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Avalanches and rate effects in strain-controlled discrete dislocation plasticity of Al single crystals
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Three-dimensional discrete dislocation dynamics simulations are used to study strain-controlled plastic defor-
mation of face-centered cubic aluminium single crystals. After describing the rate and size dependence of the
average stress-strain curves, we study the power-law distributed strain bursts and find a universal power-law
exponent τ ≈ 1.0 for all imposed strain rates. This is then followed by the characterization of the average
avalanche shapes which reveals the two key physical regimes in dislocation plasticity dominant at small and
large strain rates, respectively. We discuss the dependence on the loading rate and compare our observations with
previous studies of strain-controlled two-dimensional systems of discrete dislocations as well as of quasistatic
stress-controlled loading of aluminium single crystals.
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I. INTRODUCTION

The initial elastic deformation of crystalline solids sub-
ject to external stresses undergoes a continuous transition
(“yielding”) to plastic flow which is governed by the collec-
tive dynamics of dislocations [1,2]. This complex motion of
dislocation systems is characteristic of strongly intermittent,
avalanche-like fluctuations exhibiting broad, power-law-like
size distributions [3,4]. These were observed by both acoustic
emission measurements on macroscopic samples [5,6] and
in experiments performed on micron-scale samples [7–10].
Despite all the recent advances, the dependence of dislocation
plasticity on the crystal structure and orientation as well as
size and rate effects of the deformation process lacks a com-
plete description [11–13]. Moreover, the origin of the bursty
nature of crystal plasticity is not yet fully understood [14–16],
although avalanche mechanisms were successfully described
using nanopillar compression models [17–20].

Discrete dislocation dynamics (DDD) simulations were
proven to be efficient numerical tools in the study of crystal
plasticity on the microscopic scale, capturing the avalanche-
like deformation process [3,16,21,22]. In the simplest and
computationally most efficient DDD models the disloca-
tions are represented as point-like objects (representing cross
sections of straight parallel edge dislocations) moving and
interacting within a single plane [23–25]. More realistic three-
dimensional (3D) systems describing dislocations as flexible
lines, including edge, screw, as well as mixed dislocations,
are able to provide a detailed insight into the complex na-
ture of dislocation systems, taking into consideration the
different crystal structures and dislocation movements along
multiple glide planes [26,27]. An additional advantage over
two-dimensional (2D) DDD simulations is the possibility to
include the topological operations responsible for the increase
of the dislocation density during the deformation process.
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Previous studies mainly employed a quasistatic stress-
controlled loading, both in 2D models [16,28] and in 3D
simulations of FCC aluminium single crystals [27,29], where
the stress is either increased constantly as long as the col-
lective dislocation velocity is below a threshold or is held
constant with accumulating strain (avalanche) until this ve-
locity relaxes to a value below the threshold. Quasistatic
stress-controlled loading simulates the low stress rate limiting
behavior of the deformation process, eliminating possible rate
effects in the avalanche statistics. However, strain-controlled
loading allows simulations with strain rates spanning up to
nine orders of magnitudes including both forest hardening and
strain rate hardening regimes, as it was demonstrated for the
material parameters of FCC copper [13]. In this paper, we
present results from an extensive study of 3D DDD using
strain-controlled loading of FCC aluminium single crystals.
Using a large database of stress-strain curves, we characterize
the size and rate effects of the ensemble averages and we
show that the avalanches are distributed according to the same
power law, independent of the deformation rate. On the other
hand, the avalanche shapes reveal a rate dependence, sepa-
rating the deformation process into two regimes dominated
by different mechanisms. Alongside the analysis, we compare
our observations with the results from related studies on 2D
systems [25] as well as on stress-controlled loading of 3D
systems [27].

The paper is organized as follows. In Sec. II we present the
DDD model used and illustrate a sample deformation process.
The results of our study are presented in Sec. III, starting
with the size and rate effects of the stress-strain curves in
Sec. III A, followed by the statistical analysis of the avalanche
distributions, scaling as a function of their duration, and av-
erage shapes in Sec. III B. The conclusions of our paper are
summarized in Sec. IV.

