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ABSTRACT

Non-terrestrial networks are foreseen as a crucial component for developing 6th gen-
eration (6G) of wireless cellular networks by many telecommunication industries.
Among non-terrestrial networks, low Earth orbit (LEO) communication satellites
have shown a great potential in providing global seamless coverage for remote and
under-served regions where conventional terrestrial networks are either not avail-
able or not economically justifiable to deploy. In addition, to the date of writing this
summary, LEO communication networks have became highly commercialized with
many prominent examples, compared to other non-terrestrial networks, e.g., high
altitude platforms (HAPs) which are still in prototyping stage.

Despite the rapid promotion of LEO constellations, theoretical methodologies
to study the performance of such massive networks at large are still missing from the
scientific literature. While commercial plans must obviously have been simulated
before deployment of these constellations, the deterministic and network-specific
simulations rely on instantaneous positions of satellites and, consequently, are unable
to characterize the performance of massive satellite networks in a generic scientific
form, given the constellation parameters.

In order to address this problem, in this thesis, a generic tractable approach is
proposed to analyze the LEO communication networks using stochastic geometry
as a central tool. Firstly, satellites are modeled as a point process which enables using
the mathematics of stochastic geometry to formulate two performance metrics of
the network, namely, coverage probability and data rate, in terms of constellation
parameters. The derivations are applicable to any given LEO constellation regardless
of satellites’ actual locations on orbits. Due to specific geometry of satellites, there
is an inherent mismatch between the actual distribution of satellites and the point
processes that are used to model their locality. Secondly, different approaches have
thus been investigated to eliminate this modeling error and improve the accuracy of
the analytical derivations.
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The results of this research are published in seven original publications which are
attached to this summary. In these publications, coverage probability and average
achievable data rate of LEO satellite networks are derived for several communication
scenarios in both uplink and downlink directions under different propagation models
and user association techniques. Moreover, the analysis was generalized to cover the
performance analysis of a multi-altitude constellation which imitates the geometry
of some well-known commercial constellations with satellites orbiting on multiple
altitude levels. While direct communication between the satellites and ground ter-
minals is the main studied communication scenario in this thesis, the performance
of a LEO network as a backhaul for aerial platforms is also addressed and compared
with terrestrial backhaul networks.

Finally, all analytical derivations, obtained from stochastic modeling of the LEO
constellations, are verified through Monte Carlo simulations and compared with ac-
tual simulated constellations to ensure their accuracy. Through the numerical results,
the performance metrics are evaluated in terms of different constellation parameters,
e.g., altitude, inclination angle, and total number of satellites, which reveals their
optimal values that maximize the capacity and/or coverage probability. Therefore,
other than performance analysis, several insightful guidelines can be also extracted
regarding the design of LEO satellite networks based on the numerical results.

Stochastic modeling of a LEO satellite network, which is proposed for the first
time ever in this thesis, extends the application of stochastic geometry in wireless
communication field from planar two-dimensional (2D) networks to highly hetero-
geneous three-dimensional (3D) spherical networks. In fact, the results show that
stochastic modeling can also be utilized to precisely model the networks with deter-
ministic nodes’ locations and specific distribution of nodes over the Euclidean space.
Thus, the proposed methodology reported herein paves the way for comprehensive
analytical understanding and generic performance study of heterogeneous massive
networks in the future.
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�̃�𝑅𝑅𝑅0 nearest effective distance between satellites and a ground user

𝑟𝑟𝑟𝑟max maximum communicable distance between a user and a satellite

𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 distance from a ground user to the 𝑛𝑛𝑛𝑛th satellite

𝑅𝑅𝑅𝑅vis
𝑛𝑛𝑛𝑛 distance between visible satellites and a ground user

𝜎𝜎𝜎𝜎2 additive noise power

𝜎𝜎𝜎𝜎2
X𝑛𝑛𝑛𝑛

variance of distribution X𝑛𝑛𝑛𝑛

𝜎𝜎𝜎𝜎2
𝜁𝜁𝜁𝜁

variance of event 𝜁𝜁𝜁𝜁

𝑇𝑇𝑇𝑇 minimum SINR and/or SNR threshold

𝜃𝜃𝜃𝜃 elevation angle of satellite

𝜃𝜃𝜃𝜃min minimum elevation angle

𝜃𝜃𝜃𝜃P angle between adjacent orbital planes

𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛 angle between the 𝑛𝑛𝑛𝑛th satellite’s antenna borsight and its LoS
with a user

𝜃𝜃𝜃𝜃u angle between user’s antenna borsight and its LoSwith a satellite

𝑈𝑈𝑈𝑈 true anomaly

U(𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎) uniform distribution between 𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎

X𝑛𝑛𝑛𝑛 shadowing coefficient of the 𝑛𝑛𝑛𝑛th channel

𝜉𝜉𝜉𝜉 a point process
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1 INTRODUCTION

During the last decades, wireless communications has revolutionized our everyday
lives in several ways. The ever-increasing demands on the services and use cases
led to significant market growth in telecommunication industry. As a result, the
wireless technologies are always developing to provide more ubiquitous connectivity
and higher data rates with more energy and spectrum efficient systems.

Several use cases engaged with the 5th generation (5G) of cellular networks and
the upcoming 6th generation (6G), require uninterrupted service access in remote
and under-served regions, e.g., for Internet of Things (IoT) devices, aircrafts, and
maritime vessels. However, ubiquitous and high-capacity connectivity which is
needed to meet these requirements cannot be fulfilled by terrestrial networks only
[1]. Non-terrestrial networks, comprising airborne or spaceborne components to
convey the data, have been taken into consideration to promote the services pro-
vided by cellular networks, especially for under-served regions. Therefore, enabling
and development of non-terrestrial networks and their integration into the terrestrial
networks is envisioned as a crucial part of cellular networks evolution [2]–[4].

In this chapter, a general overview of this research is provided by describing the
background and motivation, followed by presenting the scope of the research, the
research questions, and objectives of this study. Then, the main contributions to
this research area are presented. Finally, the thesis author’s contributions to the
publications are summarized.

1.1 Background and motivation

According to the International Telecommunication Union (ITU), nearly one third
of world’s population have never accessed Internet, despite the rising demand during
the Covid-19 pandemic, when some basic human needs, e.g., education, were tied
to having ubiquitous connectivity. Moreover, the requirements of 6G are not only
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limited to higher capacity and rate, but also to provide global coverage which ensures
every individual’s access to the network [5]; the goal that cannot be achieved merely
with terrestrial networks as their availability is affected by geographical and economic
factors. For instance, the majority of Earth’s surface is covered with oceans where
the deployment of such networks is not feasible. Furthermore, the deployment of
terrestrial networks might not be economically viable at remote non-urban areas [6].

Recently, Low Earth orbit (LEO) communication networks have been developed
as a promising solution to provide global Internet coverage especially for under-
served regions, e.g., oceans and deserts, and moving vehicles for which a reliable ter-
restrial connectivity cannot be guaranteed all the time. Furthermore, these networks
can provide unblocked Internet for countries with restricted access, and substitute
the terrestrial networks temporarily in areas impacted by natural or man-made dis-
asters. Considering the relatively higher latency, lower data rates, and more costly
services offered by LEO communication systems compared to the existing cellular
networks, this technology is not a reasonable substitution in regions where terrestrial
broadband services are reliably available.

Despite the successful commercialization of LEO communication systems, e.g.,
Starlink, Kuiper, Telesat, their development and design rely solely on system-specific
simulations. However, an analytical scientific understanding of these networks in
terms of the network parameters, without resorting to orbital simulations, is crucial
for their performance evaluation and development. The analytical framework facil-
itates design modifications of the existing LEO communication networks, accelera-
tion in their development, and precise design guidelines for the future constellations.
Other than performance evaluation, the theoretical analysis of these networks can
be utilized for optimization of different network parameters which will avoid over-
estimation of network resources and, consequently, lead to a remarkable drop in the
operational costs of LEO communication systems. Moreover, the framework pro-
vided in this thesis will significantly impact the investigation on the non-terrestrial
and terrestrial networks integration as a promised component for 6G actualization.

This research is motivated by observing the lack of an analytical framework to
evaluate the performance of LEO communication systems in the current studies.
The analytical derivations enable the performance evaluation and optimization of
this game-changing technology in a generic form without limiting the results to some
specific networks with fixed number of satellites at known locations.
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1.2 Objectives and scope of the thesis

The broad scope of this thesis is on physical layer performance analysis of LEO com-
munication networks on both downlink and uplink directions. The performance
evaluation of commercial LEO communication networks relies only on simulations
since each company has a specific constellation with known predetermined orbital
parameters. Thus, by having the complete data on the constellation parameters, a
full knowledge on the exact location of each satellite at every time instant and, con-
sequently, the performance of the network can be obtained for a ground terminal at
a specific location. Obviously, the acquired performance is not valid for any other
time instant due to satellites and users mobility. Moreover, finding the network per-
formance for all possible snapshots of the network is computationally massive and
resource consuming.

Concluding from the above discussion, the main research questions that are raised
in this thesis are as follows:

• How are the performance metrics, e.g., the coverage probability and data rate,
affected by different LEO constellation parameters in presence of interference?
How do the user’s data rate and its probability to be covered by satellites of
a given constellation vary with its geographical position (latitudinal element)?
What is the effect of user association techniques on the performance?

• What are the optimum constellation parameters that result in the maximum
coverage probability and data rate?

• How does LEO network compare to terrestrial network when serving an air-
borne network as a backhaul?

To answer the above research questions and overcome the existing challenges in
the performance analysis of LEO networks, a general analytical framework to study
the performance of these networks regardless of the satellites’ actual locality is pro-
posed in this thesis. Stochastic geometry, as a mathematical tool, is utilized to model
the LEO network and acquire tractable analytical derivations on its performance in
a generic form.

Accordingly, the first and the main objective of this thesis is to obtain generic
analytical expressions on the LEO network performance metrics for both uplink

3



and downlink directions. The generalization of the analysis is not only on constel-
lation parameters, but also on propagation and network parameters, as far as the
tractability is maintained. Moreover, this study formulates and includes the effect of
user’s locality on the performance. Secondly, the thesis provides insights on LEO
constellation design by providing practical guidelines on the selection of LEO con-
stellation parameters which can reduce the operational costs considerably through
optimizing the network. The last objective of this thesis is to evaluate the perfor-
mance of LEO networks as a backhaul for airborne networks and compare it with
those conventional terrestrial backhaul networks.

1.3 Contributions

The summary of contributions on LEO communication networks modeling and
performance analysis made by the author of this thesis is as follows.

• An analytical framework is presented in this study for modeling and perfor-
mance analysis of a massive LEO communication network. Stochastic geome-
try is utilized as a central tool which enables tractable derivation of the network
performance metrics. In particular, the satellites’ locality is modeled as a point
process (PP) to capture different realization of the network. Thus, by aver-
aging over the point process, the performance metrics of the network can be
obtained tractably for any desired constellation regardless of satellites’ actual
locality over time. The stochastic model also enables characterization of co-
channel interference received from transceivers that share the same frequency
band with the server.

• Since the satellites are distributed uniformly on orbits in an actual LEO con-
stellation, the density of satellites from a ground user’s perspective is not con-
stant along different latitudes, i.e., there are more visible satellites at the incli-
nation limits where several orbits cross. In this study, compensation for this in-
herent mismatch between stochastic and deterministic constellations has been
taken into consideration through two different approaches which are finding
the effective number of satellites for every user’s latitude, and considering a
latitude-dependant density for the stochastic constellation.

• Two performance metrics, namely, coverage probability and average data rate,
are derived for both uplink and downlink directions. In uplink scenario, the
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performance is also characterized in presence of interference from terrestrial
network. Two different user association techniques based on the nearest dis-
tance and the highest quality of the received signal are also adopted in this
research. All analytical derivations have been corroborated by Monte Carlo
simulations in Matlab and compared with reference results from actual deter-
ministic satellite constellations.

• The performance of a LEO communication system as a backhaul for airborne
networks is formulated and analyzed in terms of the coverage probability and
data rate. The obtained performance was also compared with terrestrial back-
haul networks and some criteria on the selection of the best backhaul are pro-
vided based on the networks’ parameters.

• The performance of a LEO constellation with satellites orbiting on different
altitudinal levels is characterized in this thesis. There are several scenarios that
correspond to a multi-altitude LEO constellation which will be fully described
in the following chapters.

1.4 Author’s contributions to the publications

A summary on the contributions of the author, which will be referred to as the Au-
thor in what follows, to the publications is provided in this subsection. The thesis
is based on the author’s three peer-reviewed journal papers [P1, P4, P7] and four
conference-level papers [P2, P3, P5, P6] published in the proceedings of interna-
tional conferences.

The original idea of analyzing the performance of LEO communication networks
was proposed by Prof. Taneli Riihonen. He contributed to all the publications by
providing feedback and sharing his thoughts on technical results as well as the orga-
nization and presentation of the manuscripts.

In all the attached publications to this thesis [P1–P7], the Author — as the first
author of those publications — was responsible for developing the original ideas, re-
search problem formulation, identifying the appropriate analytical tools, derivation
of analytical results, performing simulations, writing, and revising the manuscripts.
Other author(s) supported the work mostly by proof-editing and providing guidance
to polish the content with the following exceptions: In [P1], Prof. Risto Wichman
proposed the idea of extending the results for static fading environment; and for [P2],
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Prof. Taneli Riihonen proposed the idea of deriving the effective number of satellites
for every user’s latitude and assisted its corresponding mathematical derivations.

In addition to the publications attached to this thesis, the Author has collaborated
in a closely related research that resulted in a conference publication [7]. The Author
contributed to that paper by presenting the system model, writing its corresponding
section, proof-editing and providing technical and general feedback.

1.5 Thesis structure

The organization of the remainder of this thesis is as follows.
Chapter 2 provides an overview on massive LEO communication networks in-

cluding their main characteristics, constellation parameters, and some important
commercial constellations. The earlier research works on the performance of LEO
communication networks are also reviewed in this chapter. Then, a generic system
model for a LEO communication network is provided which is used as the basis for
all the analyses that have been carried out in this research. Finally, the performance
metrics which are considered in this thesis are introduced and formulated based on
the described system model.

In Chapter 3, the Author presents the key mathematical tool, i.e., stochastic ge-
ometry, which was utilized for the first time ever, to the Author’s best knowledge,
to analyze the performance of a LEO Internet network, while also introducing its
applications for modeling and performance analysis of wireless networks in general.
Point processes as the central sub-field of stochastic geometry with their characteris-
tics and applications are also discussed in this chapter.

Chapter 4 highlights more specifically how stochastic geometry is implemented
in this thesis to model a LEO communication network. Two point processes, i.e.,
binomial point process (BPP) and nonhomogeneous Poisson point process (NPPP)
are introduced to model the satellites’ locality, alongside with compensating the in-
herent mismatch between the actual physical constellation and those modeled by
a point process. Finally, the distance statistics are derived based on the stochastic
model which are essential to characterize signal-to-noise-ratio (SINR) and, conse-
quently, the performance metrics.

Based on the modeling and distance distributions derived in Chapter 4, coverage
probability and data rate are characterized for a LEO network in Chapter 5 in a
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generic form, considering different channel models and user association techniques.
To evaluate the network performance regardless of the user’s location, global cover-
age probability and data rate are also presented in this chapter. Moreover, the cover-
age probability and data rate of a LEO backhaul network is derived when serving an
aerial platform at an arbitrary altitude above the ground. Finally, the conclusions, in-
sightful guidelines on LEO satellite network design, and directions for future studies
are presented in Chapter 6.
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2 OVERVIEW OF THE MASSIVE LEO

COMMUNICATION NETWORKS

This chapter provides the essential background and preliminaries on massive LEO
communication networks and their characteristics, including the research works and
developments on the performance analysis of LEO networks, constellation design,
and LEO commercial projects. The system model, which will be used as the basis
of the performance analysis provided in the following chapters, is also specified in
details. Finally, the performance metrics which are analyzed for a LEO communi-
cation network in this thesis, are defined at the end of this chapter.

2.1 Background

After a serious setback of several LEO Internet constellations in 1990s, interests in
providing global connectivity through these networks reemerged in 2010s due to the
increasing demands for broadband services and decreasing the launch costs [8]. Large
satellite constellations, which are sometimes referred to as mega-constellations, are
comprised of hundreds or thousands of satellites orbiting on polar or inclined orbits
with an altitude of typically between 500 km and 2000 km. The altitude range is
selected in such a way that it is high enough to minimize the orbital decay due to
atmospheric drag, and low enough to avoid Van Allen radiation belts 1 [9]. There are
also other factors that affect the altitude selection including the propagation path loss,
satellites’ visibility time, and their coverage areas. Obviously, altitude also determines
the total number of satellites required to provide a full coverage on Earth, i.e., the
higher the altitude, the fewer number of satellites are needed. LEO satellites provide
Internet coverage for all over the globe with relatively smaller propagation delay,

1A zone of energetic charged particles, which originate mostly from the solar wind. The particles
are captured by and held around Earth’s magnetosphere. The radiation in this zone can damage the
electronic components of the satellites.

9



compared to geostationary Earth orbit (GEO) satellites, due to their lower altitudes.
The studies on several aspects of nongeostationary satellite networks, e.g., per-

formance analysis, handover management, resource allocation and optimization, and
their integration with other network platforms, etc. have attracted the researchers’
attention since 90s. In [10], the uplink outage probability, as a function of the carrier-
to-interference power ratio, in the presence of co-channel terrestrial interference was
evaluated for two LEO constellations using time-domain simulations. The results are
compared with other medium Earth orbit (MEO) and GEO networks considering
several interference mitigation techniques.

One of the early developments of LEO communication systems is Iridium satel-
lite constellation [11], which has become operational since 1998. The constellation
is comprised of 66 satellites orbiting on 6 planes at 780 kilometer altitude. Different
performance metrics for Iridium constellation were simulated in [12] as a function of
constellation parameters, satellites speed, cell size, and average transaction duration.
In [13], the outage probability is derived in closed formwhen the data is relayed to the
ground stations through LEO satellites, by assuming only few number of satellites
at predetermined locations. In [14] and [15], performance analysis of LEO satellite
network has been investigated using stochastic reward net-based and stochastic Petri
net models to simplify the characteristics of the LEO satellite networks. Signal-to-
interference ratio was evaluated in [16] under traffic non-uniformity by assuming
hexagonal coverage regions for satellites.

Different teletraffic performance parameters, i.e., blocking probability, handover
failure probability, noncompletion probability, and forced termination probability
were estimated for a mobile LEO satellite system in [17]. A general expression for
visibility time of a LEO satellite is provided in [18], based on deterministic modeling
which cannot conclude the general distribution of visibility periods for an arbitrarily
positioned user. The deterministic model in [18] was then developed by statistically
analyzing the coverage time per satellite visit in a mobile LEO network [19].

In [20], a LEO-based Internet of Things (IoT) architecture is overviewed in order
to provide network access for IoT devices distributed in remote areas. To mitigate
the severe path loss caused by large traveling distances between the LEO satellites and
IoT devices, a novel architecture for IoT networks is proposed based on utilization
of reconfigurable intelligent surfaces on LEO satellites [21]. In [22], resource control
of a hybrid satellite–terrestrial network was studied to maximize the delay-limited
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capacity and minimize the outage probability in uplink direction. The effect of in-
terference is included in the optimization problem as a constraint. Considering only
a single spotbeam, in [23], [24], a hybrid satellite–terrestrial network was analyzed
to assist 5G network infrastructure. A comprehensive survey on network design,
resource allocation, performance analysis and optimization of space-air-ground inte-
grated network was provided in [25].

As LEO satellites revolve around the Earth at much higher velocities compared to
GEO satellites, the Doppler shift is significant and needs to be compensated at the
transceivers to mitigate their leakage to the neighboring frequency channels. The
maximum Doppler shift induced by the motion of a LEO satellite with altitude 𝑎𝑎𝑎𝑎s
and elevation angle 𝜃𝜃𝜃𝜃 at a fixed ground terminal located on the ground track of the
satellite is

𝑓𝑓𝑓𝑓d =
𝑓𝑓𝑓𝑓c

c

√︄
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

𝑎𝑎𝑎𝑎s + 𝑟𝑟𝑟𝑟⊕
cos(𝜃𝜃𝜃𝜃), (2.1)

where 𝐺𝐺𝐺𝐺 = 6.673 × 10−11 N.m2/kg2 is the gravitational constant, 𝐺𝐺𝐺𝐺 is the mass of
Earth (the central body around which the satellite obits), 𝑓𝑓𝑓𝑓c is the carrier frequency,
c is the speed of light, and 𝑟𝑟𝑟𝑟⊕ is the Earth’s radius.

One approach to compensate the Doppler shift in LEO satellite networks is by
utilizing global navigation satellite system (GNSS) receiver at the ground terminals
and using the data of satellites’ ephemeris to obtain the location and velocity infor-
mation [26]. However, the Doppler can be fully compensated only for some known
locations within the satellite’s cell (typically the center of the cell) which results in
some error for other terminals in the cell. Moreover, an error may also occur in
the acquired data from GNSS. As a result, some terminals in the cell might experi-
ence residual Doppler shift due to the deviation between the estimated and the actual
Doppler shift. Doppler variation estimation and characterization are addressed in
downlink LEO communication in [27]. In [28], assuming a single spotbeam for
LEO satellites, the Doppler shift magnitude of a LEO network is characterized by
utilizing the tools from stochastic geometry.

Among many companies that applied to the Federal Communications Commis-
sion (FCC) to deploy massive LEO constellations, the most prominent compa-
nies are SpaceX, OneWeb, and Telesat [8]. Starlink constellation, manufactured
by SpaceX, is aiming at launching up to 12000 satellites on low Earth orbits, with
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approximately 2000 satellites already launched up to the date of writing this sum-
mary, on 53◦, 70◦, and 97◦, at an altitude ranging from 540 to 570 km. OneWeb
and Telesat provide global services with relatively fewer number of satellites, i.e., 648
and 298, respectively. SpaceX and Telesat use Ku- and Ka-bands while OneWeb uses
only Ka-band. SpaceX and Telesat have circularly shaped steerable and shapeable
beams while OneWeb has highly elliptical fixed beams.

A comparison between the three aforementioned constellations is provided in
[8], in terms of orbital parameters, bandwidth allocation, beam characteristics, and
beam link budgets which are either directly extracted from FCC filings or estimated
by using the link budget equations. Other well-known LEO broadband services are
Kuiper, Iridium, and Globalstar. Orbital parameters and the planned number of
satellites for these constellations are summarized in Table 2.1. It is worth noting
that Iridium and Globalstar which are given as two examples of LEO commercial
constellations in Table 2.1, are not under the scope of this research as they are not
considered as massive constellations due to their small number of satellites.

Phase array antennas are implemented for ground terminals as well as satellites to
produce multiple beams. On the ground terminal side, multiple number of beams
support transmitting and/or receiving from several visible satellites simultaneously.
Several array geometries for LEO satellite ground terminals are reviewed in [29].

On the satellite side, hybrid beamforming to combine analogue and digital beam-
forming techniques is proposed as a compromise between the higher energy con-
sumption in digital beamforming and less coverage flexibility and, consequently, lim-
ited capacity offered by analogue beamforming. It is worth mentioning that modern
commercial LEO satellites support both analogue and digital beam types [30].

2.2 Constellation design and Keplerian elements

Keplerian or orbital elements which uniquely discern a specific orbit and the satel-
lite’s position in a satellite constellation are as follows.

• Epoch specifies a particular time instant at which an orbital parameter is mea-
sured.

• Orbital inclination (𝜄𝜄𝜄𝜄) indicates how much the orbital plane position is tilted
w.r.t. the equatorial plane.

• Right ascension of ascending node (RAAN) or longitude of ascending node
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Table 2.1 Existing LEO broadband networks (up to January 2023)

Systems Altitude(s) Total number Inclination angle(s) Number of
(km) of satellites planes

Starlink

540 1584 53.2◦ 72
550 1584 53◦ 72
560 348 97.6◦ 10
570 720 70◦ 36

Oneweb 1200 720 87.9◦ 18

Telesat
1015 78 99.5◦ 6
1325 220 37.4◦ 20

590 784 33◦ 28
Kuiper 610 1296 42◦ 36

630 1156 51.9◦ 34

Iridium 780 66 86.4◦ 11

Globalstar 1400 48 52◦ 8

is measured in the equatorial plane and is defined as the angle between a refer-
ence point in the sky, namely vertical equinox (RAAN= 0), and the ascending
node, where satellites cross the equator going from south to north. Inclination
angle and RAAN together can fully specify an orbital plane.

• Argument of perigee specifies the angle between the ascending node and perigee,
the point where satellite is closest to Earth, measured from the center of Earth.
It is trivial that argument of perigee is zero for circular orbits as perigee is at
the ascending node.

• Eccentricity characterizes the shape of elliptical orbits and is defined as the
ratio of the distance between the center of orbits and either of its foci to the
semi-major axis. This parameter varies between zero to one with zero corre-
sponding to the circular orbits.

• Orbital period is simply defined as the time needed to go once around an
orbit. This parameter is directly related to the distance of a satellite from
Earth through Kepler’s third law of orbital motion which states that orbital
period is proportional to the semi-major axis of its orbits.
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• True anomaly defines the position of a satellite in the orbit at the epoch w.r.t.
perigee, i.e., the angle between perigee and the position of a satellite measured
in the orbital plane.

To briefly summarize the above Keplerian elements, the orientation of orbital
planes is determined by inclination and right ascension of ascending node, the orien-
tation of the elliptical orbits, their shape and size are specified by argument of perigee,
eccentricity, and orbital period, respectively. Finally, the position of a satellite in the
orbit is determined by true anomaly.

Different combinations of Keplerian parameters result in huge number of con-
stellation design possibilities. However, the elements must be selected in such way to
lead to an optimal constellation, i.e., providing the global coverage with minimum
number of satellites [31]. Optimal constellation design can significantly affect the
performance of satellite communication networks while decreasing the manufactur-
ing and launch costs. A very popular LEO constellation for circular orbits with the
same inclination angle is Walker constellation which has two types depending on
the inclination angle: Walker Delta constellation with inclined orbits and Walker
Star constellation with near-polar orbits, shown in Fig. 2.1(a) and Fig. 2.1(b), re-
spectively. Walker Delta can adjust the overlapping coverage footprints of satellites
by varying the inclination angle. However, it is more challenging to establish inter-
satellite links with Delta constellation as the relative distances between the satel-
lites in adjacent orbits change constantly [32]. Walker constellation is defined as
𝜄𝜄𝜄𝜄 : 𝑁𝑁𝑁𝑁act/𝑁𝑁𝑁𝑁P/𝜃𝜃𝜃𝜃P, where 𝑁𝑁𝑁𝑁act is the total number of satellites, 𝑁𝑁𝑁𝑁P determine the num-
ber of equally spaced orbital planes, and 𝜃𝜃𝜃𝜃P is the angle between adjacent orbital
planes.

2.3 System model

In this subsection, we provide some detailed specifications on the studied system
model, i.e., a massive LEO constellation. First, the geometry of the network is de-
scribed in terms of constellation size, distribution of satellites on orbits, inclination
angle, constellation altitude, and the minimum required elevation angle. Then sys-
tem specifications on frequency reuse, antennas, and user association techniques are
provided which are followed by an overview of the characteristics of propagation
channels in terms of their fading and shadowing distributions. The details on each
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(a) A Walker Delta constellation 53◦ : 160/8/0. (b) AWalker Star constellation (polar orbits) 90◦ :
160/8/0.

Figure 2.1 A sketch of the Walker constellation.

item are described as below.

• Geometry of a LEO satellite network is shown in Fig. 2.2. The satellite net-
work comprises 𝑁𝑁𝑁𝑁act satellites distributed uniformly on circular inclined orbits
with altitude and inclination angle denoted by 𝑎𝑎𝑎𝑎s and 𝜄𝜄𝜄𝜄, respectively. The sub-
script "act" is chosen to refer to the actual number of satellites in the physical
constellation and to distinguish it from 𝑁𝑁𝑁𝑁eff , the effective number of satellites,
which will be defined later. The ground user is assumed to be on Earth’s
surface which is approximated as a perfect sphere with radius 𝑟𝑟𝑟𝑟⊕.

In this thesis, we refer to the node that the user is assigned to as the serving
node (satellite). The distances from the user to the satellites are denoted by 𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛,
𝑛𝑛𝑛𝑛 = 0, 1, 2, . . . , 𝑁𝑁𝑁𝑁act − 1, where the subscript zero is reserved for the serving
link. The satellites must be elevated above the user’s horizon at least to an
angle of 𝜃𝜃𝜃𝜃min > 0, so that they are visible to the user. Therefore, given the
altitude of the constellation, the maximum distance that a satellite and a user
terminal are able to communicate is a function of the minimum elevation angle
and is obtained from basic geometry as

𝑟𝑟𝑟𝑟max =
√︂
𝑎𝑎𝑎𝑎2s + 2 𝑎𝑎𝑎𝑎s𝑟𝑟𝑟𝑟⊕ + 𝑟𝑟𝑟𝑟2⊕ sin

2(𝜃𝜃𝜃𝜃min) − 𝑟𝑟𝑟𝑟⊕ sin(𝜃𝜃𝜃𝜃min). (2.2)
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Figure 2.2 A sketch of the considered system model, where satellites are at altitude 𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s and a
ground user is located on Earth’s surface.

Conversely, the upper limit for user’s latitudes where the user is able to estab-
lish a connection with a satellite (at least one satellite is visible to the user) is
given by

|𝜙𝜙𝜙𝜙u | ≤ 𝜄𝜄𝜄𝜄 + cos−1
(︄
𝑟𝑟𝑟𝑟2⊕ + 𝑟𝑟𝑟𝑟⊕𝑎𝑎𝑎𝑎s +

(︁
𝑎𝑎𝑎𝑎2s − 𝑟𝑟𝑟𝑟2max

)︁ /2
𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑟𝑟𝑟𝑟min)

)︄
. (2.3)

Using (2.3), the minimum altitude which provides global coverage (full cov-
erage on all latitudes from the equator to the poles) is given as

𝑎𝑎𝑎𝑎s ≥ 𝑟𝑟𝑟𝑟⊕ cos (𝜃𝜃𝜃𝜃min)
sin (𝜄𝜄𝜄𝜄 − 𝜃𝜃𝜃𝜃min) − 𝑟𝑟𝑟𝑟⊕ . (2.4)

Figure 2.3 provides results on the minimum required inclination angle and alti-
tude to obtain global coverage given the altitude and inclination of the constel-
lation, respectively, for different minimum elevation angles. As it is expected
intuitively, the minimum required altitude and inclination angle for a global
coverage decrease as the inclination angle and altitude increase, respectively,
due to the rise in the visibility probability of satellites.

• Since the frequency spectrum is scarce, the same frequency range must be
reused in the same communication system. Using the same frequency chan-
nel for different wireless connections may cause co-channel interference (or
inter-cell interference (ICI)) due to the reception of signal from other nodes
that share the same frequency with the serving node, and are located in its
close proximity. Frequency reuse is more efficient for satellite networks as
they operate in Ku-band (12–18GHz) and Ka-band (26–40 GHz) [33], since
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Figure 2.3 Relationship between the minimum required inclination angle and altitude to obtain global
coverage.

attenuation is stronger at higher frequencies which results in lower co-channel
interference in the signal reception.

To implement frequency reuse in a satellite network, 𝐾𝐾𝐾𝐾 orthogonal frequency
channels are considered, with 𝐾𝐾𝐾𝐾 ≤ 𝑁𝑁𝑁𝑁act, and a subset of 𝑁𝑁𝑁𝑁act/𝐾𝐾𝐾𝐾 satellites is
randomly assigned to each channel. Obviously, in real-world practical systems,
more efficient channel allocation schemes will be implemented than a random
channel allocation. However, random assignment corresponds to the worst-
case scenario which can provide lower bounds on the achievable performance.
Moreover, random channel allocation preserves the analytical tractability re-
sulted from stochastic geometry [34].

The scheduling ensures that the serving satellite in the constellation uses the
channel that is assigned to a user. All the other satellites on the same chan-
nel, other than the serving satellite, cause co-channel interference to the user’s
reception when they are elevated above the horizon to angle greater than 𝜃𝜃𝜃𝜃min.

• Since LEO satellites might be equipped with directional antennas [8], their
characteristics are considered in the system model using several approaches. In
[P1, P6], the effect of directional antennas is taken into account by assuming
that all satellites are equipped with steerable antennas that radiate their main
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lobe or the strongest sidelobe towards their serving user, regardless of satellite’s
elevation angle, while their sidelobes or weaker lobes are radiated towards
other users. The effect is approximated by assuming two different power levels
for serving and interfering satellites, denoted by 𝑝𝑝𝑝𝑝0 and 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛, respectively, such
that 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛 ≤ 𝑝𝑝𝑝𝑝0. In particular, we assume that 𝑝𝑝𝑝𝑝0 is the radiated power of the
stronger lobes, while 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛 is the directed power from the side lobes with lower
power level. In this model, the users are assumed to be equipped with ideal
isotropic antennas.

