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Performance Measure of Hierarchical Structures for Multi-Agent Sys-
tems
Ali Raza � , Muhammad Iqbal* � , Jun Moon � and Shun-Ichi Azuma �

Abstract: This paper investigates the robustness of linear consensus networks which are designed under a hierar-
chical scheme based on Cartesian product. For robustness analysis, consensus networks are subjected to additive
white Gaussian noise. To quantify the robustness of the network, we use H2-norm: the square root of the expected
value of the steady state dispersion of network states. We compare several classes of undirected and directed graph
topologies. We show that the hierarchical structures, designed under the Cartesian product-based hierarchy, outper-
forms the single-layer structures in robustness. We provide simulations to support the analytical results presented
in this paper.
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1. INTRODUCTION

Distributed consensus in Multi-agents Systems (MAS)
has been a topic of great attention in control community
due to many potential applications; such as sensor net-
works [1, 2], cooperative control of unmanned aerial ve-
hicles [3, 4] and biological networks [5]. In general con-
sensus refers to agree on a common state value. Since rela-
tive information is available only, thus distributed consen-
sus is the only option for a large network. In realistic sce-
nario, network systems mostly suffer from communication
link failure, node failure, and often, noise appearing at ev-
ery node. Almost every MAS suffers from additive white
Gaussian noise (AWGN). Thus, the robustness analysis of
MAS against AWGN is an important topic.

Robustness of consensus networks is widely discussed
in [6–13]. Robustness against additive white Gaussian
noise is quantified as H2-norm while dealing with con-
sensus network [14–21]. An edge-based approach plays
an important role for analyzing the H2 performance of
the consensus networks. The addition of cycles and trees
improves the performance and convergence rate of the
networked system [17, 22]. A wide-ranging performance
analysis of linear consensus networks with random graph
topologies in the presence of external disturbances have
been discussed in [20].

Lower and upper bound on the H2-norm is also found
useful for the guaranteed performance of the network in
the presence of external disturbances. Various lower and
upper bounds for the first and second-order consensus net-

works are obtained in [14,23,24], while for the robustness
of uncertain consensus networks, detailed analyses can be
found in [21, 25–29]. By designing observer-based feed-
back decentralized control law, one can find limits and
scaling laws for the stability analysis and performance
measure of interconnected linear systems [30].

In [31], an optimal bipartite consensus control prob-
lem of networked systems with unknown dynamics using
model free reinforcement learning method is proposed. In
[32], an improved distributed dual consensus DC-ADMM
(alternating direction method of multipliers) is proposed
without dual gap to overcome the issue of resource allo-
cation and its dual problem. Furthermore, for less com-
putation of complicated objective functions, a distributed
inexact dual consensus is proposed.

To quantify the robustness of consensus network using
H2-norm, it is standard to assume the Laplacian matrix of
a graph as normal [20,21,33] . With this standard assump-
tion, we state the contribution of this paper in the sequel.

In this paper we investigate the performance measure
of consensus networks for directed and undirected graphs
designed under Cyclic Pursuit (CP) scheme, Cartesian
Product-based Hierarchical (CPH) scheme and compare
the H2-norm of the system. We analyze the robustness
of Single Layer and Hierarchical control structures in the
presence of external disturbances.

Our contributions in this paper are as follows:

• We analyse the robustness of the hierarchical struc-
tures of MAS, while considering the additive white

Ali Raza is with the Department of Electrical Engineering, Faculty of Engineering and Technology, International Islamic University, Islam-
abad, Pakistan (e-mail: aliraza.sadiq786@yahoo.com). Muhammad Iqbal is with the KIOS Research and Innovation Center of Excellence,
University of Cyprus, Nicosia, Cyprus (e-mail: iqbal.salarzai@gmail.com). Jun Moon is with Division of Electrical and Biomedical Engineer-
ing, Hanyang University, Republic of Korea (e-mail: junmoon@hanyang.ac.kr). Shun-ichi Azuma is with the Graduate School of Engineering,
Nagoya University (e-mail: shunichi.azuma@mae.nagoya-u.ac.jp).
* Corresponding author.

