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Abstract: Endoscopic procedures for diagnosing gastrointestinal tract findings depend on specialist
experience and inter-observer variability. This variability can cause minor lesions to be missed and
prevent early diagnosis. In this study, deep learning-based hybrid stacking ensemble modeling
has been proposed for detecting and classifying gastrointestinal system findings, aiming at early
diagnosis with high accuracy and sensitive measurements and saving workload to help the specialist
and objectivity in endoscopic diagnosis. In the first level of the proposed bi-level stacking ensemble
approach, predictions are obtained by applying 5-fold cross-validation to three new CNN models. A
machine learning classifier selected at the second level is trained according to the obtained predictions,
and the final classification result is reached. The performances of the stacking models were compared
with the performances of the deep learning models, and McNemar’s statistical test was applied to
support the results. According to the experimental results, stacking ensemble models performed
with a significant difference with 98.42% ACC and 98.19% MCC in the KvasirV2 dataset and 98.53%
ACC and 98.39% MCC in the HyperKvasir dataset. This study is the first to offer a new learning-
oriented approach that efficiently evaluates CNN features and provides objective and reliable results
with statistical testing compared to state-of-the-art studies on the subject. The proposed approach
improves the performance of deep learning models and outperforms the state-of-the-art studies in
the literature.

Keywords: deep learning; stacking ensemble learning; gastrointestinal tract classification; endoscopy
images; McNemar’s test

1. Introduction

The gastrointestinal (GI) tract is a tubular system whose main task is digestion and
includes many organs between the mouth and anus. The tubular structure of the GI tract
consists of the mouth, pharynx, esophagus, stomach, small intestines, large intestines,
rectum, and anal canal. The tubular structure is associated with all the salivary glands, gall
bladder, liver, and pancreas organs. The tubular structure of the GI tract from the inside out
is mucosa, submucosa, muscularis propria, and serosa. Most of the diseases of the GI tract
occur with the deterioration of the innermost layer, the mucosa. Both benign and malignant
diseases can occur in the GI tract, such as gastric, colon, small intestine, and rectum cancer,
i.e., from GI tract cancers to malignant diseases; peptic ulcers, hemorrhoids, and celiac
disease are examples of benign diseases. In addition to these diseases, inflammatory
diseases such as Crohn'’s disease and ulcerative colitis are also present.

In a study conducted by Sung et al. [1], according to Global Cancer Statistics 2020,
it was estimated that 9.9 million of the 19.3 million new cancer cases resulted in death
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worldwide, regardless of gender. Of the approximately 10 million deaths, 9.4% are caused
by colorectum, 7.7% by stomach, and 5.5% by esophageal cancer. The mortality rate of other
GI tract diseases besides cancer is also remarkable. According to the report of the burden of
digestive diseases in the Americas Region published by the Pan American Health Organiza-
tion (PAHO) in 2021 [2], digestive diseases such as peptic ulcer, appendicitis, gastritis and
duodenitis, and inflammatory bowel disease caused 375,170 deaths in 2019. In addition to
these statistics, clinical studies prove that early detection of GI tract diseases is crucial to
reducing mortality [3,4]. Early diagnosis is possible by detecting and distinguishing small
polyps, adenomas, or lesions formed in the tubular structure.

Endoscopy is a device with a camera at the end that directly displays the inside
of the organs. A gastroenterologist uses endoscopic methods such as gastroscopy and
colonoscopy to diagnose pathological findings such as wounds, polyps, or tumors in the
stomach, large intestine, or esophagus. At the same time, the treatments of hemorrhages
and structures such as polyp lesions are performed with endoscopic methods. The risks
that may occur during endoscopic procedures are extremely low, except for temporary
side effects. However, endoscopic observations are dependent on specialist experience and
variables between observers. Repetition of endoscopy is costly for patients who change
hospitals or doctors. It is very laborious and time-consuming to examine past endoscopy
videos of patients by any specialist and to provide the diagnosis by the specialist.

Computer-aided diagnosis (CAD) systems are a research area that aims to save time
for the specialist in evaluating medical images and assisting the specialist in image inter-
pretation as a second opinion. Although CAD systems have been researched for many
years, their interest has recently increased with the advancement of artificial intelligence
and medical imaging technologies. Especially with deep learning methods, very successful
performance results were obtained in CAD studies, and diseases that specialists could
not diagnose were visualized [5-7]. Although CAD-supported endoscopy devices are not
standard in gastroenterology, several artificial intelligence-supported endoscopy devices
that automatically detect diseases such as colon tumors, colon polyps, and colorectal cancer
have been approved by the U.S. Food and Drug Administration and European Union [8].

There are many studies in which statistical analyses of specialist and artificial intel-
ligence diagnoses related to gastroenterology are performed and prove that an artificial
intelligence application can diagnose as well as an endoscopist [9,10]. Wang et al. [11]
compared the effects of standard colonoscopy and a deep learning-based CAD system on
polyp diagnosis. The authors reported that the CAD system detected more small adenomas
(p < 0.001) compared to standard colonoscopy, while there was no statistical difference in
larger adenomas (p = 0.075). The results of this study are promising that artificial intel-
ligence applications can be more efficient than specialists in endoscopic diagnosis. An
endoscopic examination specialist for diagnosing GI tract diseases decides by examining
the spatial differences in the mucosal surface and tissue. The specialist may miss small
polyps or lesions during this review and decision-making process. Making the diagnosis
by a hybrid artificial intelligence model with high accuracy and sensitive measurements
can offer many opportunities to help the specialist, such as cost, time, workload savings,
early diagnosis, and objectivity in endoscopic diagnosis.

In general, the remaining parts of this article are as follows. Section 2 presents a
literature review on the subject, the literature gaps, and the study’s contribution to the
literature. After giving information about the background and datasets in Section 3, the
architecture of the proposed approach applied, hyperparameters, and training details are
presented. In Section 4, after giving information about the performance metrics selected
for the testing phase of the proposed approach, the test results and statistical analysis are
intertwined with the discussion. In Section 5, the article is concluded.

2. Related Works

Computer-aided gastroenterology diagnosis has been studied for more than 30 years,
with datasets created using various endoscopic imaging methods. Diagnosis of abnormal



Diagnostics 2023, 13, 720

30f22

pathological findings in only a specific part of the GI tract, especially polyp detection [12-14], is
the most researched subject [15-17]. Studies covering the entire GI tract, such as pathologi-
cal findings, anatomical signs, and therapeutic interventions detection and classification,
have also taken their place in the literature [18]. In the first 20 years of this process, image
processing techniques were used for feature extraction, and statistical methods were used
for classification [19]. Features used to classify images can be divided into three categories:
features in the spatial domain, features in the frequency domain, and features that describe
images at a higher level. Pixel-based and histogram algorithms extracted features in the
spatial domain, Fourier and wavelet transform algorithms extracted features in the fre-
quency domain, and edge and region-based algorithms extracted high-level features. These
features were generally classified using statistical machine learning methods.