In order to tractably include the effect of directional antennas with any ar-
bitrary pattern, in [P4, P7], antenna gains of the user and the satellites are
formulated as a function of the angle between the antenna boresight and the
line-of-sight path, denoted by 𝜃𝜃𝜃𝜃u and 𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛, respectively. When the user’s antenna
boresight is directed towards the sky and the satellites’ antennas boresight radi-
ates towards the center of Earth, 𝜃𝜃𝜃𝜃u and 𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛 can be given in terms of the relative
distances as

𝜃𝜃𝜃𝜃u(𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛, 𝑎𝑎𝑎𝑎s) = 𝜋𝜋𝜋𝜋 − cos−1
(︄
𝑟𝑟𝑟𝑟2⊕ + 𝑅𝑅𝑅𝑅2

𝑛𝑛𝑛𝑛 − (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)2
2𝑟𝑟𝑟𝑟⊕𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛

)︄
(2.5)

and

𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛 (𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛, 𝑎𝑎𝑎𝑎s) = cos−1
(︄
𝑅𝑅𝑅𝑅2
𝑛𝑛𝑛𝑛 − 𝑟𝑟𝑟𝑟2⊕ + (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)2
2𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

)︄
, (2.6)

respectively.

Other than the relative angles between the user and the satellites, the antenna
patterns also vary with altitude since a wider beam is required to cover the same
area on Earth when satellite is orbiting on lower altitudes. Thus, in the system
model, 𝐺𝐺𝐺𝐺u(𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛, 𝑎𝑎𝑎𝑎s) and 𝐺𝐺𝐺𝐺𝑛𝑛𝑛𝑛 (𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛, 𝑎𝑎𝑎𝑎s) directly represent the user’s and the satel-
lites’ antenna gains, respectively, with 𝐺𝐺𝐺𝐺t(𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛, 𝑎𝑎𝑎𝑎s) = 𝐺𝐺𝐺𝐺u(𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛, 𝑎𝑎𝑎𝑎s)𝐺𝐺𝐺𝐺𝑛𝑛𝑛𝑛 (𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛, 𝑎𝑎𝑎𝑎s)
being the overall antenna gain.

It is also worth noting that for LEO constellations, highly directional antennas
is more preferable at the ground stations due to easier implementation by using
mechanically or electronically steering antennas. Considering weight and price
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as the two critical factors in LEO antenna design, using directional antennas
is more challenging for satellites. Furthermore, the high speed of orbiting in
LEO, unlike GEO, may make it practically difficult to beam towards any
designated user.

• The signal that travels from the transmitter may reach the destination via sev-
eral different paths, i.e., direct line-of-sight (LOS) path or non-line-of-sight
(NLOS) paths by being reflected at or diffracted by the surrounding obsta-
cles. As the geometry and the medium that radio waves propagate through are
completely different for satellite networks compared to terrestrial networks,
novel models are required to take account of multi-path fading. Some litera-
ture neglected the effect of small-scale fading in satellite networking as the user
is assumed to be in remote open areas where there are no obstacles to cause
multi-path fading [35], [36].

From themany channel models that have been adopted for landmobile satellite
networks, shadowed-Rician is introduced as an accurate model which fits the
empirical data [37]–[42]. The model is a modification of Rician model where
the amplitude of the LOS component is assumed to follow a Nakagami-m
distribution. Two parameters characterize the shadowed-Rician distribution:
the Rician factor which denotes the ratio between the average power in the
LOS and the diffused components, and the LOS fluctuation level which varies
from 0.5 to ∞, where ∞ corresponds to constant LOS component [43].

As massive LEO satellite networking is a newly developed technology, there
are still many limitations for their channel modeling [44] and the current pro-
posed models may be modified and replaced by more precise models. There-
fore, in this thesis, the fading statistics are not limited to any specific model
for the analytical derivations, except for the serving channel when interfer-
ence is not neglectable since the analytical tractability can be only fulfilled by
considering specific distributions for its channel gain.

As a result, in [P1, P4, P7], no specific distribution is assumed for the fading
of the interfering channels since it has no effect on the tractability of the analy-
sis. In [P1], serving channels are assumed to follow Rayleigh and static models.
The former is suitable for the case when the received signal is composed of sev-
eral multi-path components due to low elevation angle of the serving satellite,
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each of which form a considerable portion of the received signal. Other than
physical justification, Rayleigh assumption makes the analysis more tractable.
The latter model holds when the number of satellites is large enough so that
it is very likely to have the serving satellite at high elevation. In that case,
the transmitted signal is not exposed to significant fading due to existence of
a strong LoS component which dominates other reflected and/or scattered
fading components.

In [P4, P7], a Nakagami-𝑚𝑚𝑚𝑚 fadingmodel is adopted for serving channels, where
channel gain, being the square of Nakagami random variable, follows a gamma
distribution with 𝑚𝑚𝑚𝑚 being its shape parameter and rate parameter. Nakagami-
𝑚𝑚𝑚𝑚 fading provides the possibility to consider a wide range of multi-path fading
patterns with varying NLOS and LOS probabilities. For instance, setting
𝑚𝑚𝑚𝑚 = 1 corresponds to Rayleigh fading scenario. As the probability of line-
of-sight increases, a larger value for 𝑚𝑚𝑚𝑚 should be selected. Nakagami-𝑚𝑚𝑚𝑚 fading
model was also applied in [45], [46] for LEO satellite networks.

For noise-limited communication scenarios in [P2, P3, P5, P6] any fading
statistics can be adopted in general for channels as this has no effect on analyti-
cal tractability. Obviously, some specific fading distributions need to be opted
for channels in order to generate numerical results, although the analytical
results are valid for any arbitrary distribution. A stochastic geometry-based
analysis is also studied in [39] for a noise-limited system. However, the fad-
ing model is specified to shadowed-Rician which limits the generality of the
analysis.

• The shadowing attenuation caused by blockage of the received signal by the
surrounding objects at the transceiver is a crucial factor to consider in the prop-
agation model. The shadowing effect is not significant if the ground terminal
is located in some rural or remote regions. However, in highly dense urban
areas the signal may be subject to severe loss, termed as excess path loss in [47],
by surrounding obstacles in the last few meters of the signal path (named as
clutter). This effect must be considered in the server selection as the convec-
tional association techniques based on the shortest distance may result in full
outage if the nearest satellite’s signal is blocked on its path [P5]. Excess path
loss can be considered by choosing the proper values for parameters of shadow-
ing distribution. In other words, the effect of clutter loss can be embedded in
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Figure 2.4 Comparison of clutter layer losses versus the elevation angle for excess path loss model
given in [47] and log-normal shadowing presented in this thesis.

the shadowing without making the propagation model too complex by adding
extra parameters to it. As plotted in Fig. 2.4, the clutter layer loss modeled
in [47] can equivalently be represented by shadowing attenuation considered
in our model. The simulation parameters are extracted from [47] to plot the
solid line in Fig. 2.4 which shows the excess path loss. To model excess loss,
the mean and variance of the shadowing are calculated assuming that it is a
weighted sum of two normal distributions given in [47]. Thus, the mean and
the variance of the shadowing loss (in dB) are obtained in terms of the prob-
ability, mean and variance of the LOS and NLOS components, denoted by
𝑝𝑝𝑝𝑝𝜁𝜁𝜁𝜁 , 𝜇𝜇𝜇𝜇𝜁𝜁𝜁𝜁 , and 𝜎𝜎𝜎𝜎2

𝜁𝜁𝜁𝜁
, respectively, where 𝜁𝜁𝜁𝜁 ∈ {LOS,NLOS}. The mean and the

variance of the shadowing are given as

𝜇𝜇𝜇𝜇X𝑛𝑛𝑛𝑛
= 𝑝𝑝𝑝𝑝LoS𝜇𝜇𝜇𝜇LoS + 𝑝𝑝𝑝𝑝NLoS𝜇𝜇𝜇𝜇NLoS (2.7)

and

𝜎𝜎𝜎𝜎2
X𝑛𝑛𝑛𝑛

= 𝑝𝑝𝑝𝑝LoS𝜎𝜎𝜎𝜎
2
LoS + 𝑝𝑝𝑝𝑝NLoS𝜎𝜎𝜎𝜎

2
NLoS + 𝑝𝑝𝑝𝑝LoS𝑝𝑝𝑝𝑝NLoS (𝜇𝜇𝜇𝜇LoS − 𝜇𝜇𝜇𝜇NLoS)2 , (2.8)

respectively, whereX𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛 = 0, 1, 2, . . . , 𝑁𝑁𝑁𝑁act − 1, are the shadowing coefficients
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with subscript zero corresponding to the serving channel while other sub-
scripts are reserved for interfering channels (if applicable). The clutter loss
obtained from the shadowing model is depicted by markers in Fig. 2.4 and is
fairly well matched with excess loss obtained from [47, Eq. 15]. Therefore, the
clutter loss can be also modeled by inclusion of shadowing into the propaga-
tion model and finding its parameters based on the empirical data and elevation
angle. However, to avoid over-complicating the expressions, the shadowing
mean and variance are assumed to be constants, yielding an acceptable com-
promise between varying clutter losses at different elevation angles [P3–P5].

Shadowingmodel given in [P3–P5] is adopted to have any desired distribution,
although in the numerical results the lognormal shadowing is assumed which
is represented as X𝑛𝑛𝑛𝑛 = 10𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛/10, where 𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛 has a normal distribution with mean
and standard deviation denoted by 𝜇𝜇𝜇𝜇X𝑛𝑛𝑛𝑛

and 𝜎𝜎𝜎𝜎2
X𝑛𝑛𝑛𝑛

(in dB), respectively. Thus,
the probability density function (PDF) of lognormal shadowing is

𝑓𝑓𝑓𝑓X𝑛𝑛𝑛𝑛
(𝑥𝑥𝑥𝑥)= 10

ln(10)√2𝜋𝜋𝜋𝜋𝜎𝜎𝜎𝜎2
X𝑛𝑛𝑛𝑛

exp
⎛⎜⎝
−1
2

(︄
10 log10(𝑥𝑥𝑥𝑥) − 𝜇𝜇𝜇𝜇X𝑛𝑛𝑛𝑛

𝜎𝜎𝜎𝜎2
X𝑛𝑛𝑛𝑛

)︄2⎞⎟⎠
. (2.9)

Atmospheric attenuation is also another source of potential impairments in the
transmission/reception of signal to/from the sky. In [8, Fig. 8], it is shown
that atmospheric attenuation for 13.5 GHz frequency exceeds 1 dB only in
one percentage of time, which is not comparable to round 170 dB free-space
path loss at 500 km. Moreover, the attenuation due to atmospheric gases is
insignificant for frequencies below 40 GHz, i.e., Ku and Ka bands [48, Fig. 1].

• User association, namely assigning the user to a particular node in the net-
work to be served by, significantly affects the network performance. Several
association techniques can be adopted based on different criteria [49]. The
most assumed association technique in wireless networks is the nearest server
policy (NSP) which, hence the name, associates the user to the nearest node
in the network. Another association technique is the best server policy (BSP)
which assigns the ground terminal to a node that provides the highest signal-to-
interference-plus-noise ratio (SINR) at the terminal’s place. Although, NSP
is the most simplistic association technique which results in more tractable
derivations on the distribution of the serving distance and, consequently, the
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performance metrics of the network, it is rarely used in practice since it is un-
able to include the effect of the large-scale attenuation, i.e., shadowing, on the
variation of the received signal. BSP includes the effect of shadowing on the
serving satellite selection which results in a remarkable improvement in the
performance of the network.

BSP is frequently used to evaluate the performance of terrestrial networks
[50]–[52], and proved to result in more reliable network performance. More-
over, BSP is more in line with practical association techniques since, in reality,
the SINR at the receiver is a major criterion to determine the server [52].
Therefore, when implementing NSP and BSP, the serving link must satisfy

𝑅𝑅𝑅𝑅0 = min
𝑛𝑛𝑛𝑛

(𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 |𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 < 𝑟𝑟𝑟𝑟max) (2.10)

and

�̃�𝑅𝑅𝑅0 ≜ X− 1
𝛼𝛼𝛼𝛼

0 𝑅𝑅𝑅𝑅0 = min
𝑛𝑛𝑛𝑛

(︂
X− 1

𝛼𝛼𝛼𝛼
𝑛𝑛𝑛𝑛 𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 |𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 < 𝑟𝑟𝑟𝑟max

)︂
, (2.11)

respectively, where �̃�𝑅𝑅𝑅0 is referred to as the nearest effective distance from the
visible satellites to the user.

2.4 Performance analysis

The strength of the desired signal compared to the summation of interference and
noise, known as SINR, is an important quantity to evaluate the performance of a
communication system. According to the described system model in Section 2.3,
SINR at the receiver is given by

SINR =
𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t(𝑅𝑅𝑅𝑅0, 𝑎𝑎𝑎𝑎s)𝐻𝐻𝐻𝐻0X0𝑅𝑅𝑅𝑅

−𝛼𝛼𝛼𝛼
0

𝐼𝐼𝐼𝐼 + 𝜎𝜎𝜎𝜎2
, (2.12)

where 𝑝𝑝𝑝𝑝t is the transmit power of satellites, the constant 𝜎𝜎𝜎𝜎2 is the additive noise
power, the parameter 𝛼𝛼𝛼𝛼 is a path loss exponent, and

𝐼𝐼𝐼𝐼 ≜
𝑁𝑁𝑁𝑁I∑︂
𝑛𝑛𝑛𝑛=1

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t(𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛, 𝑎𝑎𝑎𝑎s)𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛X𝑛𝑛𝑛𝑛𝑅𝑅𝑅𝑅
−𝛼𝛼𝛼𝛼
𝑛𝑛𝑛𝑛 (2.13)
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is the cumulative interference power from all 𝑁𝑁𝑁𝑁I other satellites above the user’s
horizon that share the same frequency channel with the serving satellite. The fading
coefficients are denoted by 𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛 = 0, 1, 2, . . . , 𝑁𝑁𝑁𝑁act − 1, where subscript zero asso-
ciates the fading parameter to the serving channel while other subscripts are reserved
for interfering channels. It is worth noting that the path loss exponent 𝛼𝛼𝛼𝛼 is set to 2
for satellite communication since the signal travels through free space for most of its
path. If all interfering satellites happen to be invisible to the user, i.e., 𝑁𝑁𝑁𝑁I = 0, the
SINR in (2.12) is reduced to signal-to-noise ratio (SNR) as

SNR =
𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t(𝑅𝑅𝑅𝑅0, 𝑎𝑎𝑎𝑎s)𝐻𝐻𝐻𝐻0X0𝑅𝑅𝑅𝑅

−𝛼𝛼𝛼𝛼
0

𝜎𝜎𝜎𝜎2
, (2.14)

and further SNR = 0 if 𝑅𝑅𝑅𝑅0 > 𝑟𝑟𝑟𝑟max, i.e., there is no satellite to serve the user.
Coverage probability is an important performance measure to evaluate the quality

and reliability of a wireless network. The coverage probability is defined as the
probability that the received SINR is higher than the minimum SINR required to
ensure successful data transmission. Based on this definition, the coverage probability
can be calculated as

𝑃𝑃𝑃𝑃c (𝑇𝑇𝑇𝑇) ≜ P (SINR > 𝑇𝑇𝑇𝑇) , (2.15)

where 𝑇𝑇𝑇𝑇 represents the minimum SINR required to successfully transmit the data.
In other words, whenever the SINR at the receiver is above the threshold level 𝑇𝑇𝑇𝑇 , it
is considered to be within the coverage of the network.

The average achievable rate is the ergodic capacity from the Shannon–Hartley
theorem over a communication link normalized to unit bandwidth and is defined as

�̄�𝐶𝐶𝐶 ≜
1

𝐾𝐾𝐾𝐾
E [log2 (1 + SINR)] , (2.16)

which is measured in bits/s/Hz.
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3 STOCHASTIC GEOMETRY ANALYSIS OF

WIRELESS NETWORKS

As discussed in Chapter 1, commercial development and design of massive LEO net-
works is accomplished through some system-specific simulations based on massive
time-consuming trial-and-error iterations. Moreover, based on the reviewed litera-
ture in Chapter 2, the early studies on performance of LEO networks are limited to
considering few satellites with identical coverage footprints on Earth’s surface which
typically form a regular circular or hexagonal grid. However, actual commercial con-
stellations are extremely massive as they are comprised of hundreds and thousands
of satellites. Thus, the assumption of few number of satellites will lead to unrealistic
results on the performance of these networks. For instance, the effect of interference
on the performance caused by a large number of visible satellites to the user operat-
ing on the same frequency band with the serving satellite is ignored in those works.
Stochastic geometry, as the main mathematical tool used in this research, enables an-
alytical understanding of massive wireless networks without resorting to hexagonal
models. This chapter illuminates an overview on stochastic geometry, its applications
in wireless network analysis, and its corresponding mathematical preliminaries.

3.1 Stochastic Geometry

Stochastic geometry is a powerful mathematical tool that has been utilized in many
fields of science, e.g., biology, material, forestry, astronomy, and wireless communi-
cation. Its application to study the wireless networks dates back to 1961 by studying
the connectivity in large wireless networks with huge number of nodes [53]. Nodes
refer to several elements of a wireless network, e.g., users, base stations (BSs), ground
stations, wireless terminals, and access points. In fact, for wireless networks, stochas-
tic geometry is used to average over different realization of nodes in a network [54].
Averages can be taken over a large number of nodes’ locations or many network
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realizations, for different metrics of interest, e.g., coverage probability and data rate.
More particularly, the locations of nodes are modeled as a point process which cap-
tures the characteristics of nodes distribution, e.g., their density and the relative
distances. In the following subsection, after defining the point processes, some typ-
ical point processes that are used to model location of nodes in a wireless network
are introduced.

3.1.1 Point processes

In stochastic and probability theory, a point process is defined as a random, finite or
countably-infinite collection of points located in a 𝑑𝑑𝑑𝑑-dimensional Euclidean space,
denoted by R𝑑𝑑𝑑𝑑 [55]. It is worth noting that the definitions provided herein are
restricted to the 𝑑𝑑𝑑𝑑-dimensional Euclidean space as it is the area of interest in wireless
communication. In other words, a PP is defined as a mapping from a probability
space to configurations of points in R𝑑𝑑𝑑𝑑. In stochastic geometry analysis of wireless
networks, the nodes are modeled as a PP that captures the properties of the network.
The simplicity and tractability of Poisson point process (PPP) and BPP made them
the most widely used point processes for modeling a wireless network.

A point process is a PPP if the number of points inside any bounded set is a
Poisson random variable, and the number of points in disjoint sets are independent.
A PPP is characterized by its intensity measure defined as Λ(A) =

∫
A 𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥, where

A is a bounded set in R𝑑𝑑𝑑𝑑, i.e., A ⊆ R𝑑𝑑𝑑𝑑, and 𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥) is density of points. Intensity can
be either a constant value or a function of node’s location in the underlying space
which correspond to a homogeneous PPP and a nonhomogeneous PPP, respectively.

The probability mass function of a PPP, i.e., the probability to have exactly 𝑘𝑘𝑘𝑘

points in the bounded set A follows a Poisson distribution as

P [𝑁𝑁𝑁𝑁 (A) = 𝑘𝑘𝑘𝑘] = Λ(A)𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘!

𝑒𝑒𝑒𝑒−Λ(A) . (3.1)

In stochastic geometry analysis of wireless networks, a PPP is used to model large-
scale networks with infinite number of nodes distributed in a bounded or boundless
service area [34], [54], [56]–[59].

A BPP is used when there are known finite number of nodes distributed within
a finite region [60]. A PP is a BPP if the number of points inside any compact set
follows a binomial distribution and the number of points in disjoint sets are related
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through a multinomial distribution. When a PPP is conditional on the total number
of points, denoted by 𝑛𝑛𝑛𝑛, it is equivalent to an 𝑛𝑛𝑛𝑛-point BPP. The probability mass
function of BPP comprised of 𝑛𝑛𝑛𝑛 points distributed over a finite area 𝑊𝑊𝑊𝑊 follows a
binomial distribution and is given as

P [𝑁𝑁𝑁𝑁 (A) = 𝑘𝑘𝑘𝑘] =
(︃
𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘

)︃ (︃
Λ(A)
Λ(𝑊𝑊𝑊𝑊)

)︃ 𝑘𝑘𝑘𝑘 (︃
1 − Λ(A)

Λ(𝑊𝑊𝑊𝑊)

)︃ (𝑛𝑛𝑛𝑛−𝑘𝑘𝑘𝑘)
. (3.2)

The above definitions are presented to summarize the main characteristics of each
point process and how one can be opted based on the nodes’ distributions in the net-
work. More detailed and mathematical definitions can be found in several references
including but not limited to [54], [56], [61].

3.1.2 Random measures and void probability

In this subsection, essential parameters in order to characterize a PP are defined.

• The mean measure of a point process, 𝜉𝜉𝜉𝜉, on A, which is a bounded subset of
the 𝑑𝑑𝑑𝑑-dimensional space, is given as

M(A) = E[𝜉𝜉𝜉𝜉 (A)] . (3.3)

In fact, mean measure M(A) denotes the mean number of points in A.

• The density or intensity measure of a point process, 𝜉𝜉𝜉𝜉, on a bounded subset
of the 𝑑𝑑𝑑𝑑-dimensional space, A, is defined as

𝜆𝜆𝜆𝜆(A) = M(A)
𝜇𝜇𝜇𝜇(A) , (3.4)

where 𝜇𝜇𝜇𝜇(A) is the Lebesgue measure of A.

• The void or null probability of a point process, 𝜉𝜉𝜉𝜉, on a bounded subset of the
𝑑𝑑𝑑𝑑-dimensional space, A, is the probability to have no points in A. Thus, it is
given as

𝜈𝜈𝜈𝜈(A) = P(𝜉𝜉𝜉𝜉 (A) = 0). (3.5)

Void probability is an important measure for stochastic analysis of wireless
networks as it is used to obtain the distribution of the serving distance. For
instance, the cumulative density function (CDF) of the nearest distance be-
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(a) Random points on a plane with their Voronoi
cells.

(b) Random points on a sphere with their Voronoi
cells.

Figure 3.1 Examples of Voronoi diagrams with points distributed randomly according to a BPP on a
flat plane (a) and a sphere (b).

tween a node and all other potential transceivers is the complement of the
event 𝜉𝜉𝜉𝜉 (A) = 0, i.e., 𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) = 1 − P(𝜉𝜉𝜉𝜉 (A) = 0), where 𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) denotes the
CDF of the nearest distance, 𝑅𝑅𝑅𝑅0.

• A Voronoi cell of a point 𝑥𝑥𝑥𝑥 ∈ 𝜉𝜉𝜉𝜉 includes all the points in Euclidean space that
are closer to 𝑥𝑥𝑥𝑥 than to any other point in 𝜉𝜉𝜉𝜉. More mathematical definition of a
Voronoi cell can be find in [54], [55]. The partitioning of space into Voronoi
cells is called a Voronoi diagram or Voronoi tessellation. Examples of two
Voronoi diagrams on a flat plane and a sphere are shown in Fig. 3.1.

3.2 The application of stochastic geometry in wireless
communication

This section provides an overview on different communication networks and sce-
narios where stochastic geometry is used for performance analysis and/or optimiza-
tion of the network. According to the geometry of the network, they are divided
into two-dimensional (2D) networks, which correspond to planar cellular networks
where all nodes —including users— are located on the same 2D surface, and three-
dimensional (3D) networks which include several network geometries where com-
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municating nodes are on different surfaces in space.

3.2.1 Two-dimensional networks

Traditionally, the cellular networks have been modeled as a grid where each cell has
a regular hexagonal or square shape with a BS being located at its center. Although
these models have been extensively used, they are too ideal for highly heterogeneous
dense networks. Moreover, these models lack analytical tractability and need com-
plex time-consuming simulations.

Stochastic geometry has been widely used for analysis of planar 2D networks in-
cluding heterogeneous [56]–[58], [62], [63], cognitive [56], [64], [65], ad hoc [66]–
[69], and vehicular [70], [71] networks. In [56], stochastic geometry-related litera-
ture on modeling multi-tier and cognitive cellular networks has been reviewed and
a taxonomy based on the network type, the utilized point process, and the per-
formance characterization techniques is provided. The techniques are compared in
terms of tractability, accuracy, and practicability. The authors in [34] present one of
the seminal works on the utilization of stochastic geometry for performance analy-
sis of a terrestrial cellular network. In that work, the BSs are distributed according
to a homogeneous PPP and the coverage and rate are tractably derived. Although
the model shows the same accuracy as the conventional grid models, the stochastic
model provides a lower band on the coverage and rate of the network. In a recent
study [72], PPP is used to model the locations of laser beam directors on the ground,
which provide power for an unmanned aerial vehicle (UAV).

When the nodes in a network are distributed as clusters due to some specific
network arrangements or users’ distribution, they can bemodeled as a Poisson cluster
process (PCP) [56], [64], [73]. In PCP, first, a set of points are generated according
a PPP distribution. Then each point is replaced by a cluster of independently and
identically distributed (i.i.d.) points.

Among different point processes used for modeling a wireless network, PPP is the
most popular PP which provides tight bounds on the performance of the networks
with more tractability and simplicity [56]. However, PPP is not valid when there is
a finite-area network with a limited known number of nodes [60]. BPP shows more
accuracy to model the characteristics of such networks [61], [74]. The performance
for a finite arbitrarily shaped planar network is studied in [74]–[76]. A BPP was
used to model a finite network of unmanned aerial vehicles in [77], [78].
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Another point process used for modeling the wireless networks is determinantal
point process (DPP) which takes into account the possible regularity in the network
[79], e.g., repulsion or attraction between nodes. These point processes fit better to
the actual properties of the networks since they are not as random as a PPP or as
regular as grid models [60]. Among different types of DPPs, Ginibre point process
(GPP) and its thinned and re-scaled version (𝛽𝛽𝛽𝛽-GPP) are more popular for wireless
network analysis due to their analytical tractability [60], [61], [74], [75], [78]. The
parameter 𝛽𝛽𝛽𝛽 is a real number between zero and 1 that corresponds to the level of
repulsiveness or regularity between points.

3.2.2 Three-dimensional networks

While stochastic geometry has been widely used for the analysis of planar cellular
networks, its application to 3D networks has been also compelling. 3D models can
be used to analyze highly heterogeneous urban environments, such as BSs located on
both ground and rooftops, UAV swarming, and massive satellite networks.

In [80], the BSs are assumed to be distributed in a 3D space according to a PPP.
Themodel provides a closer bound on the coverage probability as it is more matching
with the highly dense and heterogeneous nature of the networks in urban areas. In
[77], [78], a downlink performance analysis of a UAV network is provided, where
the UAVs are located as a BPP on a disc above the user. Two techniques to share the
spectrum between UAV-to-UAV and BS-to-UAV transceivers are analyzed in [81]
by modeling both UAVs and BSs as homogeneous PPPs.

Other than UAVs and highly dense heterogeneous networks, 3D stochastic mod-
eling can be also utilized for satellite networks . However, before the journal publi-
cation [P1], the utilization of stochastic geometry for these networks was limited to
modeling the ground users [23], [82]–[84]. For instance, in [82], stochastic geom-
etry was used to characterize the terrestrial interference and provide user selection
criteria for multi-beam satellites which pair each beam with a user. Coverage proba-
bility and data rate are derived for a multi-UAV downlink network through assuming
PPP distribution for users in [83]. However, due to their channel assignment pol-
icy, interference among users and UAVs is neglected. In [84], the performance of a
cognitive satellite–terrestrial network is investigated where the secondary terrestrial
network shares resources with a primary satellite system network. The users and the
secondary terrestrial network are modeled as two independent point processes.
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To the best of the Author’s knowledge, the idea of modeling the LEO satellite
network as a point process was proposed in [P1] for the first time; the model that
enables application of the tools from stochastic geometry for performance analysis
of these networks at large. Although the satellites’ positions in every time instant
are deterministic for the actual physical satellite network as the satellites orbit on
predetermined trajectories (orbits) with fixed spacing between them, due to consis-
tent moving of satellites over the orbits, different realizations of the satellites from a
user’s perspective can be seen as a random point process.

In [P1, Fig. 1], four different LEO constellations with their corresponding Voronoi
diagrams are depicted. [P1, Figs. 1 (b)–(d)] show a class of regular deterministic
Walker constellations with 87.9◦, 70◦, and 40◦ inclination angle, respectively, in
which all satellites are evenly spaced on low Earth orbits. Each Voronoi cell repre-
sents the coverage area of each satellite wherein all users are served by the satellite,
assuming that the users connect to the nearest satellite. On the other hand, [P1, Fig. 1
(a)] depicts a random constellation in which the satellites are distributed as BPP on a
spherical shell. As stated in [P1], the Voronoi diagrams formed by the deterministic
constellations are not regular and they are more similar to the Voronoi tessellation
of the BPP-distributed constellation. It can be also observed that the Voronoi tessel-
lation becomes more irregular as the inclination angles increases. There are several
reasons which may result in irregular tessellations formed by coverage area of LEO
satellites as listed below:

• Due to the geometry of LEO constellations, the latitudinal density of satellites
is not uniform, as there are more satellites around their inclination angle (i.e.,
the latitude limits) and less in the equatorial regions. This results in a non-
uniform Voronoi tessellation with relatively smaller Voronoi cells around the
inclination limits and larger cells at the equator. Moreover, in order to provide
full coverage all over the globe based on users’ density and their correspond-
ing demands, some commercial LEO constellations are deployed on multiple
orbits with different inclination angles. Those varying inclination angles are
another source of forming irregular Voronoi coverage cells.

• The continuous moving of satellites on orbits when satellites are moving to-
wards north pole (ascending) and south pole (descending) on adjacent orbits
causes the relative distances between the satellites on the neighboring orbits to
change continuously. Therefore, satellites’ mutual positions become similar to
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those given by a random process (as in [P1, Fig. 1 (a)]).

• Deploying satellites on different altitudes, e.g., in Starlink, or inter-operation
of multiple LEO constellations in the future may also result in nonidentical
coverage areas for satellites due to their varying transmit power, antenna gains,
and orbital speed.

• Adaptive multi-beam and footprint designing to address the varying traffic de-
mand of users as proposed in [85], will also result in more random shapes of
Voronoi cells.

Other than the above mentioned specific reasons, the same as the terrestrial net-
works, modeling the satellite network as a point process provides analytical tractabil-
ity. Obviously, as it will be illustrated thoroughly in the following chapters, there
would be some deviation between the performance of the actual and random net-
works that can be reduced by adjusting the local density of constellation, i.e., at the
ground user’s location. In addition, a recent study on this topic [86], evaluates the
accuracy of stochastic PPs for modeling a massive LEO network in terms of Wasser-
stein distance. The results show that under specific constellation parameters, the
stochastic models lead to highly accurate results.

The challenges on extending the existing stochastic models for LEO networks
stem from geometry of the system as well as the propagation environment of these
networks. The geometry of LEO networks is such that the density of satellites is
higher at the inclination limits than at the equatorial regions. This will limit the
utilization of two widely used PPs, i.e., BPP and homogeneous PPP, since they are
unable to capture the uneven distribution of satellites over the latitudes. Another
challenge in stochastic geometry analysis of wireless networks is that resorting to
Rayleigh fading assumption, which provides less complex derivations [56], is not al-
ways possible as the line-of-sight component of the signal is typically more significant
than other multi-path components. More details about these challenges and how to
remedy them will be given in Chapter 4.
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4 STOCHASTIC MODELING OF MASSIVE LEO

COMMUNICATION NETWORKS

In this chapter, the-state-of-the-art stochastic modeling of satellites in a massive LEO
constellation for different network geometries and communication scenarios will be
clarified. More specifically, the two point processes used in this thesis with their
main features are introduced. Then, all the distance distributions stemmed from
those point processes which are required to characterize the SINR function given in
(2.12) are derived in terms of constellation parameters. The results and derivations
in this chapter are essential in order to contribute expressions for the performance
metrics of a LEO network in Chapter 5.

Table 4.1 summarizes different LEO geometries, propagation models, and com-
munication scenarios studied in this thesis as well as the two different point processes
used for modeling a massive LEO network.

4.1 Physical constellation vs. stochastic constellation

The physical actual constellation which is considered in the Author’s publications
[P1–P5] is a LEO communication satellite constellation consisting of 𝑁𝑁𝑁𝑁act satellites
launched uniformly on circular inclined orbits and at the same altitude, 𝑎𝑎𝑎𝑎s, as shown
in Fig. 4.1(a). For sake of simplicity, satellites’ spherical coordinates are specified in
terms of their latitude and longitude denoted by (𝜙𝜙𝜙𝜙s, 𝜆𝜆𝜆𝜆s), instead of using the two
orbital parameters i.e., true anomaly and right ascension of ascending node.