©ICROS, KIEE and Springer 2020

http://www.springer.com/12555
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/


2 Ali Raza, Muhammad Iqbal, Jun Moon, Shun-Ichi Azuma

Gaussian noise at each node independently and their
comparison with the single layer scheme.

• We show that hierarchical structures are more effi-
cient and robust than the single layer structures by
considering those digraphs whose Laplacian matrices
are normal.H2-norm is the measure of robustness.

In Section II preliminaries and mathematical background
are discussed. Section III discusses the robustness of noisy
undirected consensus networks. Section IV deals with ro-
bustness of directed consensus networks. In Section V
simulation results are discussed. Finally, Section VI con-
cludes the paper.

2. PRELIMINARIES AND BACKGROUND

2.1. Graph Theory
Consider a directed graph G = (V,E) with a non-empty

node set V = {1,2, ...,n} and an edge set E ⊆ V ×V . Let
|V(G)|= n be the number of nodes and |E| =m be the num-
ber of edges in G. Laplacian matrix associated with G is
defined as:

L=D−A, (1)

whereA=A(G)∈Rn×n is an Adjacency matrix with pos-
itive entries, of the graph G = (V,E) is defined such that
[A(G)]i j = 1 if (i, j) ∈ E and 0 otherwise. D is a diagonal
matrix containing the out degree of each node

D = [D]ii = ∑
j
[D]i j.

We can sort eigenvalues of L for undirected graph in as-
cending order as, λ1(G) = 0,≤ λ2(G),≤ . . . ,λn(G). Super-
script >, represents the transpose of a matrix. A centering
matrix Mn is defined as Mn := (In− 1

n 11>n ). An incidence
matrix for a graph is denoted by the matrix E = E(G) con-
tains {0,±1} and defined as:

[E]i j =


−1 if edge j terminates at node i
1 if edge j begins at node i
0 otherwise

So the graph Laplacian can also be written as:

L= EWE>. (2)

whereW is the weight function that maps an edge set to a
scalar value such thatW : E 7→ R.

2.2. Cartesian Product Of The Graph
CPH scheme is an algebraic approach to design Com-

plex networks [34]. Let G1 = (V1,E1) and G2 = (V2,E2)
are two factor digraphs. Cartesian product of G1 and G2 is
a graph G = G1�G2, having vertex set V1×V2 and there
is an edge from vertex (i, p) to ( j,q) in V if and only if
either i = j and (p,q) ∈ E2, or p = q and (i, j) ∈ E1 [33].
An example of the Cartesian product is shown in Fig.1

It is worth mentioning that if two graphs G1 and G2 are
connected then G = G1�G2 is also connected [34].

u1

u2

=

v1 v2

v3

(u2,v1) (u2.v2)

(u1,v1) (u1,v2)

(u2,v3)

(u1,v3)

Fig. 1. Cartesian Product of the Graphs.

2.3. Robustness of Linear Time Invariant Systems
Consider a Linear Time Invariant (LTI) system with ex-

ternal stochastic noise as given below:

ẋ(t) = Ax(t)+ξ (t), (3)

y(t) =Cx(t). (4)

where x ∈ Rn is the state, y ∈ Rm is the output of the
system, ξ (t) ∈ Rn is the Additive White Gaussian Noise
(AWGN) with zero mean and identity co-variance,

E[ξ (t)ξ>(t)] = Inδ (t− τ), (5)

where δ (t) is a Dirac delta function. Dispersion of the sys-
tem is defined by the square root of the following quantity:
||y(t)||= (y>(t)y(t)). Thus the robustness of a system can
be measured as:

H2(A;Q) := lim
t→∞

E[||y(t)||] = lim
t→∞

E[x>(t)Qx(t)]
1
2 , (6)

where Q = C>C and C = In with In ∈ Rn×n. H2-norm of
the system from ξ to y is [tr(CXC>)]

1
2 , where X is a solu-

tion of the Lyapunov equation AX +XA>+BB> = 0 and
tr represents the trace of a matrix.H2-norm of the system
is given by [14]:

H2(A;Q) :=

(
n

∑
i=1

1
2
(ℜ(λi(A)))−1

) 1
2

, (7)

If As = (A>+A)/2, then the bounds are [14]:

−
n

∑
i=1

1
2

ℜ(λi(A))−1 ≤H2(A;Q)≤−
n

∑
i=1

1
2
(λi(As))

−1 (8)

It is assumed that the system given in (3)-(4) is stable
with input noise co-variance (5) and the unitary matrix C.
Furthermore, lower bound in (8) is achieved if and only if
A is normal [14] and the symmetric part, denoted by, As is
Hurwitz.