With the rapid development of deep learning methods in the last decade, CNN
(convolutional neural network) architecture, which enables the extraction and classification
of spatial and high-level features, has been the focus of researchers. Hybrid methods
using CNN features, transfer learning, designing new CNN models, and various deep
learning networks are among the proposed methods [20]. Since CAD studies in the field
of gastroenterology have a long history and a wide range of topics, this section includes
in detail the studies that classify the KvasirV2 and HayperKvasir datasets that we used in
our study.

The Kvasir dataset was presented to researchers in 2017 by Pogorelov et al. [21].
The first version of the Kvasir dataset contained 500 samples in each of the 8 classes,
later updated to KvasirV2, and the number of samples doubled. Pogorelov et al. [21]
performed the first multi-class detection experiment on Kvasir and achieved 95.00% ACC
with three-layer CNN. The HyperKvasir dataset, an updated version of the KvasirV2
dataset containing high-quality samples, was introduced by Borgli et al. [22]. The authors
trained the labeled data using several cutting-edge pre-trained CNNs and achieved a
maximum MCC score of 90.20%. When the literature is examined, HyperKvasir still needs
to be a researched dataset as Kvasir. Possible reasons for this are that the HyperKvasir
dataset has a highly imbalanced sample distribution and is relatively new compared to the
Kvasir dataset.

In recent studies, transfer learning has often been used to classify the KvasirV2 dataset.
A study by Dheir and Abu-Naser [23] used VGG, ResNet, MobileNet, Inception-v3, and
Xception networks, while in another study conducted by Hmoud Al-Adhaileh et al. [24],
GoogleNet, ResNet-50, and AlexNet were used. The authors obtained classification results
by freezing the convolution bases of pre-trained CNN models on the ImageNet dataset.
The highest performance in Dheir and Abu-Naser’s study [23] was the VGG model, with
98.30% ACC. In comparison, the AlexNet model had the highest performance with 97.00%
ACC in the study of Hmoud Al-Adhaileh et al. [24]. In the same way, Yogapriya et al. [25]
used VGG16, ResNet-18, and GoogLeNet, and the VGG16 achieved 96.33% ACC. When
the experimental results of studies using transfer learning are examined, the success of the
VGG16 architecture in GI tract classification is remarkable.

Some researchers aimed to improve the performance of transfer learning methods by
designing new classifiers on the convolution bases of pre-trained CNN models. Oztiirk
and Ozkaya [26] used a new long short-term memory (LSTM)-based classifier for the
classification layer of AlexNet, GoogleNet, and ResNet architectures. The LSTM-based
CNN models were trained on the ImageNet dataset and then retrained on the KvasirV2
dataset as pre-trained models. Moreover, 97.90% ACC was obtained with the method
proposed by the authors. The same authors [27] then extended their research with the
residual LSTM layer CNN, which transmits features from each pooling layer to the LSTM
layer, and increased the performance to 98.05%. Designing a new network by properly
revising a known model according to the problem has often been presented as a solution in
computer vision research. Dutta et al. [28] classified HyperKvasir dataset with 60 fps speed
and 75.80% MCC with Tiny Darknet model seven times smaller than Darknet model’s size.
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Research has focused on features obtained from endoscopic images, offering more
feature extracting, selective, and combining algorithms than classifier designs. Rama-
murthy et al. [29] presented a multi-feature fusion method for GI tract classification on the
HyperKvasir dataset. In this method, images were classified by combining the features
from pre-trained EfficientNetB0 and a special CNN named Effimix, and 97.99% ACC was
achieved. Few GI tract disease detection and classification studies have focused on obtain-
ing optimal deep-learning features. Using Bayesian optimization, Khan et al. [30] trained
segmented lesion regions using transfer learning and initialized fine-tuned MobileNet-V2
hyperparameters. The authors achieved 98.02% ACC due to their experiments on the
KvasirV2 dataset. In another study by Khan et al. [31], a method based on moth-crow
optimization with distance-canonical correlation (D-CCA) fusion was proposed, and an
ACC of 97.20% was obtained.

Mohapatra et al. [32] classified GI tract abnormalities using a method combining
two-dimensional discrete wavelet transform (2D-DWT) and CNN architecture on the
KvasirV2 dataset, achieving 97.25% ACC. Mohapatra et al. [33] classified the HyperKvasir
set into two stages for the same task. In the first stage, images are divided into normal
and abnormal classes, while in the second stage, they are subclassified. The authors used
empirical wavelet transform (EWT) to extract specific patterns in the images and CNN
for the two-step classification task. Moreover, 96.65% ACC was achieved in the first stage
classification and 94.25% in the second stage classification.

Capsule networks are among the proposed methods for classifying the KvasirV2
dataset. In a study diagnosing GI tract diseases by selecting five classes from the eight-class
KvasirV2 dataset, Afriyie et al. [34] used denoising capsule networks (Dn-CapsNets) and
achieved 94.16% ACC. Wang et al. [35] proposed a two-stage classification method combin-
ing CNN and capsule networks to diagnose GI tract diseases automatically. The method
for measuring performance on KvasirV2 and HyperKvasir datasets focuses on extracting
lesion-aware CNN features. Although this feature provides an essential advantage for
diagnosing GI tract diseases, it gives a limited performance in differentiating lesion-free
classes of the GI tract. The authors reported a classification ACC of 94.83% in the KvasirV2
dataset and 85.99% in the HyperKvasir dataset with the convolutional-capsule network.

2.1. Literature Gaps

When the literature studies are examined, it is observed that most studies focus on
diagnosing lesions, polyps, or diseases. CAD systems that can thoroughly examine the
GI tract are needed to develop a system that can be used in clinical applications that
assist specialists. Instead of focusing only on pathological findings, we present a study
that can simultaneously detect and classify pathological findings, anatomical landmarks,
therapeutic interventions, and mucosal views to meet this need. In addition to narrowing
the research area in the literature, it is clear that the datasets studied are also limited. Instead
of only one dataset, our study used KvasirV2 and HyperKvasir datasets, which contain
different classes with balanced and unbalanced sample distributions. Working on two
different datasets provides the opportunity to observe the behavior of the proposed method
on datasets with balanced and unbalanced sample distribution by testing the performance
of the proposed method on an ample sample space.