A user terminal is located arbitrarily on any latitude, denoted by 𝜙𝜙𝜙𝜙u, on the
Earth’s surface. As stated in Chapter 2, satellites rising above the horizon at least to
an angle of 𝜃𝜃𝜃𝜃min are those which are visible to the user and capable of communicating
with that. Accordingly, the largest possible distance between a satellite and a ground
user is given as in 2.2. In this thesis, two point processes, i.e., BPP and NPPP, were
used to model the above-described physical LEO constellation.
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Table 4.1 Summary of system models and communication scenarios

Network model Single-altitude and inclined orbits
Multi-altitude and inclined orbits

Network access Direct and backhaul

Used point process BPP and NPPP

Fading assumption Rayleigh, Nakagami-𝑚𝑚𝑚𝑚, static, and arbitrary
distribution for the desired links
Arbitrary distribution for the interfering links

User association NSP and BSP

Transmission direction Downlink and Uplink

Compensation for uneven Numerical compensation, effective number of
distribution of satellites satellites, and NPPP

4.2 Binomially distributed vs. Poissonly distributed constellation

As mentioned earlier in Chapter 3, the first step towards stochastic geometry-based
analysis of wireless networks is abstracting the network to an appropriate point pro-
cess that captures its properties. There is always a compromise on selecting the best
PP to obtain the most accurate results while maintaining the tractability [56].

4.2.1 Serving distance distribution for BPP

As a known number of satellites are distributed on a finite sphere, namely the spher-
ical shell, a BPP is adopted in [P1, P2] to model the satellites in a massive LEO
constellation, i.e., the satellites are assumed to be distributed uniformly on a sphere
with radius 𝑟𝑟𝑟𝑟⊕ +𝑎𝑎𝑎𝑎s. The generic system in [P1] includes both co-channel interference
and noise into the analysis while [P2] studies a noise limited system. Upon modeling
the satellites as a BPP, the distance distributions of the considered system model that
contribute to characterization of SINR or SNR can be derived in terms of their PDF
and CDF. By choosing the nearest satellite to the user as the serving satellite, i.e.,
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(a) A single-altitude LEO network.

LEO satellite

Ground station

(b) Schematic of the direct access system model.

Figure 4.1 A sketch of the considered system model in [P1–P5].

NSP association technique, the CDF of the serving distance is given as

𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) = 1 − P(𝑅𝑅𝑅𝑅0 > 𝑟𝑟𝑟𝑟0) = 1 − 𝜈𝜈𝜈𝜈(A) = 1 −
(︄
1 − 𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

)︄𝑁𝑁𝑁𝑁act

(4.1)

for 𝑎𝑎𝑎𝑎s ≤ 𝑟𝑟𝑟𝑟0 ≤ 2𝑟𝑟𝑟𝑟⊕ +𝑎𝑎𝑎𝑎s [P1, P2]. The void probability is denoted by 𝜈𝜈𝜈𝜈(A), where A
is the shaded spherical cap shown in Fig. 2.2 formed by all the points on the satellites’
spherical shell which are closer to the user than the serving satellite. By taking the
derivative w.r.t. 𝑟𝑟𝑟𝑟0, the PDF of the serving distance is obtained as

𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) = 𝑁𝑁𝑁𝑁act

(︄
1 − 𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

)︄𝑁𝑁𝑁𝑁act−1
𝑟𝑟𝑟𝑟0

2𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s) (4.2)

for 𝑎𝑎𝑎𝑎s ≤ 𝑟𝑟𝑟𝑟0 ≤ 2𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s while 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) = 0 otherwise. BPP has been used also in later
publications [39], [87] to characterize the distance distributions in a LEO network
where satellites are distributed on multiple orbital shells with varying radii.

4.2.2 Effective number of satellites

Although BPP provides closed form expressions for contact distance distributions,
in practice, satellites are mostly available around their inclination limits while their
density decreases as a user moves away from the inclination limits. As a result, the
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satellites’ distribution is not uniform as modeled by a BPP. In order to compensate
for this effect, a new concept, namely the effective number of satellites, denoted by 𝑁𝑁𝑁𝑁eff ,
has been introduced to remedy themismatch between the globally uniform density in
BPP and non-uniform latitudinal density in actual Walker constellations [P1, P2]. In
[P1], 𝑁𝑁𝑁𝑁eff is determined numerically by mean absolute error minimization between
the performance metrics of BPP-distributed constellation and those of the practical
Walker constellation for different latitudes. Thus, the serving distance distributions
in actual LEO constellations can be obtained by substituting the parameter 𝑁𝑁𝑁𝑁act in
(4.1) and (4.2) with 𝑁𝑁𝑁𝑁eff .

The effective number of satellites is derived analytically in [P2] for every latitude.
The effective number of satellites, 𝑁𝑁𝑁𝑁eff , can be also defined as the number of satellites
that corresponds to a satellite density observed on a specific user’s latitude, assuming
the same density continues everywhere. Thus, the effective number of satellites is
obtained in terms of the latitude of a satellite, 𝜙𝜙𝜙𝜙s, and its PDF, 𝑓𝑓𝑓𝑓Φs (𝜙𝜙𝜙𝜙s), as

𝑁𝑁𝑁𝑁eff ≜
2 𝑓𝑓𝑓𝑓Φs (𝜙𝜙𝜙𝜙s)
cos(𝜙𝜙𝜙𝜙s) · 𝑁𝑁𝑁𝑁act. (4.3)

Assuming that the satellites’ true anomaly𝑈𝑈𝑈𝑈 has a uniform distribution [88], i.e.,
𝑈𝑈𝑈𝑈 ∼ U(− 𝜋𝜋𝜋𝜋

2 ,
𝜋𝜋𝜋𝜋
2 ), 𝑓𝑓𝑓𝑓Φs (𝜙𝜙𝜙𝜙s) is given by

𝑓𝑓𝑓𝑓Φs (𝜙𝜙𝜙𝜙s) =
√
2

𝜋𝜋𝜋𝜋
· cos(𝜙𝜙𝜙𝜙s)√︁

cos(2𝜙𝜙𝜙𝜙s) − cos(2𝜄𝜄𝜄𝜄)
(4.4)

for 𝜙𝜙𝜙𝜙s ∈ [−𝜄𝜄𝜄𝜄, 𝜄𝜄𝜄𝜄] while 𝑓𝑓𝑓𝑓Φs (𝜙𝜙𝜙𝜙s) = 0 otherwise. Detailed proofs of (4.3) and (4.4)
are given in [P2]. It is worth noting that although the density of the point process
is adjusted locally for the given user’s latitude and the mismatch might increase at
other locations, the derived performance metrics will not be affected due to larger
distances between the user and those points and, thus, more severe propagation loss.
The effective number of satellites using (4.3) is depicted in Fig. 4.2 for three different
inclination angles and constellations sizes of 1000 and 2000. As expected based on the
geometry of LEO constellations, 𝑁𝑁𝑁𝑁eff increases drastically near the inclination limits.
The difference between the actual number of satellites and the effective number of
satellites is more significant for larger user’s latitudes. One limitation of applying
effective number of satellites to tune the satellites distribution is that it results in
zero effective number of satellites, and consequently, a full outage, for user’s latitudes
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Figure 4.2 Effective number of satellites obtained from (4.3) for a LEO constellation comprised of
1000 and 2000 satellites.

greater than the constellation inclination angle. However, in reality, when the user
is located at latitudes which are slightly greater than the inclination limits, there are
still visible satellites to the user at lower elevation angles.

4.2.3 Serving distance distribution for NPPP

Another approach to take into account the effect of uneven distribution of satellites
across different latitudes is modeling the satellites as a NPPP [P3–P6]. Unlike in
[P1, P2] where the BPP-based derivations need to be compensated to match to the
actual distribution of satellites, for NPPP this effect is embedded in the point process.
In fact, by setting the intensity of NPPP to the actual latitude-dependent density of
satellites on an orbital shell, there is no mismatch between the distance distributions
and, consequently, the performance of the NPPP stochastic constellations and actual
deterministic LEO networks.

Assuming satellites are distributed uniformly on low circular orbits, the density
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of the satellites on an orbital shell element created by 360◦ spanning of the azimuthal
angle on the orbital shell at latitude 𝜙𝜙𝜙𝜙s, is only a function of latitudinal element and
is calculated as

𝛿𝛿𝛿𝛿(𝜙𝜙𝜙𝜙s) =
𝑁𝑁𝑁𝑁act 𝑓𝑓𝑓𝑓Φs (𝜙𝜙𝜙𝜙s) 𝑑𝑑𝑑𝑑𝜙𝜙𝜙𝜙s

2𝜋𝜋𝜋𝜋(𝑎𝑎𝑎𝑎s + 𝑟𝑟𝑟𝑟⊕)2 cos(𝜙𝜙𝜙𝜙s) 𝑑𝑑𝑑𝑑𝜙𝜙𝜙𝜙s
, (4.5)

which is the ratio of the number of satellites residing on the surface element to the
element’s surface area. By substituting 𝑓𝑓𝑓𝑓Φs (𝜙𝜙𝜙𝜙s) from (4.4), the density function or,
equivalently, the intensity of NPPP is given as

𝛿𝛿𝛿𝛿(𝜙𝜙𝜙𝜙s) = 𝑁𝑁𝑁𝑁act√
2𝜋𝜋𝜋𝜋2(𝑎𝑎𝑎𝑎s + 𝑟𝑟𝑟𝑟⊕)2

· 1√︁
cos(2𝜙𝜙𝜙𝜙s) − cos(2𝜄𝜄𝜄𝜄)

. (4.6)

When associating the ground station to the nearest satellite, the CDF of the dis-
tance between them is calculated as

𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) = (4.7)

1 − exp

(︄
− 2 (𝑎𝑎𝑎𝑎s + 𝑟𝑟𝑟𝑟⊕)2

∫ min(𝜙𝜙𝜙𝜙u+𝜙𝜙𝜙𝜙0, 𝜄𝜄𝜄𝜄)

max(𝜙𝜙𝜙𝜙u−𝜙𝜙𝜙𝜙0,− 𝜄𝜄𝜄𝜄)
𝛿𝛿𝛿𝛿(𝜙𝜙𝜙𝜙s) cos(𝜙𝜙𝜙𝜙s) cos−1

(︃
cos(𝜙𝜙𝜙𝜙0)

cos(𝜙𝜙𝜙𝜙s − 𝜙𝜙𝜙𝜙u)

)︃
𝑑𝑑𝑑𝑑𝜙𝜙𝜙𝜙s

)︄

for 𝜙𝜙𝜙𝜙0 ≥ |𝜙𝜙𝜙𝜙u | − 𝜄𝜄𝜄𝜄 while 𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) = 0 otherwise, where 𝜙𝜙𝜙𝜙0 is the polar angle difference
between the serving satellite and the ground station given as 𝜙𝜙𝜙𝜙0 = cos−1

(︂
1 − 𝑟𝑟𝑟𝑟20−𝑎𝑎𝑎𝑎2

s

2(𝑎𝑎𝑎𝑎s+𝑟𝑟𝑟𝑟⊕)𝑟𝑟𝑟𝑟⊕

)︂
.

Taking the derivative w.r.t. 𝑟𝑟𝑟𝑟0, the PDF is obtained as

𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) = 2𝑟𝑟𝑟𝑟0

(︃
𝑎𝑎𝑎𝑎s

𝑟𝑟𝑟𝑟⊕
+ 1

)︃
exp(−𝛾𝛾𝛾𝛾(𝑟𝑟𝑟𝑟0))

∫ min(𝜙𝜙𝜙𝜙u+𝜙𝜙𝜙𝜙0, 𝜄𝜄𝜄𝜄)

max(𝜙𝜙𝜙𝜙u−𝜙𝜙𝜙𝜙0,− 𝜄𝜄𝜄𝜄)

𝛿𝛿𝛿𝛿(𝜙𝜙𝜙𝜙s) cos(𝜙𝜙𝜙𝜙s)√︁
cos2(𝜙𝜙𝜙𝜙s − 𝜙𝜙𝜙𝜙u) − cos2(𝜙𝜙𝜙𝜙0)

𝑑𝑑𝑑𝑑𝜙𝜙𝜙𝜙s,

(4.8)

where

𝛾𝛾𝛾𝛾(𝑟𝑟𝑟𝑟0) = 2(𝑎𝑎𝑎𝑎s + 𝑟𝑟𝑟𝑟⊕)2
∫ min(𝜙𝜙𝜙𝜙u+𝜙𝜙𝜙𝜙0, 𝜄𝜄𝜄𝜄)

max(𝜙𝜙𝜙𝜙u−𝜙𝜙𝜙𝜙0,− 𝜄𝜄𝜄𝜄)
𝛿𝛿𝛿𝛿(𝜙𝜙𝜙𝜙s) cos(𝜙𝜙𝜙𝜙s) cos−1

(︃
cos(𝜙𝜙𝜙𝜙0)

cos(𝜙𝜙𝜙𝜙s − 𝜙𝜙𝜙𝜙u)

)︃
𝑑𝑑𝑑𝑑𝜙𝜙𝜙𝜙s. (4.9)

Figures 4.3(a) and 4.3(b) depict the PDF of the serving distance of a constellation
with 2000 satellites for BPP and nonhomogeneous PPP, respectively. The validation
of results through Monte Carlo simulations shows a tight match between the actual
distributions and the stochastic models. Moreover, both NPPP and compensated
BPP result in the same serving distance distribution as the total number of satellites
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(a) BPP modeling.
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(b) PPP modeling.

Figure 4.3 Corroboration of serving distance distribution obtained from stochastic modeling for a con-
stellation with 2000 satellites orbiting at altitude of 500 km.

is fixed. To plot the serving distance PDF given in (4.2), the total number of satel-
lites, 𝑁𝑁𝑁𝑁act, is replaced by 𝑁𝑁𝑁𝑁eff which calculated for the given inclination angles and
user’s latitudes. It can be observed that both point processes can precisely model
the distance distributions. For lower inclination angles the probability of having the
satellite right above the ground station is higher due to distribution of satellites on
a relatively smaller spherical shell, which leads to larger density of satellites. The
same principle also holds for larger ground user’s latitude which results in higher
probability density for shorter serving distances.

For a special case of assuming a homogeneous PPP with constant intensity of
𝛿𝛿𝛿𝛿 = 𝑁𝑁𝑁𝑁act

4𝜋𝜋𝜋𝜋 (𝑎𝑎𝑎𝑎s+𝑟𝑟𝑟𝑟⊕)2 , the PDF of the serving distance 𝑅𝑅𝑅𝑅0 is

𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) =
𝑁𝑁𝑁𝑁act𝑟𝑟𝑟𝑟0

2𝑟𝑟𝑟𝑟⊕ (𝑎𝑎𝑎𝑎s + 𝑟𝑟𝑟𝑟⊕) exp
(︄
−𝑁𝑁𝑁𝑁act

(︄
𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

4(𝑎𝑎𝑎𝑎s + 𝑟𝑟𝑟𝑟⊕)𝑟𝑟𝑟𝑟⊕

)︄)︄
(4.10)

for 𝑟𝑟𝑟𝑟0 ∈ [𝑎𝑎𝑎𝑎s, 2𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s] while 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) = 0 otherwise. A parallel study to this thesis,
[46], also utilizes homogeneous PPP to model the LEO satellites. The results in
that paper show a tight match between the distribution of the number of visible
satellites obtained from PPP model and the empirical data obtained from a well-
known commercial constellation.

It is worth noting that the Taylor series expansion of (4.10) and the serving dis-
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tance distribution given in [P1, P2] are the same for the first two terms. The differ-
ence between the serving distance in a uniformly distributed constellation and the
homogeneous Poisson point process is insignificant since the argument of exponen-
tial function in (4.10), i.e., 𝑁𝑁𝑁𝑁act

(︂
𝑟𝑟𝑟𝑟20−𝑎𝑎𝑎𝑎2

s

4(𝑎𝑎𝑎𝑎s+𝑟𝑟𝑟𝑟⊕)𝑟𝑟𝑟𝑟⊕

)︂
, is small.

In [P5], the serving distance distribution is obtained when the ground terminal
is associated with a satellite according to BSP. As stated in Chapter 2, BSP considers
the effect of shadowing and assigns the user to a satellite that provides the highest
received SNR. Thus, a new parameter, namely the nearest effective distance, is defined
as �̃�𝑅𝑅𝑅0 ≜ min𝑛𝑛𝑛𝑛 X− 1

𝛼𝛼𝛼𝛼
𝑛𝑛𝑛𝑛 𝑅𝑅𝑅𝑅vis

𝑛𝑛𝑛𝑛 . The following expression gives the PDF of �̃�𝑅𝑅𝑅0 as

𝑓𝑓𝑓𝑓�̃�𝑅𝑅𝑅0
(�̃�𝑟𝑟𝑟0) =

∞∑︂
𝑛𝑛𝑛𝑛=0

𝑛𝑛𝑛𝑛 P [𝑁𝑁𝑁𝑁 (A(𝑟𝑟𝑟𝑟max)) = 𝑛𝑛𝑛𝑛]
∫ ∞

0
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼−𝛼𝛼𝛼𝛼−1𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓X𝑛𝑛𝑛𝑛

(︁
𝛼𝛼𝛼𝛼−𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛

)︁
𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅vis

𝑛𝑛𝑛𝑛

(︃
�̃�𝑟𝑟𝑟0

𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛

)︃
𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛

×
(︃
1 −

∫ ∞

0
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼−𝛼𝛼𝛼𝛼−1𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓X𝑛𝑛𝑛𝑛

(︁
𝛼𝛼𝛼𝛼−𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛

)︁
𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅vis

𝑛𝑛𝑛𝑛

(︃
�̃�𝑟𝑟𝑟0

𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛

)︃
𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛

)︃𝑛𝑛𝑛𝑛−1
, (4.11)

where 𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅vis
𝑛𝑛𝑛𝑛
(·) is the CDF of the distances between the visible satellites and the

ground user which is given in [P5, Lemma 1]. The PDF of the random variable
Z𝑛𝑛𝑛𝑛 ≜ X− 1

𝛼𝛼𝛼𝛼
𝑛𝑛𝑛𝑛 is evaluated at point 𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛. The complete proof of (4.11) is given in [P5,

Lemma 2].

4.2.4 Interference characterization

As frequency reuse is inevitable in most of communication systems for efficient use
of frequency spectrum, co-channel interference from nearby transmitters that share
the same frequency band with the server can significantly affect the network perfor-
mance, especially for massive LEO constellations with such huge constellation sizes.
An important outcome of stochastic modeling of a LEO network is facilitating the
characterization of co-channel interference. The distribution of the distances from
the interfering satellites is obtained by conditioning the distances from all visible
satellites to the user on the serving distance, 𝑅𝑅𝑅𝑅0. Therefore, the PDF of the distance
from any interfering satellite to the user is given as

𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 |𝑅𝑅𝑅𝑅0
(𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛 |𝑟𝑟𝑟𝑟0) = 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 (𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛)

𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅 (𝑟𝑟𝑟𝑟max) − 𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅 (𝑟𝑟𝑟𝑟0) (4.12)
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for 𝑟𝑟𝑟𝑟0 < 𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛 ≤ 𝑟𝑟𝑟𝑟max while 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 |𝑅𝑅𝑅𝑅0
(𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛 |𝑟𝑟𝑟𝑟0) = 0 otherwise. The PDF and CDF of

the distance from any satellite to the user, i.e., 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 (𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛) and 𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅 (𝑟𝑟𝑟𝑟0), is given in [P1,
Lemma 1] for BPP distribution of satellites. Using the expression in (4.12), the PDF
of interfering distances for a NPPPmodel is derived as 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 |𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛 |𝑟𝑟𝑟𝑟0) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛)/𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛

𝑑𝑑𝑑𝑑 (𝑟𝑟𝑟𝑟max)−𝑑𝑑𝑑𝑑 (𝑟𝑟𝑟𝑟0) .
An auxiliary parameter needed for analyzing coverage probability and rate, is the

number of interfering satellites 𝑁𝑁𝑁𝑁I. When satellites are modeled as a BPP, the number
of interfering satellites is a binomial random variable with success probability

𝑃𝑃𝑃𝑃I =
𝑎𝑎𝑎𝑎s −

(︁
𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

)︁/(2𝑟𝑟𝑟𝑟⊕)
2(𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s) −

(︁
𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

)︁/(2𝑟𝑟𝑟𝑟⊕) . (4.13)

The expression is the ratio of the surface area where satellites are visible to the user
(their elevation angle is larger than 𝜃𝜃𝜃𝜃min) to the total surface area of the spherical shell
excluding the shaded cap of Fig. 2.2. Thus, the probability of having zero interfering
satellites (𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼 = 0) is

𝑃𝑃𝑃𝑃0 = P(𝑁𝑁𝑁𝑁I = 0) = (1 − 𝑃𝑃𝑃𝑃I)
𝑁𝑁𝑁𝑁act
𝐾𝐾𝐾𝐾

−1 =

(︄
1 − 𝑎𝑎𝑎𝑎s −

(︁
𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

)︁/(2𝑟𝑟𝑟𝑟⊕)
2(𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s) −

(︁
𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

)︁/(2𝑟𝑟𝑟𝑟⊕)
)︄ 𝑁𝑁𝑁𝑁act

𝐾𝐾𝐾𝐾
−1

(4.14)

for 𝑟𝑟𝑟𝑟0 ≤ 𝑟𝑟𝑟𝑟max, and 𝑃𝑃𝑃𝑃0 = 1 when 𝑟𝑟𝑟𝑟0 > 𝑟𝑟𝑟𝑟max. Especially, the above probability is a
key factor of the presented analysis, since in order to maintain tractability, the two
complementary events of having either zero co-channel interference (noise-limited
system) or non-zero interference are considered separately as in [P1, P7].

By the definition of a NPPP, the number of points in some bounded region A of
the orbital shell is a Poisson-distributed random variable. Thereby, the probability
of having zero interfering satellites in A is given by

𝑃𝑃𝑃𝑃0 (A) = P (𝑁𝑁𝑁𝑁I = 0) = exp

(︃
−
∬

A
𝛿𝛿𝛿𝛿(𝜙𝜙𝜙𝜙s, 𝜆𝜆𝜆𝜆s) (𝑎𝑎𝑎𝑎s + 𝑟𝑟𝑟𝑟⊕)2 cos(𝜙𝜙𝜙𝜙s) 𝑑𝑑𝑑𝑑𝜙𝜙𝜙𝜙s𝑑𝑑𝑑𝑑𝜆𝜆𝜆𝜆s

)︃
, (4.15)

where A is the spherical cap where viewable interfering satellites to the user exist
(cf. the outer one in Fig. 2.2). For the special case when satellites are distributed as
a homogeneous PPP, with intensity 𝛿𝛿𝛿𝛿 = 𝑁𝑁𝑁𝑁act

4𝜋𝜋𝜋𝜋 (𝑎𝑎𝑎𝑎s+𝑟𝑟𝑟𝑟⊕)2 , the probability given in (4.15)

can be expressed in closed form as 𝑃𝑃𝑃𝑃0 (A) = exp
(︂
−𝑁𝑁𝑁𝑁act(𝑟𝑟𝑟𝑟2max−𝑎𝑎𝑎𝑎2

s )
4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕+𝑎𝑎𝑎𝑎s)

)︂
.
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Figure 4.4 A multi-altitude network consisting of satellites deployed at different altitudes ranging from
𝑎𝑎𝑎𝑎min to 𝑎𝑎𝑎𝑎max.

4.3 Single-altitude vs. multi-altitude constellation

As illustrated in Table 2.1, most of the commercial constellations are deploying satel-
lites on multiple spherical shells to provide a global coverage over all the latitudes
based on the users population and their demands. Other than a single satellite con-
stellation operating at different altitudes, elliptical orbits for which the altitude varies
with true anomaly of a satellite as well as the inter-operation of multiple constella-
tions with different altitudes also correspond to a multi-altitude LEO setup.

In [87] and [39], distance distributions are formulated for a multi-altitude LEO
networks when satellites are distributed as a BPP on several spheres at known specific
altitudes. However, the uneven distribution of satellites on different latitudes and,
consequently, the inclination angle of constellation are not considered. Moreover,
the results are specific for some known levels of altitudes and, thus, not able to
conclude the performance of a multi-altitude network in generic form.

In [P7], the coverage probability for a multi-altitude LEO network is obtained.
The analysis is applicable to any generic highly massive LEO network with any
number of altitudinal levels without affecting its complexity. Moreover, the inclina-
tion angle of satellites as well as the nonuniform density of satellites along different
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latitudes are included in the analysis. The physical multi-altitude LEO network,
shown in Fig. 4.4, consists of 𝑁𝑁𝑁𝑁act satellites distributed uniformly on circular orbits
with different altitudes ranging from 𝑎𝑎𝑎𝑎min to 𝑎𝑎𝑎𝑎max. The inclination angles of orbits,
denoted by 𝜄𝜄𝜄𝜄(𝑎𝑎𝑎𝑎s), can be also varying w.r.t the altitude.

To formulate an analytical expression for coverage performance of a multi-altitude
LEO network, the above-mentioned physical network is abstracted and remodeled as
a BPP on a sphere with radius 𝐴𝐴𝐴𝐴+𝑟𝑟𝑟𝑟⊕, where 𝐴𝐴𝐴𝐴 is a random variable ranging from 𝑎𝑎𝑎𝑎min

to 𝑎𝑎𝑎𝑎max. Using the law of total probability, we have P (𝑅𝑅𝑅𝑅 ≤ 𝑟𝑟𝑟𝑟)=E𝐴𝐴𝐴𝐴 [P (𝑅𝑅𝑅𝑅 ≤ 𝑟𝑟𝑟𝑟 |𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎)]
where P (𝑅𝑅𝑅𝑅 ≤ 𝑟𝑟𝑟𝑟 |𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎) is the CDF of 𝑅𝑅𝑅𝑅 for a single-altitude network given in [P1,
Lemma 1]. Thus, the CDF of the distance 𝑅𝑅𝑅𝑅 from the user to any satellite in the
multi-altitude network is as follows

𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅 (𝑟𝑟𝑟𝑟) =
∫ 𝑢𝑢𝑢𝑢

𝑙𝑙𝑙𝑙

𝑟𝑟𝑟𝑟2 − 𝑎𝑎𝑎𝑎2

4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎) 𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴(𝑎𝑎𝑎𝑎) 𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 + 𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴(min(𝑎𝑎𝑎𝑎max, 𝑟𝑟𝑟𝑟 − 2𝑟𝑟𝑟𝑟⊕)) − 𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴(𝑎𝑎𝑎𝑎min), (4.16)

where 𝑙𝑙𝑙𝑙=max(𝑎𝑎𝑎𝑎min, 𝑟𝑟𝑟𝑟 − 2𝑟𝑟𝑟𝑟⊕), 𝑢𝑢𝑢𝑢=min(𝑎𝑎𝑎𝑎max, 𝑟𝑟𝑟𝑟), and 𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴(𝑎𝑎𝑎𝑎) and 𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴(𝑎𝑎𝑎𝑎) are the PDF
and the CDF of the altitude, respectively. Using the Leibniz rule, the corresponding
PDF is

𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 (𝑟𝑟𝑟𝑟)=
∫ 𝑢𝑢𝑢𝑢

𝑙𝑙𝑙𝑙

𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴(𝑎𝑎𝑎𝑎)
2𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎) 𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 + 𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴(𝑟𝑟𝑟𝑟 − 2𝑟𝑟𝑟𝑟⊕)H (𝑎𝑎𝑎𝑎max− 𝑟𝑟𝑟𝑟 + 2𝑟𝑟𝑟𝑟⊕) (4.17)

+ 𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴(𝑢𝑢𝑢𝑢)
(︁
𝑟𝑟𝑟𝑟2−𝑢𝑢𝑢𝑢2)︁H(𝑎𝑎𝑎𝑎max−𝑟𝑟𝑟𝑟)
4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑢𝑢𝑢𝑢) − 𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴(𝑙𝑙𝑙𝑙)

(︁
𝑟𝑟𝑟𝑟2−𝑙𝑙𝑙𝑙2)︁H(𝑟𝑟𝑟𝑟− 2𝑟𝑟𝑟𝑟⊕−𝑎𝑎𝑎𝑎min)

4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑙𝑙𝑙𝑙) ,

where H(·) is the Heaviside step function. For a special case of having a uniform
distribution for altitude, i.e., 𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴(𝑎𝑎𝑎𝑎) = 1

𝑎𝑎𝑎𝑎max−𝑎𝑎𝑎𝑎min
, the PDF of 𝑅𝑅𝑅𝑅 given in (4.17) can

be obtained in closed form as

𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 (𝑟𝑟𝑟𝑟) =




𝑟𝑟𝑟𝑟 ln
(︂
𝑟𝑟𝑟𝑟⊕+𝑎𝑎𝑎𝑎max
𝑟𝑟𝑟𝑟⊕+𝑎𝑎𝑎𝑎min

)︂
2𝑟𝑟𝑟𝑟⊕ (𝑎𝑎𝑎𝑎max−𝑎𝑎𝑎𝑎min) , 𝑟𝑟𝑟𝑟 − 2𝑟𝑟𝑟𝑟⊕ ≤ 𝑎𝑎𝑎𝑎min ≤ 𝑎𝑎𝑎𝑎max ≤ 𝑟𝑟𝑟𝑟,

𝑟𝑟𝑟𝑟 ln
(︂

𝑟𝑟𝑟𝑟⊕+𝑟𝑟𝑟𝑟
𝑟𝑟𝑟𝑟⊕+𝑎𝑎𝑎𝑎min

)︂
2𝑟𝑟𝑟𝑟⊕ (𝑎𝑎𝑎𝑎max−𝑎𝑎𝑎𝑎min) , 𝑟𝑟𝑟𝑟 − 2𝑟𝑟𝑟𝑟⊕ < 𝑎𝑎𝑎𝑎min < 𝑟𝑟𝑟𝑟 < 𝑎𝑎𝑎𝑎max,

𝑟𝑟𝑟𝑟 ln
(︂
𝑟𝑟𝑟𝑟⊕+𝑎𝑎𝑎𝑎max

𝑟𝑟𝑟𝑟−𝑟𝑟𝑟𝑟⊕

)︂
−2𝑟𝑟𝑟𝑟⊕

2𝑟𝑟𝑟𝑟⊕ (𝑎𝑎𝑎𝑎max−𝑎𝑎𝑎𝑎min) 𝑎𝑎𝑎𝑎min < 𝑟𝑟𝑟𝑟 − 2𝑟𝑟𝑟𝑟⊕ < 𝑎𝑎𝑎𝑎max < 𝑟𝑟𝑟𝑟,

+ 1
𝑎𝑎𝑎𝑎max−𝑎𝑎𝑎𝑎min

,

0, otherwise.

(4.18)

For a single-altitude constellation, i.e., 𝑎𝑎𝑎𝑎max = 𝑎𝑎𝑎𝑎min = 𝑎𝑎𝑎𝑎s, the PDF of 𝑅𝑅𝑅𝑅 can be
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obtained from (4.18) as 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 (𝑟𝑟𝑟𝑟) = 𝑟𝑟𝑟𝑟
2𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕+𝑎𝑎𝑎𝑎s) for 𝑎𝑎𝑎𝑎s ≤ 𝑟𝑟𝑟𝑟 ≤ 2𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s while 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 (𝑟𝑟𝑟𝑟) = 0

otherwise, similar to the derivation in [P1, Lemma 1]. It is worth mentioning that
there are also other approaches to model a multi-altitude constellation. For instance,
one can distribute BPP over a 3D hollow sphere with 𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎min and 𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎max

being the inner and outer radii of the sphere. Another approach could be placing
the satellites as a BPP on a sphere with an arbitrary radius and then perturbing the
altitude of each point independently according to a uniform distribution ranging
from 𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎min to 𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎max. Although these models represent the multi-altitude
network more accurately, they lessen the tractability of the analysis without having
any impact on the obtained derivations; the reason is that SINR and, consequently,
other studied performance metrics are only affected by the relative distances between
the satellites and the user. However, when inter-satellite connectivity is considered,
the results are affected by the chosen model.

Similar to single-altitude constellation, the PDF of the serving distance 𝑅𝑅𝑅𝑅0 is given
as in [P1, Lemma 2] by 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) = 𝑁𝑁𝑁𝑁eff (1 − 𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅 (𝑟𝑟𝑟𝑟0))𝑁𝑁𝑁𝑁eff−1 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 (𝑟𝑟𝑟𝑟0) for 𝑎𝑎𝑎𝑎min ≤ 𝑟𝑟𝑟𝑟0 ≤
2𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎max while 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) = 0 otherwise. It is worth emphasizing that 𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅 (𝑟𝑟𝑟𝑟0) and
𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 (𝑟𝑟𝑟𝑟0) are different for single- and multi-altitude constellations. Moreover, the same
as for a single-altitude LEO network, the effect of uneven density of satellites over
different latitudes can be compensated by deriving 𝑁𝑁𝑁𝑁eff as a function of the actual
number of satellites, 𝑁𝑁𝑁𝑁act. The derivation is given in [P7, Proposition 1] as a gener-
alization of the results given in [P2] from single- to multi-altitude networks.

4.4 LEO backhaul for airborne networks

As the number of aerial platforms (APs) is growing rapidly, providing seamless In-
ternet connectivity with sufficient data rate is crucial for their communication with
other APs and ground terminals. The performance of LEO satellite constellations
as a backhaul connection for APs is studied in the following subsections.

4.4.1 Overview of the related works

Connecting aerial platforms, e.g., airplanes, UAVs, high altitude platforms (HAPs),
etc. to other APs or the ground users is envisioned as a crucial feature for enabling
many applications in 6G airborne–terrestrial integrated networks [89]. On one side,
APs can improve the link quality and the overall performance of LEO constellation
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through relaying the data from satellites to ground terminals [90] or by contributing
to the inter-satellite communication [91]. On the other side, as the number of APs
is increasing drastically, providing ubiquitous connectivity which satisfies their de-
mands for high data rate and coverage probability is becoming more significant. To
satisfy such high demands of APs for data rate, a high quality backhaul connection
will ensure the collection of data from/to the APs via the access links.