3. ROBUSTNESS OF UNDIRECTED
CONSENSUS NETWORK

In this section, we will discuss the performance of the
MAS designed under CP and CPH scheme in the presence
of external disturbances for undirected graphs .
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3.1. Single Layer Control Strategy
Cyclic Pursuit (CP) scheme is one of the single layer

control strategy to solve the consensus problem. Con-
sider a network of homogeneous agents model as a single-
integrator:

ẋi(t) = ui(t), (9)

where xi(t) is the state of ith agent and ui(t) is the control
input expressed as:

ui(t) =
n

∑
j=1

ki j(x j(t)− xi(t)), (10)

where xi(t) is the state of ith agent and ki j represents the
weight (gain) of an edge. For undirected graphs ki j = k ji >
0, if there is a link form i to j or vice versa.
The resulting autonomous system is

ẋ(t) =−L(G)x(t), (11)

y(t) =Cx(t). (12)

It is assumed that the network is noise free. Consensus
is said to be achieved in the sense that lim

t→∞
||xi − x j|| =

0,∀i, j = 1,2, ...,n.

Now, consider the consensus dynamics of the network
with noise

ẋ(t) =−Lx(t)+ζ (t), (13)

y(t) =Cx(t), (14)

where ζ (t) ∈ Rn is the Additive White Gaussian Noise
(AWGN) with zero mean and identity covariance. It fol-
lows from [14] that H2-norm from ζ to y is bounded as
below:

n

∑
i=2

1
2ℜ(λi(L))

≤H2(−L;Q)≤
n

∑
i=2

1
λi(L+L>)

(15)

whereQ= Mn is the centering matrix forH2-norm. Since
the graph is connected so only one marginally stable mode
of the consensus network with dynamics given in (13) ex-
its with the eigenvector 1n, where 1n is a column vector
with every entry equal to 1 and rest of the modes are sta-
ble. This marginally stable mode is not observable from
output y(t) because Mn1n = 0. Moreover, lower bound is
achieved if and only if L is normal. Theorem 5 in [14]
shows that the upper and lower bound given in (15) can
be further tightened by considering (13)− (14) as stable
system with normal state matrix L as:

n

∑
i=2

λi(Q)
2ℜ(λi(L))

≤H2(−L;Q)≤
n

∑
i=2

λn−i+2(Q)
2ℜ(λi(L))

(16)

The lower and upper bounds are achieved if and only if

Q= q(In−
1
n

1n1>n ),∀q≥ 0 [14].

3.2. Cartesian Product-Based Hierarchical Scheme
Hierarchical structures are useful to improve the con-

vergence rate and performance measurement of the con-
sensus protocol [7, 35, 36]. Cartesian product-based hier-
archical structure (CPH) is a scheme in which complex
systems are designed by taking the Cartesian product of
graphs [34]. The Cartesian product of L number of graphs
that makes an L-layer hierarchical network can be written
as:

GL = Gn1�Gn2�...�GnL , (17)

where Gn1 ,Gn2 , ...,GnL are balanced and strongly connected
graphs, n1 is the number of agents in a group and nL is the
number of groups in the L-layer hierarchy [34]. The under-
lying linear consensus protocol structure remain the same,
but unlike single-layer MAS, in hierarchical structure of
MAS, every agent has a neighboring agent in every layer.
This facilitates convergence rate.