Another shortcoming of the studies in the literature is that no study has measured
the statistical significance of the proposed methods. Even if the proposed algorithms give
different performance values, the difference should be statistically significant. Artificial
intelligence methods developed for medical applications must provide evidence for statis-
tical significance, as in the medical literature. In our study, the statistical significance of
each algorithm whose performance was measured among other algorithms was measured
using McNemar's test, and the selected performance criteria were supported by statistical
analysis. The fact that our study thoroughly examines the GI tract without limiting the
subject, tests the proposed approach on two different datasets, and performs statistical
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analyses indicates that we present more objective and transparent research than the studies
in the literature.

It is observed that the methods proposed in the literature for the detection and clas-
sification of GI tract findings generally divide the problem into two feature extraction
and classification, and the algorithms are shaped according to the side that the authors
consider essential. Although feature fusion or selection algorithms successfully detect
lesions or pathological findings in a particular region, they limit distinguishing samples
from non-lesional tissues while classifying all GI tract findings. Studies focusing on classifi-
cation algorithms designed to be used with CNN features in the literature have achieved
higher performance than feature-oriented studies. An endoscopist decides on the diagnosis
by examining textural differences in the image, similar to a CNN algorithm’s operation.
CNN features represent spatial and high-level features. Although it is a disadvantage that
time-dependent frequency features cannot be extracted with CNN filters, the CNN features
obtained by learning to optimize the filters are sufficient to distinguish textural differences.
To solve such a problem, the extraction of time-dependent frequency features increases the
model complexity and computational cost, creates manual applications that work offline,
and requires human intervention. In addition, the approaches available in the literature
need to give better performance results to be used in clinical applications.

This study proposes a deep learning-based hybrid stacking ensemble approach for
detecting and classifying GI tract findings. Our models, designed according to the stacking
ensemble learning approach, consist of two levels. In the first level, predictions are obtained
by applying 5-fold cross-validation to three new CNN models. In the second level, a selected
machine learning classifier is trained according to the obtained predictions, and the final
classification result is reached. The primary feature that makes the proposed approach
powerful is that it has a hybrid decision-making mechanism that uses the prediction of
more than one model by combining deep learning and machine learning approaches.

2.2. Contributions
The contributions of this study to the literature are listed below:

1. It is the most detailed and large-scale study in the literature. It can simultane-
ously detect and classify pathological findings, anatomical points, therapeutic in-
terventions, and mucosal images on two datasets with balanced and unbalanced
sample distribution.

2. It presents three new CNN models with high performance and low hyperparameter
sensitivity to the literature.

3.  Aninnovative hybrid approach to learning that efficiently evaluates CNN features
and enhances deep learning models’ performance is proposed.

4. Itis the first study in the literature to provide reliable and objective results in which
performance results are supported by applying statistical tests other than metrics. This
study is a good precedent for the statistical analysis of artificial intelligence methods.

5. The performance of the proposed approach is higher than other state-of-the-art meth-
ods proposed in the literature.

3. Materials and Methods
3.1. Proposed Approach

Ensemble learning is a meta-learning method that enables different algorithms to
work collaboratively to reduce variance and increase bias and prediction performance [36].
Stacking is an ensemble learning method combining heterogeneous core learners with a
meta-learner to output a predictive prediction and improve performance [37]. Generally,
two-level stacking models are used, but stacking with multiple levels is possible. Different
base learners at the first level make different assumptions and produce predictions. The
meta-learner at the second level uses the predictions from the first level as features and
combines the predictions to produce the final predictions.
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An overview of the proposed approach is presented in Figure 1. In the proposed
approach, four different stacking models with two levels are established. Each stacking
model consists of three identical heterogeneous base learners and a different meta-learner.
Three different CNN models based on VGG16 architecture are designed for base learners.
Training, validation, and testing phases were carried out using the same hyperparameters
for the stacking models. The factor that distinguishes stacking models from each other is
meta-learner selection. Logistic regression (LR), linear support vector machine (LSVM),
multi-layer perceptron (MLP), and K-nearest neighbor (KNN) algorithms were chosen as
meta-learners. In this article, three different CNNs designed as base learners are named
Model 1, Model 2, and Model 3. Meta-learner hybridized with Model 1, Model 2, and Model
3 in which MLP is Stacking Ensemble Model 1 (SEM 1), LR is Stacking Ensemble Model
2 (SEM 2), LSVM is Stacking Ensemble Model 3 (SEM 3), and KNN is Stacking Ensemble
Model 4 (SEM 4). The meta-learner must be a simple model with little complexity, as it
is more likely to fit predictions from base learners. For this reason, less complex machine
learning algorithms were chosen instead of deep learning algorithms as meta-learners.
The stacking technique’s purpose is to increase base learners’ prediction performance.
Given that each base model contributes the same amount to the ensemble prediction, the
performance of each base learner must be high for the overall prediction performance to
increase. Using CNNs with simultaneous feature extraction and classification for images as
base learners is very suitable for architecture and performance.

Input

Datasct

Architectural Structure of Stacking Ensemble Models
A Base:learners I.Vew training set A i ey Output
Deep learning model stack for meta-learner
Model 1
5-fold eross-
Model 2 y > validation
predictions

Figure 1. Overview of the proposed approach.

The algorithm steps by which we implement the proposed stacking ensemble models
are listed below:

1.  The dataset was split into 5 using the stratified shuffle split cross-validation strategy;

2. Three independent base learners are trained to the other folds, keeping one of the
folds, and predictions are obtained;

3. The above three steps were repeated five times to obtain out-of-sample predictions
for all five folds;

4. All out-of-sample predictions were used as training data for meta-learners;

5. The final output was estimated with meta-learners.
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An overview of the experimental study steps is presented in Figure 2. In the first
step of the experimental study, KvasirV2 and HyperKvasir datasets were rearranged, and
data pre-processing techniques were applied. Real-time data augmentation, model setup,
hyperparameter tuning steps, and 5-fold cross-validation were applied to the training set,
and training and validation phases were completed for each model. Results were obtained
according to the performance metrics selected during the test phase, and the statistical
analysis phase was carried out to evaluate the results.

