study population, carefully collected data
on maternal dietary intake and use of supplementation, use of well-maintained food
composition database, as well as regular assessment of autoantibodies and type 1 diabetes.
In the validation study of the FFQ used in our study, the FFQ in comparison to food records
(10 days) showed a correlation of 0.65 for vitamin C and 0.60 for iron [19], suggesting that
the FFQ is appropriate for the estimation of vitamin C and iron intake. Furthermore, no
previous studies have explored the association between both dietary and supplementary
intake of iron and the risk of islet autoimmunity.

Our study also had some limitations. The validation study of the FFQ did not include
the use of dietary supplements [19]. Furthermore, food storage and processing can affect
the vitamin C content in the foods, which cannot be totally taken into account in the food
composition databases. Another limitation is that the vitamin C intake is linked to fruit and
vegetable consumption, which may be confounded by several socioeconomic and lifestyle
factors [25]. Additionally, we did not have plasma vitamin C and iron status available in
our study, which could have provided us with an additional and, likely, a more accurate
biomarker of these nutrients in the body [25,26].

Our results do not support the hypothesis that higher intake of vitamin C during
pregnancy would protect from islet autoimmunity or type 1 diabetes. As far as we know,
this is the only prospective study so far to explore the maternal intake of vitamin C and the
risk of clinical type 1 diabetes outcome. In an earlier study with fewer mothers and children,
we explored the association between maternal vitamin C intake and islet autoimmunity
outcome [11]. Results were similar than in the present study but the use of vitamin C
supplements per se were not studied in the previous study. The current study was carried
out in a well-nourished population, and the mean vitamin C intake in mothers was more
than triple the amount of the recommended 70 mg/day during pregnancy [27]. Only 240
(5%) mothers had an intake below the recommended intake, and only five (0.1%) mothers
had a vitamin C intake under 20 mg/day in which plasma ascorbic acid status begins to
deteriorate [28]. However, the FFQ in our study is likely to overestimate the intake of foods,
which are considerable sources of vitamin C such as vegetables and fruits [19]. In addition,
the same maternal characteristics were associated with non-participation and lower intakes
of vitamin C, suggesting the final study population may have a higher intake of vitamin
C compared to those who did not participate in the follow-up. Therefore, we cannot
conclude whether vitamin C would be associated with risk of islet autoimmunity or type 1
diabetes in populations with lower vitamin C intakes. Our study did not include plasma
ascorbic acid status, which is suggested to represent vitamin C function more accurately
than dietary intake since absorption, transport and physiological requirements of vitamin
C vary between individuals [2,25]. Plasma ascorbic acid status should be considered in
future studies as high plasma ascorbic acid status in childhood has been associated with
reduced risk of islet autoimmunity in a previous study [10].

Our results do not support the hypothesis that high maternal intake of iron from
the diet or supplements would increase the risk of islet autoimmunity or type 1 diabetes
in the offspring. Two previous prospective studies exploring maternal iron supplement
use and the risk of clinical type 1 diabetes gave inconsistent results. While the Danish
National Birth Cohort Study found no association between maternal iron supplement
use during pregnancy and type 1 diabetes in the offspring [29], the Norwegian Mother
and Child Cohort Study observed that maternal use of any iron-containing supplements
was associated with increased risk of type 1 diabetes [13]. Mothers in our study and
previous studies were from well-nourished populations and the use of iron supplements
was common. The Finnish dietary recommendation states that iron supplementation may
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be needed after the first trimester to maintain an iron balance of 500 mg iron storage [27,30].
Hence, some of the mothers in our study may have used supplements without any actual
need. Similarly to the Norwegian cohort study, iron intake from food was not associated
with type 1 diabetes risk in the current report [13].

Although we did not find association between maternal iron intake type 1 diabetes
development, iron is an important nutrient for further studies. Mechanisms between mater-
nal iron exposure and fetal outcomes might be complex. Maternal use of iron supplement
during pregnancy may induce oxidative stress in the placenta, but the implication for
the offspring has yet to be explored [13,31]. Maternal iron bioavailability is regulated by
hepcidin, which suppresses the excess maternal iron flow in the circulation when iron
supplements are taken regularly [32,33]. Fetal hepcidin and iron transport proteins in
the placenta might also protect fetuses from iron overload [33]. In addition, epigenetic
mechanisms may play an important role since, e.g., maternal hemochromatosis gene (HFE)
genotypes have been associated with increased risk of type 1 diabetes [13,34]. Polymor-
phisms in the HFE gene induces hereditary hemochromatosis and increased iron stores,
which could cause iron accumulation in the endocrine pancreas and beta-cell injury [35,36].