Exploiting the properties of the Kronecker product,
Kronecker sum and Cartesian product of strongly con-
nected balanced digraphs, the Laplacian associated with
the digraph GL can be written as:

L(Gn1�Gn2� · · ·�GnL) = L1(Gn1)⊕L2(Gn2)

⊕ ...⊕LL(GnL),

where L1, L2 and LL represents the Laplacian matrices of
Gn1 ,Gn2 and GnL . In the above equation⊗ and⊕ represents
the Kronecker product and Kronecker sum respectively.
State and output equation for MAS in L-layer CPH strat-
egy can be written as:

˙̂xL = M̂Lx̂L +ξ (t), (18)

y(t) =Cx̂(t). (19)

where

M̂L =−L(Gn1�Gn2� · · ·�GnL)

and

x̂L = (x1,1, ...,xn1,1;x1,n2 , ...,xn1,n2 ; ...;x1,n2 , ...,xn1,nL/n1)

is state vector of nL = ∏
L
m=1 nm agents.

System Matrix for L-layer CPH scheme is given by:

M̂L (Gn1� · · ·�GnL) =−L1⊗ In2 ⊗ In3 ⊗·· ·⊗ InL

− In1 ⊗L2⊗ In3 ⊗·· ·⊗ InL −·· ·
− In1 ⊗·· ·⊗ InL−2 ⊗LL−1⊗ InL

− In1 ⊗ In2 ⊗·· ·⊗ InL−1 ⊗LL.

The eigenvalues of the system matrix M̂L are the elements
in the set:

O= {−λ
L1
i1 −λ

L2
i2 −·· ·−λ

LL
iL |1≤ im≤ nm,m= 1,2 · · · ,L},
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(20)

where λ
Lm
im is the mth eigenvalue of the Laplacian matrix

Lm. Assume that the system (18)− (19) is stable with
AWGN, where M̂L is the negative Laplacian matrix of a
weighted digraph which is normal, strongly connected and
balanced so the bound can be given as:

n

∑
i=2

1
2ℜ(λi(M̂L))

≤H2(M̂L;Q)≤
n

∑
i=2

1
λi(M̂L + M̂>L )

(21)

In (21) if M̂L is normal, then lower and upper bound of
H2 is same.

4. ROBUSTNESS OF DIRECTED CONSENSUS
NETWORK

4.1. Single Layer Control Strategy
In this section, we consider linear consensus network

design using CP scheme. It is assumed that all the directed
graphs considered in this paper are weighted, strongly
connected, balanced and stable modes of networks are ob-
servable from the output. Consider the noisy consensus
network given in (13)− (14), we have:

n

∑
i=2

1
2ℜ(λi(L))

≤H2(−L;Q)≤
n

∑
i=2

1
λi(Ls)

(22)

where Ls = (L + L>), Q = Mn and lower bound is
achieved if and only if L is normal.

4.2. Cartesian Product-based Hierarchy
Cartesian product based hierarchical strategy is an al-

gebraic approach to solve the average-consensus problem
[34]. In the following theorem we show that the Laplacian
of G = G1�G2 is normal if and only if the Laplacian G1

and G2 both are normal.

Theorem 1: Let G = G1�G2 be a balanced directed
graph with the Laplacian matrix L. The matrix L is nor-
mal if and only if the Laplacian matrices L1 and L2 of
directed graphs G1 and G2 are normal.

Proof: Let L1 be the Laplacian matrix associated with
the graph G1 and L2 be the Laplacian matrix associated
with the graph G2. Let L1 and L2 be normal matrices, that
is L>1 L1 = L1L>1 and L>2 L2 = L2L>2 .

We know that
L = L1⊗ In2 + In1 ⊗L2

L>L = (L1⊗ In2 + In1 ⊗L2)
>(L1⊗ In2 + In1 ⊗L2)

= (L>1 L1⊗ In2)+(L1⊗L>2 )+(L>1 ⊗L2)

+(In1 ⊗L2L>2 )
and
LL> = (L1⊗ In2 + In1 ⊗L2)(L1⊗ In2 + In1 ⊗L2)

>

= (L1L>1 ⊗ In2)+(L1⊗L>2 )+(L>1 ⊗L2)

+(In1 ⊗L2L>2 ).

Since L>1 L1 = L1L>1 and L>2 L2 = L2L>2 . Thus L>L =
LL>.