Image acquisition Input Data preprocessing
o g KvasirV2 . Resize
¢ Editing datasets el e Normalization

v v

Training set Test set
e Training and e Testing phase
validation phase v
v Performance
Data Augmentation measurcment
v e [valuate metrics
Hybrid stacking Mc Nemar's test

ensemble models

e Hyperparameter
tuning
v

Learning and 5-fold
Cross-validation

Figure 2. Overview of the experimental study steps.

3.2. Background

CNNs applied to analyze visual images are feed-forward neural networks that contain
convolution operation instead of matrix multiplication in at least one of its layers. A CNN
architecture is divided into the convolution base, which takes on the feature extraction task,
and the classification base, which undertakes the classification task. In the convolutional
base, feature maps are obtained by the sequential outputs of convolution, activation, and
pooling layers. The raw image data coming from the input layer to the convolution layer
are 3D tensors whose dimensions are width, height, and depth (channel), and these tensors
are called feature maps. According to the two-dimensional convolution operation given in
Equation (1), the product values obtained by multiplying each value in the feature map (I)
with the value of the kernel (K) it matches are summed and thus converted into vector
form. The 3D tensor output, namely the activation map (A), is created by bringing all these
vectors side by side.

Alm,n) = (Ix K)[m,n) = Y7 Y7 K[ jlI[m—in—j] 1)

Kernel size, padding, and stride are hyperparameters that affect the size of the ac-
tivation map. Large kernel size selection is costly, so 3 x 3,5 x 5, and 7 x 7 are CNN
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architectures” most commonly preferred kernel sizes. For the input size to be equal to
the output size, the padding (P) process is applied by adding rows and columns from all
directions to the input. In the most commonly used zero-padding operation, zero is added
to the input as rows and columns from all directions. The number of times the kernel is
shifted on the attribute map is called the stride (S). Increasing the stride means decreasing
the output. The size of the output of the convolution layer, whose width and height of the
input image are equal, stride is taken as one or more, and padding process is performed, is
calculated as given in Equation (2).

A= (I—K+2P)/S+1 @)

The activation layer determines which neuron will be active with a non-linear trans-
formation. After the convolution layer, one of the ReLU, GELU, ELU, and Leaky ReLU
activation functions is generally used [38]. After the fully connected layer, the sigmoid and
softmax activation functions are used for the classification task. The task of the pooling
layer is to reduce the following layer’s input image to reduce the network’s cost and pre-
vent overfitting. The pooling filter, which slides over the image by the stride, combines
the largest for maximum pooling, the average for average pooling, and the minimum for
minimum pooling. The depth of the image emerging from the pooling layer does not
change. The output size of the pooling layer is calculated as given in Equation (3). Fully
connected layers are similar to classical multi-layer neural networks, and their task is to
generate predictive output for classes.

PO=(I—-K)/S+1 3)

Although CNN architecture is similar to MLP [39], a feed-forward artificial neural
network, MLP loses its efficiency on high-dimensional data due to its complete intercon-
nection. The difference between CNNs and MLPs is that CNNs have three-dimensional
neurons, local connections, and common weights.

The LR algorithm [40] uses the sigmoid function to classify non-linearly separable
samples and generates predictions based on whether they are above or below a threshold.
When a general regression model (Equation (4)) is used with the sigmoid function, the
probability value (Equation (5)) for the output is calculated. The sigmoid function must go
through the logarithmic transformation to calculate the error function (Equation (6)).

y=ua+pBx 4)
p(x) = 1/(1+e (HF) 5)
E(x) = Y0 (i~ Dlog(1 — p(xy) — yilog(p(x)) ©

The SVM algorithm [41] uses an optimal hyperplane to classify data. Support vectors
are the data points closest to the hyperplane in the dataset. The vertical distances between
the hyperplane and the support vectors are the margins. The SVM algorithm aims to find
the optimum hyperplane to separate data points with different class labels and maximize
margins. In order to prevent the margins from shrinking, the slack variable (&) is used,
which allows some samples to be classified incorrectly. Learning of SVMs, including train-
ing data and labels (x;, y;) and parameters w, consists of the constrained optimization given
in Equation (7). If the hyperparameter C used in Equation (7) is given small, misclassified
samples are tolerated. The linear kernel is used if the data can be linearly separated in the
input space.

1,. . .
5 ffiw, wffl + CY " g yiffiw, xffl+ ) >1-¢;,8>0,i=12,...,m 7)
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The KNN algorithm [42] uses a distance measurement method to include the sample
whose class is unknown in the closest class according to its distance from the other samples.
The distance measurement method and the number of K neighbors are hyperparameters
that affect performance. The label of most of the K-nearest neighbors determines the class
of the unknown sample. In the Minkowski metric given in Equation (8), p = 1 is equivalent
to the Manhattan metric, and if p = 2, it is equivalent to the Euclidean metric.

m 1/p .
d(xiyi) = (ki —vil”) T =12, m ®8)

3.3. Datasets

The Kvasir dataset has been tagged and validated by experienced endoscopists for
the medical multi-media competition presented by MediaEval. The first version contains
4000 images, while the second version, KvasirV2, includes 8 classes and 1000 images
per class, showing anatomical points in the GI tract (3 classes), pathological findings
(3 classes), and therapeutic interventions (2 classes). Images are in different resolutions,
from 720 x 576 pixels to 1920 x 1072 pixels. The HyperKvasir dataset was collected during
examinations at Beerum Hospital in Norway and labeled by experienced endoscopists.
The relatively large dataset is an expanded version of the Kvasir dataset and contains
110,079 images and 374 videos. Only 10,662 of these images are labeled and consist of a
total of 23 classes showing anatomical points in the GI tract (6 classes), pathological findings
(12 classes), therapeutic interventions (2 classes), and mucosal image quality (3 classes).
The number of samples per class is uneven. Some classes, such as hemorrhoids (6 images)
and terminal ileum (9 images), have insufficient samples for use in artificial intelligence
applications. Ulcerative colitis and esophagitis classes are graded according to disease
severity, and the number of samples for graded subclasses is insufficient. For example, the
ulcerative colitis 1-2 class contains only 11 images. Classes with insufficient samples and
subclasses of graded diseases in the HyperKvasir dataset were not used for the training
phase to be efficient. In this study, all classes of the KvasirV2 dataset containing 8000 images
were used. For the reasons stated, an arrangement has been made for the HyperKvasir
dataset, and 12 classes containing 10,422 images have been used. The classes and image
examples used for the application are presented in Figure 3.