II. DDD SIMULATIONS

To simulate the deformation process, we use the constant
strain rate loading method of the 3D DDD software PARADIS
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[26]. Here the dislocation lines are discretized into nodal
points connected by straight line segments. Dislocation mo-
tion is realized by moving the nodal points, which, addition-
ally, can be added or removed depending on segment lengths
and curvatures. The total stress acting on a node is the sum
of the external stress, generating a Peach-Koehler force, and
of the anisotropic stress fields generated by the dislocations
within the crystal [30]. The forces generated by the later fields
are divided into local and far-field ones. The local forces are
computed directly via line integrals, while the far-field forces
are obtained from the course-grained dislocation structure us-
ing a fast multipole method (FMM) [31]. FMM works without
the need of a cutoff distance and is widely used in other phys-
ical systems that contain long range forces, such as Coulomb
interactions in ionic crystals or gravitational fields in galaxies.
The calculation of the forces is followed by the time integra-
tion and solving the equations of motion for the discretized
nodes. PARADIS takes into account the crystal structures and
dislocation types (edge, screw, or a combination of those).
These material specific properties enter the equations of mo-
tion through the mobility functions, relating the forces with
the dislocation velocities. Bulk properties are simulated by
using periodic boundary conditions (PBC). The interactions
of the dislocation segments in the simulation box with all of
their periodic images is handled within the FMM algorithm.

We consider here the FCC crystal structure with material
parameters of Al: shear modulus G = 26 GPa, Poisson ratio
ν = 0.35, Young modulus Y = 70.2 GPa, Burgers vector b =
2.863 × 10−10 m, and, for simplicity, the same dislocation
mobility M = 104 Pa−1s−1 in all directions. To study the ef-
fect of the system size, we consider different linear sizes L =
0.741, 1.054, and 1.43 μm of the cubic simulation box (i.e.,
within the range of those of typical microcrystal compression
experiments [4]). These system sizes are chosen in a way
that the numbers N0 = 10, 20, and 40 of the initially straight
dislocation lines placed randomly on the glide planes of the
FCC lattice, relax in zero applied stress to a dislocation con-
figuration in a metastable state with the approximate density
ρ0 ≈ 2.5 × 1013 m−2. After the initial relaxation stage, the
strain-controlled loading protocol (constant strain rate loading
method of PARADIS) is switched on imposing strain rates from
ε̇a = 1000 s−1 up to ε̇a = 2 × 105 s−1. For the N0 = 10 and
40 system sizes 100 and 50 samples were generated for every
imposed strain rate, respectively, while for the medium system
size N0 = 20 (used to study the avalanche statistics) 100 and
200 samples for the two lowest (ε̇a = 1000 s−1, 5000 s−1)
and the higher rates (above ε̇a = 10 000 s−1) were created,
respectively. The resulting stresses σ , total strains ε as well as
plastic strains εP, loading times t , strain rates ε̇ and dislocation
densities ρ are stored during the simulations.

A sample simulation process with N0 = 20, ε̇a = 5000 s−1

is illustrated in Fig. 1, including the straight dislocations
placed randomly in the simulation box, the relaxed config-
uration where the dislocations exhibit some curvature, the
configuration at the end of the loading procedure, the evolu-
tion of the dislocation density throughout the whole process,
and the resulting stress-strain curves. The last panel shows
the stress as a function of both the plastic and total strain. At
the beginning of the deformation process the total strain is
dominated by its elastic component, in accordance with linear

FIG. 1. Sample dislocation configurations of the system with
N0 = 20 initially straight dislocations (a) before relaxation, (b) after
relaxation, and (c) deformed up to ε = 0.005 with a strain rate
ε̇r = 5000 s−1; (d) the evolution of the dislocation density during
the relaxation as well as the loading process and (e) the resulting
stress-strain curve, illustrating the difference between the plastic and
total strains.

elastic theory. This is then followed by the plastic deforma-
tion, exhibiting a sawtooth-like shape, consisting of a series of
stress drops or strain bursts, and segments with increasing σ .