Traditionally, there are two approaches to provide backhaul access for airborn
networks: via GEO satellites or terrestrial BSs. Geostationary satellites provide full
sky coverage for most of the regions [92]–[94]. However, the considerable delay
and path attenuation caused by traveling the signal over a large distance significantly
limits their performance as a backhaul network. Terrestrial BSs can serve as back-
haul with considerably smaller latency and path loss attenuation [77], [95]–[97]. The
main drawback of the terrestrial backhaul network is the lack of complete sky cov-
erage due to huge under-served regions, e.g., oceans and deserts. Moreover, local
terrestrial network operators may restrict their services for some global APs.

Massive LEO networks have a great potential to serve as backhauls for APs due
to possessing the advantages of both geostationary satellites and terrestrial networks,
i.e., the full sky coverage as well as offering less path attenuation and delay. The
application of stochastic geometry on analysis of LEO-backhauled APs has remained
unrecognized in the literature, despite its considerable utilization for UAV-to-ground
communication analysis [77], [95]–[97].

In [98], the throughput of a LEO backhaul network for both backhaul and access
links is jointly maximized through managing the radio resources and optimizing the
UAV trajectory. The system model in [98] considers only few satellites orbiting on a
single orbit at known positions. In [99], capacity and range of air-to-air and satellite
networks, which serve as a backhaul for APs, are simulated. It was shown that
integration of air-to-air communication and LEO satellites improves the data rate of
APs significantly. Revenue maximization in case of cooperation of LEO satellites
with HAPs as a backhaul connection is studied in [35].

4.4.2 Serving distance distribution

In [P6], the performance of both LEO and terrestrial backhaul networks for an AP
is derived for uplink and downlink directions, as shown in Fig. 4.5. Obviously,
based on the performance, AP may select the best backhaul connection between the
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Figure 4.5 Schematic of an airborne network which can be backhauled by either LEO satellites or
terrestrial BSs for uplink and/or downlink directions.

LEO satellite and the terrestrial BS. Each AP is arbitrarily located above the Earth’s
surface at an altitude and latitude, represented by 𝑎𝑎𝑎𝑎AP and 𝜙𝜙𝜙𝜙AP, respectively. Given
that 𝑎𝑎𝑎𝑎s > 𝑎𝑎𝑎𝑎AP or actually 𝑎𝑎𝑎𝑎s ≫ 𝑎𝑎𝑎𝑎AP, the maximum distance at which an AP may
communicate with a LEO satellite (that is when the signal is not blocked by Earth)
is

𝑟𝑟𝑟𝑟max =
√︂
2𝑟𝑟𝑟𝑟⊕𝑎𝑎𝑎𝑎s + 𝑎𝑎𝑎𝑎2s +

√︂
2𝑟𝑟𝑟𝑟⊕𝑎𝑎𝑎𝑎AP + 𝑎𝑎𝑎𝑎2

AP
. (4.19)

Assuming that satellites are distributed as a NPPP with intensity 𝛿𝛿𝛿𝛿(𝜙𝜙𝜙𝜙s), the dis-
tribution of the nearest distance between an AP with 𝑎𝑎𝑎𝑎AP < 𝑎𝑎𝑎𝑎s and a LEO satellite
is obtained as

𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) = (4.20)

2𝑟𝑟𝑟𝑟0

(︃
𝑎𝑎𝑎𝑎s

𝑟𝑟𝑟𝑟⊕
+ 1

)︃
exp(−𝛾𝛾𝛾𝛾AP(𝑟𝑟𝑟𝑟0))

∫ min(𝜙𝜙𝜙𝜙AP+𝜙𝜙𝜙𝜙max, 𝜄𝜄𝜄𝜄)

max(𝜙𝜙𝜙𝜙AP−𝜙𝜙𝜙𝜙max,− 𝜄𝜄𝜄𝜄)

𝛿𝛿𝛿𝛿(𝜙𝜙𝜙𝜙s) cos(𝜙𝜙𝜙𝜙s)√︁
cos2(𝜙𝜙𝜙𝜙s − 𝜙𝜙𝜙𝜙AP) − cos2(𝜙𝜙𝜙𝜙max)

𝑑𝑑𝑑𝑑𝜙𝜙𝜙𝜙s,

where

𝛾𝛾𝛾𝛾AP(𝑟𝑟𝑟𝑟0) = 2(𝑎𝑎𝑎𝑎s + 𝑟𝑟𝑟𝑟⊕)2
∫ min(𝜙𝜙𝜙𝜙AP+𝜙𝜙𝜙𝜙max, 𝜄𝜄𝜄𝜄)

max(𝜙𝜙𝜙𝜙AP−𝜙𝜙𝜙𝜙max,− 𝜄𝜄𝜄𝜄)
𝛿𝛿𝛿𝛿(𝜙𝜙𝜙𝜙s) cos(𝜙𝜙𝜙𝜙s) cos−1

(︃
cos(𝜙𝜙𝜙𝜙max)

cos(𝜙𝜙𝜙𝜙s − 𝜙𝜙𝜙𝜙AP)

)︃
𝑑𝑑𝑑𝑑𝜙𝜙𝜙𝜙s,

(4.21)

and 𝑟𝑟𝑟𝑟0 ∈ [𝑎𝑎𝑎𝑎s − 𝑎𝑎𝑎𝑎AP, 𝑟𝑟𝑟𝑟max] while 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) = 0 otherwise. The polar angle difference
between the serving satellite and the AP is 𝜙𝜙𝜙𝜙max = cos−1

(︂ (𝑎𝑎𝑎𝑎s+𝑟𝑟𝑟𝑟⊕)2+(𝑎𝑎𝑎𝑎AP+𝑟𝑟𝑟𝑟⊕)2−𝑟𝑟𝑟𝑟20
2(𝑎𝑎𝑎𝑎s+𝑟𝑟𝑟𝑟⊕) (𝑎𝑎𝑎𝑎AP+𝑟𝑟𝑟𝑟⊕)

)︂
.
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5 PERFORMANCE ANALYSIS

Using the stochastic modeling and the distance distributions obtained in previous
chapters, in this chapter, coverage probability and average achievable data rates are
derived analytically in terms of LEO constellation and propagation environment pa-
rameters. The mathematical expressions show how the performance of a LEO con-
stellation can be characterized analytically using the mathematical models provided
by stochastic geometry. The derivations are then verified by simulations and several
interesting insights on different constellation parameters, such as constellation’s alti-
tude, inclination angle, and the total number of satellites, are provided through the
numerical results. Moreover, the effect of user’s latitude on the performance metrics
is included in the analysis.

5.1 Coverage probability

In this section, an analytical expression for coverage probability is derived using
the stochastic modeling of a LEO network as a BPP or NPPP. Different uplink and
downlink communication scenarios for direct and backhaul connectivity are assumed
in characterization of coverage probability. Both single- and multi-altitude constel-
lation geometries are studied for several fading models. The coverage probability is
defined as given in (2.15).

5.1.1 Coverage probability for BPP distributed satellites

The coverage probability is expressed as the summation of two terms, each of them
representing an important operational case: The first term corresponds to the noise-
limited case when there is no co-channel interference; and the second term represents
the circumstance when there is at least one interfering satellite. Thus, the coverage
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probability is expressed as

𝑃𝑃𝑃𝑃c (𝑇𝑇𝑇𝑇) = 𝑃𝑃𝑃𝑃0 P(SNR > 𝑇𝑇𝑇𝑇) + (1 − 𝑃𝑃𝑃𝑃0) P(SINR > 𝑇𝑇𝑇𝑇 |𝑁𝑁𝑁𝑁I > 0), (5.1)

where 𝑃𝑃𝑃𝑃0 is given in (4.14). Using the definition of coverage probability for zero
interference case given in (2.14), we have

P(SNR > 𝑇𝑇𝑇𝑇) =
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

P

(︄
𝐻𝐻𝐻𝐻0X0 >

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝛼𝛼𝛼𝛼0 𝜎𝜎𝜎𝜎
2

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t(𝑇𝑇𝑇𝑇0, 𝑎𝑎𝑎𝑎s)

)︄
𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑇𝑇𝑇𝑇0) 𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇0. (5.2)

The upper limit for the integral is due to the fact that the satellites with elevation
angles lower than 𝜃𝜃𝜃𝜃min are not visible to the user. The details of intermediate steps
to derive (5.2) are similar to those given in [P1, Eq. (15)] for zero shadowing case.

For massive LEO constellations with thousands of satellites, it is very likely that
multiple satellites are visible to a ground user at the same time. In that case, the
reception of the user is subject to co-channel interference from other visible satellites
and, thus, the coverage probability is derived as

P(SINR > 𝑇𝑇𝑇𝑇) (5.3)

=
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

E𝐼𝐼𝐼𝐼

[︄∫ ∞

0
𝑓𝑓𝑓𝑓X0 (x0)

(︄
1 − 𝐹𝐹𝐹𝐹𝐻𝐻𝐻𝐻0

(︄
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝛼𝛼𝛼𝛼0

(︁
𝐼𝐼𝐼𝐼 + 𝜎𝜎𝜎𝜎2

)︁
𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t(𝑇𝑇𝑇𝑇0, 𝑎𝑎𝑎𝑎s)x0

)︄)︄]︄
𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑇𝑇𝑇𝑇0) 𝑑𝑑𝑑𝑑x0𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇0.

The proof to obtain (5.3) is given in [P1, Eqs. (16) and (17)].
In order to complete the derivation of coverage probability from (5.2) and (5.3),

some specific assumptions regarding the distribution of 𝐻𝐻𝐻𝐻0 need to be invoked. In
fact, in order to maintain the tractability of our analysis, the serving channel must
follow some specific fading models while interfering channels may follow any desired
arbitrary fading model as it has no effect on the analytical tractability of the deriva-
tions. Likewise, the analytical tractability is not affected by shadowing distribution.
Therefore, 𝑓𝑓𝑓𝑓X𝑛𝑛𝑛𝑛

(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) can be adopted to any desired distribution without losing the
analytical tractability. Assuming arbitrarily distributed fading models for interfering
channels leads to timeless results which are valid for any original and novel channel
model that may be proposed for land-satellite link in the future.

In this thesis, three different fading models are considered for serving channels,
namely Rayleigh, static, Nakagami-𝑚𝑚𝑚𝑚, and Rician. Obviously, in order to generate
numerical results, specific fading models need to be adopted for interfering channels
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as well. A log-normal shadowing is also assumed in [P3, P4] to produce the numer-
ical results. In the following subsections, coverage probability is derived using (5.2)
and (5.3) for the aforementioned fading models.

5.1.1.1 Rayleigh fading

Rayleigh fading is adopted to model multi-path fading in a wireless channel when the
NLOS components of the received signal are more significant compared to its LOS
component. As satellites in a LEO network are deployed at lower altitudes w.r.t.
MEO or GEO networks, the NLOS components become more dominant if the
number of satellites is small. For such cases, a user can visit a satellite mostly at low
elevation angles. In other words, a satellite may be at user’s zenith only for a short
period of time. As a result, strongNLOS components are more likely available at the
user’s place. Moreover, the probability of receiving NLOS signals from interfering
satellites is even higher due to being at smaller elevation angles w.r.t. the serving
satellite. As will be shown in this chapter, Rayleigh fading results in more simplified
analytical expressions compared to other fading models.

Normalized Rayleigh fading for the serving channel corresponds to an exponen-
tial random variable channel gain with unit mean, i.e., 𝐻𝐻𝐻𝐻0 ∼ Exp (1). Thus, the
probabilities of network coverage given in (5.2) and (5.3) for an arbitrarily located
user under a Rayleigh-fading serving channel can be derived as

P(SNR > 𝑇𝑇𝑇𝑇) = 𝑁𝑁𝑁𝑁eff

2𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

∫ ∞

0
𝑓𝑓𝑓𝑓X0 (x0)𝑒𝑒𝑒𝑒−

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝛼𝛼𝛼𝛼
0

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t (𝑇𝑇𝑇𝑇0 ,𝑎𝑎𝑎𝑎s )x0 𝜎𝜎𝜎𝜎2

×
(︄
1 − 𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

)︄𝑁𝑁𝑁𝑁eff−1
𝑟𝑟𝑟𝑟0 𝑑𝑑𝑑𝑑x0𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0 (5.4)

and

P(SINR > 𝑇𝑇𝑇𝑇 |𝑁𝑁𝑁𝑁I > 0)

=
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

∫ ∞

0
𝑓𝑓𝑓𝑓X0 (x0)E𝐼𝐼𝐼𝐼

[︃
exp

(︃
− 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼0

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟0, 𝑎𝑎𝑎𝑎s)x0
(︂
𝐼𝐼𝐼𝐼 + 𝜎𝜎𝜎𝜎2

)︂)︃]︃
𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) 𝑑𝑑𝑑𝑑x0𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0
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=
𝑁𝑁𝑁𝑁eff

2𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

∫ ∞

0
𝑓𝑓𝑓𝑓X0 (x0)𝑒𝑒𝑒𝑒−

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝛼𝛼𝛼𝛼
0

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t (𝑇𝑇𝑇𝑇0 ,𝑎𝑎𝑎𝑎s )x0 𝜎𝜎𝜎𝜎2

(5.5)

× L𝐼𝐼𝐼𝐼

(︃
𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼0

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟0, 𝑎𝑎𝑎𝑎s)x0

)︃ (︄
1 − 𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

)︄𝑁𝑁𝑁𝑁eff−1
𝑟𝑟𝑟𝑟0 𝑑𝑑𝑑𝑑x0𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0,

respectively. The results for non-shadowing case are given in [P1, Theorem 1]. The
PDF of the serving distance when satellites are modeled as a BPP is substituted from
(4.2) in (5.4) and (5.5). As described in Chapter 4, 𝑁𝑁𝑁𝑁eff is the total number of
satellites in a constellation that corresponds to a density observed by a user located
at a specific latitude. Utilizing 𝑁𝑁𝑁𝑁eff in the obtained expressions compensates for
the inherent mismatch between the BPP-distributed and the actual constellations.
L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠) ≜ E

[︁
𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼

]︁
is the Laplace transform of cumulative interference power 𝐼𝐼𝐼𝐼.

For a BPP constellation when the serving satellite is at distance 𝑅𝑅𝑅𝑅0 ≥ 𝑎𝑎𝑎𝑎s from the
user, L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠) can be expressed in generic form, i.e., regardless of the fading model, as

L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠) =
𝑁𝑁𝑁𝑁eff
𝐾𝐾𝐾𝐾

−1∑︂
𝑛𝑛𝑛𝑛I=1

(︄(︃ 𝑁𝑁𝑁𝑁eff

𝐾𝐾𝐾𝐾
− 1

𝑛𝑛𝑛𝑛I

)︃
𝑃𝑃𝑃𝑃
𝑛𝑛𝑛𝑛I
I
(1 − 𝑃𝑃𝑃𝑃I)

𝑁𝑁𝑁𝑁eff
𝐾𝐾𝐾𝐾

−1−𝑛𝑛𝑛𝑛I

×
(︂ 2

𝑟𝑟𝑟𝑟4max/𝑎𝑎𝑎𝑎2s − 𝑟𝑟𝑟𝑟20

∫ 𝑟𝑟𝑟𝑟max

𝑟𝑟𝑟𝑟0

∫ ∞

0
𝑓𝑓𝑓𝑓X0 (x0)L𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛

(︁
𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛, 𝑎𝑎𝑎𝑎s)𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟−𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛

)︁
𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑x0𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛

)︂𝑛𝑛𝑛𝑛I)︄
,

(5.6)

where 𝑃𝑃𝑃𝑃I is given in (4.13) and L𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛
(·) is the Laplace transform of the interfering

channel gains denoted by the random variable 𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛. The Laplace function for non-
shadowing scenario is given in [P1, Lemma 5]. When Rayleigh fading is adopted for
interfering channels [P1, Corollary 2], i.e., 𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛 ∼ Exp (1) for 𝑛𝑛𝑛𝑛 = 1, . . . , 𝑁𝑁𝑁𝑁I, and,
consequently, L𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛

(𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝t𝑟𝑟𝑟𝑟−𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛 ) = 1
1+𝑝𝑝𝑝𝑝t𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟−𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛

, the Laplace function of interference for a
BPP model is expressed as

L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠) = (5.7)
𝑁𝑁𝑁𝑁eff
𝐾𝐾𝐾𝐾

−1∑︂
𝑛𝑛𝑛𝑛I=1

(︃ 𝑁𝑁𝑁𝑁eff

𝐾𝐾𝐾𝐾
− 1

𝑛𝑛𝑛𝑛I

)︃
𝑃𝑃𝑃𝑃
𝑛𝑛𝑛𝑛I
I
(1 − 𝑃𝑃𝑃𝑃I)

𝑁𝑁𝑁𝑁eff
𝐾𝐾𝐾𝐾

−1−𝑛𝑛𝑛𝑛I
(︄

2

𝑟𝑟𝑟𝑟4max/𝑎𝑎𝑎𝑎2s − 𝑟𝑟𝑟𝑟20

∫ 𝑟𝑟𝑟𝑟max

𝑟𝑟𝑟𝑟0

(︃
𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛

1 + 𝑝𝑝𝑝𝑝t𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟
−𝛼𝛼𝛼𝛼
𝑛𝑛𝑛𝑛

)︃
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛

)︄𝑛𝑛𝑛𝑛I
.
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Assuming some specific values for path loss exponent, 𝛼𝛼𝛼𝛼, (5.7) can be reduced to
elementary functions. For instance, for case of assuming 𝛼𝛼𝛼𝛼 = 2 [P1], which is the
most relevant case as the signal travels from the satellite to the ground terminal
mostly through the free space, (5.7) can be expressed as

L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠) = (5.8)
𝑁𝑁𝑁𝑁eff
𝐾𝐾𝐾𝐾

−1∑︂
𝑛𝑛𝑛𝑛I=1

(︃ 𝑁𝑁𝑁𝑁eff

𝐾𝐾𝐾𝐾
− 1

𝑛𝑛𝑛𝑛I

)︃
𝑃𝑃𝑃𝑃
𝑛𝑛𝑛𝑛I
I
(1 − 𝑃𝑃𝑃𝑃I)

𝑁𝑁𝑁𝑁eff
𝐾𝐾𝐾𝐾

−1−𝑛𝑛𝑛𝑛I 𝑟𝑟𝑟𝑟2max − 𝑟𝑟𝑟𝑟20

𝑟𝑟𝑟𝑟4max/𝑎𝑎𝑎𝑎2s − 𝑟𝑟𝑟𝑟20

(︄
𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠

𝑟𝑟𝑟𝑟2max − 𝑟𝑟𝑟𝑟20

ln

(︄
𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 + 𝑟𝑟𝑟𝑟20

𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 + 𝑟𝑟𝑟𝑟2max

)︄
+ 1

)︄𝑛𝑛𝑛𝑛I
.

Assuming 𝛼𝛼𝛼𝛼 = 4 [P1], (5.7) is simplified into a closed-form expression as

L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠) =
𝑁𝑁𝑁𝑁eff
𝐾𝐾𝐾𝐾

−1∑︂
𝑛𝑛𝑛𝑛I=1

(︃ 𝑁𝑁𝑁𝑁eff

𝐾𝐾𝐾𝐾
− 1

𝑛𝑛𝑛𝑛I

)︃
𝑃𝑃𝑃𝑃
𝑛𝑛𝑛𝑛I
I
(1 − 𝑃𝑃𝑃𝑃I)

𝑁𝑁𝑁𝑁eff
𝐾𝐾𝐾𝐾

−1−𝑛𝑛𝑛𝑛I

× 𝑟𝑟𝑟𝑟2max − 𝑟𝑟𝑟𝑟20

𝑟𝑟𝑟𝑟4max/𝑎𝑎𝑎𝑎2s − 𝑟𝑟𝑟𝑟20

(︄ √
𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠

𝑟𝑟𝑟𝑟2max − 𝑟𝑟𝑟𝑟20

arctan

(︄√
𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠

(︁
𝑟𝑟𝑟𝑟20 − 𝑟𝑟𝑟𝑟2max

)︁
𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 + 𝑟𝑟𝑟𝑟2max𝑟𝑟𝑟𝑟

2
0

)︄
+ 1

)︄𝑛𝑛𝑛𝑛I
. (5.9)

The expressions in (5.8) and (5.9) are obtained by rewriting the integral in terms
of the Gauss’s hyper-geometric function given in [100, Eq. 9.100], and substituting
with special arguments 𝛼𝛼𝛼𝛼 = 2 and 4. The details on these derivations are given in
[P1].

5.1.1.2 Static channels

Static propagation model is applicable when the satellite constellation is highly mas-
sive, so that it is likely to have multiple satellites in LOS propagation range. Con-
sequently, the LOS component of the received signal is more significant than other
indirect propagation paths. Moreover, by decreasing the frequency reuse factor, it
becomes more likely to receive the interfering signal from the LOS path.

For the static serving channel, the channel gain is set as 𝐻𝐻𝐻𝐻0 = 1. As mentioned
previously, any general fading statistics can be adopted for interfering channels with-
out affecting the analytical tractability. However, interference received from static
channels is considered as a special case. Therefore, the coverage probabilities given
in (5.2) and (5.3) for an arbitrarily located user under a static serving channel are
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given as

P(SNR > 𝑇𝑇𝑇𝑇) = 𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅0

(︄(︃
𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟0, 𝑎𝑎𝑎𝑎s)

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2

)︃ 1
𝛼𝛼𝛼𝛼

)︄
(5.10)

and

P(SINR > 𝑇𝑇𝑇𝑇 |𝑁𝑁𝑁𝑁I > 0) = 𝑁𝑁𝑁𝑁eff

4𝜋𝜋𝜋𝜋𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

∫ ∞

−∞
L𝐼𝐼𝐼𝐼 ( 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)

×
⎛⎜⎜⎜⎝
𝑒𝑒𝑒𝑒
𝑗𝑗𝑗𝑗

(︃
𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t (𝑟𝑟𝑟𝑟0 ,𝑎𝑎𝑎𝑎s )

𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼
0

−𝜎𝜎𝜎𝜎2

)︃
𝜔𝜔𝜔𝜔 − 1

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

⎞⎟⎟⎟⎠

(︄
1 − 𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

)︄𝑁𝑁𝑁𝑁eff−1
𝑟𝑟𝑟𝑟0 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗𝑑𝑑 (5.11)

The proof of (5.10) is straightforward from the definition of coverage probability
and setting 𝐻𝐻𝐻𝐻0 = 1. The detailed proof for (5.11) is given in [P1].

Using the expression given in (5.6), for the special case of having static interfering
channels, the Laplace transform of 𝐼𝐼𝐼𝐼 is

L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠) =
𝑁𝑁𝑁𝑁eff
𝐾𝐾𝐾𝐾

−1∑︂
𝑛𝑛𝑛𝑛I=1

(︃ 𝑁𝑁𝑁𝑁eff

𝐾𝐾𝐾𝐾
− 1

𝑛𝑛𝑛𝑛I

)︃
𝑃𝑃𝑃𝑃
𝑛𝑛𝑛𝑛I
I
(1 − 𝑃𝑃𝑃𝑃I)

𝑁𝑁𝑁𝑁eff
𝐾𝐾𝐾𝐾

−1−𝑛𝑛𝑛𝑛I (5.12)

×
(︄
2(𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟0, 𝑎𝑎𝑎𝑎s))2/𝛼𝛼𝛼𝛼
𝛼𝛼𝛼𝛼
(︁
𝑟𝑟𝑟𝑟4max/𝑎𝑎𝑎𝑎2s − 𝑟𝑟𝑟𝑟20

)︁ [︁
Γ
(︁−2/𝛼𝛼𝛼𝛼, 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟0, 𝑎𝑎𝑎𝑎s)𝑟𝑟𝑟𝑟−𝛼𝛼𝛼𝛼max

)︁−Γ(︁−2/𝛼𝛼𝛼𝛼, 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟0, 𝑎𝑎𝑎𝑎s)𝑟𝑟𝑟𝑟−𝛼𝛼𝛼𝛼0

)︁ ]︁)︄𝑛𝑛𝑛𝑛I
,

where Γ(𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎) =
∫ ∞
𝑥𝑥𝑥𝑥

𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎−1𝑒𝑒𝑒𝑒−𝑦𝑦𝑦𝑦𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦 denotes the upper incomplete gamma function.

5.1.1.3 Nakagami-𝑚𝑚𝑚𝑚 fading

Nakagami-𝑚𝑚𝑚𝑚 fading model enables considering different propagation environments
by changing the Nakagami parameter 𝑚𝑚𝑚𝑚, while preserving the analytical tractability
of the derivations. Larger values of 𝑚𝑚𝑚𝑚 correspond to availability of a dominant LOS
component. For instance, 𝑚𝑚𝑚𝑚 = 1 is equivalent to Rayleigh fading while 𝑚𝑚𝑚𝑚 → ∞
represents static channels. In addition, Nakagami-𝑚𝑚𝑚𝑚 fading can be adopted to model
different propagation channels for serving and interfering channels by assuming dif-
ferent values of 𝑚𝑚𝑚𝑚 for each channel. In other words, by assuming that the server has a
higher elevation angle due to being nearer to the user, the LOS component received
from the server is stronger than those coming from the interfering satellites. Thus,
a larger value of 𝑚𝑚𝑚𝑚 can be opted for serving link to consider this effect.
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Considering a Nakagami-𝑚𝑚𝑚𝑚 fading model for the serving channels, the channel
gain 𝐻𝐻𝐻𝐻0, being the square of a Nakagami random variable, follows a gamma distribu-
tion with both rate and shape parameters set to 𝑚𝑚𝑚𝑚. Using the definition of coverage
probability for the case of having non-zero interference, i.e., (5.3), we have

E𝑅𝑅𝑅𝑅0 [P (SINR > 𝑇𝑇𝑇𝑇 |𝑅𝑅𝑅𝑅0 = 𝑟𝑟𝑟𝑟0)] =
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) P
(︄
𝐻𝐻𝐻𝐻0 >

𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼0

(︁
𝐼𝐼𝐼𝐼 + 𝜎𝜎𝜎𝜎2

)︁
𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟0, 𝑎𝑎𝑎𝑎)

)︄
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0

(𝑎𝑎𝑎𝑎)
=

∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) E𝐼𝐼𝐼𝐼


Γ
(︂
𝑚𝑚𝑚𝑚, 𝑚𝑚𝑚𝑚

𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼
0 (𝐼𝐼𝐼𝐼+𝜎𝜎𝜎𝜎2)

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t (𝑟𝑟𝑟𝑟0,𝑎𝑎𝑎𝑎s)
)︂

Γ (𝑚𝑚𝑚𝑚) |𝐼𝐼𝐼𝐼 > 0


𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0

(𝑏𝑏𝑏𝑏)
=
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0(𝑟𝑟𝑟𝑟0) 𝑒𝑒𝑒𝑒−
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼

0
𝜎𝜎𝜎𝜎2

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t (𝑚𝑚𝑚𝑚0 ,𝑎𝑎𝑎𝑎) E𝐼𝐼𝐼𝐼

[︄
𝑒𝑒𝑒𝑒
− 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼

0
𝐼𝐼𝐼𝐼

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t (𝑚𝑚𝑚𝑚0 ,𝑎𝑎𝑎𝑎)
𝑚𝑚𝑚𝑚−1∑︂
𝑘𝑘𝑘𝑘=0

∑︁𝑘𝑘𝑘𝑘
𝑙𝑙𝑙𝑙=0

(︁𝑘𝑘𝑘𝑘
𝑙𝑙𝑙𝑙

)︁(︂ 𝑚𝑚𝑚𝑚𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼
0 𝜎𝜎𝜎𝜎2

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t (𝑟𝑟𝑟𝑟0,𝑎𝑎𝑎𝑎)
)︂ 𝑙𝑙𝑙𝑙(︂

𝑚𝑚𝑚𝑚𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼
0 𝐼𝐼𝐼𝐼

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t (𝑟𝑟𝑟𝑟0,𝑎𝑎𝑎𝑎)
)︂ 𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙

𝑘𝑘𝑘𝑘!

]︄
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0,

(5.13)

where (a) follows from the distribution of gamma random variable 𝐻𝐻𝐻𝐻0, and (b) is
calculated using the definition of incomplete gamma function for integer values of 𝑚𝑚𝑚𝑚.
The coverage probability for case of zero interference given in (5.2), i.e., P(SNR >

𝑇𝑇𝑇𝑇), can be trivially derived using (5.13) and setting 𝐼𝐼𝐼𝐼 = 0. Thus, for an arbitrarily
located user, the coverage probabilities given in (5.2) and (5.3) under a Nakagami-𝑚𝑚𝑚𝑚
fading serving channel are

P(SNR> 𝑇𝑇𝑇𝑇) =
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0(𝑟𝑟𝑟𝑟0)𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝜎𝜎𝜎𝜎
2
𝑚𝑚𝑚𝑚−1∑︂
𝑘𝑘𝑘𝑘=0

(︁
𝑠𝑠𝑠𝑠𝜎𝜎𝜎𝜎2

)︁ 𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘!

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0, (5.14)

with 𝑠𝑠𝑠𝑠 =
𝑚𝑚𝑚𝑚𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼

0

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t (𝑟𝑟𝑟𝑟0,𝑎𝑎𝑎𝑎s) , and

P(SINR > 𝑇𝑇𝑇𝑇 |𝐼𝐼𝐼𝐼 > 0) =
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0(𝑟𝑟𝑟𝑟0) 𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝜎𝜎𝜎𝜎
2
𝑚𝑚𝑚𝑚−1∑︂
𝑘𝑘𝑘𝑘=0

∑︁𝑘𝑘𝑘𝑘
𝑙𝑙𝑙𝑙=0

(︁𝑘𝑘𝑘𝑘
𝑙𝑙𝑙𝑙

)︁(︁
𝑠𝑠𝑠𝑠𝜎𝜎𝜎𝜎2

)︁ 𝑙𝑙𝑙𝑙(−𝑠𝑠𝑠𝑠)𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙 𝜕𝜕𝜕𝜕𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙
𝜕𝜕𝜕𝜕𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙 L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠)

𝑘𝑘𝑘𝑘!
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0,

(5.15)

where L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠) follows the general form given in (5.6). Assuming that interfering
channels also follow a Nakagami-𝑚𝑚𝑚𝑚 fading model, the Laplace function of interfering
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is given as

L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠) =
𝑁𝑁𝑁𝑁eff
𝐾𝐾𝐾𝐾

−1∑︂
𝑛𝑛𝑛𝑛I=1

(︄(︃ 𝑁𝑁𝑁𝑁eff

𝐾𝐾𝐾𝐾
− 1

𝑛𝑛𝑛𝑛I

)︃
𝑃𝑃𝑃𝑃
𝑛𝑛𝑛𝑛I
I
(1 − 𝑃𝑃𝑃𝑃I)

𝑁𝑁𝑁𝑁eff
𝐾𝐾𝐾𝐾

−1−𝑛𝑛𝑛𝑛I

×
(︂ 2

𝑟𝑟𝑟𝑟4max/𝑎𝑎𝑎𝑎2s − 𝑟𝑟𝑟𝑟20

∫ 𝑟𝑟𝑟𝑟max

𝑟𝑟𝑟𝑟0

∫ ∞

0
𝑓𝑓𝑓𝑓X0 (x0)

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(𝑚𝑚𝑚𝑚 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠t𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛, 𝑎𝑎𝑎𝑎s)𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟−𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛 )𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑x0𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛

)︂𝑛𝑛𝑛𝑛I)︄
.

(5.16)

The expression is obtained by substituting the Laplace transform of a gamma random
variable, i.e., L𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛

(𝑧𝑧𝑧𝑧) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(𝑚𝑚𝑚𝑚+𝑧𝑧𝑧𝑧)𝑚𝑚𝑚𝑚 in (5.6).
The results for a BPP distributed constellation assuming Nakagami-𝑚𝑚𝑚𝑚 fading

channels are generalized in [P7] for a multi-altitude constellation where satellites
are distributed according to a BPP on several spherical shells. For that case, the cov-
erage probability given in (5.14) and (5.15) are averaged over the altitude ranging
from 𝑎𝑎𝑎𝑎min to 𝑎𝑎𝑎𝑎max. It is worth noting that the upper limit of the integral, 𝑟𝑟𝑟𝑟max,
when integrating over the distance varies with altitude for a given minimum eleva-
tion angle. Thus, (5.14) and (5.15) for a multi-altitude constellation can be written
as [P7, Proposition 2]

P(SNR> 𝑇𝑇𝑇𝑇)=
∫ 𝑎𝑎𝑎𝑎max

𝑎𝑎𝑎𝑎min

∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎min

𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴(𝑎𝑎𝑎𝑎) 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0(𝑟𝑟𝑟𝑟0)𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
𝑚𝑚𝑚𝑚−1∑︂
𝑘𝑘𝑘𝑘=0

(︁
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2

)︁ 𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘!