Anatomical landmarks are reference points to explain the location of a particular
finding. The Z line is the transition zone between the esophagus and the stomach and helps
identify pathology in the esophagus. The pylorus is the area around the opening from the
stomach to the duodenum and helps identify signs such as ulceration, erosion, or stenosis.
The cecum is a region close to the large intestine that marks the colonoscopy completion.
Retroflex rectum is the retroflection of the endoscope in the rectum to detect diseases in
the rectal outlet. The retroflex stomach is the endoscope’s retroflection to visualize the
stomach’s upper parts. The quality of mucosal images was classified according to the Boston
Bowel Preparation Scale (BBPS) for complete visualization of the mucosa. Bowel cleansing
is considered sufficient if the BBPS score is 2 or 3. Pathological findings are abnormalities in
the mucosa due to the disease. Esophagitis is an inflammation of the esophagus, generally
caused by conditions in which stomach acid flows back into the esophagus as reflux or
vomiting. Polyps, which are protruding lesions in the mucosa, have the potential to
develop into colorectal cancer. Ulcerative colitis is a chronic inflammatory disease of the
large intestine. Therapeutic interventions such as polyp removal are performed during
endoscopy. According to the endoscopic mucosal resection (EMR) technique, the dyed
lifted polyps class shows the removed polyps, and the dyed resection margins class shows
the resection site after polyp removal.
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Figure 3. Sample images for each class from the datasets and the number of samples per class.

3.4. Details of Proposed Approach

Experimental studies were carried out in three stages: training, validation, and testing.
Training, validation, and test sets were created using a 70-15-15% data split ratio and the
stratified shuffle split method. The stratified shuffle split method is also one of the cross-
validation methods. This method selects a determined ratio of samples from each class,
and the problem of class bias that may occur in the validation and test set is prevented. The
fact that all three datasets contain the same proportion of data from each class provides a
more efficient and objective performance measure than the frequently preferred random
split method. Several image pre-processing techniques were applied to all images as the
working principle of CNN models. Pixel values have been normalized by rescaling to
the 0-1 range. Due to the high-resolution input size increasing the training cost and the
hardware used, all images were resized at 150 x 150, which is the appropriate size. The
resizing process was performed with the bilinear interpolation algorithm. Color is an
essential factor in distinguishing the disease in color endoscopic images. Therefore, all
images were used in RGB (red, green, blue) mode, thus adding three channels to the input
size (150 x 150 x 3). Adding artificial data obtained with data augmentation techniques
applied to the original data to the training set increases the training performance of the
network and prevents overfitting. With real-time data augmentation, 0.2 random rotation
and width and height random zoom were applied to the training set. Points outside the
boundaries of the input are filled with the nearest mode.
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New CNN models based on the VGG16 [43] architecture were created for the first
level of stacking models. There are several important reasons why the VGG16 architecture
is based. The most important of these reasons is that it produced high-performance results
in studies in which endoscopic images were classified using VGG16 architecture, according
to the literature review. However, the features of the stacking ensemble learning models
adopted in the proposed approach are compatible with the VGG16 modeling. The weak
classifier of the base learners used for the first level is an important principle that reduces
the model’s complexity. Compared to other CNN architectures, VGG16 has an architecture
with less complexity and fewer parameters but with high classification performance.

The first two layers of the original VGG architecture have a 64-channel 3 x 3 filter.
Next comes the maximum pooling layer with two strides. The next convolution layer uses
a 256-channel 3 x 3 filter. After that, there are two sets, three convolution layers, and
a maximum pooling layer. Each convolution layer has 512-channel filters of 3 x 3 size,
with the same padding, and the image, after these steps, then passes into the stack of two
convolution layers. The convolution layers contain the ReLU activation function. A batch
normalization layer was added to the end of the convolution layers of the proposed CNN
models, and Gaussian error linear unit (GELU) [44] was used as the activation function.
The convolution and pooling layers are the same as the VGG16 architecture. The deep
learning models’ configurations are presented in Table 1.

CNN processes data by dividing it into mini batches instead of processing them all
at once. The data normalization process is the zero-centered and zero-to-one revaluation
of the input data. The batch normalization layer applies a transformation, keeping the
output standard deviation close to 1 and the average output close to 0. The fact that the
normalization process can be optimized during training makes the model less sensitive to
hyperparameter tuning. The low hyperparameter sensitivity allows a significant learning
rate and lowers the importance of weight initialization. Since the mean and variances
remain moderately constant across the entire network, the generalization error is reduced.
The batch normalization layer is added before the convolution and activation layers to
ensure that the network always produces activations with the desired distribution when
updating a parameter value. The GELU function enables conversion between stochastic
modifiers such as batch normalization or dropout layers and activation layers. This trans-
formation is stochastic but depends on the value of the input. The ReLU [45] function
multiplies by 0 if the input value is negative and by 1 if it is positive. GELU multiplies
the input by a value between 0 and 1, determined by its input value. In Equation (9), the
GELU activation function is expressed mathematically. ®(x) is the cumulative distribution
function of the standard normal distribution, and as P(X < x) gets smaller, x decreases,
so the GELU is more likely to multiply a neuron by 0. Since the neuron inputs follow a
normal distribution when batch normalization is used, the GELU is chosen as the activation
function in all convolution layers. MLP blocks consisting of dense, dropout, and batch
normalization layers are used in fully connected layers that undertake the classification
task. Model 1 includes one MLP block, Model 2 includes two MLP blocks, and Model 3
includes three MLP blocks.

GELU(x) = xP(X < x) = x®P(x), P(x) =P(X <x), X ~N(0,1) )

Application codes are written in Python using Keras [46] from deep learning libraries
and Scikit-learn [47] from machine learning libraries. Hyperparameters of all models were
selected using the distributed hyperparameter search strategy. Distributed hyperparameter
search creates models by combining multiple specified hyperparameter values and running
them in parallel. Thus, the combination of hyperparameters with optimum performance is
determined. Distributed hyperparameter search was performed with Keras Tuner from
the Keras library and GridSearchCV from the Sklearn library. The selected hyperparam-
eters and their values are given in Table 2. The same hyperparameters are used in the
base learners.
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Table 1. Configuration of new deep learning models.