III. RESULTS

A. Rate-dependent stress-strain curves

First we investigate the rate and size dependence of the
stress-strain curves. Figure 2(a) shows examples of single-
sample curves as a function of the total strain along with the
ensemble-averaged stress-strain curve and its standard devia-
tion for the system with N0 = 20 initial dislocation lines and
imposed strain rates ε̇a in three different orders of magnitude.
Varying the driving parameter ε̇a results in a significant depen-
dence of the fluctuation magnitudes and average stress-strain
curves on ε̇a. The system size dependence along with the
rate dependence of the ensemble-averaged stress-strain curves
is visualized in Fig. 2(b). While the rate dependence highly
influences the stresses reached during the loading process, a
nonnegligible size dependence is also present in the plastic
regime. The smallest systems with N0 = 10 initial disloca-
tion lines no longer accumulate further stress past the elastic
regime and the average stress-strain curves approach a fixed
stress value, provided there are sufficient samples to average
out the fluctuations, as in the case of larger rates. Mean-
while, the average stress-strain curves for the larger systems
and smaller rates keep increasing monotonically beyond the
initial elastic deformation, transitioning to a monotonically
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FIG. 2. (a) Average stress-strain curves 〈σ (ε)〉 (with the average
taken over different realizations of the initial configuration, solid
lines), individual, single sample curves (dashed lines), and standard
deviations (shaded regions) for system with initial dislocation lines
N0 = 20 and various applied strain rates ε̇a. (b) Average stress-strain
curves 〈σ (ε)〉 (with the average taken over different realizations
of the initial configuration) for varying applied strain rates ε̇a and
three system sizes defined by the number of initial dislocation lines:
N0 = 10 solid lines; N0 = 20 dashed lines; N0 = 40 dotted lines.

decreasing averaged stress-strain curve around the imposed
strain rate ε̇a = 100 000 s−1. Due to this similar behavior for
N0 = 20 and 40, as well as the high computational cost of
larger systems, the remainder of this work will focus on the
systems with N0 = 20 initial dislocation lines placed in the
periodic simulation box.

The dependence of the accumulated average stress at given
strain as a function of the imposed strain rate is shown in
Fig. 3. We expect the dependence to be described by a shifted
power law

σ (ε, ε̇a) = σ (ε, ε̇a = 0) + A(ε̇a)b, (1)

with the shift equal to the stress at zero strain rate [25]. Fig-
ure 3(a) considers the total strain containing both the elastic
and plastic strains. The lowest strain considered ε = 0.001
is dominated by the elastic component and thus we observe
the low exponent b ≈ 0.3. Meanwhile the strain dominated by
the plastic strains obey the power law b ≈ 0.59. On the other

FIG. 3. The dependence of the ensemble-averaged stress-strain
curves on the strain rate ε̇a at specific (a) strain ε and (b) plastic
strain εp values, fitted to a power-law shifted by the stress at zero rate
given by Eq. (1). The insets show the stress with the zero rate values
subtracted on a logarithmic scale and the corresponding power laws
(a) b = 0.59 and (b) b = 0.68 for the strain and plastic strain values,
respectively.

hand, considering only the plastic strain [see Fig. 3(b)] gives
us the higher exponent b ≈ 0.68 for all the plastic strain values
tested. Both values obtained for the deformation dominated
by plastic strains are higher than the exponent b ≈ 0.4 found
recently for 2D DDD simulations considering the point-like
cross sections of parallel, straight edge dislocations [25]. A
similar trend was also observed for copper, where the expo-
nent decreases with increasing dislocation density [13].

B. Avalanche statistics

In the following we study the dependence of the strain rate
signal on the imposed strain rate. Figure 4 illustrates how the
strain rate signal ε̇, the ensemble averaged signal 〈ε̇〉, as well
as the dislocation density ρ evolves during the loading process
for a wide range of imposed strain rates ε̇a (note the varying
y-axis ranges). By definition of the loading mechanism, a
signal above the threshold ε̇ > ε̇a results in a monotonically
decreasing stress rate σ̇ , thus creating a strain burst. This
property of the signal allows us to better understand the fluctu-
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FIG. 4. Individual single sample strain rate signals ε̇, the applied
strain rates (a) ε̇a = 1000 s−1, (b) ε̇a = 5000 s−1, (c) ε̇a = 20 000 s−1,
(d) ε̇a = 100 000 s−1; the signal averages 〈ε̇〉 taken over different
realizations of the initial configuration and the corresponding single
sample evolution of the dislocation densities for the system with
N0 = 20 initial dislocation lines.