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, (5.17)

with 𝑠𝑠𝑠𝑠 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼

0

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t (𝑟𝑟𝑟𝑟0,𝑎𝑎𝑎𝑎) , and

P(SINR > 𝑇𝑇𝑇𝑇 |𝐼𝐼𝐼𝐼 > 0) =∫ 𝑎𝑎𝑎𝑎max

𝑎𝑎𝑎𝑎min

∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎min

𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴(𝑎𝑎𝑎𝑎) 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0(𝑟𝑟𝑟𝑟0) 𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
𝑚𝑚𝑚𝑚−1∑︂
𝑘𝑘𝑘𝑘=0

∑︁𝑘𝑘𝑘𝑘
𝑙𝑙𝑙𝑙=0

(︁𝑘𝑘𝑘𝑘
𝑙𝑙𝑙𝑙

)︁(︁
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2

)︁ 𝑙𝑙𝑙𝑙(−𝑠𝑠𝑠𝑠)𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙 𝜕𝜕𝜕𝜕𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙
𝜕𝜕𝜕𝜕𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙 L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠)

𝑘𝑘𝑘𝑘!
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎,

(5.18)

where L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠) is given in [P7, Lemma 3] for a multi-altitude LEO network.

5.1.1.4 Noise-limited system

A noise-limited system has been considered in [P2, P3, P5, P6]. The assumption
holds when some co-channel interference mitigation techniques are implemented
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properly so that the performance becomes noise-limited. For instance, by virtue
of having narrow steerable and shapeable antenna beams and dynamic bandwidth
channelization as have already been implemented in the two prominent LEO satel-
lite constellation systems, i.e., Starlink and Telesat [8], the co-channel interference
becomes significantly small.

Exclusion of interference results in more simplified results for the performance
metrics of the LEO network which are valid for both uplink and downlink direction
scenarios. Moreover, when the system is noise-limited, a general fading distribution
can be adopted for the serving channel without losing the analytical tractability.
Thus, for a noise-limited LEO network, when satellites are distributed as BPP, the
uplink and downlink probability of coverage for an arbitrarily located user is given
as [P2]

𝑃𝑃𝑃𝑃c (𝑇𝑇𝑇𝑇) =

𝑁𝑁𝑁𝑁eff

2𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

(︄
1 − 𝐹𝐹𝐹𝐹𝐻𝐻𝐻𝐻0

(︄
𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼0 𝜎𝜎𝜎𝜎

2

𝑝𝑝𝑝𝑝0

)︄)︄ (︄
1 − 𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

)︄𝑁𝑁𝑁𝑁eff−1
𝑟𝑟𝑟𝑟0 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0, (5.19)

where 𝐹𝐹𝐹𝐹𝐻𝐻𝐻𝐻0 (·) is the CDF of the serving channel gain 𝐻𝐻𝐻𝐻0. It is also shown in [P2]
that the coverage probability given in (5.19) is upper bounded by the probability of
observing at least one satellite by the user. In other words, the maximum coverage
probability is affected only by the geometry of the constellation. Thus, by setting
𝑇𝑇𝑇𝑇 = 0 for a noise-limited scenario given in [P2], the upper bound for coverage
probability is obtained as

𝑃𝑃𝑃𝑃c (𝑇𝑇𝑇𝑇) ≤ 𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟max) − 𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅0 (𝑎𝑎𝑎𝑎s) = 1 − (1 − 𝑃𝑃𝑃𝑃V)𝑁𝑁𝑁𝑁eff , (5.20)

where 𝑃𝑃𝑃𝑃V is the visibility probability of satellites to the user and is expressed as

𝑃𝑃𝑃𝑃V =
𝑎𝑎𝑎𝑎s − 𝑟𝑟𝑟𝑟max sin(𝜃𝜃𝜃𝜃min)

2(𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s) . (5.21)

Due to uniform distribution of satellites, the expression in (5.21) is directly obtained
as the ratio of the surface area of the spherical cap where satellites are visible to the
ground user, to the total surface area of the satellites’ spherical shell. As it can be
observed, channel characteristics have no effect on the upper bound given in (5.20).
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5.1.2 Coverage probability for NPPP distributed satellites

As mentioned in Chapter 4, NPPP can be also used to model the satellites’ local-
ity in a constellation. NPPP not only preserves the tractability of the analytical
derivations, but also takes into account the uneven distribution of satellites along
different latitudes by setting its intensity to the function given in (4.6). The same
as for the BPP distribution, when co-channel interference is non-zero, specific as-
sumptions regarding the fading model of serving channels are needed to derive the
performance metrics. In the following subsections, the expressions obtained for the
coverage probability of a NPPP constellation assuming Nakagami-𝑚𝑚𝑚𝑚 fading model
and noise-limited system.

5.1.2.1 Nakagami-𝑚𝑚𝑚𝑚 fading

The results provided in this subsection are based on Publication [P4]. Under a
Nakagami-𝑚𝑚𝑚𝑚 fading serving channel while both shape parameter and rate parame-
ter of gamma distribution are 𝑚𝑚𝑚𝑚, the coverage probability for an arbitrarily located
ground terminal is

𝑃𝑃𝑃𝑃c (𝑇𝑇𝑇𝑇) =
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

∫ ∞

0
𝑓𝑓𝑓𝑓X0 (x0) 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0)

×
[︄
𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2
𝑚𝑚𝑚𝑚−1∑︂
𝑘𝑘𝑘𝑘=0

∑︁𝑘𝑘𝑘𝑘
𝑙𝑙𝑙𝑙=0

(︁𝑘𝑘𝑘𝑘
𝑙𝑙𝑙𝑙

)︁(︁
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2

)︁ 𝑙𝑙𝑙𝑙(−𝑠𝑠𝑠𝑠)𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙 𝜕𝜕𝜕𝜕𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙
𝜕𝜕𝜕𝜕𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙 L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠)

𝑘𝑘𝑘𝑘!

]︄
𝑠𝑠𝑠𝑠=

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼
0

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t (𝑚𝑚𝑚𝑚0 ,𝑎𝑎𝑎𝑎s )x0

𝑑𝑑𝑑𝑑x0𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0, (5.22)

where the PDF 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) is given in (4.8) and L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠) is the Laplace transform of
interference power 𝐼𝐼𝐼𝐼 which is calculated as

L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠) =
∞∑︂
𝑛𝑛𝑛𝑛=0

𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛 (A (𝑟𝑟𝑟𝑟max) − A (𝑟𝑟𝑟𝑟0))

×
(︄∫ 𝑟𝑟𝑟𝑟max

𝑟𝑟𝑟𝑟0

∫ ∞

0
L𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛

(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠t𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛, 𝑎𝑎𝑎𝑎s)𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟−𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛 ) 𝑓𝑓𝑓𝑓X𝑛𝑛𝑛𝑛
(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 |𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛 |𝑟𝑟𝑟𝑟0)𝑑𝑑𝑑𝑑x0𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛

)︄𝑛𝑛𝑛𝑛
, (5.23)

where A (𝑟𝑟𝑟𝑟max) represents the spherical cap where all visible satellites to the user
exist while A (𝑟𝑟𝑟𝑟0) is the cap above the user, with the serving satellite on its border
(base of the cap) and no satellite within its surface. 𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛 (·) represents the probability
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to have 𝑛𝑛𝑛𝑛 satellites in the above mentioned region. The function 𝑓𝑓𝑓𝑓X𝑛𝑛𝑛𝑛
(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) denotes the

PDF of shadowing for the 𝑛𝑛𝑛𝑛th interfering channel.
Considering some special cases, the Laplace function can be reduced to simpler

expressions. For instance, when interfering channels experience Nakagami-𝑚𝑚𝑚𝑚 fading,
the Laplace function of interference is given as in [P4, Corollary 1]. More simplified
Laplace functions can be obtained as given in [P4, Corollaries 2 and 3] when as-
suming that satellites are distributed as a homogeneous PPP with constant intensity
𝛿𝛿𝛿𝛿 = 𝑁𝑁𝑁𝑁act

4𝜋𝜋𝜋𝜋 (𝑎𝑎𝑎𝑎s+𝑟𝑟𝑟𝑟⊕)2 . Assuming free-space path loss exponent, i.e., 𝛼𝛼𝛼𝛼 = 2, and Rayleigh
fading channels with no shadowing i.e., 𝑚𝑚𝑚𝑚 = 1, the Laplace function can be expressed
in terms of elementary functions as

L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠) = (5.24)
∞∑︂
𝑛𝑛𝑛𝑛=0

1

𝑛𝑛𝑛𝑛!

(︄
𝑁𝑁𝑁𝑁act

(︁
𝑟𝑟𝑟𝑟2max − 𝑟𝑟𝑟𝑟20

)︁
4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

)︄𝑛𝑛𝑛𝑛
exp

(︄
−𝑁𝑁𝑁𝑁act

(︁
𝑟𝑟𝑟𝑟2max − 𝑟𝑟𝑟𝑟20

)︁
4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

)︄ (︄
1 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠t𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛, 𝑎𝑎𝑎𝑎s)(︁

𝑟𝑟𝑟𝑟2max − 𝑟𝑟𝑟𝑟20

)︁ ln

(︄
𝑘𝑘𝑘𝑘 + 𝑟𝑟𝑟𝑟20

𝑘𝑘𝑘𝑘 + 𝑟𝑟𝑟𝑟2max

)︄)︄
.

5.1.2.2 Noise-limited system

As denoted in the previous section for a BPP-distributed constellation, a noise-limited
system enables providing more generic results, i.e., independent of the fading distri-
bution. In [P3], the uplink and downlink probability of coverage for an arbitrarily
located user when satellites are distributed as a NPPP is given as

𝑃𝑃𝑃𝑃c (𝑇𝑇𝑇𝑇) =
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

∫ ∞

0
𝑓𝑓𝑓𝑓X0 (x0) 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0)

(︄
1 − 𝐹𝐹𝐹𝐹𝐻𝐻𝐻𝐻0

(︄
𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼0 𝜎𝜎𝜎𝜎

2

𝑠𝑠𝑠𝑠t𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟0, 𝑎𝑎𝑎𝑎s)x0

)︄)︄
𝑑𝑑𝑑𝑑x0𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0, (5.25)

where 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) is given in (4.8). In [P5], the probability of coverage is calculated for a
noise-limited system assuming that the ground terminal associates to the satellite that
provides the highest SNR at the receiver (i.e., BSP user association). The probability
of coverage is given as

𝑃𝑃𝑃𝑃c (𝑇𝑇𝑇𝑇) =
∫ ∞

0

(︃
1 − 𝐹𝐹𝐹𝐹𝐻𝐻𝐻𝐻0

(︃
𝑇𝑇𝑇𝑇�̃�𝑟𝑟𝑟𝛼𝛼𝛼𝛼0 𝜎𝜎𝜎𝜎

2

𝑠𝑠𝑠𝑠0

)︃)︃
𝑓𝑓𝑓𝑓�̃�𝑅𝑅𝑅0

(�̃�𝑟𝑟𝑟0)𝑑𝑑𝑑𝑑�̃�𝑟𝑟𝑟0, (5.26)

where 𝑓𝑓𝑓𝑓�̃�𝑅𝑅𝑅0
(�̃�𝑟𝑟𝑟0) is the PDF of the effective serving distance given in (4.11). Note that

for BSP association technique, the effect of shadowing is embedded in the PDF, i.e.,
𝑓𝑓𝑓𝑓�̃�𝑅𝑅𝑅0

(�̃�𝑟𝑟𝑟0).
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5.1.3 Global coverage probability

Another performance metric that has been evaluated in this thesis is the global cover-
age probability. The metric is defined as the weighted summation of coverage prob-
ability over the latitudes. The weights are selected from the population distribution
over different latitudes. The mathematical definition of global coverage probability
is given as

𝑃𝑃𝑃𝑃Global
c =

∫ 𝜋𝜋𝜋𝜋/2

𝜙𝜙𝜙𝜙u=−𝜋𝜋𝜋𝜋/2
𝑃𝑃𝑃𝑃c(𝜙𝜙𝜙𝜙u) 𝑓𝑓𝑓𝑓𝜙𝜙𝜙𝜙u (𝜙𝜙𝜙𝜙u)𝑑𝑑𝑑𝑑𝜙𝜙𝜙𝜙u. (5.27)

Global coverage probability enlightens how a LEO constellation can provide world-
wide connectivity for the users, regardless of the user’s location or, more specifically,
its latitude. The data on the population distribution over different latitudes is col-
lected from NASA’s socioeconomic data and applications center [101] as shown in
Fig. 5.1. Global coverage probability over different constellation sizes and altitudes
is depicted in Figs. 5.2(a) and (b), respectively. The theoretical results are verified
by simulations.

5.2 Average achievable data rate

Similar to Subsection 5.1, analytical derivations on the average achievable data rate
are provided for several communication scenarios, satellite geometries, and propa-
gation models using BPP and NPPP models. The definition of data rate is given in
(2.16).

5.2.1 Data rate for BPP distributed satellites

The downlink data rate (in bits/sec/Hz) of a LEO network, when satellites are
distributed as a BPP is given as

�̄�𝐶𝐶𝐶 ≜
𝑃𝑃𝑃𝑃0

𝐾𝐾𝐾𝐾
E [log2 (1 + SNR)] + 1 − 𝑃𝑃𝑃𝑃0

𝐾𝐾𝐾𝐾
E [log2 (1 + SINR) |𝑁𝑁𝑁𝑁I > 0] . (5.28)

For the case of having non-zero interference, i.e., the second term in (5.28), the
expression can be obtained using the definition of SINR and averaging over the spatial
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Figure 5.1 Distribution of population on different latitudes [101]. The maximum density of population
can be observed at 26◦.

BPP and the fading distribution of the serving channel as

E𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼0𝐼𝐼𝑅𝑅𝑅𝑅0 [log2 (1 + SINR) |𝑁𝑁𝑁𝑁I > 0]

= 𝑐𝑐𝑐𝑐0

∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

∫
𝑡𝑡𝑡𝑡𝑡𝑡0

P

(︃
𝐻𝐻𝐻𝐻0 >

𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼0

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟0, 𝑎𝑎𝑎𝑎s)
(︂
𝜎𝜎𝜎𝜎2 + 𝐼𝐼𝐼𝐼

)︂ (︁
𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 − 1

)︁ |︁|︁|︁𝑁𝑁𝑁𝑁I > 0

)︃

×
(︄
1 − 𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

)︄𝑁𝑁𝑁𝑁eff−1
𝑟𝑟𝑟𝑟0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0, (5.29)

where 𝑐𝑐𝑐𝑐0 = 𝑁𝑁𝑁𝑁eff

2 ln(2)𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕+𝑎𝑎𝑎𝑎s) . The complete proof of (5.29) as well as the details of the
intermediate steps can be found in [P1, Theorem 3]. Following the same approach to
obtain (5.29), the average data rate for the noise limited scenario [P2, Proposition 2]
can be obtained as follows:

E [log2 (1 + SNR)] = 𝑁𝑁𝑁𝑁eff

2 ln(2)𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

×
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

∫ ∞

0
ln

(︃
1 + 𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟0, 𝑎𝑎𝑎𝑎s)ℎ0𝑟𝑟𝑟𝑟−𝛼𝛼𝛼𝛼0

𝜎𝜎𝜎𝜎2

)︃ (︄
1 − 𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

)︄𝑁𝑁𝑁𝑁eff−1
𝑓𝑓𝑓𝑓𝐼𝐼𝐼𝐼0 (ℎ0)𝑟𝑟𝑟𝑟0 𝑑𝑑𝑑𝑑ℎ0 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0,

(5.30)
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(a) Global coverage probability for different con-
stellation sizes when 𝑎𝑎𝑎𝑎s = 500.
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(b) Global coverage probability for different con-
stellation altitudes and 𝑁𝑁𝑁𝑁act = 500.

Figure 5.2 Global coverage probability for different constellation sizes and altitudes with 𝜄𝜄𝜄𝜄 = 53◦ and
𝑇𝑇𝑇𝑇 = 5 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.

where 𝑓𝑓𝑓𝑓𝐻𝐻𝐻𝐻0 (ℎ0) represents the PDF of channel gain 𝐻𝐻𝐻𝐻0. Under Rayleigh fading as-
sumption and invoking the PDF and CDF of serving channel gain, (5.29) and (5.30)
can be written as

E [log2 (1 + SNR)] = 𝑁𝑁𝑁𝑁eff

2 ln(2)𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

∫ ∞

0
− 𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼0 𝜎𝜎𝜎𝜎

2

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟0, 𝑎𝑎𝑎𝑎s)
(︁
𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 − 1

)︁
(5.31)

× 𝑒𝑒𝑒𝑒
− 𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼

0
𝜎𝜎𝜎𝜎2

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t (𝑟𝑟𝑟𝑟0 ,𝑎𝑎𝑎𝑎s ) (𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡−1) ln
(︃
1 + 𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟0, 𝑎𝑎𝑎𝑎s)ℎ0𝑟𝑟𝑟𝑟−𝛼𝛼𝛼𝛼0

𝜎𝜎𝜎𝜎2

)︃ (︄
1 − 𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

)︄𝑁𝑁𝑁𝑁eff−1
𝑟𝑟𝑟𝑟0 𝑑𝑑𝑑𝑑ℎ0 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0

and

E [log2 (1 + SINR) |𝑁𝑁𝑁𝑁I > 0]

= 𝑐𝑐𝑐𝑐0

∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

∫
𝑡𝑡𝑡𝑡𝑡𝑡0

E𝐼𝐼𝐼𝐼

[︃
𝑒𝑒𝑒𝑒
− 𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼

0
𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t (𝑟𝑟𝑟𝑟0 ,𝑎𝑎𝑎𝑎s ) (𝐼𝐼𝐼𝐼+𝜎𝜎𝜎𝜎2) (𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡−1) |︁|︁|︁𝑁𝑁𝑁𝑁I > 0

]︃ (︄
1 − 𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

)︄𝑁𝑁𝑁𝑁eff−1
𝑟𝑟𝑟𝑟0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0

= 𝑐𝑐𝑐𝑐0

∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

∫
𝑡𝑡𝑡𝑡𝑡𝑡0

𝑒𝑒𝑒𝑒
− 𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼

0
𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t (𝑟𝑟𝑟𝑟0 ,𝑎𝑎𝑎𝑎s ) 𝜎𝜎𝜎𝜎

2(𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡−1)

× L𝐼𝐼𝐼𝐼

(︃
𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼0

𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟0, 𝑎𝑎𝑎𝑎s)
(︁
𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 − 1

)︁ )︃ (︄
1 − 𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

)︄𝑁𝑁𝑁𝑁eff−1
𝑟𝑟𝑟𝑟0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0
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where L𝐼𝐼𝐼𝐼 (·) can be calculated using (5.6). Assuming static serving channels, (5.29)
and (5.30) are given in [P1, Theorem 4] as

E [log2 (1 + SNR)] = 1

ln(2)
∫
𝑡𝑡𝑡𝑡𝑡𝑡0

𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅0

(︄(︃
𝑝𝑝𝑝𝑝t

(𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 − 1) 𝜎𝜎𝜎𝜎2

)︃ 1
𝛼𝛼𝛼𝛼

)︄
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (5.32)

and

E [log2 (1 + SINR|𝑁𝑁𝑁𝑁I > 0)] = 𝑁𝑁𝑁𝑁act

4𝜋𝜋𝜋𝜋 ln(2)𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

∫
𝑡𝑡𝑡𝑡𝑡𝑡0

∫ ∞

−∞
L𝐼𝐼𝐼𝐼 ( 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)

×
⎛⎜⎜⎜⎝
𝑒𝑒𝑒𝑒
𝑗𝑗𝑗𝑗

(︃
𝑝𝑝𝑝𝑝t

𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼
0 (𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡−1) −𝜎𝜎𝜎𝜎

2

)︃
𝜔𝜔𝜔𝜔 − 1

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

⎞⎟⎟⎟⎠

(︄
1 − 𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

)︄𝑁𝑁𝑁𝑁act−1
𝑟𝑟𝑟𝑟0 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0. (5.33)

For Nakagami-𝑚𝑚𝑚𝑚 fading which covers the aforementioned fading models by vary-
ing the fading parameter, 𝑚𝑚𝑚𝑚, the data rate for a BPP-distributed constellation is given
as

�̄�𝐶𝐶𝐶 =
𝑁𝑁𝑁𝑁eff

2𝐾𝐾𝐾𝐾 ln(2)𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)
∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

∫ ∞

0

(︄
1 − 𝑟𝑟𝑟𝑟20 − 𝑎𝑎𝑎𝑎2s

4𝑟𝑟𝑟𝑟⊕ (𝑟𝑟𝑟𝑟⊕ + 𝑎𝑎𝑎𝑎s)

)︄𝑁𝑁𝑁𝑁act−1
(5.34)

×
[︄
𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝜎𝜎𝜎𝜎

2
𝑚𝑚𝑚𝑚−1∑︂
𝑘𝑘𝑘𝑘=0

∑︁𝑘𝑘𝑘𝑘
𝑙𝑙𝑙𝑙=0

(︁𝑘𝑘𝑘𝑘
𝑙𝑙𝑙𝑙

)︁(︁
𝑠𝑠𝑠𝑠𝜎𝜎𝜎𝜎2

)︁ 𝑙𝑙𝑙𝑙(−𝑠𝑠𝑠𝑠)𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙 𝜕𝜕𝜕𝜕𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙
𝜕𝜕𝜕𝜕𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙 L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠)

𝑘𝑘𝑘𝑘!

]︄
𝑠𝑠𝑠𝑠=

𝑚𝑚𝑚𝑚(2𝑡𝑡𝑡𝑡−1)𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼0
𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t (𝑟𝑟𝑟𝑟0 ,𝑎𝑎𝑎𝑎s )

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0.

As mentioned earlier for the coverage probability in previous subsections, for noise-
limited system, there is no need to limit the results to some specific fading model and
the data rate can be obtained in generic form using (5.30) as given in [P2].

5.2.2 Data rate for NPPP distributed satellites

The derivations on the average data rate of a NPPP constellation follow the same
approach as for the coverage probability. To make this summary more concise, the
intermediate steps and detailed proofs given in [P3, P4, P5] are excluded here. Two
important propagation models, i.e., Nakagami-𝑚𝑚𝑚𝑚 fading and noise-limited transmis-
sion scenarios are given as in the below expressions.

The downlink average data rate of a NPPP LEO constellation under a Nakagami-
𝑚𝑚𝑚𝑚 fading serving channel and arbitrarily distributed fading or shadowing for inter-
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Table 5.1 Fading models used for simulations

Fading model Channel gain distribution Publications

Rayleigh Exponential [P1]

Nakagami-𝑚𝑚𝑚𝑚 Gamma [P4, P7]

Rician Noncentral chi-squared [P2, P3, P5, P6]

Static Deterministic [P1]

fering channels is

�̄�𝐶𝐶𝐶 =
1

𝐾𝐾𝐾𝐾

∫ 𝑟𝑟𝑟𝑟max

𝑎𝑎𝑎𝑎s

∫ ∞

0

∫ ∞

0
𝑓𝑓𝑓𝑓X0 (x0) 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) (5.35)
[︄
𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2
𝑚𝑚𝑚𝑚−1∑︂
𝑘𝑘𝑘𝑘=0

∑︁𝑘𝑘𝑘𝑘
𝑙𝑙𝑙𝑙=0

(︁𝑘𝑘𝑘𝑘
𝑙𝑙𝑙𝑙

)︁(︁
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2

)︁ 𝑙𝑙𝑙𝑙(−𝑠𝑠𝑠𝑠)𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙 𝜕𝜕𝜕𝜕𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙
𝜕𝜕𝜕𝜕𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙 L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠)

𝑘𝑘𝑘𝑘!

]︄
𝑠𝑠𝑠𝑠=

𝑚𝑚𝑚𝑚(2𝑡𝑡𝑡𝑡−1)𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼0
𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t (𝑟𝑟𝑟𝑟0 ,𝑎𝑎𝑎𝑎s )x0

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑x0𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0,

where L𝐼𝐼𝐼𝐼 (𝑠𝑠𝑠𝑠) will be given in (5.23) and its corresponding special cases given in [P4].
When co-channel interference is zero at the receiver, the data rate for a NPPP model
is given as, [P3],

�̄�𝐶𝐶𝐶 =
1

ln(2)
∫ 𝑟𝑟𝑟𝑟max

𝑟𝑟𝑟𝑟min

∫ ∞

0

∫ ∞

0
𝑓𝑓𝑓𝑓X0 (x0)

(︄
1 − 𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺0

(︄
𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼0 𝑠𝑠𝑠𝑠

2

𝑝𝑝𝑝𝑝t𝐺𝐺𝐺𝐺t(𝑟𝑟𝑟𝑟0, 𝑎𝑎𝑎𝑎s)
(︁
𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 − 1

)︁)︄)︄
𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅0 (𝑟𝑟𝑟𝑟0) 𝑑𝑑𝑑𝑑x0𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0.

(5.36)

5.3 Numerical results and discussion

In this section, the derivations on the performance metrics of a LEO communica-
tion network based on the two point processes, i.e., BPP and NPPP, are validated
through Monte Carlo simulations. The numerical results are then used to interpret
the effect of several network parameters, including the satellites’ altitude, constel-
lation size, number of orthogonal frequency channels, and latitude of the user or
ground terminal, on the performance of a LEO network.

The simulated LEO constellation is similar to what is described in Section 2.3,
i.e., 𝑁𝑁𝑁𝑁act satellites are distributed uniformly on equally-spaced circular inclined orbits
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Figure 5.3 Verification of coverage probability derived in (5.1) with simulations for Rayleigh fading
channels and 720 satellites at 1200 km.

distanced 𝑎𝑎𝑎𝑎s from Earth’s surface. To obtain the performance metrics, averages over
the satellites’ locality as well as the channel gains are taken for a large number of
realizations. As satellites move continuously on orbits, the performance is averaged
over different realizations of satellites over the time. The averaging is also taken over
the channel gains which are modeled as different random variables depending on the
fading statistics. Different channel gains which are adopted in the publications are
listed in Table 5.1. The shadowing effect included in [P3, P4] is assumed to follow
a log-normal distribution for the numerical results.

In the following subsections, the analytical expressions obtained in this chapter
are validated through Monte Carlo simulations.

5.3.1 Corroboration of analysis by simulations

In [P1, P2], it is shown that the performance deviation between an actual LEO
constellation and a randomly modeled constellation can be eliminated by substituting
the actual number of satellites with the effective number of satellites, 𝑁𝑁𝑁𝑁eff . The
effective number of satellites is calculated through mean absolute error minimization
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between the performance metric derived from the theory and the results from the
actual simulated constellations for a given user’s latitude in [P1]. Although some
specific simulation parameters are used to obtain 𝑁𝑁𝑁𝑁eff , the value is applicable for
other system parameters, i.e., path loss exponent and/or SINR threshold values as
well. Likewise, the acquired 𝑁𝑁𝑁𝑁eff can be also used for other constellation sizes by
linearly scaling it accordingly.

Figure 5.3 depicts the coverage probability versus the SINR threshold for three
Walker constellations with different inclination angles. The coverage probability is
derived theoretically by modeling the satellites as a BPP. As can be seen in the figure,
applying 𝑁𝑁𝑁𝑁eff to the derivations obtained from BPP stochastic modeling compensates
for the varying density of satellites along different latitudes and lead to its matching
with the performance of the actual constellations. The solid markers on the curves
were chosen for finding 𝑁𝑁𝑁𝑁eff through minimizing the mean absolute error between
the coverage probabilities of stochastic and actual constellations. However, the cho-
sen 𝑁𝑁𝑁𝑁eff also holds for other values that had no contribution on the minimization
process. Simulating a constellation comprised of 720 satellites, the corresponding
effective number of satellites for 90◦, 70◦ and 40◦ inclination angles are 565, 625,
and 890, respectively. As the inclination angles decreases, the density of satellites
increases as the same number of satellites are distributed on a smaller surface which
results in larger values for 𝑁𝑁𝑁𝑁eff .

Figure 5.4 verifies the theoretical derivations on the coverage probability for a
noise-limited communication scenario and two constellation sizes of 648 and 120
given in [P2]. Despite Fig. 5.3, in Fig. 5.4, 𝑁𝑁𝑁𝑁eff to compensate for the inherent
mismatch between the actual and BPP constellations is obtained analytically using
(4.3). For fewer number of satellites, e.g., 𝑁𝑁𝑁𝑁act = 120, it can be well observed that the
performance is upper bounded by the probability of observing at least one satellite
above the sky. As a result, the upper bound is enhanced with rising the altitude as
better visibility is provided for the ground user. On the other hand, for a larger
constellation size, e.g., 𝑁𝑁𝑁𝑁act = 648, the coverage probability is affected only by the
path loss since all the time there is at least one visible satellite to the user, i.e., the
visibility probability approaches one.

Figure 5.5 verifies the coverage probability derived by NPPP modeling given in
(5.22) for 53◦ inclined orbits and a user located at 25◦ latitude. The constellation size
and altitude are set to 2000 and 500 km, respectively. As shown in the figure, the
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Figure 5.4 Verification of coverage probability given in (5.19) with simulations for Rician fading chan-
nels with fading parameter 100, 𝜙𝜙𝜙𝜙u = 0◦, 𝜄𝜄𝜄𝜄 = 70◦, 𝑎𝑎𝑎𝑎s ∈ {500, 1000, 1500} km, and
𝜃𝜃𝜃𝜃min = 10◦.

markers that depict the Monte Carlo simulations are fully matched with the solid
lines that represent the theoretical expressions.

Shadowing randomness may cause an altering effect on the received SINR at the
user’s place, i.e., causing an increase or decrease in the received SINR. As a result,
an ever-changing shadowing effect on the coverage probability can be observed in
Fig. 5.5. The alteration of shadowing effect is affected by its distribution as well
as its mean and variance. Nakagami-𝑚𝑚𝑚𝑚 is adopted to generate the results given in
Fig. 5.5. Larger values of 𝑚𝑚𝑚𝑚 correspond to the reception of a stronger LOS com-
ponent and, consequently, less multi-path distortion, which result in slightly better
coverage. However, shadowing masks the effect of fading at large.

The verification of BPP and NPPP models to derive average data rate in (5.28)
and (5.35) is depicted in Figs. 5.6 and 5.7, respectively. In Fig. 5.6, the optimal
number of frequency channels that maximizes the data rate for each of the Walker
constellations decreases by increasing the inclination angle. The selected 𝑁𝑁𝑁𝑁eff values
are slightly different from those in Fig. 5.3 since they correspond to the constellation
size that results in the best possible match between the data rate of the random and
Walker constellation. Since the density of satellites are lower for polar orbits, a
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Figure 5.5 Verification of (5.22) with simulations when 𝜙𝜙𝜙𝜙u = 25◦, 𝜄𝜄𝜄𝜄 = 53◦, 𝑚𝑚𝑚𝑚 ∈ {1, 2, 3}, and
𝜃𝜃𝜃𝜃min = 10◦. Theoretical and simulation results are shown by lines and markers, respec-
tively.

slight mismatch is observed between the theoretical and simulation results which
indicates an increasing deviation between one snapshot of the point process and the
actual LEO constellation with decreasing the density of satellites. In other words, the
results provided herein show more accuracy and exactness for high-density satellite
networks.

Figure 5.7 verifies the derivation of average data rate given in (5.35) for a user
located at latitude 25◦. As shown in the figure, the simulation results are perfectly in
line with theory. The same as in Fig. 5.3, an optimum value is observed for the num-
ber of frequency channels. As the number of orthogonal frequency bands increases,
the satellites which operate on the same frequency band and cause interference at the
user’s reception declines which improves the data rate. On the other hand, by in-
creasing the number of frequency channels, the bandwidth allocated to each shared
group of satellites reduces accordingly. Thus, the initial rise in the plot is due to
the decrease in the number of interfering satellites, followed by a decline caused by
comprising only 1

𝐾𝐾𝐾𝐾
of frequency band.
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Figure 5.6 Effect of the number of frequency bands, 𝐾𝐾𝐾𝐾 , on average achievable rate and verification of
(5.28) for Rayleigh fading channels.

5.3.2 Effect of satellites’ altitude

Figure 5.8 illustrates the effect of altitude on the coverage probability and data rate
under Nakagami fading [P4]. Regardless of the shadowing effect, there is an opti-
mum altitude that maximizes both performance metrics. The optimum value varies
with user’s latitude. Since constellation density is higher at the inclination limits, the
optimum altitude for 𝜙𝜙𝜙𝜙u = 25◦ is slightly lower than 𝜙𝜙𝜙𝜙u = 0◦. This is because of the
existence of more interferers at upper latitudes. When user is located at 𝜙𝜙𝜙𝜙u = 65◦,
i.e., out of the constellation borders (𝜙𝜙𝜙𝜙u > 𝜄𝜄𝜄𝜄 = 53◦), a larger altitude is required for
the user to be served by a satellite. Therefore, both coverage probability and data
rate are zero at altitudes below ≈ 400 km, as there is no visible satellite to the user.