Model 1 Model 2 Model 3
14 weight layers 15 weight layers 16 weight layers
input (150, 150, 3)

3 X 3 conv—64 + gelu (150, 150, 64)
3 X 3 conv—64 + gelu (150, 150, 64)

2 x 2 max-pooling, stride 2 (75, 75, 64)

batch_normalization

3 x 3 conv—128 + gelu (75, 75, 128)
3 x 3 conv—128+ gelu (75, 75, 128)

2 x 2 max-pooling, stride 2 (37, 37, 128)

batch_normalization

3 x 3 conv—256 + gelu (37, 37, 256)
3 x 3 conv—256 + gelu (37, 37, 256)
3 x 3 conv—256 + gelu (37, 37, 256)

2 x 2 max-pooling, stride 2 (18, 18, 256)

batch_normalization

3 x 3 conv—>512 + gelu (18, 18, 512)
3 x 3 conv—>512 + gelu (18, 18, 512)
3 x 3 conv—>512 + gelu (18, 18, 512)

2 x 2 max-pooling, stride 2 (9, 9, 512)

batch_normalization

3 x 3 conv—512 + gelu (9, 9, 512)
3 x 3 conv—512 + gelu (9, 9, 512)
3 x 3 conv—512 + gelu (9, 9, 512)

2 X 2 max-pooling, stride 2 (4, 4, 512)

global-average-pooling—512

dense—1024 + gelu dense—2048 + gelu dense—4096 + gelu
dropout—0.5 dropout—0.5 dropout—0.5
batch_normalization batch_normalization batch_normalization
dense—8/12 + softmax dense—1024 + gelu dense—2048 + gelu
dropout—0.5 dropout—0.5
batch._ lizati batch._ lizati
dense—8/12 + softmax dense—1024 + gelu
dropout—0.5
batcl lizati

dense—_8/ 12 + softmax

Training, validation, and testing experiments were repeated on Model 1, Model 2,
and Model 3 in order to compare the performances of the proposed stacking ensemble
models and the CNN models designed to be used at the first level. The learning curves of
deep learning models are given in Figure 4. A learning curve can be derived that networks
are overfitting, underfitting, or adapting as they should be during the training phase. At
the beginning of the training phase, the network sees several training samples and the
entire validation set, so it generalizes by rote. There is overfitting if the training accuracy
is consistently below the validation accuracy after a specific period value. The fact that
the number of training samples is greater than the number of validation samples causes a
generalization gap. There is underfitting if the generalization gap is prominent in a learning
curve. Since stacking models are hybrid models with two levels, a single learning curve
cannot be drawn. However, it is crucial to interpret the learning curves of base learners, as
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the performance of base learners trained with endoscopic images are the main predictors
that will affect the performance of stacking models.

Table 2. The values of the hyperparameters.

Base Learners Hyperparameter Value
Batch size 32
Learning rate 2x1073
Epoch 50
Loss function sparse_categorical_crossentropy
Optimization algorithm Adam [48]
Meta-Learners Hyperparameter Value
Logistic regression
C 10
Solver newton-cg [49]
max_iter 100
multi_class ovr
Support vector machine
C 0.1
Kernel linear
Loss squared_hinge
max_iter 100

multi_class

crammer_singer [50]

Multi-layer Perceptron

hidden_layer_sizes 128, 64
Activation ReLU
Solver Adam
learning_rate_init 1x 1073
max_iter 100
K-nearest neighbors
n_neighbors 15
P 1
Metric manhattan_distance
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Figure 4. Learning curves of deep learning models.
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4. Results

In order to measure the performance of the established models, a test phase was
carried out on separate test data. Performance measurement methods and explanations
are given in Table 3. The confusion matrix is a basis for calculating performance measures
that describe the full performance of the model by comparing the number of predicted
labels with the actual labels. Confusion matrices represent true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) values. The class with the actual label
is accepted as the positive class, and the cases where the actual label and the predicted
label are the same give the TP value. In Figure 5, the confusion matrices of the models
are displayed. When the confusion matrices of KvasirV2 and HyperKvasir datasets are
examined, it is predicted that the stacking ensemble models give the highest classification
performances. Stacking Ensemble Model 3 designed with LSVM meta-learner in KvasirV2
correctly predicted 1181 of 1200 test data. Stacking Ensemble Model 1 designed with MLP
meta-learner in HyperKvasir correctly predicted 1540 of 1563 test data. In both datasets,
Model 3 was the classifier with the most incorrect predictions (87 incorrect predictions for
KvasirV2, 100 incorrect predictions for HyperKvasir).

Table 3. Performance metrics.

Metrics Description
True Positive (TP) A situation where the actual and predicted data point class is correct.
True Negative (TN) A situation where the actual and predicted data point class is incorrect.
False Positive (FP) A situation where the actual data point Flass is false and the predicted data point
class is true.
False Negative (FN) A situation where the actual data pomt‘class is true and the predicted data point
class is false.
The AUC (area under the ROC curve) value measures how well two classes can be
ROC-AUC s . . s
distinguished, and a value of 1 is desired for perfect discrimination.
It is the number of correct guesses divided by the total number of guesses and is
Accuracy (ACC) required to be 1 for Pperfect discrimination.
TP+TN
TP+FP+FN+TN
A Type I error occurs when a true null hypothesis (Hp) is rejected. A Type I error is
- the definition of a class as normal that would be sick. That is why the precision
Precision e . . .
metric is critical in medical applications.
TP
TP+FP
A Type Il error occurs when a false null hypothesis (Hp) is accepted. Type II error
Recall is when a class that would be defined as normal is defined as sick.
TP
TP+FN
It is the harmonic mean of precision and recall and is required to be 1 for perfect
discrimination. It does not explicitly report whether a model has Type I or Type I
F; Score . - P
errors but provides an objective measure of unbalanced classification problems.
2% Precision x Recall
Precision+Recall
It is the ratio of the intersection of two sets of labels, actual and predicted, to the
Jaccard similarity coefficient (JSC) union and is required to be 1 for perfect discrimination.
TP
TPFFNLFP
In the case of multiple classification, the minimum value is between —1 and 0, and
the maximum value is +1. The F; and ACC metrics are positive class-dependent,
Matthews correlation coefficient (MCC) but MCC produces positive and negative class-dependent results. Many studies

consider it the most reliable metric in unbalanced classification problems.
TPXxTN—FPxEN

/(TP+FP)(TP+FN)(TN+FP)(TN+FN)
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Figure 5. Confusion matrices.