Conversally, let LL> = L>L, which can be written as:

(L1L>1 −L>1 L1)⊗ In2 + In1⊗ (L2L>2 −L>2 L2) = 0 (23)
Now pre-multiply (23) with (In1 ⊗1>n2

), we get
(In1 ⊗1>n2

)
(
(L1L>1 −L>1 L1)⊗ In2

)
+

(In1 ⊗1>n2
)
(
In1 ⊗ (L2L>2 −L>2 L2)

)
= 0

(24)

As (1>n2
L>2 L2) = (L21n2)

>L2 = 0
Since G = G1�G2 is balanced directed graph. By Theo-

rem 1 in [34], G1 and G2 are also balanced directed graphs.
Consequently, we have L11n1 = 0, L21n2 = 0, 1>n1

L1 = 0,
and 1>n2

L2 = 0 Thus, (24) can be written as:
(L1L>1 −L>1 L1)⊗1>n2

= 0 (25)
Post-multiply (25) by 1n2 , we have

(L1L>1 −L>1 L1) = 0

L1L>1 = L>1 L1.
Similarly pre-multiply (23) with (I>n1

⊗1n2), we get
I>n1
⊗ (L2L>2 −L>2 L2) = 0

and the result follows. �

Corollary 1: The Laplacian L of the balanced di-
rected graph G = G1�G2�G3...�Gn is normal if and only
if the Laplacian matrices L1,L2, · · · ,Ln of the graphs
G1,G2, · · · ,Gn are normal, respectively.

Consider the linear consensus system (18)-(19) with
M̂L = −L, which is a system matrix of a strongly con-
nected graph. If we consider L is normal and Q = C>C
with Q1 = 0 , then

n

∑
i=2

λi(Q)
2ℜ{λi(M̂L)}

≤H2(M̂L;Q)≤
n

∑
i=2

λn−i+2(Q)
2ℜ{λi(M̂L)}

(26)

In above equation both bounds are achieved if and only if

Q= q(In−
1
n

11>n ),∀q > 0.

Proposition 1: The normal Laplacian matrix M̂L asso-
ciated with the graph GL is stable.

Proof: The normal Laplacian matrix M̂L can be writen
as:

M̂L =−L(Gn1�Gn2� · · ·�GnL)

The eigenvalues of the system matrix M̂L are the elements
in the following set O: [34]

O= {−λ
L1
i1 −λ

L2
i2 −·· ·−λ

LL
iL |1≤ im≤ nm,m= 1,2 · · · ,L}.

Since all the eigenvalues of the M̂L are negative except a
simple zero eigenvalue. Hence the system matrix M̂L is
stable. �

In the following theorem, we will quantify the robust-
ness of the CP and CPH scheme in terms of performance
measure of the MAS.
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Theorem 2: Let n be the number of agents in CPH
strategy such that n = n1n2. Let the Laplacian matrix of
the network designed under CPH strategy be normal. Let
ecp

ss be the dispersion of consensus network under the CP
strategy with the same number of agents as in CPH strat-
egy. In addition, the Laplacian matrix of CP strategy is
normal and ecp

ss ≥ d1. Let ecph
ss be the dispersion of consen-

sus network under CPH strategy and ecph
ss ≤ d2, where d1 is

the lower bound of CP strategy and d2 is the upper bound
of CPH strategy, then d2 < d1.

Proof: The dispersion of the system designed under
the CP strategy is given by

n

∑
i=2

1
2ℜ{λi(L)}

≤ ecp
ss =

n2−1
12

.

Now, consider the lower bound of ecp
ss given by:

d1 =
λ2(Q)

2ℜ{λ2(L)}
+

λ3(Q)
2ℜ{λ3(L)}

+ · · ·+ λn(Q)
2ℜ{λn(L)}

(27)

In CP strategy real part of eigenvalue of matrix L can be
written as:

ℜ{λi(L)}= cos
(

2π(i−1)
n

)
−1. (28)

for i = 1,2, · · · ,n. As n increases, ℜ{λi(L)} decreases.
Now consider the CPH strategy with the same num-

ber of agents as in the CP strategy for L-layers given by,
n = ∏

L
m=1 nm. Let M̂L be the negative Laplacian associated

with the Cartesian product of the graph, then the disper-
sion from the consensus value is upper bounded by:

ecph
ss ≤

n

∑
i=2

λn−i+2(Q)
2ℜ{λi(M̂L)}

,

Let

d2 =
n

∑
i=2

λn−i+2(Q)
2ℜ{λi(M̂L)}

,

for i = 2,3, · · ·n, where d2 is the upper bound of ecph
ss .