Effect of altitude on coverage probability and data rate is depicted in Fig. 5.9 (a)
and (b), respectively, under Rayleigh fading assumption and zero shadowing. The
figure is plotted by substituting 𝑁𝑁𝑁𝑁eff into the BPP-based derivations given in Theo-
rems 1 and 3 in [P1]. Within the typical LEO satellites’ altitude range, i.e., below
500 km, both performance metrics decline with rising the altitude. The optimum
altitude, which decreases by increasing the number of satellites, is observed at low
altitudes within Earth’s atmosphere. Obviously, for commercial constellations, satel-
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Figure 5.7 Verification of (5.35) with simulations when 𝜙𝜙𝜙𝜙u = 25◦, 𝜄𝜄𝜄𝜄 = 53◦, 𝑚𝑚𝑚𝑚 ∈ {1, 2, 3}, and
𝜃𝜃𝜃𝜃min = 10◦. Theoretical and simulation results are shown by lines and markers, respec-
tively.

lites are deployed on higher altitudes to avoid atmospheric drag [9].

5.3.3 Effect of ground terminal/user’s latitude

In Fig. 5.10, the effect of user’s latitude on coverage probability and data rate is shown
for three Walker constellations with different inclination angles under Rayleigh fad-
ing. Right side vertical axes show the effective number of satellites obtained numer-
ically to minimize the approximation error in modeling deterministic constellations
as a BPP. In this figure, the markers depict the simulation results for the coverage
probability and data rate of Walker constellation for polar, 70◦ and 40◦ inclined or-
bits. For a polar constellation, the number of viewable satellites and, consequently,
the effective number of satellites increase monotonically from the equator to poles.
As a result, the performance degrades accordingly as the user moves from the equator
to poles due to viewing more interfering satellites.

The zero coverage probability and data rate for 40◦-inclined constellation for
latitudes greater than 75◦ demonstrates the fact that there are no visible satellites to
the user at those high latitudes. The solid lines in the figures are generated using (5.1)
and (5.28) with 𝑁𝑁𝑁𝑁eff (𝜄𝜄𝜄𝜄, 𝜙𝜙𝜙𝜙u) satellites. As can be seen, the solid lines are matched with
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(a) Effect of altitude on coverage probability.
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(b) Effect of altitude on data rate.

Figure 5.8 Effect of altitude on the performance of a LEO network under Nakagami-𝑚𝑚𝑚𝑚 fading. Shad-
owing distribution is assumed to be log-normal, 𝑇𝑇𝑇𝑇 = 5 dB, 𝜙𝜙𝜙𝜙u = {0◦, 25◦, 65◦}, 𝜄𝜄𝜄𝜄 = 53◦,
𝑚𝑚𝑚𝑚 = 2, and 𝜃𝜃𝜃𝜃min = 10◦.
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(a) Effect of altitude on coverage probability.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) Effect of altitude on data rate.

Figure 5.9 Average rate for different altitudes. Plots are generated using (5.1) for three Walker con-
stellations with 𝜙𝜙𝜙𝜙u = 0◦, 30◦, 60◦, and 𝑁𝑁𝑁𝑁eff (𝜄𝜄𝜄𝜄, 𝜙𝜙𝜙𝜙u).

the markers obtained fromMonte Carlo simulations of Walker constellations for the
given 𝜙𝜙𝜙𝜙u. Therefore, using 𝑁𝑁𝑁𝑁eff (𝜄𝜄𝜄𝜄, 𝜙𝜙𝜙𝜙u) in (5.1) and (5.28), the varying satellite density
along different latitudes is compensated and the performance metrics can be obtained
for any desired actual constellation. Most importantly, it can be concluded that the
deviation between the performance of deterministic and stochastic constellations can
be fairly eliminated by considering the uneven satellite density at different latitudes.
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(a) Effect of user’s latitude on the coverage proba-
bility.
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(b) Effect of user’s latitude on average data rate.

Figure 5.10 Effect of user’s latitude on the performance of a LEO network. The markers are plotted
by simulating three Walker constellations with 90◦, 70◦ and 40◦ inclination angles.

0 10 20 30 40 50 60 66 70 80 90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Coverage probability on different users’ lati-
tudes.
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(b) Data rate on different users’ latitudes.

Figure 5.11 Effect of user’s latitude on the performance of a LEO network for 𝐾𝐾𝐾𝐾 = 10, 𝑇𝑇𝑇𝑇 = 5 dB,
𝑟𝑟𝑟𝑟min = 500 km, 𝜄𝜄𝜄𝜄 = 53◦, 𝑚𝑚𝑚𝑚 = 2, and 𝜃𝜃𝜃𝜃min = 10◦.

The effect of ground user’s latitude on coverage probability and data rate of a
LEO constellation is depicted in Fig. 5.11 when satellites are modeled as a NPPP.
The performance metrics are shown by solid lines when NPPP intensity function
is set to (4.5). As the satellite intensity increases by rising the user’s latitude, the
performance becomes more unreliable due to presence of more interfering satellites
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Figure 5.12 The effect of user’s latitude on the coverage probability for four multi-altitude constella-
tions, given in [P7, Table I], when 𝑇𝑇𝑇𝑇 = 5 and 𝑁𝑁𝑁𝑁act = 1800. The lines and the markers
represent the analytical results and simulations, respectively.

that share the same frequency channel with the serving satellite. At latitudes higher
than the constellation inclination limits, the performance increases sharply due to the
reduction in the received interference. The performance is maximized at about 66◦

where the serving satellite is the only visible satellite to the user, i.e., the performance
becomes noise-limited. At higher than 66◦ latitudes, the user will be in full outage
and both coverage probability and rate converge to zero. When the intensity of
satellites is constant, i.e., 𝛿𝛿𝛿𝛿 = 𝑁𝑁𝑁𝑁act

4𝜋𝜋𝜋𝜋 (𝑎𝑎𝑎𝑎s+𝑟𝑟𝑟𝑟⊕)2 , the performance remains unchanged over
all latitudes as shown in the figure by dashed lines.

Four multi-altitude benchmark constellations are considered in [P7] whose satel-
lites are distributed on several orbital shells with varying altitudes and inclination
angles. The details on specifications of these constellation can be found in [P7, Ta-
ble I]. The effect of user’s latitude on the coverage probability of multi-altitude con-
stellations is shown in Fig. 5.12. The variations in the plots are justifiable according
to the varying density of satellites along different latitudes. A local maxima can be
observed at the inclination angle of each orbital shell due to the decrease in the num-
ber of interfering satellites which is then followed by a steep local minima caused by
losing the connection with the best available server. The drop in coverage probabil-
ity is more sever at larger inclination angles since the number of visible satellites to
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(a) Coverage probability vs. SNR threshold.
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(b) Data rate vs. inclination angle.

Figure 5.13 Coverage probability and data rate under BSP and NSP association policies when 𝐾𝐾𝐾𝐾 =
10, 𝜙𝜙𝜙𝜙u = 25◦, 𝑟𝑟𝑟𝑟min = 500 km, and 𝜃𝜃𝜃𝜃min = 10◦.

the ground user decreases drastically.
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Figure 5.14 Effect of BSs’ density on coverage probability and data rate of a terrestrial backhaul for
an airborne network at different altitudes.

5.3.4 Effect of user association policy

Figure 5.13 depicts how the two association policies, i.e., BSP and NSP, affect the
performance of LEO network in terms of coverage probability and data rate for
𝑁𝑁𝑁𝑁act = 500 and 1000 satellites. The fair match between the theory (plotted by
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lines) and the simulations (plotted by markers) verifies the derivations in [P5]. As
can be seen, the BSP results in a superior performance compared to NSP, since the
received SNR is improved by considering the effect of shadowing on user association.
Obviously, the two association policies become the same when shadowing is assumed
to be zero.

Larger constellation sizes provide higher data rates and coverage probability due
to providing a higher probability for the user to connect to a better server. As
satellites’ density decreases with rising the inclination angle, the data rate slightly
decreases accordingly, as shown in Fig. 5.13(b).

5.3.5 Performance of LEO backhaul network

In [P5], the performance of a LEO backhaul network is compared to a terrestrial
backhaul in order to provide noteworthy criteria on the best backhaul selection for
APs which is affected by the LEO constellation parameters, the density of ground
BSs, and AP’s location in terms of its latitude and altitude. Figure 5.14 depicts the
performance of terrestrial backhaul for an airborne network at different altitudes.
The terrestrial BSs are distributed on a disc with radius 30 km according to a homo-
geneous PPP. As can be seen, for lower density of BSs and higher APs’ altitudes, the
performance of the terrestrial network degrades considerably, especially in terms of
the coverage probability.

The effect of AP’s altitude on the data rate of both terrestrial and LEO backhaul
networks is shown in Fig. 5.15. A slight increase can be observed in data rate of
LEO backhaul when rising the AP’s altitude which is due to the better visibility and
smaller propagation distance at those higher altitudes. However, since the altitude of
AP is considerably smaller than the LEO constellation altitude, the variation in the
data rate is not significant. The data rate of BS backhaul decreases with increasing
the AP’s altitude due to the increased path loss. The range of altitude over which the
LEO backhaul outperforms the terrestrial backhaul depends on the density of BSs.

Based on the numerical results depicted in Fig. 5.15, it can be concluded that
both terrestrial and LEO networks have the potential to serve as the backhaul for
the airborne network. Several parameters affect the best backhaul selection such as
the LEO network parameters, the terrestrial BS density, and AP’s location. For in-
stance, for larger BS densities or higher AP’s altitude, terrestrial backhaul provides
more promising data rate than LEO satellites. On the other hand, LEO satellites
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Figure 5.15 Effect of aerial platform’s altitude on data rate provided by LEO and BS backhaul networks
for an airborne network. The total number of LEO satellites and altitude are set to 1000
and 500 km, respectively.

can provide a better backhaul connectivity for extremely low BSs’ densities or ex-
cessively high AP’s altitudes. It is also worth mentioning that in highly dense urban
areas where the transmitted signal from the terrestrial BSs may be blocked by the sur-
rounding obstacles, a LEO backhaul with a higher probability of LOS can provide
better connectivity for APs.

5.3.6 Summary of the results

As verified in Subsection 5.3.1, stochastic models can be utilized to accurately model
and analyze the massive satellite constellation despite being fully deterministic. Sev-
eral design guidelines can be directly interpreted from the figures given throughout
Section 5.3 on satellites’ altitude, association policies, and the selection of backhaul
network. As co-existence of non-terrestrial and terrestrial networks is promised for
6G actualization, the provided analysis provided herein has a great potential for in-
terference modeling and management of such integrated network.

Another key insight is the performance behavior in terms of user’s latitude. As
can be seen from Figs. 5.10 – 12, the performance improves close to the inclina-
tion limits and, counter intuitively, there could be also coverage for users which are
located at higher latitudes than the inclination if satellites can transmit their beams
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towards those higher latitudes as well. Moreover, as can be seen throughout the
numerical results, the performance is remarkably affected by the used association
technique. Finally, some insightful results on the selection of the best backhaul to
serve an AP is also provided in this thesis. The outcome suggests that depending
on the AP’s location, LEO constellation parameters, and the density of BSs on the
ground, either a LEO satellite or a ground BS will serve the AP better in terms of
achievable data rate.
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6 CONCLUSIONS

In this dissertation, a tractable analytical framework for physical layer performance
analysis of LEO communication networks was studied by stochastic modeling of
the network. Such modeling enabled utilizing the tools from stochastic geometry
in order to find mathematical derivations on the coverage probability and data rate
of any given LEO constellation. This chapter summarizes the main findings of this
research while extending the results beyond the immediate scope of the study.

6.1 Stochastic analysis of LEO Internet networks

Although LEO satellite networking was studied as the main scope of this research,
the analysis also paves the way for extending the application of stochastic geometry to
other massive heterogeneous 3D networks, e.g., integrated terrestrial–aerospace net-
works or massive IoT sensors. Unified and native integration of non-terrestrial net-
work into the existing terrestrial network is foreseen as a key component in 6G. Such
integrated network will be highly heterogeneous with BSs extensively distributed
over the ground, air, and space. Obviously, stochastic geometry can play a great role
in modeling and analysis of such massive 3D network to ensure the required quality
of service and its optimal design.

Another key concluding remark is that deterministic networks, e.g., a LEO net-
work with satellites being on predetermined orbits with fixed spacing between them,
can be also modeled as a spatial point process. The tight match observed between
the performance of actual and stochastic constellations proves the fair accuracy of
such models. In fact, despite the terrestrial network for which randomness arises
from irregular distribution of nodes, in satellite networks, this randomness is not
originated from the satellites’ positions, but from different realizations of satellites
over the time observed by the user as well as the continuous changing of distances
between the satellites in adjacent orbits.
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The varying density of satellites over different user’s latitudes was taken into ac-
count through two different approaches. For BPP, which resulted in more tractable
expressions, the error in approximating the LEO constellation as a BPP was com-
pensated through finding the effective number of satellites for each user’s latitude.
When modeling the LEO network as a NPPP, the non-uniform intensity of satellites
is embedded in the intensity function of the point process. A tight match is achieved
for this approach without any further compensation at the expense of having less
tractability. Therefore, the inherent performance error caused by geometry of satel-
lite constellations is rather minimal when their varying density over the latitudes is
considered.

Other than performance analysis, the results can be used to optimize LEO net-
works in order to provide the same quality of service with fewer resources, e.g.,
total number of satellites. The optimization will lead to a remarkable drop in the
operational and launch costs of LEO networks via minimizing the constellation size.

6.2 Future directions

The timely research topic and the novel framework presented in this thesis have
inspired many other researchers shortly after the first two publications [P1, P2]
to create new results and extend the research line, e.g., in [39], [45], [46], [87],
[95], [102]. Obviously, there are still many open lines of research on the modeling
and analysis of LEO communication networks as well as other 3D networks. The
first research direction would be optimization of LEO communication networks
which can accelerate their efficient design and developments. Although performance
analysis was the main focus of this thesis, the analytical approach provided herein
has a great potential for optimization of different LEO network parameters and
resources.

Basic support for integration of non-terrestrial and terrestrial networks has been
proposed through Releases 15 to 18 of the third Generation Partnership Project for
5G [103]. However, the fundamental changes will have to wait for 6G for which the
non-terrestrial networks are seen as a key component by many mobile industries in
their 6G visions. Therefore, the second research direction would be extending the
results to an integrated network where the user can be served by the best of both
networks. In [P6], this research problem was partially addressed and some insights
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on the selection of the best network were provided through the numerical results.
However, the analysis on the selection of the best network to serve the users given
the network parameters and the performance criteria will remain as an interesting
future work. Obviously, the efficient spectrum management (dedicated or shared
spectrum) needs to be considered before the integration of the two networks.

The third research direction can be including the inter-satellite links into the cur-
rent analysis as some commercial constellations have already equipped satellites with
laser inter-satellite links. These links can enhance the speed of communication as the
data can be relayed by their optical links much faster and through a shorter distance
than undersea fiber-optic cables. The first obvious challenge would be modeling the
channels and propagation characteristic of such links which are totally different than
radio-frequency communication links.

Finally, considering more practical antenna patterns in the analysis which are able
to steer the beams towards the actual locations of users on Earth is of great impor-
tance as it is in line with the beamforming design of some commercial LEO projects.
Moreover, the width of beams can be also adjusted according to the user’s demands
and population density. To tractably consider beamforming for LEO networks, the
distribution of ground terminals needs to be included in the analysis. Moreover, the
frequency channel assignment which is performed randomly (uniform) in this thesis,
can be included in a more efficient way to optimize the network performance.
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Downlink Coverage and Rate Analysis of
Low Earth Orbit Satellite Constellations

Using Stochastic Geometry
Niloofar Okati , Taneli Riihonen , Member, IEEE, Dani Korpi , Ilari Angervuori, and Risto Wichman

Abstract—As low Earth orbit (LEO) satellite communica-
tion systems are gaining increasing popularity, new theoretical
methodologies are required to investigate such networks’ perfor-
mance at large. This is because deterministic and location-based
models that have previously been applied to analyze satellite
systems are typically restricted to support simulations only. In
this paper, we derive analytical expressions for the downlink
coverage probability and average data rate of generic LEO
networks, regardless of the actual satellites’ locality and their
service area geometry. Our solution stems from stochastic geom-
etry, which abstracts the generic networks into uniform binomial
point processes. Applying the proposed model, we then study the
performance of the networks as a function of key constellation
design parameters. Finally, to fit the theoretical modeling more
precisely to real deterministic constellations, we introduce the
effective number of satellites as a parameter to compensate
for the practical uneven distribution of satellites on different
latitudes. In addition to deriving exact network performance
metrics, the study reveals several guidelines for selecting the
design parameters for future massive LEO constellations, e.g.,
the number of frequency channels and altitude.

Index Terms—Low Earth orbit (LEO) constellations, massive
communication satellite networks, coverage probability, average
achievable rate, SINR, stochastic geometry, point processes.

I. INTRODUCTION

THE challenge for providing affordable Internet coverage
everywhere around the world requires novel solutions

for ubiquitous connectivity. An emerging technology, which
can provide the infrastructure with relatively low propagation
delay compared to conventional geostationary satellites and
seamless connectivity also at polar regions, is massive low
Earth orbit (LEO) satellite networking. Many LEO constel-
lations, e.g., Kuiper, LeoSat, OneWeb, Starlink, Telesat, etc.,
have secured investors or, even, are already launching pilot
satellites. While commercial plans obviously must have been
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simulated thoroughly before putting forward, general theo-
retical understanding on the performance of massive LEO
communication constellations at large is still missing in the
scientific literature.
In this paper, we apply stochastic geometry to acquire

analytical tractable expressions for coverage probability and
average data rate of downlink LEO networks. The approach
formulated herein for the first time ever to the authors’
knowledge paves the way to study the generic performance
of satellite networking without relying on explicit orbit simu-
lations and the actual geometry of any specific constellation.

A. Related Works

In [1], the uplink outage probability in the presence of
interference was evaluated for two LEO constellations through
time-domain simulations. A performance study of Iridium
constellation was presented in [2] in terms of system capacity,
the average number of beam-to-beam handoffs and satellite-to-
satellite handoffs, the channel occupancy distribution and av-
erage call drop probability. The effect of traffic non-uniformity
on signal-to-interference ratio was studied in [3] by assuming
hexagonal service areas for satellites. A teletraffic analysis
of a mobile satellite system based on a LEO constellation
was performed in [4]. A general expression for a single LEO
satellite’s visibility time is provided in [5], but it is incapable
of concluding the general distribution of visibility periods for
any arbitrarily positioned user.
Stochastic geometry is a powerful mathematical and statis-

tical tool for the modeling, analysis, and design of wireless
networks with irregular topologies [6]–[8]. It has been mostly
used in the literature to analyze two-dimensional (planar)
terrestrial networks [6]–[14]. In [9], a comprehensive review
of the literature related to the stochastic geometry modeling
of multi-tier and cognitive cellular networks was presented.
In [10], the Poisson point process (PPP) was observed to
provide lower bounds on the coverage probability and the
average transmission rate which are as tight as an upper bound
provided by an idealized grid-based model. The work in [10]
was extended to multi-tier networks under quality-of-service
constraints in [11], [12]. Uplink coverage when base stations
and users follow independent PPPs is evaluated in [13].
While stochastic geometry has been extensively applied

for the analysis of planar scenarios, its application to three-
dimensional networks has started attracting significant atten-
tion recently [15], [16]. In [15], modeling and analysis of
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Fig. 1. Example orbits and spherical Voronoi diagrams representing the coverage areas of the nearest satellites with (a) a random constellation, (b) a polar
constellation with 87.9◦ inclination angle, (c) an inclined constellation with 70◦ inclination angle, and (d) an inclined constellation with 40◦ inclination angle.

coverage in three-dimensional cellular networks have been
investigated using a PPP model. Although PPP has provided
tractable and insightful results, it is not valid for modeling a
finite-area network with a limited number of nodes [17]. For
such cases, binomial point process (BPP) is an appropriate
model to capture the characteristics of the network [18], [19].
The performance for an arbitrarily shaped planar network is
studied in [18], [20], but the reference transmitter is assumed
to be located at a given distance, which can be overcome with
two transmitter selection policies from [14]. A BPP modeling
for a finite three-dimensional network of unmanned aerial
vehicles (UAVs) was developed in [16], [21].
Tools from stochastic geometry have been applied to study

satellite communications [22]–[25] only with a limited extent.
For instance, in [22], stochastic geometry was used to model
the locations of terrestrial users involving multi-beam satellite
and terrestrial interference from cellular base stations. The
authors in [23] derived coverage probability and data rate of a
multi-UAV downlink network through assuming PPP distribu-
tion for users where, however, no interference among users and
UAVs is considered due to their channel assignment policy.
In [24], the performance of a cognitive satellite–terrestrial
network is investigated; the secondary terrestrial network and
users are modeled as independent point processes and share
resources with a primary satellite system. An analysis of
coverage times during LEO satellite visits has been conducted
in [25] by inclusion of the distribution of users’ positions.
We can conclude from the above that the utilization of

stochastic geometry for satellite network analysis is limited to
modeling the user’s locality with a low number of satellites.
Alternative methods to stochastic geometry are unable to
provide a comprehensive analysis that fits to any arbitrary
constellation due to being associated with some specific net-

work design parameters. In these models, coverage footprints
of satellites are assumed to be identical and typically form
a regular circular or hexagonal grid, although uneven distri-
bution of satellites along different latitudes, and differences
in transmitted power and/or altitude, create irregular cells.
Moreover, there is no analytical tool to model interference
in a generic sense.

B. Contributions and Organization of the Paper

Figure 1(a) demonstrates a random constellation in which
a set of satellites is distributed on a sphere according to
a uniform point process, while Figs. 1(b)–(d) show a class
of regular deterministic Walker constellations with varying
inclination angle, in which all satellites are evenly spaced and
have the same period and inclination. Each cell represents the
coverage area of a satellite wherein it is the closest to and,
thus, serving all users located inside the polygon. The set
of all coverage cells form a Voronoi tessellation which we
can observe to be analogous in the zoomed regions for the
random constellation and deterministic Walker constellations.
While selecting the inclination angle in practice is based on
the service area of interest, we see that smaller inclination
results in a more irregular Voronoi tessellation. Furthermore,
the inter-operation of multiple LEO constellations, as it might
hold in the near future, will make satellites’ mutual positions
even more similar to those given by a random process.
Motivated by the above observations, in this paper, we first

model the satellite constellation with an appropriate point
process, which will then allow us to utilize the tools from
stochastic geometry to analyze the performance of generic
LEO networks in theory. We consider a network of a given
number of satellites whose locations are modeled as a BPP
on a sphere at a fixed altitude, which is justifiable due to the
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limited number of satellites covering a given finite region [26].
Users are located at some arbitrary locations on Earth and are
associated with the nearest satellite while some other satellites
above the horizon of a user can cause co-channel interference
due to frequency reuse. However, since satellites in Walker
constellations are distributed unevenly along different lati-
tudes, i.e., the number of satellites is effectively larger on the
inclination limit of the constellation than on the equatorial
regions, the density of practical deterministic constellations
is typically not uniform like with BPP modeling. Thus, we
apply a new parameter in order to compensate for the uneven
density w.r.t. practical Walker constellations and create a tight
match between the results generated by BPP modeling and
those from practical constellation simulations.
Based on the modeling summarized above, we present the

following scientific contributions in this paper.
• We derive exact expressions for coverage probability and
average achievable data rate of a user in terms of the
Laplace transform of interference power distribution.

• We validate our novel theoretical results with numerical
simulations and also compare them with reference results
from actual deterministic satellite constellations.

• To suppress the performance mismatch between a random
network and practical constellations, which mostly stems
from uneven distribution of satellites along different
latitudes, we define and calculate a new parameter, the
effective number of satellites, for every user latitude.

• We show that, with the above compensation, the generic
performance of large deterministic constellations can be
very accurately analyzed with theoretical expressions that
are based on stochastic constellation geometry.

• Finally, the two objectives of coverage and data rate are
evaluated for different key design parameters, e.g., the
number of frequency channels and satellite altitude.

As for propagation models, we consider two extreme cases,
namely Rayleigh fading and static propagation, for the serving
channels. The former corresponds to a more drastic fading
environment when the received signal is subject to severe
multi-path distortion due to the small elevation angle of the
transmitting satellite; this case leads to simpler expressions for
some specific path loss exponents. The latter represents the
typical cases where the serving satellite’s elevation is large
enough to provide line-of-sight to the user and, thus, weak
components from multi-path propagation become insignificant.
For interfering channels, any fading statistics can be adopted
in general since this has no effect on analytical tractability.
We see that, although increasing the number of frequency

bands improves the coverage probability, there is an optimal
number of frequency channels that maximizes the data rate
depending on the path loss exponent. Assuming a constant
effective number of satellites for different altitudes, we observe
that the optimum height which maximizes coverage probability
or data rate is not within the practical altitude range of
LEO networks (i.e., outside Earth’s atmosphere), where the
performance always declines with increasing the altitude.
The organization of the remainder of this paper is as

follows. Section II describes the system model for a ran-
domly distributed satellite network and characterizes some

User

Serving (nearest) satellite
Interfering satellites
Non-visible satellites

rmin

rmax

r⊕

θ

ab

Fig. 2. A sketch of the considered system’s stochastic geometry, where
satellites are distributed randomly on a sphere with radius r⊕ + rmin and a
user is located on the surface of another cocentric sphere with radius r⊕ .

baseline probabilities stemming from the stochastic geometry
of the system. As for the main results, we derive analytical
expressions for downlink coverage probability and average
achievable data rate for a terrestrial user in Sections III and IV,
respectively. Numerical results are provided in Section V for
studying the effect of key system parameters such as satellite
altitude and the number of frequency bands allocated for the
network. Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL

Let us consider a downlink network of N satellite base
stations that are uniformly distributed around Earth at the same
altitude rmin forming a BPP on a sphere with radius r⊕ + rmin,
where r⊕ denotes Earth’s radius, as shown in Fig. 2, while user
terminals are located on the surface of Earth. The altitude pa-
rameter rmin specifies also the minimum possible distance from
a satellite to a user (that is realized when it is directly above the
user), hence the name. We assume that wireless transmissions
propagate to a user from all and only the satellites that are
above its horizon. Correspondingly, rmax =

√︂
2r⊕rmin + r2min

denotes the maximum possible distance at which a satellite
has any effect on the network service to a user (that is realized
when the satellite is at the horizon). The notation followed in
this paper is summarized in Table I.
Each user is associated to the nearest satellite that is

referred to as the serving satellite in what follows, resulting
in spherical Voronoi tessellation for satellites’ coverage areas
as illustrated in Fig. 1(a). The other satellites may cause co-
channel interference to the user because we assume that there
are only K , with K ≤ N , orthogonal frequency channels for
the network and randomly assign a subset of N/K satellites to
each channel. The scheduling performed in this way ensures
that the nearest satellite in the constellation uses the channel
that is assigned to a user. All the other satellites on the same
channel, other than the serving satellite, cause interference to
the user’s reception whenever they are above the horizon.
We suppose that every satellite may be equipped with a

directional antenna that radiates its main lobe towards the
center of Earth. From the serving satellite, some lobe con-
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TABLE I
SUMMARY OF MATHEMATICAL NOTATION

Notation Description
r⊕; rmin Earth radius (6371 km); Altitude of satellites
R0; Rn; R Serving distance; Distance to the nth interfering satellite; Distance from the user to any satellite
G0;Gn Channel fading gain of the serving link; Channel fading gain of the nth interfering link
N;K; NI Total number of satellites; Total number of channels; Number of interfering satellites

ps Transmission power from the serving satellite
pi Transmission power from interfering satellites
σ2 Additive noise power
α Path loss exponent
T SINR threshold

Pc; C̄ Coverage probability; Average achievable rate

taining the higher power (but not necessarily the main lobe) is
likely directed to the user, while the lobes with lower power
levels radiate towards the user from the interfering satellites. In
order to approximate the effect of directional transmission, we
set differing power levels for serving and interfering satellites
which are denoted by ps and pi, respectively, such that pi ≤ ps.
If the user is located within the beamwidth of the serving
satellite, the transmitted power from it will have the main
lobe power level. Considering the main lobe transmitted power
from the serving satellite and the largest sidelobe transmitted
power from the interfering satellites, ps/pi corresponds to the
sidelobe level of the antennas.
The distances from the user to the serving satellite and the

other satellites are denoted by random variables R0 and Rn,
n = 1, 2, . . . , N − 1, respectively, while G0 and Gn represent
the corresponding channel gains. Obviously, Gn = 0 if Rn >
rmax for some n = 0, 1, . . . , N − 1, i.e., the satellite is below
horizon. For notational convenience, when NI > 0, we let
indices n = 1, 2, . . . , NI correspond to those NI ≤ N/K − 1
satellites (if any) that share the same frequency channel with
the serving satellite and are above the user’s horizon, so that
they cause co-channel interference.
Based on the above modeling, the signal-to-interference-

plus-noise ratio (SINR) at the receiver can be expressed as

SINR =
psG0R−α

0
I + σ2 , (1)

where we assume that the user’s receiver is subject to additive
noise with constant power σ2, the parameter α is a path loss
exponent,

I =
NI∑
n=1

piGnR−α
n (2)

is the cumulative interference power from all other satellites
above the user’s horizon than the serving satellite, and NI is a
random variable denoting the number of interfering satellites.
In the special case of having no interfering satellites, i.e.,
NI = 0, since they happen to be below the user’s horizon, the
SINR in (1) is reduced to signal-to-noise ratio (SNR) as

SNR =
psG0R−α

0
σ2 , (3)

and further SNR = 0 if R0 > rmax, i.e., also the nearest satellite
that is supposed to be the serving satellite is below horizon.
In order to contribute expressions for coverage probability

and average achievable rate in the following sections, we first
need to characterize some basic distance distributions that stem
from the stochastic geometry of the considered system. In
particular, we express the necessary cumulative distribution
function (CDF) and probability density functions (PDFs) in
the following three lemmas.

Lemma 1. The CDF of the distance R from any specific one
of the satellites in the constellation to the user is given by

FR (r) � P (R ≤ r) =



0, r < rmin,
r2−r2min

4r⊕(r⊕+rmin), rmin ≤ r ≤ 2r⊕ + rmin,

1, r > 2r⊕ + rmin,
(4)

and the corresponding PDF is given by

fR (r) = r
2r⊕(r⊕ + rmin) (5)

for rmin ≤ r ≤ 2r⊕ + rmin while fR (r) = 0 otherwise.

Proof. See Appendix A. �

The above distribution of R will be a key tool in deriving
other distance statistics (i.e., those of the serving and interfer-
ing satellites), which are required in turn to characterize the
distribution of SINR in (1) using stochastic geometry.

Lemma 2. The PDF of the serving distance R0 is given by

fR0 (r0) = N

(
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0

2r⊕(r⊕ + rmin) (6)

for rmin ≤ r0 ≤ 2r⊕ + rmin while fR0 (r0) = 0 otherwise.

Proof. Due to the channel assignment by which the serving
satellite is the nearest one among all the N i.i.d. satellites, the
CDF of R0 can be expressed as FR0 (r0) � P (R0 ≤ r0) = 1 −
(1 − FR (r0))N with the substitution of (4). The corresponding
PDF is obtained by differentiation to complete the proof. �
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Lemma 3. When conditioned on the serving distance such
that R0 = r0, the PDF of the distance from any other satellite
to the user is given by

fRn |R0 (rn |r0) =
fR (rn)

1 − FR (r0) (7)

for r0 < rn ≤ 2r⊕ + rmin while fRn |R0 (rn |r0) = 0 otherwise.

Proof. The CDF of Rn |R0=r0 is obtained by conditioning R on
R0 as follows:

FRn |R0 (rn |r0) � P (Rn < rn |R0 = r0)
=

P (r0 ≤ R ≤ rn)
P(R > r0) =

FR(rn) − FR(r0)
1 − FR(r0) . (8)

The proof is then completed by taking the derivative of the
CDF with respect to rn for obtaining the PDF in (7). �

Furthermore, other auxiliary performance factors, which
will be shortly used in analyzing coverage probability and
average achievable data rate, are the number of interfering
satellites NI and the probability P0 of having an interference-
free situation (NI = 0) when R0 = r0. They will be expressed
in the following lemma and its corresponding corollary.

Lemma 4. When the serving satellite is at distance r0 ≥ rmin
from the user, the number of interfering satellites, denoted by
NI , is a binomial random variable with success probability

PI =
rmin −

(
r20 − r2min

)/(2r⊕)
2(r⊕ + rmin) −

(
r20 − r2min

)/(2r⊕) . (9)

Proof. The expression is directly given by the ratio of the
surface area where visible interfering satellites can reside (the
spherical cap formed by the intersection of the user’s plane and
the satellites’ sphere) to the total surface area of the satellites’
sphere excluding the shaded cap of Fig. 2. �

It should be noted that there are N/K − 1 satellites sharing
the same channel with the serving satellite and potentially
causing co-channel interference. The probability of having no
interference (NI = 0) then follows from the corollary below.

Corollary 1. When the serving satellite is at distance r0 ≥
rmin from the user, the probability of having zero co-channel
interference is given by

P0 � P(NI = 0) = (1 − PI)
N
K −1

=

(
1 − rmin −

(
r20 − r2min

)/(2r⊕)
2(r⊕ + rmin) −

(
r20 − r2min

)/(2r⊕)
) N

K −1
(10)

for r0 ≤ rmax, and P0 = 1 when r0 > rmax.