Measurements obtained from the confusion matrix do not give precise information
about the performance of the models but are used to calculate performance metrics. The test
results calculated according to the selected metrics are given in Table 4. Stacking Ensemble
Model 3, designed with LSVM meta-learner in the KvasirV2 dataset, and Stacking Ensemble
Model 1, designed with MLP meta-learner in the HyperKvasir dataset, showed the highest
performance. In the KvasirV2 dataset, Stacking Ensemble Model 3 reached 98.42%, 98.42%,
99.84%, 96.89%, and 98.19% in ACC, F; score, AUC, JSC, and MCC metrics, respectively.
In the HyperKvasir dataset, Stacking Ensemble Model 1 reached 98.53%, 98.46%, 99.95%,
96.98%, and 98.39% values in ACC, F; score, AUC, JSC, and MCC metrics, respectively.
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Model 3, one of the base learners of the stacking models, a CNN model, showed the lowest
performance in both datasets. In Model 3 of the KvasirV2 dataset, ACC, F; score, AUC,
JSC, and MCC metrics reached 92.75%, 92.77%, 99.60%, 86.59%, and 91.77%, and in the
HyperKvasir dataset, ACC, F; score, AUC, JSC, and MCC metrics reached 93.60%, 93.20%,
99.64%, 87.44%, and 93.02%.

Table 4. Test results.

Classifier ACC (%) Precision (%) Recall (%) F; Score (%) ROC-AUC (%) JSC (%) MCC (%)
KvasirV2

Model 1 95.33 95.44 95.33 95.35 99.69 91.15 94.68

Model 2 96.33 96.38 96.33 96.34 99.73 92.98 95.81

Model 3 92.75 93.21 92.75 92.77 99.60 86.59 91.77
Stacking Ensemble Model 1 97.17 97.22 97.17 97.18 99.82 94.54 96.77
Stacking Ensemble Model 2 97.58 97.59 97.58 97.58 99.80 95.30 97.24
Stacking Ensemble Model 3 98.42 98.42 98.42 98.42 99.84 96.89 98.19
Stacking Ensemble Model 4 95.25 95.28 95.25 95.25 98.87 90.98 94.57

HyperKvasir

Model 1 95.91 95.87 95.63 95.71 99.79 91.86 95.51

Model 2 97.06 96.55 96.87 96.69 99.86 93.69 96.77

Model 3 93.60 93.43 93.25 93.20 99.64 87.44 92.99
Stacking Ensemble Model 1 98.53 98.45 98.48 98.46 99.95 96.98 98.39
Stacking Ensemble Model 2 97.25 97.11 97.23 97.14 99.83 94.49 96.98
Stacking Ensemble Model 3 97.76 97.66 97.65 97.65 99.90 95.43 97.54
Stacking Ensemble Model 4 96.29 96.19 96.19 96.15 98.62 92.63 95.93

The fact that the ACC, precision, recall, and F; score metrics in the KvasirV2 dataset
have almost the same value is due to the balanced sample distribution. When the test
results are examined, high precision and recall values mean that Type I and Type Il errors
are low. This result is of great importance for medical diagnostic applications. Stacking
ensemble models are the classifiers that achieve the highest performance in both datasets.
This factor proves that the proposed approach has a performance-enhancing effect on deep
learning models. However, it is observed that the performance of Stacking Ensemble Model
4, designed using KNN as a meta-learner, is relatively low compared to the other three
stacking models. Using metrics to compare the performance of algorithms is misleading.
Performing a statistical test for performance benchmarking provides scientific evidence
for results.

For reliable performance measurement, McNemar's test [51], a variant of the )(2 test,
was applied. The first step of McNemar’s test is to create the contingency table that gives
the successful and unsuccessful predictions of the two selected algorithms. According to
the contingency table, if b > ¢, algorithm A is more successful than algorithm B (b: number
of predictions where algorithm A succeeds and algorithm B fails, c: number of predictions
where algorithm B succeeds and algorithm A fails). In the second step, the z score is
calculated to measure how different the two algorithms are from each other. If the z score
is 0, the Hy hypothesis, which argues that there is no significant difference between the two
algorithmes, is accepted. If the z score moves away from 0 to the positive direction, the H;
hypothesis, which argues that there is a significant difference in performance between the
two algorithms, is accepted.

Table 5 presents the results of McNemar’s test. The arrow symbols used in Table 5
show which algorithm is more successful. According to McNemar’s test, Stacking Ensem-
ble Model 3 has the most successful classification performance on the KvasirV2 dataset.
Although there is a performance difference between Stacking Ensemble Model 3 and Stack-
ing Ensemble Model 2, it is not significant. The same is true for Stacking Ensemble Model 1
and Stacking Ensemble Model 2. Stacking Ensemble Model 1 is the algorithm with the best
classification performance on the HyperKvasir dataset, and there is a significant difference
with all other algorithms.
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Table 5. Results of McNemar’s test.

KvasirV2
Model 2 Model 3 SEM 1 SEM 2 SEM 3 SEM 4
Model 1 11.33 +—2.82 12.71 12.82 14.16 0
Model 2 422 11.27 11.66 13.07 +1.23
Model 3 15.45 15.39 16.57 12.49
SEM 1 10.51 11.92 +233
SEM 2 11.42 +3.74
SEM 3 +—4.62
HyperKvasir
Model 2 Model 3 SEM 1 SEM 2 SEM 3 SEM 4
Model 1 11.88 34 15.04 12.52 13.37 10.58
Model 2 +53 13.02 10.25 11.35 +1.26
Model 3 17.97 15.94 16.57 14.1
SEM 1 293 1.7 +4.86
SEM 2 11.01 +1.96
SEM 3 277

Stacking Ensemble Model 3 for the KvasirV2 dataset and Stacking Ensemble Model
1 for HyperKvasir are significantly more successful than deep learning models with a
confidence level of over 99.50%. This result proves that the proposed approach improves
the performance of deep learning models by a significant margin. Model 3 is significantly
less successful for both datasets than all other algorithms. The lowest performance of Model
3 does not affect the stacking models because each base learner contributes the same amount
to the ensemble prediction. The difference between deep learning models is the number of
MLP blocks in the classifier layers. Model 2 performed best among deep learning models
with a significant difference compared to Models 1 and 3. This indicates that increasing
or decreasing the number of MLP blocks does not affect the performance of deep learning
models. The number of MLP blocks should be considered a separate hyperparameter.

The McNemar'’s test results mentioned so far support the performance metrics results.
However, there are different results revealed by McNemar’s test. The Stacking Ensemble
Model 4 and Model 1 have similar performance results, and the Hy cannot be rejected.
Model 2 Stacking Ensemble is more successful than Model 4, but the results are insignificant.
The same is true between Model 2 and Stacking Ensemble Model 2 for the HyperKvasir
dataset. If a base learner performs the same or better than a stacking model, the base learner
should be preferred because the model has less complexity. In such a case, using stacking
models extends training and maintenance times. Stacking models are designed to improve
the performance of deep learning models, but not every stacking model is guaranteed to
result in an improvement.