ating behavior of the stress-strain curves. The lowest imposed
strain rate ε̇a = 1000 s−1 [see Fig. 4(a)] results in a signal
dominated by sharp peaks well above the threshold, while the
signal below the threshold is close to zero. As the imposed
strain rate is increased [see Fig. 4(b)], the fluctuations become
more localized around the threshold and the signal no longer
approaches zero. These effects are enhanced by a further
increase in the imposed strain rate [see Fig. 4(c)], as well as
causing the fluctuations to be symmetric around the thresh-
old, due to the higher gap above the zero rate. Figure 4(d)
shows the strain rate signal for the high imposed strain rate
ε̇a = 100 000 s−1, where the fluctuations around the threshold
are small and the ensemble averaged signal 〈ε̇〉 overlaps well
with the imposed strain rate, exhibiting minimal fluctuations.
Similarly to the stress-strain curves, the dislocation densities
are characterized by rate-dependent fluctuations, where low
and high rates exhibit large and small fluctuations, respec-
tively. Additionally, the comparison of the time evolutions of
the strain rate signal and dislocation density reveals that at low
rates the sharp peaks of the signal overlap well with the de-
creases in the dislocation density, while the same correlation

FIG. 5. (a) Integrated distributions of the stress drop magnitudes
PINT(�σ ) for varying imposed strain rates ε̇a, described by the power
law τσ = 1.00 ± 0.05 with exponential cutoff. The inset shows the
scaling of the average stress drop magnitude 〈�σ (T )〉 with the event
duration T , where the lines correspond to the power laws obtained for
the lowest and highest ε̇a, respectively. (b) Integrated distributions of
the strain increments PINT(�ε) for varying imposed strain rates ε̇a,
described by the power law τε = 1.0 ± 0.05 with exponential cut-
off. The inset shows the corresponding event duration distributions
(proportional to the strain increments) obeying the same power law
τT = 1.0 ± 0.05.

becomes less prominent as the imposed strain rate approaches
higher values. This hints towards the existence of two regimes
in deformation of FCC single crystals: (i) at low rates the
individual avalanches are separated in time while (ii) at high
rates several distinct avalanches could be propagating at the
same time, resulting in a temporal overlap of the events. Here
it should be noted that higher rates allow a deformation in
smaller timescales, and thus the number of fluctuations during
the loading process vary significantly for the imposed strain
rates shown. This affects the avalanche statistics discussed in
the following.

Figure 5(a) shows the integrated stress drop distributions
PINT(�σ ), i.e., the distribution of the stress differences dur-
ing avalanches irrespective of the stress and strain value
at which they occur. The distributions are fitted to a
power law terminated at an exponential cutoff PINT(�σ ) =
A(�σ )−τσ exp (− �σ

�σ0
), resulting in the universal exponent
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τσ = 1.00 ± 0.05 independent of the imposed strain rate and
overlapping cutoff scales �σ0 up to an accuracy defined by
the availability of statistics in the cutoff regime. The inset
of Fig. 5(a) shows the scaling of the average avalanche size
〈�σ (�T )〉 with the avalanche duration �T . The scaling is de-
fined by the power γ = 1.5 ± 0.05 for the average avalanche
size being in the power-law regime. The seemingly small
rate-dependent variation exhibited by the scaling is within the
error range, meaning that the rate dependence is only visible
in the magnitudes of the stress drops of a given duration.
This scaling relation is in accordance with the power law
γ = 1.5 ± 0.02 obtained for large events in case of quasistatic
stress-controlled loading of statistically equivalent Al single
crystal samples [27].

The corresponding integrated distributions of strain incre-
ments PINT(�ε) as well as the avalanche durations PINT(�T )
are visualized in the main panel and inset of Fig. 5, re-
spectively. Similarly to the distributions of the stress drop
magnitudes, the strain increments are distributed by a trun-
cated power law with the exponent τε = 1.00 ± 0.05 for all
the tested imposed strain rates, however, the scaling regime
exhibits a rate dependence with an increase of the cutoff scale
�ε0 for increasing rates. Because the total strain ε is defined
as the product of the imposed strain rate ε̇a and the elapsed
time t , the avalanche duration distributions are shifted ver-
sions of the strain increment distributions, obeying the same
power law τT = 1.00 ± 0.05, and at the same time resulting
in the reverse rate dependence, i.e., a decrease of the cutoff
scale �T0 for increasing rates.