Especially, the above probability turns out to be a key factor
for LEO constellation analysis since, for the derivation of the
following performance metrics, we can separately consider the
two complementary events of having either zero interference
or non-zero interference.

III. COVERAGE PROBABILITY

In this section, we apply stochastic geometry to derive the
downlink coverage probability of the LEO satellite network
for a user in an arbitrary location on Earth. The performance
measure of coverage probability is defined as

Pc (T) � P (SINR > T) , (11)

where T represents the minimum SINR required for successful
data transmission. In other words, whenever the SINR of the
considered user from its nearest satellite is above the threshold
level T , it is considered to be within the coverage of the
satellite communication network.

A. Coverage Probability under Rayleigh Fading Channel

In this subsection, the propagation model takes into account
the large-scale attenuation with path loss exponent α, as well
as the small-scale fading. In particular, the serving channel
is assumed to follow normalized Rayleigh fading so that the
corresponding channel gain is an exponential random variable
with unit mean, i.e., G0 ∼ Exp (1), while interfering channels
are considered to follow general fading (but Rayleigh fading
for interfering channels is also analyzed as a special case).
The Rayleigh fading model is applicable when the line-

of-sight portion of signals received at the user’s place is
smaller than that of non-line-of-sight components. Due to
lower altitudes in LEO constellations w.r.t. medium Earth or
geostationary orbits (MEO/GEO), a strong LoS component is
less likely available for the user if the number of satellites is
limited. For instance, for constellations with a fewer number of
satellites such as Iridium with only 66 satellites, the probability
of having even medium elevation angle is rather low [27]
that implies very low LoS probability. The probability of
receiving LoS signals from interfering satellites is even lower
due to their having smaller elevation angles. In addition, due
to the shorter orbital period in LEO satellites, the channels
vary rapidly with time and location which causes considerable
Doppler variation at the user’s location.
We express the coverage probability under the Rayleigh

fading assumption for the serving channel as follows. In partic-
ular, we split the coverage probability into two terms, each of
them corresponding to an important operational circumstance:
The first term represents the case when there is no interference;
and the second term corresponds to the case when there is at
least one interfering satellite.

Theorem 1. The probability of network coverage for an arbi-
trarily located user under a Rayleigh-fading serving channel
is

Pc (T) = P0 P(SNR > T) + (1 − P0) P(SINR > T |NI > 0)
(12)

with

P(SNR > T) = N
2r⊕(r⊕ + rmin)

∫ rmax

rmin

e−
Trα0
ps σ2

×
(
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dr0 (13)
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and

P(SINR > T |NI > 0) = N
2r⊕(r⊕ + rmin)

∫ rmax

rmin

e−
Trα0
ps σ2

×LI

(Trα0
ps

) (
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dr0, (14)

where LI (s) is the Laplace transform of cumulative interfer-
ence power I that is expressed in Lemma 5 and P0 is given
in (10) by Corollary 1.

Proof. To obtain (13), we start with the definition of coverage
probability for the case of having zero interference:

ER0 [P (SNR > T |R0 = r0)]
=

∫ rmax

rmin

P (SNR > T |R0 = r0) fR0 (r0) dr0

=
N

2r⊕(r⊕ + rmin)
∫ rmax

rmin

P

( psG0r−α0
σ2 > T

)

×
(
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dr0. (15)

The upper limit for the integral is due to the fact that the
satellites below the user’s horizon are not visible to the user.
Invoking the assumption regarding the distribution of G0, the
expression in (13) is obtained. To prove (14), we first note that
there is at least one interfering satellite, so that we have

ER0 [P (SINR > T |R0 = r0, NI > 0)]
=

∫ rmax

rmin

P (SINR > T |R0 = r0, NI > 0) fR0 (r0) dr0

=
N

2r⊕(r⊕ + rmin)
∫ rmax

rmin

P

( psG0r−α0
I + σ2 > T

���NI > 0
)

×
(
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dr0. (16)

When G0 ∼ Exp (1), we can express the first term in the
integrand of (16) as

P

(
G0 >

Trα0
(
I + σ2)
ps

����NI > 0

)

= EI

[
P

(
G0 >

Trα0
(
I + σ2)
ps

����NI > 0

)]

= EI

[
exp

(
−Tr

α
0

ps

(
I + σ2

))]

= e−
Trα0
ps σ2

EI

[
e−

Trα0
ps I

]
= e−

Trα0
ps σ2LI

(Trα0
ps

)
. (17)

Substituting (17) into (16) completes the derivation of (14).
�

It is worth highlighting that, in the case of having K = N
orthogonal channels, the system becomes noise-limited and
the coverage probability in (12) will reduce to its first term.
In the following lemma, we will obtain the Laplace function
of the random variable I to complete the derivation of (14).

Lemma 5. When the serving satellite is at distance r0 ≥ rmin
from the user, the Laplace transform of random variable I is

LI (s) =
N
K −1∑
nI=1

(( N
K − 1
nI

)
PnI
I (1 − PI)

N
K −1−nI

×
( 2
r4max/r2min − r20

∫ rmax

r0

LGn

(
spir−αn

)
rn drn

)nI )
,

(18)

where PI is given in (9) by Lemma 4 and LGn (·) is the Laplace
transform of the random variable Gn.

Proof. See Appendix B. �

Consequently, by only specifying LGn (·) at the point
spir−αn , i.e., assuming some specific fading model, the Laplace
transform of interference for any fading distribution can be
calculated using Lemma 5. For instance, when Gn is exponen-
tially distributed, LGn (spir−αn ) = 1

1+pisr−αn
. Thus, the Laplace

function of interference when interfering channels are assumed
to be Rayleigh is given by the following corollary.

Corollary 2. When the serving satellite is at distance r0 ≥ rmin
from the user and interfering channels experience Rayleigh
fading, i.e., Gn ∼ Exp (1) for n = 1, . . . , NI, the Laplace
transform of random variable I is

LI (s) =
N
K −1∑
nI=1

( N
K − 1
nI

)
PnI
I (1 − PI)

N
K −1−nI

×
(

2
r4max/r2min − r20

∫ rmax

r0

(
rn

1 + pisr−αn

)
drn

)nI
. (19)

Consequently, for Rayleigh-fading interfering channels and
particular values of the path loss exponent, Lemma 5 will
reduce to elementary functions, which will result in a simpler
expression for (14). Using [28, Eq. 3.194.5], the integral in
(19) can be rewritten as∫

rn
1 + pisr−αn

drn

= − r2n
2

(
2F1

(
1,

2
α
; 1 +

2
α
;− rαn

pis

)
− 1

)
, (20)

where 2F1 (·, ·; ·; ·) is the Gauss’s hyper-geometric function.
Using the definition of the function [28, Eq. 9.100] and
substituting with special arguments, it is reduced to elementary
functions. If α = 2, we have [28, Eq. 9.121.5]

2F1

(
1, 1; 2;− rαn

pis

)
=

pis ln
(
1 + r2n/(pis)

)
r2n

(21)

so that (19) can be rewritten as

LI (s) =
N
K −1∑
nI=1

( N
K − 1
nI

)
PnI
I (1 − PI)

N
K −1−nI

× r2max − r20
r4max/r2min − r20

(
pis

r2max − r20
ln

(
pis + r20
pis + r2max

)
+ 1

)nI
.

(22)
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On the other hand, if we assume α = 4, the Gauss hyper-
geometric function can be written as [28, Eq. 9.121.27]

2F1

(
1,
1
2
;
3
2
;− r4n

pis

)
=

√
pis arctan

(
r2n/

√
pis

)
r2n

, (23)

by which (19) is simplified into a closed-form expression as

LI (s) =
N
K −1∑
nI=1

( N
K − 1
nI

)
PnI
I (1 − PI)

N
K −1−nI

× r2max − r20
r4max/r2min − r20

( √
pis

r2max − r20
arctan

(√
pis

(
r20 − r2max

)
pis + r2maxr20

)
+ 1

)nI
.

(24)

B. Coverage Probability under Non-fading Channels

In this subsection, we derive the coverage probability
for non-fading propagation environments. This propagation
model is applicable (at least as an accurate approximation)
when the number of satellites in a constellation is large
enough, so that it is likely to have multiple satellites in
LoS propagation range. Consequently, the serving satellite is
likely high above the user and potential multi-path fading
components are weak compared to the direct propagation
path. Moreover, the LoS probability for interfering satellites
increases as we decrease the number of frequency channels.
Similar to Theorem 1, the coverage probability is split

into two terms. The first one is for the case of having no
interference and, in the second term, we assume that there is
at least one interfering satellite. As will be seen shortly, other
than representing two important communication scenarios,
such division is needed to make our approach tractable. For
the non-fading serving channel, we denote G0 = 1. Like in the
previous section, any general fading statistics can be assumed
for interfering channels, for which non-fading interference is
considered as a special case towards the end of the section.

Theorem 2. The coverage probability of a user with a non-
fading serving channel is

Pc(T) = P0 P(SNR > T) + (1 − P0) P(SINR > T |NI > 0),
(25)

with

P(SNR > T) = FR0

(( ps
Tσ2

) 1
α

)
(26)

and

P(SINR > T |NI > 0) = N
4πr⊕(r⊕ + rmin)

∫ rmax

rmin

∫ ∞

−∞
LI ( jω)

×
�����
e
j

(
ps

Trα0
−σ2

)
ω − 1

jω

�����

(
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dr0dω.

(27)

Proof. The derivation of (26) is straightforward by substituting
G0 → 1 in (3) and using the definition of a CDF. Excluding
zero interference from I satisfies the sufficient conditions,
given in [29, Prop. A.2], for its PDF fI (·) to exist (especially,

I is continuous). Substituting G0 → 1 in the first term of the
integral in (16), we have

P
(
Trα0 (σ2 + I) < ps

��NI > 0
)
= P

(
I <

ps
Trα0

− σ2
���NI > 0

)
(28)

=

∫ ps
Trα0

−σ2

0
fI (i)di (29)

=
1
2π

∫ ∞

−∞
LI (s)|s=jω e

j

(
ps

Trα0
−σ2

)
ω − 1

jω
dω. (30)

The latter equality follows immediately from the Parseval–
Plancherel property and from the fact that the Fourier trans-
form of the square integrable function 1

(
0 ≤ t ≤ ps

Trα0
− σ2)

is
(
1 − e

−j( ps
Trα0

−σ2)ω )/( jω) according to [30]. �

The Laplace function LI (s) for general fading can be
obtained using Lemma 5 given in the previous section. The
following corollary presents the Laplace function when inter-
fering signals experience non-fading propagation as well.

Corollary 3. When the serving satellite is at distance r0 ≥
rmin from the user, the Laplace transform of I for non-fading
channels is

LI (s) =
N
K −1∑
nI=1

( N
K − 1
nI

)
PnI
I (1 − PI)

N
K −1−nI

×
����

2(spi)2/α

α
(
r4max/r2min − r20

) [
Γ(−2/α, spir−αmax) − Γ(−2/α, spir−α0 )]����

nI

,

(31)

where Γ(a, x) =
∫ ∞
x

ya−1e−ydy denotes the upper incomplete
gamma function.

Proof. The first term of the integrand in Lemma 5 will be
reduced to an exponential function. As a result, the integral can
be expressed in form of the upper incomplete gamma function
defined as Γ(a, x) =

∫ ∞
x

ya−1e−ydy by changing integration
variable as spir−αn → y. �

IV. AVERAGE ACHIEVABLE RATE

In this section, we focus on the average achievable data rate.
The technical tools and expressions presented in Sections II
and III are reused also herein. The average achievable rate (in
bit/s/Hz) is defined as

C̄ �
1
K

E
[
log2 (1 + SINR)] , (32)

which states the ergodic capacity from the Shannon–Hartley
theorem over a fading communication link normalized to the
bandwidth of 1/K [Hz].

A. Average Achievable Rate under Rayleigh Fading Channel

We can calculate the expression for the average rate of
an arbitrary user under the assumption of a Rayleigh-fading
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serving channel as follows. It is worth noting that the average
is taken over both the spatial BPP and fading distribution.

Theorem 3. The downlink average rate (in bits/s/Hz) of an
arbitrarily located user and its serving satellite under Rayleigh
fading assumption, i.e., G0 ∼ Exp (1), is

C̄ �
P0
K

E
[
log2 (1 + SNR)]

+
1 − P0
K

E
[
log2 (1 + SINR) |NI > 0

]
, (33)

with

E
[
log2 (1 + SNR)]
=

N
2 ln(2)r⊕(r⊕ + rmin)

∫ rmax

rmin

∫
t>0

e−
rα0
ps σ

2(et−1)

×
(
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dtdr0 (34)

and

E
[
log2 (1 + SINR) |NI > 0

]
=

N
2 ln(2)r⊕(r⊕ + rmin)

∫ rmax

rmin

∫
t>0

e−
rα0
ps σ

2(et−1)

× LI

( rα0
ps

(
et − 1

) ) (
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dtdr0.

(35)

Proof. See Appendix C. �

The above applies to interfering channels with any fading
statistics. However, analogous to the results in Section III, by
considering Gn ∼ Exp (1) for some specific α values, i.e., α =

2 and α = 4, and substituting (22) or (24) into (35) will lead to
more simplified expressions for Theorem 3. Moreover, if we
allocate K = N orthogonal channels to the system, the second
term in (33) will be eliminated and the network’s performance
will become noise-limited.

B. Average Achievable Rate under Non-fading Channels

In this subsection, we derive the average data rate for non-
fading serving channels and any fading statistics for inter-
ference. The rate expression is again split into two terms to
consider zero and non-zero interference conditions separately.

Theorem 4. The downlink average rate of an arbitrary located
mobile user and its serving satellite for a non-fading channel
is

C̄ �
P0
K

E
[
log2 (1 + SNR)]

+
(1 − P0)

K
E
[
log2 (1 + SINR) |NI > 0

]
, (36)

with

E
[
log2 (1 + SNR)] = 1

ln(2)
∫
t>0

FR0

((
ps

(et − 1)σ2

) 1
α

)
dt

(37)
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Fig. 3. Verification of coverage probability expressions with simulations for
N = 720 satellites. The path loss exponent (α) is set to 2 and 4.

and

E
[
log2 (1 + SINR|NI > 0)]

=
N

4π ln(2)r⊕(r⊕ + rmin)
∫ rmax

rmin

∫
t>0

∫ ∞

−∞
LI ( jω)

×
�����
e
j

(
ps

rα0 (et −1) −σ
2
)
ω − 1

jω

�����

(
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dω dt dr0.

(38)

Proof. See Appendix D. �

In case of non-fading interfering channels, the Laplace
transform in (38) can be calculated from Corollary 3.

V. NUMERICAL RESULTS

In this section, we verify our expressions for coverage
probability and average data rate by comparing them with
the results of Monte Carlo simulations. We obtain a new
parameter—effective number of satellites (Neff)—to compen-
sate for the effect of uneven distribution of satellites along
different latitudes. We then illustrate the two performance
metrics in terms of different network design parameters such
as the number of frequency channels and the satellite altitude.
For numerical verification, we calculate the simulated cov-

erage probability in Monte Carlo manner as follows. First,
we randomly place N satellites with uniform distribution on a
sphere centered at Earth’s center and distanced rmin from its
surface. At the same time, we also model the channels between
the satellites and the user by exponential random variables
(to model Rayleigh fading) with unit mean value while, to
model a non-fading environment, we set the channel gains to
one. Then we calculate the SINR at the receiver and compare
it with a pre-defined threshold value to evaluate coverage
probability. We repeat this experiment for a large number
of realizations to obtain the averaged performance metrics.
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Fig. 4. Effect of the number of frequency bands (K) on average achievable
rate with Rayleigh and non-fading channels.

Finally, we compare these numerical results with the analytical
expressions in Theorems 1–4 to confirm our analysis.
For producing the numerical results, the transmitted power

from all satellites is set to ps = pi = 10 W. The assumption
corresponds to the case where all satellites are equipped with
omni-directional antennas. The theory is applicable also to
other antenna patterns by adjusting different power levels
for the serving and interfering satellites accordingly to take
into account that the serving satellite’s transmission would
be directed to the user while all interfering transmissions are
sent to other, arbitrary and independent, directions. The noise
power is assumed to be σ2 = −98 dBm. The number of
channels is considered to be K = 20 unless otherwise stated.

A. Corroboration of Theorems by Simulations

In this subsection, we validate the coverage probability and
the data rate derived in Theorems 1–4 through Monte Carlo
simulations. We considered static propagation or Rayleigh
fading for serving channels and general fading for interference.
Figure 3 demonstrates the coverage probability for different

threshold values assuming α is 2 and 4. The parameters
N and rmin are set to 720 and 1200 km, respectively. We
find that our theoretical results are perfectly in line with the
simulations, which confirms the correctness of the derivations.
The transition of coverage probability from one to zero occurs
variously depending on path loss exponent and the type of
fading. For α = 2, the coverage probability saturates when
T > 20 dB which corresponds to the case when the number
of interfering satellites is considerable. As a result, the SINR
and, consequently, the second term in Theorem 1 approach
zero. For larger path loss exponents, the effect of interference
becomes insignificant and the transition from one to zero
includes no saturation mode since the difference between SNR
and SINR becomes less dominant. All curves tend to zero for
thresholds greater than 80 dB although not shown in the figure.
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Fig. 5. Effect of frequency reuse on coverage probability for different
propagation environments and path loss exponents.

Figure 4 shows average achievable data rate versus the
number of frequency bands for Rayleigh fading and non-
fading environments. The behavior of the curves can be
justified according to two contradictory effects of increasing
the number of orthogonal channels on data rate. Allocating
more orthogonal channels improves data rate by mitigating
the interference but, at the same time, degrades it by making
only a portion of the whole band available for each group
of satellites. For α = 2, the former effect dominates for
K < 45 as by increasing K , data rate increases accordingly,
while for K > 45, the latter effects overcomes the interference
elimination effect and data rate starts falling.
The effect of increasing the number of channels on the

reduced available frequency band dominates the SINR en-
hancement for α = 4 since the largest average data rate for
α = 4 corresponds to the lowest number of frequency channels.
This is due to the fact that the larger path loss exponents make
the interfering satellites less effective since they transmit from
a farther distance. As it can be observed in the figure, for
AWGN channel and α = 2, the behaviour of the data rate is
slightly affected by the fading model.
The effect of frequency reuse on coverage probability can be

determined from Fig. 5. The channel allocation policy is such
that the channel corresponding to the nearest satellite to the
user will be selected. As can be observed, the coverage prob-
ability rises with increasing the number of frequency bands
due to interference mitigation, and all three curves present
the same behaviour. However, the effect of the parameter K is
more significant for the smaller path loss exponent as it affects
the interference level more significantly. The coverage perfor-
mance is superior for non-fading environment due to better
quality of the serving signal. It can be interpreted from Figs. 4
and 5 that the coverage probability is an increasing function of
the number of channels, i.e., the higher number of frequency
channels will result in better coverage probability, while there
is an optimum number of channels that maximizes the data
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Fig. 6. Comparison of Theorem 1 with actual polar and inclined constella-
tions. The user’s latitude is set to 30◦.

rate. Therefore, the number of frequency channels should be
compromised according to the performance demands of the
intended constellation.

B. Effective Number of Satellites

In this subsection, we provide analysis of deterministic
Walker satellite constellations with different inclination angles
which are expected to provide global Internet broadband
services to users by 720 LEO satellites. In Fig. 6, the coverage
probability of the Walker constellation, with inclination angles,
φi, of 90◦ (polar), 70◦ and 40◦ are plotted for comparison
to a random constellation. The user’s latitude, denoted by
φu, is assumed to be 30◦. The slight difference of coverage
probability in random and Walker constellations is due to
the fact that the latitudal density of satellites in deterministic
constellations is not uniform, as there are more satellites
around their inclination angle (i.e., the latitude limits) and
less in the equatorial regions. Consequently, the coverage
probability changes as we move from the equator to the
latitude limits.
In order to compensate for uneven latitudal density, we

introduce a new parameter, entitled as the effective number of
satellites, and denote it by Neff(φi, φu), which is the number of
satellites for a random uniform constellation that corresponds
to the same coverage probability as for a practical non-
uniform constellation with inclination angle φi and at the
user latitude φu. This parameter is approximated by mean
absolute error minimization between the coverage probability
given in Theorem 1 and the results from practical Walker
constellation for a few threshold values on different latitudes.
The approximated value for Neff is then refined to give the best
matching between random and practical constellation based on
the target performance metric. Although we used some of the
values from simulated results to obtain Neff , the same Neff can
be used for other system parameters, i.e., path loss exponent
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Fig. 7. Effect of using Neff in Theorem 1 on providing a better matching
between the random and practical constellations. Filled points have been used
in mean absolute error minimization process in order to obtain Neff .
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Fig. 8. Effect of latitude on coverage probability. The markers for coverage
probability are plotted by simulation of a Walker constellation for 90◦, 70◦ and
40◦ inclined orbits. The right axis depicts Neff (φi, φu) for different latitudes.
The lines are plotted by applying Neff (φi, φu) in Theorem 1.

and/or SINR threshold values. Likewise, the acquired Neff can
be also used for a constellation with different total number of
satellites by linearly scaling it accordingly.
In Fig. 7, we eliminated the deviation between Walker and

random constellations (cf. Fig. 6) by compensating the non-
uniform latitudal density. The solid markers on the curves
were chosen from practical constellation in order to minimize
the mean absolute error in coverage probability of a random
constellation. As it can be seen, although only a few points
are employed for fitting, the selected Neff also holds for other
values that had no contribution on the minimization process. In
other words, applying Neff in theorems provided in this paper
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Fig. 9. Comparison of Theorem 3 with actual polar and inclined constella-
tions. The user’s latitude is set to 30◦.

will lead to more precise results for many system parameters
and performance metrics by taking into account only a few
input data from the actual network.
In Fig. 8, the effect of latitude of user on coverage prob-

ability is shown for three practical constellations. In this
figure, we have two groups of data that demonstrate the
coverage probability. The first group (depicted by markers)
is obtained by simulation of a Walker constellation for polar,
70◦ and 40◦ inclined orbits. For a polar constellation, the
number of satellites in the view increases monotonically from
the equator to poles. As a result, the coverage probability
declines as the user moves from the equator to poles due to
intensifying interference. On the other hand, for the other two
inclination angles, the number of satellites in the view varies
non-uniformly due to the network geometry which results in
coverage alternation for different latitudes. The zero coverage
probability for user latitudes greater than 75◦ in 40◦-inclined
Walker results from the fact that there are no visible satellites
for those latitudes.
The second group of data (depicted by lines) in Fig. 8

is generated using Theorem 1 with Neff(φi, φu) satellites. As
can be seen in the figure, coverage probability in Theorem 1
for Neff(φi, φu) results in the same coverage from Walker
constellation for the given φu. Therefore, using Neff(φi, φu) in
Theorem 1, the effect of uneven distribution of satellites along
different latitudes is compensated and the coverage probability
can be obtained for any actual constellation. Most importantly,
we can conclude that the approximation error in modeling
deterministic constellations as random ones is actually rather
minimal when the varying satellite density at different latitudes
is taken into account.
The data rate of a Walker satellite constellation for different

inclination angles to compare with a random constellation (viz.
Theorem 3) is depicted in Fig. 9. As mentioned for Fig. 6, the
difference between the random and Walker constellation is
mainly due to the non-uniform density of satellites in Walker
constellation. The optimal number of frequency channels that
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Fig. 10. Effect of using Neff in Theorem 3 on providing a better matching
between the random and practical constellations.

can be observed in this figure for each of the constellations
increases by decreasing the inclination angle. Figure 10 depicts
the effect of applying Neff to Theorem 3 in eliminating the
observed deviation in Fig. 9. The selected Neff values are
slightly different from those in Fig. 7 since they are refined
to create the best possible matching between the data rate of
the random and practical constellation.
Figure 11 is a counterpart for Fig. 8 to illustrate the effect

of latitude of the user on achievable data rate and Neff(φi, φu).
In this figure, Neff(φi, φu) is the number of satellites in a
random constellation that corresponds to the same data rate
as a Walker constellation for the given φu. Due to different
values of Neff(φi, φu) in Figs. 8 and 11, we can realize that this
value is not only a function of geometrical characteristics of
the constellation but also depends slightly on the performance
metric. However, the compensation of latitudal density is still
applicable to varying system parameters that are different from
those used for fitting theoretical expressions to simulations.

C. The Effect of Satellite Altitude

Coverage probability for different altitudes is then depicted
in Fig. 12. The figure is plotted using Neff(φi, φu) for Theo-
rem 1. In this figure, we assumed that the total number of
satellites varies with altitude so that Neff remains constant
irrespective of altitude. This balances between a practical
constellation design in which the number of satellites (when
aiming at covering economically the entire globe) typically
decreases with increasing altitude and the direct relationship
between altitude and the effective number of satellites. It can
be observed from Fig. 12 that, for practical LEO altitudes, the
coverage probability declines when altitude increases. Within
Earth’s atmosphere, there is an impractical optimal altitude,
which moves even lower as the number of satellites increases.
Data rate for different altitudes is plotted in Fig. 13. The

figure is created using Theorem 3 with Neff(φi, φu) that cor-
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Fig. 11. Effect of latitude on average data rate and Neff (φi, φu). The markers
for data rate are plotted by simulation of a Walker constellation for 90◦, 70◦
and 40◦ inclined orbits. The lines are plotted by applying Neff (φi, φu) in
Theorem 3.

responds to a specific latitude φu for Walker constellations
(polar and inclined). The same assumption as for Fig. 12 is
also made regarding the invariance of Neff w.r.t. altitude. This
serves to show that, having Neff(φi, φu) at hand, we can use
the expressions in Theorems 3 or 4 to analyze the data rate for
any given satellite constellation and the approximation error
in modeling a deterministic constellation as a binomial point
process is insignificant. The same as for Fig. 12, it can be seen
that the peak value of data rate does not exist within the LEO
practical altitude range outside atmospheric drag.

VI. CONCLUSIONS

In this paper, we presented a tractable approach for down-
link coverage and rate analysis of low Earth orbit satel-
lite networks. Using the concept of stochastic geometry, we
modeled the satellite network as a binomial point process.
We then applied this model to obtain exact expressions for
coverage probability and data rate of an arbitrary user in
terms of network parameters and the Laplace transform of
interference power. The performance metrics of the random
and real constellation match with each other almost perfectly;
there is only a slight deviation between them which can be
compensated by taking into account the effect of uneven
satellite distribution along different latitudes. A frequency
reuse approach was also applied to make the network spectral
efficiency suitable for commercial operation. Its effect on data
rate is more ambivalent than on coverage probability. The
proposed framework in this paper paves the way for accurate
analysis and design of the future dense satellite networks. The
scalable results presented here are not only applicable to a
single constellation but also to massive satellite networks that
merge several different constellations.

Fig. 12. Coverage probability for different altitudes. Curves are plotted using
Theorem 1 for different Walker constellations in φu = 0◦, 30◦, and 60◦
assuming N = Neff (φi, φu).

Fig. 13. Average rate for different altitudes. Curves are plotted using Theorem
3 for different Walker constellations in φu = 0◦, 30◦, and 60◦ assuming
N = Neff (φi, φu).

APPENDIX

A. Proof of Lemma 1

From basic geometry, the CDF of the surface area of the
shaded spherical cap Acap, formed by any satellite at distance
R from the user, in Fig. 2 is FAcap (Ai) = Ai

4π(r⊕+rmin)2 . To find
the distribution of R, we need to find a relationship between
Acap and R, when know that

Acap = π
(
a2 + b2

)
, (39)

R2 = (rmin − b)2 + a2, (40)
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for which a and b are given in Fig. 2. Combining (39) and
(40), we have

R2 = r2min − 2rminb + b2 + a2 = r2min − 2rminb +
Acap

π

= r2min − 2rmin(r⊕ + rmin) (1 − cos θ) + Acap

π
. (41)

Using the formula for the surface area of a spherical cap, i.e.,
Acap = 2π(r⊕ + rmin)2(1 − cos θ), we obtain

R2 = r2min − 2rmin(r⊕ + rmin)
(

Acap

2π(r⊕ + rmin)2
)
+

Acap

π

= r2min +
Acap

π

(
1 − rmin

r⊕ + rmin

)
. (42)

The CDF can then be deduced as follows:

P (R < r) = P
(
R2 < r2

)
= P

(
r2min +

Acap

π

(
1 − rmin

r⊕ + rmin

)
< r2

)

= P

(
Acap <

π
(
r2 − r2min

)
1 − rmin

r⊕+rmin

)

=
π
(
r2 − r2min

)
(
1 − rmin

r⊕+rmin

)
4π (r⊕ + rmin)2

=
r2 − r2min

4r⊕(r⊕ + rmin) . (43)

Finally, the corresponding PDF can be derived by differenti-
ating (43) with respect to r .

B. Proof of Lemma 5

In this Appendix, we provide the proof to the expression
of Laplace function for general fading channels. Using the
definition of the Laplace transform yields

LI (s) ≜ EI

[
e−sI

]
= ENI,Rn,Gn

[
exp

(
−s

NI∑
n=1

piGnR−α
n

)]

= ENI,Rn,Gn

[
NI∏
n=1

exp
(−spiGnR−α

n

) ]

(a)
= ENI,Rn

[
NI∏
n=1

EGn

[
exp

(−spiGnR−α
n

) ] ]

(b)
= ENI

[ NI∏
n=1

2
r4max/r2min − r20

×
∫ rmax

r0

EGn

[
exp

(−spiGnr−αn
) ]
rn drn

]

(c)
=

N
K −1∑
nI=1

(( N
K − 1
nI

)
PnI
I (1 − PI)

N
K −1−nI

( 2
r4max/r2min − r20

×
∫ rmax

r0

EGn

[
exp

(−spiGnr−αn
) ]

rn drn
)nI )

(d)
=

N
K −1∑
nI=1

(( N
K − 1
nI

)
PnI
I (1 − PI)

N
K −1−nI

×
( 2
r4max/r2min − r20

∫ rmax

r0

LGn

(
spir−αn

)
rn drn

)nI )
(44)

where (a) follows from the i.i.d. distribution of Gn and its
further independence from NI and Rn, (b) is obtained using
the interfering distance distribution from (7), (c) is the aver-
aging over the binomial random variable NI with the success
probability PI, which is given in Lemma 4, and (d) is the
substitution from the definition of Laplace function.

C. Proof of Theorem 3

We only provide the proof for (35) herein, while the proof
for (34) follows the same approach as well. In particular,

EI,G0,R0

[
log2 (1 + SINR) |NI > 0

]
= c0

∫ rmax

rmin

E

[
ln

(
1 +

psG0r−α0
I + σ2

) NI > 0
]

×
(
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dr0

(a)
= c0

∫ rmax

rmin

∫
t>0

P

(
ln

(
1 +

psG0r−α0
I + σ2

)
> t

NI > 0
)
dt

×
(
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dr0

= c0

∫ rmax

rmin

∫
t>0

P

(
G0 >

rα0
ps

(
σ2 + I

) (
et − 1

) NI > 0
)
dt

×
(
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dr0

= c0

∫ rmax

rmin

∫
t>0

EI

[
e−

rα0
ps (I+σ2)(et−1)NI > 0

]
dt

×
(
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dr0

= c0

∫ rmax

rmin

∫
t>0

e−
rα0
ps σ

2(et−1)EI

[
e−

rα0
ps (et−1)I

]
dt

×
(
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dr0, (45)

where c0 = N
2 ln(2)r⊕(r⊕+rmin) and (a) follows from the fact that

for a positive random variable X , E [X] =
∫
t>0 P (X > t) dt.

D. Proof of Theorem 4

Assuming Gn = 1, we have

EI,R0

[
log2 (1 + SINR) |NI > 0

]
= c0

∫ rmax

rmin

EI

[
ln

(
1 +

psr−α0
I + σ2

) NI > 0
]

×
(
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dr0

= c0

∫ rmax

rmin

∫
t>0

P

(
ln

(
1 +

psr−α0
I + σ2

)
> t

NI > 0
)
dt
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×
(
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dr0

= c0

∫ rmax

rmin

∫
t>0

P
(
ps > rα0

(
σ2 + I

) (
et − 1

)
dt
���NI > 0

)

×
(
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dr0

= c0

∫ rmax

rmin

∫
t>0

P

(
0 < I <

ps
rα0 (et − 1) − σ2

)
dt

×
(
1 − r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0 dr0, (46)

where c0 = N
2 ln(2)r⊕(r⊕+rmin) . Following the same approach as in

(28)–(30) and using Parseval–Plancherel formula will result in
(38). The proof for (37) can be obtained easily using the same
principles as the above and only by substituting I = 0.
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Abstract—As emerging massive constellations are intended to
provide seamless connectivity for remote areas using hundreds of
small low Earth orbit (LEO) satellites, new methodologies have
great importance to study the performance of these networks. In
this paper, we derive both downlink and uplink analytical expres-
sions for coverage probability and data rate of an inclined LEO
constellation under general fading, regardless of exact satellites’
positions. Our solution involves two phases as we, first, abstract
the network into a uniformly distributed network. Secondly, we
obtain a new parameter, effective number of satellites, for every
user’s latitude which compensates for the performance mismatch
between the actual and uniform constellations. In addition to
exact derivation of the network performance metrics, this study
provides insight into selecting the constellation parameters, e.g.,
the total number of satellites, altitude, and inclination angle.