d2 =
λn(Q)

2ℜ{λ1(M̂L)}
+

λn−1(Q)
2ℜ{λ2(M̂L)}

+ · · ·+ λ2(Q)
2ℜ{λn(M̂L)}

(29)

In this case, the close form of the real parts of eigenvalues
of the system matrix M̂L of the CPH strategy is given by:

ℜ{λLk
im }= cos

(
2π(im−1)

nk

)
−1 (30)

for k = 1,2, ...,L, and nk is number of groups in L-layer

hierarchy. [34]. SinceQ= (In−
1
n

11>n ) is a centering ma-
trix withQ1 = 0 and it has n identical eigenvalues so, it is

clear from (27),(29) and the set O= {−λ
L1
i1 −λ

L2
i2 −·· ·−

λ
LL
iL |1 ≤ im ≤ nm,m = 1,2 · · · ,L}, that values of the real

parts of eigenvalues of M̂L will be greater than the values
of the real parts of eigenvalues of L. Thus the results. �

The above theorem quantifies the performance measure
of MAS designed under CP and CPH scheme. Moreover,
CPH scheme outperforms the CP scheme in terms of ro-
bustness. Note that the robustness is shown by introducing
AWGN in the nodes of system. The CPH scheme provides
an efficient way to design and analyze the complex net-
works.

Remark 1: As the number of agents in CP scheme
increase, the real parts of the eigenvalues decrease, ac-
cording to (22), H2-norm (performance measure) of CP
scheme for directed consensus network deteriorates by
O(n) [9].

Network designed under CPH scheme by considering
the graphs having normal Laplacian matrix is more robust
than the other networks design with cyclic pursuit graphs,
both with the same number of nodes. The following ex-
ample illustrates this fact.

Example 1: Consider a normal Laplacian matrix L1

obtain from two layer CPH scheme as

L1 =



2 0 0 −1 −1 0 0 0
0 2 −1 0 0 −1 0 0
0 0 2 −1 0 0 −1 0
−1 0 0 3 −1 0 0 −1
−1 −1 0 0 3 −1 0 0
0 −1 0 0 0 2 −1 0
0 0 −1 0 0 0 2 −1
0 0 0 −1 −1 0 0 2


and a cyclic pursuit graph with normal Laplacian matrix
L2 = circ [2 −1 −1 0 0 0 0 0], where circ denotes
the circulant matrix of L2 [35]. The dimension of L1 and
L2 is the same and CPH scheme is more robust than the CP
scheme because H2-norm is 1.3138 and 1.3994 respec-
tively. This decrease in H2-norm for L1 and L2 comes at
expense of adding two extra communication links in CPH
scheme having normal Laplacian matrix L1.

Remark 2: CPH scheme is a methodical way of in-
creasing the communication links in the network, improv-
ing the convergence rate and robustness. In contrast if we
randomly increase the communication links in CP scheme
it is not necessary to achieve average consensus with bet-
ter convergence rate and robustness. Example 1 illustrates
this fact. Also, from Table 1, Table 2 and Theorem 2 it is
stated that the CPH scheme for undirected graphs is more
robust than the directed graphs.
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5. SIMULATION RESULTS

In this section, we present simulation results to support
the theoretical results by considering several examples to
give a better understanding about the convergence rate and
robustness of MAS.

In the CP scheme, it is noticed that the convergence rate
decreases and the robustness deteriorates as the size of net-
work system increases. We design MAS for single, two,
three and four layers by considering different number of
agents under the CP and CPH scheme for both undirected
and directed graphs. We consider balanced graphs with
normal Laplacian matrices. For the sake of simplicity, we
choose all the agents with homogeneous edge weights
(gains) having value one. For the CP scheme while con-
sidering the undirected graph by adding AWGN in the sys-
tem, H2-norm is 0.7906, 1.6202, 2.4410, 3.2596, 4.0774,
4.8947, 6.5288, 13.062 and 26.127 respectively for differ-
ent number of agents.