The avalanche-like dynamics of plastic deformation was
characterized by various power-law exponents τ . The value
τ ≈ 1.5 predicted by mean-field depinning [32] was found
both experimentally and numerically [27,33–35]. However,
the exponents found using 2D DDD simulations do not agree:
quasistatic stress-controlled loading resulting in τ ≈ 1.0 for
stress-resolved avalanche distributions (where the events are
binned into stress intervals) and the larger exponent τ ≈ 1.3
for the integrated distributions [16], while avalanches from
strain-controlled loading exhibit a large and rate-dependent
exponent [25]. Including the observation that the scaling of
the average avalanche sizes 〈�σ (�T )〉 with the avalanche
duration �T are described by the power laws γ ≈ 1.0 and
γ ≈ 1.5 for 2D and 3D DDD models, respectively, we can
state that (i) these two models belong to different univer-
sality classes of mesoscopic plasticity and (ii) the different
avalanche definitions for stress- and strain-controlled load-
ing modes (constant and monotonically decreasing stress,
respectively) affect the power-law exponent of the avalanche
distributions. One possible explanation is provided by the
choice of threshold strain rate (or velocity) above which
avalanches are defined [25,27,36]. Additionally, models simu-
lating experiments (where pure stress or strain control cannot
be achieved) of pillar compression have linked the transition
between the two loading modes to the different microscopic
mechanisms during sample deformation [18,37].

In addition to the avalanche sizes and durations, strain
bursts can be characterized by their average shapes [38–41].
In plasticity, the event shape means the average strain rate
profile from the start of the strain burst to the end of it, with
the imposed strain rate subtracted from the signal, which is

FIG. 6. (a) Average strain burst (avalanche) shapes normalized
by their maximum values 〈σ̇ (t/T )〉norm for events in the power-law
regime of the size and duration distributions, for varying imposed
strain rates ε̇a and for a system size with N0 = 20 initial dislocation
lines. (b) Size and rate dependence of the average strain burst shapes
represented by the fitting parameters γ and a from Eq. (2).

proportional to the time derivative of the stress in that interval
〈σ̇ (t/T )〉 ∝ 〈ε̇(t/T ) − ε̇a〉. We expect such average shapes to
be parameterized by the exponent γ , which we predict to
be the same exponent characterizing the average stress drop
magnitude scaling 〈�σ (�T )〉 with the event duration �T ,
and the parameter a describing the temporal asymmetry of the
avalanches [41]

〈σ̇ (t/T )〉 ∝ T γ−1
[

t
T

(
1 − t

T

)]γ−1[
1 − a

(
t
T − 1

2

)]
. (2)

Equation (2) consists of a symmetrical part parameterized by
γ and a lowest-order correction to describe a weak asymmetry
of the shape, quantified by a.

Figure 6(a) shows the average avalanche shapes for events
with durations in the interval [10−9 s; 10−8 s] found in the
power-law regime of the size and duration distributions. The
shapes are normalized by their maximal values within the
interval. The shape for the lowest imposed strain rate ε̇a =
1000 s−1 exhibits a high asymmetry, characteristic of sharp
peaks caused by a jump of an individual dislocation, followed
by a relaxation corresponding to a slow decay in the strain
rate signal [see Fig. 4(a)] [42]. As the rate is increased, the
average avalanches approach a symmetrical shape, a trend
also observed in 2D DDD studies [25]. Our results can be re-
lated to the observations made for quasistatic stress-controlled
loading of Al single crystals: small avalanches resulting in
small strain, corresponding to low strain rates in our study, are
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TABLE I. Exact γ and a parameter values used to represent
the size and rate dependence of the average avalanche shapes in
Fig. 6(b).

N0 10 20 40

ε̇a [s−1] γ a γ a γ a

1000 1.28 0.91 1.24 1.1 1.35 0.88
5000 1.54 0.4 1.44 0.25 1.52 0.33
20 000 1.53 0.24 1.54 0.24 1.51 0.16
50 000 1.6 0.12 1.59 0.02 1.6 0.19
100 000 1.54 -0.15 1.55 0.01 1.49 0.02
200 000 1.51 0.0 1.52 0.02 1.5 -0.04

characterized by left asymmetries; while large events resulting
in more strain have symmetric shapes, similarly to the events
at higher imposed strain rates ε̇a [27]. The rate dependence
of the fitting parameters γ and a are shown in Fig. 6(b) as
well as in Table I, including also the results for different
system sizes, although only small size effects are observable.
The rate dependence of the asymmetry parameter a (right y
axis) shows that the imposed strain rates ε̇a = 5000 s−1 and
ε̇a = 20 000 s−1 are still characterized by a weak asymmetry,
however, higher rates appear to be symmetric up to a small
error. The exponent γ exhibits a similar rate dependence,
namely, γ = 1.25 for the lowest imposed strain rate which
then reaches the values γ = 1.5 for higher rates. This value for
high rates is in accordance with the exponent γ = 1.5 ± 0.05
obtained for the scaling of the average avalanche size with
the duration [see inset of Fig. 5(a)], although here no clear
rate dependence was observed. This discrepancy could be
caused by the inability of Eq. (2) to accurately capture highly
asymmetric avalanche shapes.