5. Conclusions

In conclusion, maternal vitamin C or iron intake during pregnancy were not associated
with the risk of developing islet autoimmunity or type 1 diabetes in a prospective cohort of
children carrying increased genetic susceptibility to type 1 diabetes.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
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4. Discussion

In this large prospective birth cohort of children with increased genetic risk for type 1
diabetes, the maternal intake of vitamin C or iron during pregnancy and use of supplemen-
tation with vitamin C or iron were not associated with the risk of islet autoimmunity or
type 1 diabetes.

The strengths of this study include a large study population, carefully collected data
on maternal dietary intake and use of supplementation, use of well-maintained food
composition database, as well as regular assessment of autoantibodies and type 1 diabetes.
In the validation study of the FFQ used in our study, the FFQ in comparison to food records
(10 days) showed a correlation of 0.65 for vitamin C and 0.60 for iron [19], suggesting that
the FFQ is appropriate for the estimation of vitamin C and iron intake. Furthermore, no
previous studies have explored the association between both dietary and supplementary
intake of iron and the risk of islet autoimmunity.

Our study also had some limitations. The validation study of the FFQ did not include
the use of dietary supplements [19]. Furthermore, food storage and processing can affect
the vitamin C content in the foods, which cannot be totally taken into account in the food
composition databases. Another limitation is that the vitamin C intake is linked to fruit and
vegetable consumption, which may be confounded by several socioeconomic and lifestyle
factors [25]. Additionally, we did not have plasma vitamin C and iron status available in
our study, which could have provided us with an additional and, likely, a more accurate
biomarker of these nutrients in the body [25,26].

Our results do not support the hypothesis that higher intake of vitamin C during
pregnancy would protect from islet autoimmunity or type 1 diabetes. As far as we know,
this is the only prospective study so far to explore the maternal intake of vitamin C and the
risk of clinical type 1 diabetes outcome. In an earlier study with fewer mothers and children,
we explored the association between maternal vitamin C intake and islet autoimmunity
outcome [11]. Results were similar than in the present study but the use of vitamin C
supplements per se were not studied in the previous study. The current study was carried
out in a well-nourished population, and the mean vitamin C intake in mothers was more
than triple the amount of the recommended 70 mg/day during pregnancy [27]. Only 240
(5%) mothers had an intake below the recommended intake, and only five (0.1%) mothers
had a vitamin C intake under 20 mg/day in which plasma ascorbic acid status begins to
deteriorate [28]. However, the FFQ in our study is likely to overestimate the intake of foods,
which are considerable sources of vitamin C such as vegetables and fruits [19]. In addition,
the same maternal characteristics were associated with non-participation and lower intakes
of vitamin C, suggesting the final study population may have a higher intake of vitamin
C compared to those who did not participate in the follow-up. Therefore, we cannot
conclude whether vitamin C would be associated with risk of islet autoimmunity or type 1
diabetes in populations with lower vitamin C intakes. Our study did not include plasma
ascorbic acid status, which is suggested to represent vitamin C function more accurately
than dietary intake since absorption, transport and physiological requirements of vitamin
C vary between individuals [2,25]. Plasma ascorbic acid status should be considered in
future studies as high plasma ascorbic acid status in childhood has been associated with
reduced risk of islet autoimmunity in a previous study [10].