The stacking models presented in the application differ because the meta-learners are
different machine learning algorithms. The failure of Stacking Ensemble Model 4, according
to deep learning models, is due to the failure of the KNN algorithm, which is a meta-learner.
In the same direction, the success of Stacking Ensemble Model 3 on the balanced dataset is
due to MLP, and the success of Stacking Ensemble Model 1 on the unbalanced dataset is
due to LSVM. Selected meta-learners determined the performance of the stacking models.

Table 6 summarizes the performance difference over KvasirV2 and HyperKvasir
datasets, where metrics and McNemar’s test show a performance rating of “+”. When
Table 6 is examined, it is seen that McNemar’s test supports the results obtained from
other measurement methods, except for Stacking Ensemble Model 4 and Model 1. For the
KvasirV2 dataset, McNemar’s test shows no significant performance difference between
Stacking Ensemble Model 4 and Model 1, while performance metrics show Model 1 out-
performs Stacking Ensemble Model 4. Although the order of success for the ROC-AUC
metric is different from McNemar’s test and other metrics, it is observed that the order of
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the best-performing models does not change. The lowest-performing is Stacking Ensemble
Model 4 according to the ROC-AUC metric, while Model 3 is according to McNemar’s test
and other metrics. The fact that the ROC-AUC metric offers different performance results
draws attention to the importance of evaluating the results of artificial intelligence studies
by applying statistical tests.

Table 6. Summary of the performances.

Model 1 Model 2 Model 3 SEM 1 SEM 2 SEM 3 SEM 4
McNemar’ s Test

KvasirV2 ++ +++ + ++++ +++++ ++++++ ++

HyperKvasir ++ ++++ + +++++++ +++++ ++++++ +++
ROC-AUC

KvasirV2 +++ ++++ ++ -+ +++++ +++++++ +

HyperKvasir +++ +++++ ++ +++++++ ++++ ++++++ +
ACC, F, JSC, and MCC

KvasirV2 +++ ++++ + +++++ ++++++ +++++++ ++

HyperKvasir ++ ++++ + +++++++ +++++ ++++++ +++

5. Discussion

The limitation of the proposed stacking models is that they add additional complexity
to the already high-complexity deep learning models. High model complexity reduces
interpretability and increases training and maintenance costs in terms of both hardware
needs and computation time. The number of hyperparameters has a significant influence on
model complexity. The high number of hyperparameters in the proposed approach made it
difficult to search for distributed hyperparameters. Using an optimization algorithm instead
of distributed hyperparameter search in tuning hyperparameters can increase performance
and reduce model complexity and computation time. Another factor in keeping model
complexity low is choosing simple but high-performance models with few parameters
for base learners. Despite this disadvantage, a significant advantage that supports the
recommendation of stacking models in this study is the performance-enhancing effects.
Considering the use in real life, the testing phase takes seconds to be used in the field after
the model is trained on the training data. For this reason, performance is more important
than complexity in the models created for artificial intelligence applications in health. A
proposed model should be reliable, objective, and predictable with high accuracy.

Table 7 summarizes the state-of-the-art methods and results for GI tract findings
classification. Although the differences and innovations of this study from the literature are
clearly stated in Section 2, Table 7 presents the comparative results of the state-of-the-art
methods and the proposed approach. The highest ACC value for the KvasirV2 dataset is
98.30%, reached with the transfer learning approach [23], while 97.99% is reached with
the multi-feature fusion method for the HyperKvasir dataset [29]. With the approach
proposed in this study, the highest classification ACC is 98.42% for the KvasirV2 dataset
and 98.53% for the HyperKvasir dataset. In general, although state-of-the-art methods
show low performance on the HyperKvasir dataset, the high performance of this study is
remarkable. It is seen in Table 7 that the performance of the proposed approach is higher
than the other state-of-the-art methods proposed in the literature.

Based on findings such as the rapidity and high performance of the proposed approach
and the statistical proof of its high performance, the methods presented in this study can be
applied in the clinical environment. The proposed approach could enable the development
of new intelligent endoscopic devices, supporting early life-saving diagnosis with objective
and reliable predictions. This study can reduce specialists” workload, save cost and time,
and help prevent misdiagnosis and treatment caused by specialist errors. In addition to the
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clinical benefits, the proposed approach can be applied to other topics studied in the field
of artificial intelligence in medicine and may provide new high-performance solutions.

Table 7. Overview of the literature.

Author, Year, Reference Approach Results (ACC %)
KvasirV2
Oztiirk and Ozkaya, 2020 [26] LSTM based CNN 97.90
Oztiirk and Ozkaya, 2021 [27] Residual LSTM layered CNN 98.05
Hmoud Al-Adhaileh et al., 2021 [24] Transfer learning 97.00
Mohapatra et al., 2021 [32] 2D-DWT and CNN 97.25
Khan et al., 2022 [30] Bayesian optimal deep learning feature selection 98.02
Yogapriya et al., 2021 [25] Transfer learning 96.33
Afriyie et al., 2022 [34] Dn-CapsNet 94.16
Khan et al., 2022 [31] Moth-Crow Optimization with DCCA Fusion 97.20
Dheir and Abu-Naser, 2022 [23] Transfer learning 98.30
HyperKvasir
Ramamurthy et al., 2022 [29] Multi-feature fusion method 97.99
Mohapatra et al., 2022 [33] EWT and CNN 96.65
Dutta et al., 2021 [28] Tiny Darknet 75.80 MCCQC)
Borgli et al., 2020 [22] ResNet-152 + DenseNet-161 90.20 MCCQC)
KvasirV2 + HyperKvasir
. KvasirV2 94.83;
Wang et al., 2022 [35] Convolutional-capsule network HyperKvasir 85.99
. . . . KvasirV2 98.42;
This study Deep learning-based hybrid stacking ensemble models HyperKvasir 98.53

6. Conclusions

In this study, innovative and hybrid stacking ensemble models, in which base learners
are deep learning algorithms, and meta-learners are machine learning algorithms, are
proposed for GI tract classification. The results of the selected metrics for performance eval-
uation were supported by applying McNemar’s test. According to the experimental studies
conducted on two separate datasets, balanced and unbalanced, stacking models performed
approximately 99% with a significant difference. The proposed stacking approach increases
the performance of deep learning models and outperforms the state-of-the-art studies in
the literature. This study provides an artificial intelligence system that will produce high-
performance, reliable, objective, and fast results when applied in the clinical environment,
helping endoscopy specialists in many factors and providing an early diagnosis.
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