Figure 7 shows the distributions of accumulated density
differences scaled by the corresponding strain increments
(�ρ)/(�ε) during events found in the power-law regime of

FIG. 7. Distributions of density differences divided by the corre-
sponding strain increments �ρ between the ends and beginnings of
the events in the power-law regime of the size and duration distribu-
tions divided by the corresponding strain increments �ε, for varying
imposed strain rates ε̇a, and for a system size with N0 = 20 initial
dislocation lines. The inset shows the average density difference
divided by its strain increment as a function of the imposed strain
rate ε̇a.

the size and duration distributions. While for all the tested
imposed strain rates ε̇a the scaled density differences of most
events are close to zero, the distributions reveal the presence
of events causing a significant decrease in the dislocation den-
sity, i.e., negative (�ρ)/(�ε). Moreover, the negative scaled
density differences can be larger than the positive ones for the
two lowest imposed strain rates ε̇a = 1000 s−1 and 5000 s−1.
To assess whether density decreases or increases dominate the
avalanches, the inset shows the average scaled density differ-
ences as a function of the imposed strain rate. On average,
for the lowest imposed strain rates, during the events in the
power-law regime the dislocation density decreases, however,
as the loading rate is increased, the dislocation density keeps
rising during the avalanches.

Comparing this finding to the rate dependence of the dis-
location density evolution (Fig. 4) and the average avalanche
shapes (Fig. 6), we can observe a transition from small load-
ing rates, characteristic of individual temporally asymmetric
avalanches and, on average, decreasing dislocation densities
during the events, towards larger rates where the events are
a consequence of several overlapping avalanches resulting
in symmetric shapes and an increasing dislocation density.
While similar findings were presented for micropillar com-
pression [19,43], the presence of these two key physical
regimes in the deformation of Al bulk single crystals extends
our knowledge of plasticity, bringing us one step closer to op-
timizing the mechanical properties of materials by controlling
the dislocation dynamics.

IV. CONCLUSION

To summarize, our 3D DDD simulations on pure Al single
crystals using a large number of random initial dislocation
configurations to study the statistics of avalanches occurring
during strain-controlled deformation process show that these
are distributed by a power law with an exponential cutoff,
where the exponent τ = 1.0 is independent of deformation
rates and system sizes. This is different from the exponent τ =
1.5 observed for the same system using a quasistatic stress-
controlled loading [27], as well as from the rate-dependent
exponent in simplified 2D DDD simulations [25]. In con-
clusion, while 2D DDD captures the special case of straight
parallel edge dislocations moving in a single direction, the
3D representation of dislocations as flexible lines is recom-
mended to model the plastic deformation process of realistic
materials, such as the Al single crystals studied here.

Contrary to the avalanche size and duration distributions,
the average avalanche shapes exhibit a rate dependence where
events at low deformation rates are characterized by shapes
with left asymmetries. Meanwhile, an increase of the strain
rate shifts the events towards symmetric shapes. A transi-
tion from events reducing the dislocation density to events
increasing it is observed at similar strain rates, highlighting
the existence of two physical regimes characterized by dif-
ferent microscopic mechanisms within the same material. To
identify, characterize, and better understand these regimes
a future in-depth theoretical as well as experimental study
on the influence of material properties, including the crystal
structure would be required [10,34,44]. Additionally, studying
avalanches due to strain-controlled loading in DDD simu-
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lations with quenched pinning interfering with dislocation
motion would be of interest, given that there the dislocation
avalanches were found to exhibit depinning-like characteris-
tics [22,45,46].
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[10] J. Alcalá, J. Očenášek, J. Varillas, J. A. El-Awady, J. M.