When we consider the CPH scheme for two, three and
four layers hierarchy the value of H2-norm decreases.
These decreasing values ofH2-norm shows that MAS de-
signed under the CPH scheme has more robustness to-
wards bearing the noise in the system. Since theH2- norm
of the CPH scheme is less in comparison with the CP
scheme, which concludes that the CPH scheme is more
robust than the CP scheme.H2-norm for CP and the CPH
scheme for undirected graphs is shown in Fig. 2.

0 30 60 90 120
0

10

20

30

40

No.of Agents

H
2
−

no
rm

of
U

nd
ir

ec
te

d
G

ra
ph

s CP
Two Layer CPH

Three Layer CPH
Four Layer CPH

Fig. 2. Robustness of CP and CPH scheme for undirected
graphs.

Now we consider directed graphs for checking the
robustness of MAS designed under CP and the CPH
scheme. For the CP scheme while considering the di-
rected graphs, H2-norm is 1.118, 2.2913, 3.4521, 4.6098,
5.7663, 6.9222, 9.2331, 18.473 and 36.949 respectively.
These values of H2-norm for directed graphs in compari-

son with undirected case for the CP scheme show that the
CP scheme for undirected graphs is more robust than the
directed graphs.When we consider the CPH scheme for
two, three and four layers hierarchy for directed graphs
the value ofH2-norm decreases. Since theH2-norm is less
for the CPH scheme than the CP scheme, which concludes
that the CPH scheme is more robust than the CP scheme.
Fig. 3 illustrates theH2-norm for CP and the CPH scheme
for directed graphs.
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Fig. 3. Robustness of CP and CPH scheme for undirected
graphs.

Moreover, Table 1 and Table 2 shows the changing
trends in the values of H2-norm for undirected and di-
rected graphs. It is worth mentioning that MAS designed
under CP and the CPH scheme for undirected graphs are
more robust than directed graphs. Also the performance of
network designed under the CP scheme deteriorates badly
with the growing size of network.

6. CONCLUSION

We analyzed the robustness of MAS having normal
Laplacian matrices, while considering both undirected and
directed graphs deigned under the CP and CPH scheme,
perturbed by external AWGN. Robustness was measured
by the H2-norm of the system and related to the proper-
ties of underlying graph topology. A comparison of the
CP and CPH scheme was done by considering the dif-
ferent number of agents. For the CPH scheme we con-
sidered graphs with normal Laplacian matrices and per-
formance measurement was observed. We proved that the
CPH scheme is more robust than single layer strategy.

In future we aim to extend fuzzy-based control methods
[37,38] for multi-agent system to improve the robustness.
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Table 1.H2-norm of the CP and CPH scheme with com-
munication links for undirected graphs.

No.of Agents Layers H2-norm
CP CPH CP CPH CP CPH
1×4 2×2 1 2 0.7906 0.5774
1×8 2×4 1 2 1.6202 0.9335
1×8 2×2×2 1 3 1.6202 0.8416
1×12 2×6 1 2 2.4410 1.5248
1×12 2×2×3 1 3 2.4410 1.2252
1×16 2×8 1 2 3.2596 1.9442
1×16 2×2×4 1 3 3.2596 1.4649
1×16 2×2×2×2 1 4 3.2596 1.2829
1×20 2×10 1 2 4.0774 2.3597
1×20 2×2×5 1 3 4.0774 1.6375
1×24 2×12 1 2 4.8947 2.7732
1×24 2×3×4 1 3 4.8947 1.6998
1×24 2×2×2×3 1 4 4.8947 1.6375
1×32 2×16 1 2 6.5288 3.5964
1×32 2×2×8 1 3 6.5288 2.375
1×32 2×2×2×4 1 4 6.5288 1.6419
1×64 2×32 1 2 13.062 6.873
1×64 2×4×8 1 3 13.062 2.954
1×64 2×2×4×4 1 4 13.062 2.514
1×128 2×64 1 2 26.127 13.411
1×128 4×4×8 1 3 26.127 3.795
1×128 2×4×4×4 1 4 26.127 3.294
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