Our results do not support the hypothesis that high maternal intake of iron from
the diet or supplements would increase the risk of islet autoimmunity or type 1 diabetes
in the offspring. Two previous prospective studies exploring maternal iron supplement
use and the risk of clinical type 1 diabetes gave inconsistent results. While the Danish
National Birth Cohort Study found no association between maternal iron supplement
use during pregnancy and type 1 diabetes in the offspring [29], the Norwegian Mother
and Child Cohort Study observed that maternal use of any iron-containing supplements
was associated with increased risk of type 1 diabetes [13]. Mothers in our study and
previous studies were from well-nourished populations and the use of iron supplements
was common. The Finnish dietary recommendation states that iron supplementation may

Nutrients 2021, 13, 928 9 of 11

be needed after the first trimester to maintain an iron balance of 500 mg iron storage [27,30].
Hence, some of the mothers in our study may have used supplements without any actual
need. Similarly to the Norwegian cohort study, iron intake from food was not associated
with type 1 diabetes risk in the current report [13].

Although we did not find association between maternal iron intake type 1 diabetes
development, iron is an important nutrient for further studies. Mechanisms between mater-
nal iron exposure and fetal outcomes might be complex. Maternal use of iron supplement
during pregnancy may induce oxidative stress in the placenta, but the implication for
the offspring has yet to be explored [13,31]. Maternal iron bioavailability is regulated by
hepcidin, which suppresses the excess maternal iron flow in the circulation when iron
supplements are taken regularly [32,33]. Fetal hepcidin and iron transport proteins in
the placenta might also protect fetuses from iron overload [33]. In addition, epigenetic
mechanisms may play an important role since, e.g., maternal hemochromatosis gene (HFE)
genotypes have been associated with increased risk of type 1 diabetes [13,34]. Polymor-
phisms in the HFE gene induces hereditary hemochromatosis and increased iron stores,
which could cause iron accumulation in the endocrine pancreas and beta-cell injury [35,36].

5. Conclusions

In conclusion, maternal vitamin C or iron intake during pregnancy were not associated
with the risk of developing islet autoimmunity or type 1 diabetes in a prospective cohort of
children carrying increased genetic susceptibility to type 1 diabetes.
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Supplementary Table S1. Maternal intake of vitamin C and iron during pregnancy and hazard ratios 
(HR) and 95% confidence intervals (95% CI) for islet autoimmunity and type 1 diabetes in the 
offspring, additional adjustments.  

 Islet Autoimmunity  Type 1 Diabetes 
 Model 3 n = 4253 (284)a  Model 3 n = 4301 (160)a 

 HRb (95% CI) P-value  HRb (95% CI) P-value 
Vitamin C from diet      

per 1 SD increase 0.95 (0.84, 1.07) 0.42  1.03 (0.88, 1.20) 0.73 
Q1  1.00 (0.75, 1.34) 0.96  1.22 (0.83, 1.79) 0.44 

Q2 and Q3 1 (ref)   1 (ref)  
Q4 0.96 (0.72, 1.29)   1.23 (0.84, 1.79)  

Total vitamin C intakec      
per 1 SD increase 0.89 (0.77, 1.02) 0.10  0.81 (0.83, 1.03) 0.15 

Q1  0.98 (0.73, 1.30) 0.17  0.93 (0.63, 1.37) 0.73 
Q2 and Q3 1 (ref)   1 (ref)  

Q4 0.75 (0.56, 1.02)   0.76 (0.55, 1.21)  
Iron from diet      

per 1 SD increase 1.09 (0.98, 1.22) 0.11  1.09 (0.94, 1.27) 0.23 
Q1  0.75 (0.54, 1.02) 0.17  0.75 (0.49, 1.15) 0.30 

Q2 and Q3 1 (ref)   1 (ref)  
Q4 1.00 (0.76, 1.31)   1.09 (0.76, 1.56)  

Total iron intakec      
per 1 SD increase 0.99 (0.87, 1.11) 0.82  0.92 (0.78, 1.09) 0.34 

Q1  0.86 (0.64, 1.16) 0.47  0.94 (0.64, 1.40) 0.78 
Q2 and Q3 1 (ref)   1 (ref)  

Q4 0.87 (0.65, 1.15)   0.87 (0.59, 1.28)  
Abbreviations: Q1-4, quarter 
a n represents total number in the analyses and number in parenthesis represents numbers of children 
with the outcome 
b HRs (95% CI) are from Cox regression analysis (P values from Wald test) 
c Total vitamin C and total iron intake from diet and dietary supplements 
Model 3: Adjusted for energy residual method, sex, familial diabetes, HLA genotype, maternal 
education, pre-pregnancy BMI, and smoking 
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