Wheeler, and J. Michler, Sci. Rep. 10, 19024 (2020).
[11] P. K. Agnihotri and E. V. der Giessen, Mech. Mater. 90, 37

(2015).
[12] G. Sparks and R. Maaß, Phys. Rev. Mater. 2, 120601(R) (2018).
[13] H. Fan, Q. Wang, J. A. El-Awady, D. Raabe, and M. Zaiser, Nat.

Commun. 12, 1845 (2021).
[14] N. Friedman, A. T. Jennings, G. Tsekenis, J.-Y. Kim, M. Tao,

J. T. Uhl, J. R. Greer, and K. A. Dahmen, Phys. Rev. Lett. 109,
095507 (2012).

[15] R. Maaß, M. Wraith, J. T. Uhl, J. R. Greer, and K. A. Dahmen,
Phys. Rev. E 91, 042403 (2015).

[16] P. D. Ispánovity, L. Laurson, M. Zaiser, I. Groma, S. Zapperi,
and M. J. Alava, Phys. Rev. Lett. 112, 235501 (2014).

[17] T. Crosby, G. Po, C. Erel, and N. Ghoniem, Acta Mater. 89, 123
(2015).

[18] Y. Cui, G. Po, and N. Ghoniem, Phys. Rev. B 95, 064103 (2017).
[19] G. Sparks, Y. Cui, G. Po, Q. Rizzardi, J. Marian, and R. Maaß,

Phys. Rev. Mater. 3, 080601(R) (2019).
[20] Y. Cui, G. Po, P. Srivastava, K. Jiang, V. Gupta, and N.

Ghoniem, Int. J. Plast. 124, 117 (2020).
[21] R. Madec, B. Devincre, and L. P. Kubin, Phys. Rev. Lett. 89,

255508 (2002).
[22] M. Ovaska, L. Laurson, and M. J. Alava, Sci. Rep. 5, 10580

(2015).
[23] M.-C. Miguel, A. Vespignani, M. Zaiser, and S. Zapperi, Phys.

Rev. Lett. 89, 165501 (2002).

[24] L. Laurson, M.-C. Miguel, and M. J. Alava, Phys. Rev. Lett.
105, 015501 (2010).

[25] D. Kurunczi-Papp and L. Laurson, Phys. Rev. E 104, 025008
(2021).

[26] A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G.
Hommes, T. Pierce, and V. Bulatov, Modelling Simul. Mater.
Sci. Eng. 15, 553 (2007).

[27] A. Lehtinen, G. Costantini, M. J. Alava, S. Zapperi, and L.
Laurson, Phys. Rev. B 94, 064101 (2016).

[28] H. Salmenjoki, M. J. Alava, and L. Laurson, Nat. Commun. 9,
5307 (2018).

[29] H. Salmenjoki, L. Laurson, and M. J. Alava, Phys. Rev. Mater.
5, 073601 (2021).

[30] P. M. Anderson, J. P. Hirth, and J. Lothe, Theory of Dislocations
(Cambridge University Press, Cambridge, England, 2017).

[31] L. Greengard and V. Rokhlin, Acta Numerica 6, 229 (1997).
[32] D. S. Fisher, Phys. Rep. 301, 113 (1998).
[33] K. Ng and A. Ngan, Acta Mater. 56, 1712 (2008).
[34] S. Brinckmann, J.-Y. Kim, and J. R. Greer, Phys. Rev. Lett. 100,

155502 (2008).
[35] M. Zaiser, J. Schwerdtfeger, A. Schneider, C. Frick, B. Clark,

P. Gruber, and E. Arzt, Philos. Mag. 88, 3861 (2008).
[36] J. Savolainen, L. Laurson, and M. Alava, Phys. Rev. E 105,

054152 (2022).
[37] Y. Cui, G. Po, and N. Ghoniem, Phys. Rev. Lett. 117, 155502

(2016).
[38] S. Zapperi, C. Castellano, F. Colaiori, and G. Durin, Nat. Phys.

1, 46 (2005).
[39] L. Laurson and M. J. Alava, Phys. Rev. E 74, 066106

(2006).
[40] S. Papanikolaou, F. Bohn, R. L. Sommer, G. Durin, S. Zapperi,

and J. P. Sethna, Nat. Phys. 7, 316 (2011).
[41] L. Laurson, X. Illa, S. Santucci, K. Tore Tallakstad, K. J. Måløy,

and M. J. Alava, Nat. Commun. 4, 2927 (2013).
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