I. INTRODUCTION

A constellation of low Earth orbit (LEO) satellites can
provide infrastructure for ubiquitous connectivity with low
round-trip delay—compared to geostationary satellites—when
terrestrial networks are not available or economically reason-
able to deploy [1], [2]. Technological advancements along with
the need for seamless connectivity have emerged the utilization
of massive satellite networks and, consequently, the research
around this topic.
The uplink outage probability in the presence of interfer-

ence was evaluated for two LEO constellations through time-
domain simulations in [3]. A performance study of Iridium
constellation was presented in [4] in terms of the distribution
of the number of handoffs involved in a single transaction
duration and the average call drop probability. The effect
of traffic non-uniformity was studied in [5] by assuming
hexagonal service areas for satellites.
A general expression for a single LEO satellite’s visibility

time was provided in [6], but it is incapable of concluding
the general distribution of visibility periods for any arbitrarily
positioned user. The deterministic model in [6] was then
developed by a statistical analysis of coverage time in mobile
LEO during a satellite visit [7]. In [8], the Doppler shift
magnitude of a LEO network is characterized for a single
spotbeam by using tools from stochastic geometry. Resource
control of a hybrid satellite–terrestrial network was performed
in [9] with two objectives of maximizing the delay-limited
capacity and minimizing the outage probability. A hybrid

This research work was supported by a Nokia University Donation.

satellite–terrestrial network to assist 5G infrastructure has been
analyzed by considering only one spotbeam [10], [11].
In the current literature around communication satellites’

performance, the network analysis is limited to deterministic
simulation-based studies, simplifying the network by consider-
ing specific constellations with a limited number of satellites,
and assuming specific coverage footprints for satellites. There-
fore, a comprehensive method that fits any constellation with
arbitrary parameters is missing from the scientific literature.
In our recent study [12], downlink performance of a massive
LEO constellation was investigated by assuming uniform
distribution for satellites. However, the performance mismatch
between actual and uniform constellations was compensated
only through numerical mean absolute error minimization.
In this paper, we provide a mathematical framework for

downlink and uplink coverage probability and data rate anal-
ysis of an inclined LEO constellation under a general fading
model. For our derivations, first, we assume the satellites are
distributed uniformly on the orbital shell. Later, the mismatch
between the actual and uniform constellations is compensated
by deriving a new parameter as the effective number of
satellites. Finally, the mathematical expressions are verified
through simulations and the main findings of this paper are
demonstrated for different network parameters, e.g., the total
number of satellites, altitude and minimum elevation angle
required for a satellite to be visible to the user. The results
obtained in this paper are scalable for numerous problems in
massive satellite networks.
The organization of the remainder of this paper is as follows.

Section II describes the system model for an inclined LEO
constellation. As for the main results, in Sections III, we derive
analytical expressions for coverage probability and average
achievable data rate for a terrestrial user and introduce the
concept of effective number of satellites. Numerical results are
provided in Section IV for studying the effect of key system
parameters. Finally, we conclude the paper in Section V.

II. SYSTEM MODEL

Let us consider a LEO communication satellite constella-
tion, as shown in Fig. 1, that consists of Nact satellites, which
are placed on low circular orbits with the same inclination
angle and altitude denoted by ι and rmin, respectively. The
altitude parameter rmin has the subscript because it specifies
also the minimum possible distance between a satellite and a
user on Earth (that is realized when it is at the zenith).978-1-7281-4490-0/20/$31.00 © 2020 IEEE



User terminals are located on the surface of Earth that is
approximated as a perfect sphere. We assume that wireless
transmissions propagate to/from a user from/to all and only
the satellites that are elevated above the horizon to an angle
of θs ≥ θmin. Correspondingly, rmax denotes the maximum
possible distance at which a satellite and a user may be able
to communicate (that is realized when θs = θmin), and

rmax

r⊕
=

√
rmin

r⊕

(
rmin

r⊕
+ 2

)
+ sin2(θmin)− sin(θmin), (1)

where r⊕ ≈ 6371 km denotes Earth’s radius. Conversely, the
latitudes, where a terrestrial user may be able to establish
connection with any satellite at all, are limited by

|φu| ≤ ι+ cos−1

(
r2⊕ + r⊕rmin +

(
r2min − r2max

)
/2

r⊕(r⊕ + rmin)

)
. (2)

For instance, with satellite altitudes of rmin = 500 km and
rmin = 2000 km, global coverage up to poles for θmin = 0◦

is possible only if ι > 68◦ and ι > 49◦, respectively. Using
(2), the minimum altitude which provides global coverage is
given as

rmin ≥ r⊕ cos (θmin)

sin (ι− θmin)
− r⊕. (3)

Each user is associated with the nearest satellite that is
referred to as the serving satellite in what follows. We as-
sume that co-channel interference mitigation has been imple-
mented properly so that the network performance becomes
noise-limited. The distances from the user to the serving
satellite and the other satellites are denoted by r0 and rn,
n = 1, 2, . . . , Nact − 1, respectively, while G0 and Gn repre-
sent the corresponding channel gains. Obviously, Gn = 0 if
rn > rmax for some n = 0, 1, . . . , Nact − 1.

Based on the above modeling, the signal-to-noise ratio
(SNR) at the receiver can be expressed as

SNR =





psG0r
−α
0

σ2
, r0 ≤ rmax,

0, otherwise,
(4)

where we assume that the user’s receiver is subject to addi-
tive white Gaussian noise with constant power σ2, and the
parameter α is a path loss exponent.

III. PERFORMANCE ANALYSIS

In order to contribute expressions for coverage probabil-
ity and average achievable rate of the satellite constellation
described in Section II, first, we assume that N satellites
are distributed uniformly on a sphere with radius r⊕ + rmin.
We will shortly compensate for the performance mismatch
generated by the distribution difference between the uniform
model and the practical constellations.
First, we need to characterize some basic distance distribu-

tions that stem from the geometry of the considered system.
In particular, we express the necessary cumulative distribution
function (CDF) and probability density functions (PDFs) in
the following lemmas.

User

Serving (nearest) satellite

Non-visible satellites
Other visible satellites

r
min

r
0 rmax

r⊕

θmin

Fig. 1. A sketch of the considered system model, where satellites are
distributed uniformly over the inclined orbits.

Lemma 1. The PDF of the serving distance R0 is given by

fR0
(r0) = N

(
1− r20 − r2min

4r⊕(r⊕ + rmin)

)N−1
r0

2r⊕(r⊕ + rmin)
(5)

for r0 ∈ [rmin, 2r⊕ + rmin] while fR0 (r0) = 0 otherwise.

Proof. We first need to derive the CDF of the distance R from
any specific one of the satellites in the constellation to the
user. From basic geometry, the CDF of the surface area of the
shaded spherical cap Acap, formed by any satellite at distance
R from the user, in Fig. 1 is FAcap (acap) =

acap

4π(r⊕+rmin)2
. Find-

ing a relationship between Acap and R, gives the distribution
as

FR (r) =





0, r < rmin,
r2−r2min

4r⊕(r⊕+rmin)
, rmin ≤ r ≤ 2r⊕ + rmin,

1, r > 2r⊕ + rmin,

(6)

and the corresponding PDF is given by

fR (r) =
r

2r⊕(r⊕ + rmin)
(7)

for r0 ∈ [rmin, 2r⊕ + rmin] while fR (r) = 0 otherwise. Due
to the channel assignment by which the serving satellite is
the nearest one among all the N i.i.d. satellites, the CDF
of R0 can be expressed as FR0

(r0) � P (R0 ≤ r0) = 1 −
(1− FR (r0))

N and, by differentiation, its PDF is fR0
(r0) =

N (1− FR (r0))
N−1

fr(r) which will result in Lemma 1 by
substitution from (6) and (7).

A. Coverage Probability

In this subsection, we derive the coverage probability of
the LEO satellite network for a user in an arbitrary location
on Earth. The performance measure of coverage probability is
defined as the probability of having at least minimum SNR
required for successful data transmission. In other words,
whenever the SNR of the considered user from its nearest
satellite is above the threshold level T > 0, it is considered to
be within the coverage of the satellite communication network.



Proposition 1. The probability of network coverage for an
arbitrarily located user under general fading is

Pc (T ) � P (SNR > T )

=
N

2r⊕(r⊕ + rmin)

∫ rmax

rmin

(
1− FG0

(
Trα0 σ

2

ps

))

×
(
1− r20 − r2min

4r⊕(r⊕ + rmin)

)N−1

r0 dr0, (8)

where FG0(·) is the CDF of the channel gain G0.

Proof. To obtain (8), we start with the definition of coverage
probability:

Pc (T ) = ER0 [P (SNR > T |R0)]

=

∫ rmax

rmin

P (SNR > T |R0 = r0) fR0
(r0) dr0

=
N

2r⊕(r⊕ + rmin)

∫ rmax

rmin

P
(
G0 >

Trα0 σ
2

ps

)

×
(
1− r20 − r2min

4r⊕(r⊕ + rmin)

)N−1

r0 dr0.

(9)

The upper limit for the integral is due to the fact that the
satellites with smaller than θmin elevation angle have no
visibility to the user.

The channel characteristics have no effect on the maximum
achievable coverage as it is affected only by the geometry of
the system model. The following corollary provides the upper
bound for coverage probability using Proposition 1.

Corollary 1. Setting T = 0, Proposition 1 leads to an upper
bound for coverage probability as

Pc (T ) ≤ FR0 (rmax)− FR0 (rmin) = 1− (1− PV)
N
, (10)

where PV is the visibility probability of satellites to the user
and is expressed as

PV =
rmin − rmax sin(θmin)

2(r⊕ + rmin)
. (11)

The expression in (11) can be directly obtained as the surface
area of the spherical cap, where visible satellites can reside,
to the total surface area of the satellites’ sphere since the
satellites are uniformly distributed.

Since the number of visible satellites is a binomial random
variable with success probability PV, the coverage probability
is upper bounded by the probability of observing at least one
satellite by the user.

B. Average Data Rate

In this subsection, we focus on the average achievable
data rate. The average achievable rate (in bit/s/Hz) states the
ergodic capacity from the Shannon–Hartley theorem over a
fading communication link normalized to the bandwidth of
1 Hz. We can calculate the expression for the average rate of
an arbitrary user over generalized fading channels as follows.

It is worth noting that the average is taken over both serving
distance and fading distributions.

Proposition 2. The average rate (in bits/s/Hz) of an arbitrarily
located user and its serving satellite under general fading
assumption is

C̄ � E [log2 (1 + SNR)] =
N

2 ln(2)r⊕(r⊕ + rmin)

×
∫ rmax

rmin

∫ ∞

0

ln

(
1 +

psg0r
−α
0

σ2

)
fG0

(g0)

×
(
1− r20 − r2min

4r⊕(r⊕ + rmin)

)N−1

r0 dg0 dr0,

(12)

where fG0(g0) represents the PDF of channel gain G0.

Proof. Taking the expectation over serving distance and chan-
nel gain, we have

C̄ = EG0,R0 [log2 (1 + SNR)]

= c0

∫ rmax

rmin

E
[
ln

(
1 +

psG0r
−α
0

σ2

)]

×
(
1− r20 − r2min

4r⊕(r⊕ + rmin)

)N−1

r0 dr0, (13)

where c0 = N
2 ln(2)r⊕(r⊕+rmin)

.

C. Effective Number of Satellites

Due to the fact that satellites in practical constellations are
distributed unevenly along different latitudes, i.e., the number
of satellites is effectively larger on the inclination limit of
the constellation than on equatorial regions, the density of
practical deterministic constellations is typically not uniform.
Thus, we define and calculate a new parameter, the effective
number of satellites, Neff , for every satellite latitude in order
to compensate for the uneven density w.r.t. practical inclined
constellations and create a tight match between the results
generated by uniform modeling and those from practical
constellation simulations.

Proposition 3. Let the effective number of satellites (Neff )
be the constellation size that corresponds to a satellite den-
sity observed by a user on a specific latitude assuming the
same density continues everywhere. The effective number of
satellites can then be determined as

Neff � 2 fΦs
(φs)

cos(φs)
·Nact, (14)

where random variable Φs denotes the latitude of a satellite
and fΦs(φs) corresponds to its PDF.

Proof. The satellite density observed effectively by a user at
any latitude assuming that there are Neff uniformly distributed
satellites in total is

δeff =
Neff

4π(rmin + r⊕)2
, (15)



where the denominator represents the surface area of the
satellites’ orbital shell. On the other hand, the actual density
of the satellites on a ring surface element at latitude φs can
be written as

δact =
NactfΦs

(φs) dφs

2π(rmin + r⊕)2 cos(φs) dφs
, (16)

where the nominator and denominator represent the number
of satellites resided in the surface element and the element’s
surface area, respectively. Setting δeff = δact and applying
some simplifications completes the proof.

Lemma 2. When the satellites’ argument of latitude U is a
uniform random variable [13], i.e., U ∼ U(−π

2 ,
π
2 ), the PDF

of satellites’ latitude with inclination ι is given by

fΦs(φs) =

√
2

π
· cos(φs)√

cos(2φs)− cos(2ι)
(17)

for φs ∈ [−ι, ι] while fΦs
(φs) = 0 otherwise.

Proof. Since the distribution of the argument of latitude is
known, we need to find the satellite’s latitude as a function of
the argument of latitude and inclination angle. The satellite’s
coordinates can be obtained by multiplication of ι-degree
rotation matrix and satellites’ orbital plane:


xs

ys
zs


 =




cos (ι) 0 sin (ι)
0 1 0

− sin (ι) 0 cos (ι)





(rmin + r⊕) cos (U)
(rmin + r⊕) sin (U)

0




=




(rmin + r⊕) cos (U) cos (ι)
(rmin + r⊕) sin (U)

− (rmin + r⊕) cos (U) sin (ι)


 . (18)

Therefore, the latitude of the satellite is given as

Φs = g(U) = tan−1

(
zs√

x2
s + y2s

)
(19)

= tan−1


− cos (U) sin (ι)√

cos2 (U) cos2 (ι) + sin2 (U)


 .

The PDF of Φs can be written as

fΦs
(φs) = fU (g

−1(φs))
d

dφs

(
g−1(φs)

)
(20)

by the transform of random variables.

Thus, when the satellites’ argument of latitude is uniform
and their inclination is ι, the effective number of satellites can
be obtained by using Lemma 2 in Proposition 3 as follows:

Neff =
2
√
2

π
· 1√

cos(2φs)− cos(2ι)
·Nact. (21)

With high orbit inclination, the effective number of satellites
matches to the true number of satellites at some latitudes,
decreasing monotonically toward the equator and increasing

TABLE I
SIMULATION PARAMETERS

Parameters Values
Path loss exponent, α 2
Rician factor, K 100

CDF of channel gains, FGn (gn) 1−Q1

(√
2K,

√
gn

)

PDF of channel gains, fGn (gn)
1
2
e−

gn+2K
2 I0

(√
2Kgn

)

Transmission power, ps (W) 10
Noise power, σ2 (dBm) -93
User’s latitude, φu (degree) 0

monotonically toward the poles. By setting Nact = Neff , we
can solve these special latitudes (one for each hemisphere) as

φs = ±1

2
cos−1

(
8

π2
+ cos(2ι)

)
, (22)

if ι ≥ 1
2 cos

−1
(
1− 8

π2

)
≈ 39.5◦ and otherwise Neff > Nact

for all φs ≤ ι.
In the special case of having polar orbits (i.e., ι = 90◦),

the PDF of latitude would be the same as the argument of
latitude, i.e., φs = U ∼ U(−π

2 ,
π
2 ) for all φs values. Thus,

Neff = 2/π
cos(φs)

· Nact. For instance, at equator, (φs = 0◦),
Neff ≈ 0.64Nact and by increasing the latitude up to φs ≈
50.5◦, we will have Neff ≈ Nact. Finally Neff will approach
to infinity at poles where all satellite orbits cross. The authors
up north (φu = 61.5◦) at Tampere, Finland observe effectively
30% more satellites than there are in reality.

IV. NUMERICAL RESULTS

The propagation model takes into account the large-scale
attenuation with path loss exponent α = 2, as well as the
small-scale fading. To take into account a wider range of fad-
ing environments, the channels are assumed to follow Rician
fading with parameter K = 100, where K is the ratio between
the direct path received power and other, scattered, paths.
The parameter K can be determined according to the type
of constellation, i.e., higher K values are suitable when the
serving satellite is likely high above the user. As a result, the
corresponding channel gains, Gn, (being the square of the Rice
random variable) have a noncentral chi-squared distribution,
X 2, with two degrees of freedom and non-centrality parameter
2K. Therefore, the CDF and PDF in Propositions 1 and 2 are

FG0
(g0) = 1−Q1

(√
2K,

√
g0

)
, (23)

fG0(g0) =
1

2
e−

g0+2K
2 I0

(√
2Kg0

)
, (24)

respectively, where Q1(·, ·) denotes the Marcum Q-function
and I0(·) is the modified Bessel function of the first kind.
For producing the numerical results, the transmitted and noise
power are set to ps = 10 W and σ2 = −93 dBm, respectively.
The simulation parameters are summarized in Table I.
For numerical verification, we compute the coverage prob-

ability and data rate of an actual LEO constellation through
Monte Carlo simulations in Matlab to compare them with
analytical results presented in this paper. Figure 2 verifies
the coverage expression given in Proposition 1, considering
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Fig. 2. Verification of Proposition 1 with simulations when K = 100, φu =
0◦, ι = 70◦, rmin ∈ {500, 1000, 1500} km, and θmin = 10◦.

different altitudes for Nact = 648 and 120. As shown in
this figure, there is a slight deviation between the actual
constellation described in Section II and uniform constellation
performance due to the non-uniform distribution of satellites
along different latitudes in the real constellation. Substituting
N = Neff = 439 and 81 in Proposition 1 which corresponds
to Nact = 648 and 120, respectively, we can eliminate the
mismatch in the coverage.
For a fewer number of satellites, e.g., Nact = 120, it can be

well observed from Fig. 2 that the upper bound for coverage
probability, given in Corollary 1, is limited by the probability
of observing at least one satellite above the sky. As a result,
the upper bound is enhanced with rising the altitude due to
the increase in the visibility probability given in (11). On the
other hand, for larger number of satellites, e.g., Nact = 648,
the performance is affected only by the path loss since the
visibility probability approaches one. Verification of data rate
in Proposition 2 is shown in Fig. 3 for different minimum
elevation angles. The same as for Fig. 2, the mismatch between
uniform and actual constellation is omitted by setting N =
Neff = 439.
Coverage probability versus the total number of satellites for

different inclination and minimum required elevation angles
is depicted in Fig. 4. For plotting this figure, we applied
N = Neff in Proposition 1 in order to compensate for the
uneven distribution of satellites along different latitudes. The
coverage probability declines with θmin as the visibility to the
user decreases. However, this effect becomes less dominant as
the number of satellites increases since the serving satellite,
most probably, will be located above the user. Moreover,
within the depicted range, the smaller inclination angles result
in superior performance due to the larger density of satellites
and, consequently, the existence of a stronger serving channel.
There is an optimum altitude for every constellation, as

shown in Fig. 5, which results in maximum coverage prob-
ability. The optimum point increases with rising the minimum
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Fig. 3. Verification of Proposition 2 with simulations when K = 100, φu =
0◦, ι = 70◦, and rmin ∈ {500, 1000, 1500} km.
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Fig. 4. Coverage probability for different constellation sizes when K = 100,
φu = 0◦, T = 10 dB, and rmin = 500 km.

elevation angle while the maximum achieved coverage de-
creases accordingly. The initial increase in the plot is due to
the enhancement in the line-of-sight probability of the serving
satellite while it is followed by a decline caused by more
severe path loss in higher altitudes.
Above results are repeated in terms of data rate in Figs. 6

and 7 w.r.t. the total number of satellites and satellite altitude,
respectively, using Proposition 2 with N = Neff . The same as
for Fig. 4, lower inclination will result in higher data rates in
Fig. 6. However, the impact of both inclination and minimum
elevation angle on data rate reduces with increasing the total
number of satellites. The same observations as for Fig. 5 can
be also seen in Fig. 7, except for the optimum altitude differs
for maximum coverage probability and data rate.
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Fig. 5. Coverage probability for different altitudes when K = 100, φu = 0◦,
T = 10 dB, and Nact = 648.
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Fig. 6. Data rate for different constellation sizes when K = 100, φu = 0◦,
and rmin = 500 km.

V. CONCLUSIONS

In this paper, we presented a tractable approach for uplink
and downlink coverage and rate analysis of low Earth orbit
satellite networks. The satellite network is, first, modeled
with a uniform distribution which was then applied to obtain
exact expressions for coverage probability and data rate of
an arbitrary user in terms of network parameters. The slight
deviation between the performance metrics of the uniform
and actual constellations was compensated by derivation of
a new parameter—effective number of satellites—to take into
account the effect of uneven satellite distribution along dif-
ferent latitudes. The proposed framework in this paper paves
the way for accurate analysis, optimization and design of the
future dense satellite networks.
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Fig. 7. Data rate for different altitudes when K = 100, φu = 0◦, and
Nact = 648.
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Abstract—Requirements and technological advancements to-
wards 6th generation (6G) wireless networks lead to enabling
and development of massive low Earth orbit (LEO) satellite con-
stellations to provide ubiquitous and high-capacity connectivity,
particularly for maritime and airborne platforms. Consequently,
new methodologies to study the performance of LEO networks
are of great importance. In this paper, we derive both downlink
and uplink analytical expressions for coverage probability and
data rate of a massive inclined LEO constellation under general
shadowing and fading. We model the LEO satellite network as
a nonhomogeneous Poisson point process with general intensity
in order to take into account uneven distribution of satellites
along the latitudes. The results provided in this study facilitate
the stochastic evaluation and design of the future massive LEO
networks, regardless of satellites’ exact trajectories in orbits.

I. INTRODUCTION

As 5th generation (5G) cellular networks are becoming fully
commercial all around the globe, characterizing 6G challenges
and requirements has recently attracted significant attention
[1]–[3]. Providing ubiquitous and high-capacity connectivity,
as promised in 6G, requires enabling and development of non-
terrestrial networks. Among non-terrestrial networks low Earth
orbit (LEO) satellite systems have gained increasing popularity
due to providing seamless connectivity with lower round-trip
delay—compared to geostationary satellites—especially for
remote regions where the deployment of terrestrial networks
is not economically reasonable [4], [5].
Despite the commercial promotion of massive LEO net-

works (e.g., Starlink, Kuiper, Telesat), there are still many
unanswered questions regarding the performance and design
of these networks. Literature around LEO systems’ analysis
is mostly limited to the analysis of few satellites with de-
terministic locations and coverage areas. The uplink outage
probability in the presence of interference was evaluated for
two LEO constellations through time-domain simulations in
[6]. The effect of traffic non-uniformity was studied in [7] by
assuming hexagonal service areas for satellites.
A general expression for a single LEO satellite’s visibility

time was provided in [8], but it is incapable of concluding
the general distribution of visibility periods for any arbitrarily
positioned user. The deterministic model in [8] was then
developed via statistical analysis of coverage time in mobile
LEO during a satellite visit [9]. In [10], the Doppler shift
magnitude of a LEO network is characterized for a single
spotbeam by using tools from stochastic geometry. Resource
control of a hybrid satellite–terrestrial network was performed

in [11] with two objectives of maximizing the delay-limited
capacity and minimizing the outage probability. A hybrid
satellite–terrestrial network to assist 5G infrastructure has been
analyzed by considering only one spotbeam [12], [13]. In
[14], the outage probability of a satellite-based IoT network,
in which the LEO satellites relay the data to the ground
stations, is derived in closed form by assuming a low number
of satellites at the known locations.
Only recently, more research based on stochastic geometry

of LEO networks has started emerging. In our seminal study
[15], generic performance of satellite networking without
resorting to explicit orbit simulations and the actual geometry
of any specific constellation has been formulated by assuming
uniform distribution for satellites. Due to the fact that satel-
lites in practical constellations are distributed unevenly along
different latitudes [16], i.e., the number of satellites on the
inclination limits is greater than on equatorial regions, the
density of practical deterministic constellations is typically
not uniform. In [15], [16], we compensated for this mismatch
by derivation of a new parameter called effective number of
satellites. In [17], stochastic geometry is utilized to derive
the coverage probability of a LEO network, where satellite
gateways act as relays between the satellites and users. Unlike
in [15], the satellites are assumed to be placed at different
altitudes. The uplink communication scenario is characterized
by considering interfering terrestrial transmitters in [18].
In this paper, downlink and uplink coverage probability

and data rate of inclined LEO constellations are analyzed
under a general shadowing and fading propagation model.
Unlike in [15]–[17], the satellites’ positions are assumed to
be distributed as a nonhomogeneous Poisson point process
(NPPP), which models the actual distribution of satellites
along different latitudes more precisely by selecting the proper
intensity. Finally, the mathematical expressions are verified
through simulations and the main findings of this paper are
demonstrated for different network parameters, e.g., altitude,
inclination angle, user’s latitude, and minimum elevation angle
required for a satellite to be visible to the user.
The organization of the remainder of this paper is as

follows. Section II describes the system model as well as the
mathematical preliminaries for modeling a LEO network as
an NPPP. Performance analysis of a LEO network in terms
of coverage probability and average data rate is provided
in Section III. This is followed by the numerical results in
Section IV. Finally, the paper is concluded in Section V.



II. SYSTEM MODEL

The studied network model in this paper is a massive LEO
communication satellite constellation, as shown in Fig. 1, that
consists of N satellites distributed uniformly on low circular
orbits with inclination angle, ι, and altitude denoted by rmin.
The altitude parameter rmin has the peculiar subscript because
it specifies also the minimum possible distance between a
satellite and a user on Earth (that is realized when it is at the
zenith). The satellites’ coordinates in terms of their latitude
and longitude are denoted by (φs, λs).
User terminals are located on a specific latitude, denoted by

φu, on the surface of Earth with radius r⊕ ≈ 6371 km. The
wireless transmissions propagate to/from a user from/to all and
only the satellites that are elevated above the horizon to an
angle of θs ≥ θmin. Smaller values for θmin result in a more
drastic path loss due to the greater distance between a user
and a satellite. Correspondingly, rmax denotes the maximum
possible distance at which a satellite and a user may be able to
communicate without terrain blockage (that is realized when
θs = θmin):

rmax

r⊕
=


rmin

r⊕


rmin

r⊕
+ 2


+ sin2(θmin)− sin(θmin). (1)

We assume an association policy where the user commu-
nicates with its nearest satellite that is referred to as the
serving satellite in what follows. The network performance can
be considered as noise-limited due to implementing resource
scheduling and co-channel interference mitigation properly.
The distances from the user to the serving satellite and the
other satellites are denoted by r0 and rn, n = 1, 2, . . . , N − 1,
respectively, while G0 and Gn represent the corresponding
channel gains. Shadowing effect is modeled by the random
variable Xn, where n = 0, 1, . . . , N − 1. Obviously, Xn =
Gn = 0 if rn > rmax for some n = 0, 1, . . . , N − 1.

Based on the described system model, the signal-to-noise
ratio (SNR) at the receiver can be expressed as

SNR =





psG0X0r
−α
0

σ2
, r0 ≤ rmax,

0, otherwise,
(2)

where ps is the transmission power of the serving satellite.
We assume that the user’s receiver is subject to additive white
Gaussian noise with constant power σ2, and the parameter α
is a path loss exponent.
In the satellite constellation described earlier, the satellites

are distributed unevenly along different latitudes which means
that there are more visible satellites for a user located close to
inclination limits than for a user on equatorial region. In order
to model the latitude-dependent distribution of satellites, we
assume that N satellites are distributed according to an NPPP,
ξ, on a sphere with radius r⊕ + rmin. The void probability on
some bounded surface area A on the sphere is given by

P(ξ(A) = 0) (3)

= exp


−


A
δ(φs, λs) (rmin + r⊕)

2 cos(φs) dφsdλs


,

User
Satellite
User
Satellite

Fig. 1. System model for N satellites distributed uniformly over inclined
orbits (polar orbits with ι = 90◦ inclination in this example).

where δ(φs, λs) is the intensity function of the NPPP at latitude
φs and longitude λs.

Lemma 1. When satellites are distributed uniformly on low
circular orbits with the same inclination angle, ι, and altitude,
rmin, the intensity function of the NPPP is given by

δ(φs) =
N√

2π2(rmin + r⊕)2
· 1

cos(2φs)− cos(2ι)
, (4)

and we can denote δ(φs, λs) = δ(φs) since it does not depend
on λs, for φs ∈ [−ι, ι].

Proof. For any longitude λs, the intensity function is equiva-
lent to the actual density of the satellites on a sphere surface
element at latitude φs that can be written as

δ(φs) =
NfΦs

(φs) dφs

2π(rmin + r⊕)2 cos(φs) dφs
, (5)

where the nominator and denominator represent the number of
satellites resided in the surface element and its surface area,
respectively. Substituting the probability density fΦs

(φs) of
random latitude Φs [16, Lemma 2] completes the proof.

III. PERFORMANCE ANALYSIS

In order to contribute expressions for coverage probability
and average achievable rate, we model the satellite network as
a nonhomogeneous Poisson point process with intensity given
in Lemma 1. Towards this, we need first to characterize some
basic distance distributions that stem from the geometry of the
considered system model.

A. Distance to the Serving Satellite

We express the probability density function (PDF) of the
distance to the nearest satellite in the following lemma. The



functions are required for the derivation of the studied perfor-
mance metrics in the following subsections.

Lemma 2. The PDF of the random serving distance R0 when
the satellites are distributed according to a nonhomogeneous
PPP with intensity δ(φs, λs), is given by

fR0
(r0) = 2r0

(
rmin

r⊕
+ 1

)∫ min(φu+θ0,ι)

max(φu−θ0,−ι)

δ(φs) cos(φs)

× 1√
cos2(φs − φu)− cos2(θ0)

dφs

× exp

(
− 2(rmin + r⊕)

2

∫ min(φu+θ0,ι)

max(φu−θ0,−ι)

δ(φs) cos(φs)

× cos−1

(
cos(θ0)

cos(φs − φu)

)
dφs

)
(6)

for r0 ∈ [rmin, 2r⊕+ rmin] while fR0
(r0) = 0 otherwise. The

polar angle difference between the serving satellite and the
user is θ0 = cos−1

(
1− r20−r2min

2(rmin+r⊕)r⊕

)
.

Proof. For a nonhomogeneous PPP, the CDF of R0 can be
written as

FR0
(r0) = 1− P(R0 > r0) = 1− P(ξ(A) = 0) (7)

where P(ξ(A) = 0) is the void probability of PPP given in
(3) and A is the shaded cap above the user shown in Fig. 1.
According to (3), by integrating from the intensity over the
spherical cap above the user, we have

FR0
(r0)

=1− exp

(
−
∫ min(φu+θ0,ι)

max(φu−θ0,−ι)

β(φs)δ(φs)(rmin + r⊕)
2
cos(φs)dφs

)

(a)
=1− exp

(
− 2 (rmin + r⊕)

2
∫ min(φu+θ0,ι)

max(φu−θ0,−ι)

δ(φs) cos(φs)

× cos−1

(
cos(θ0)

cos(φs − φu)

)
dφs

)
, (8)

where β(φs) is the longitude range of the red surface element
in Fig. 1 and (a) follows from substitution of β(φs) using the
basic geometry. Taking the derivative of (8) with respect to r0
completes the proof of Lemma 2.

Lemma 3. The PDF of the serving distance R0 when the
satellites are distributed uniformly with constant intensity δ =

N
4π(rmin+r⊕)2 , is given by

fR0
(r0) =

Nr0
2r⊕(rmin + r⊕)

exp

(
−N

(
r20 − r2min

4r⊕(rmin + r⊕)

))

(9)

for r0 ∈ [rmin, 2r⊕ + rmin] while fR0
(r0) = 0 otherwise.

Proof. The proof follows the same principles as the proof
of Lemma 2. However, the integration from a constant den-
sity over the cap will reduce to a simple expression. Thus,
FR0

(r0) = 1−exp
(
−N

(
r20−r2min

4r⊕(rmin+r⊕)

))
. Taking the deriva-

tive of the CDF with respect to r0 completes the proof.

B. Coverage Probability and Average Data Rate

The following performance analysis in terms of coverage
probability and average data rate holds for both downlink and
uplink communication directions. Furthermore, it is presented
under general shadowing and fading distributions so that any
specific scenario can be covered by appropriate choice of
fX0

(x0) and FG0
(g0), respectively, e.g., Rician fading with

lognormal shadowing in our numerical results.
Let us first derive the coverage probability of the LEO

satellite network for a user in an arbitrary location on Earth.
The performance measure of coverage probability is defined
as the probability of having at least the minimum SNR
required for successful data transmission. Thus, the coverage
probability is defined as

Pc (T ) � P (SNR > T ) = P
(
psG0R

−α
0

σ2
> T

)
, (10)

where σ2 is additive noise with constant power, and α repre-
sents exponent of path loss.

Proposition 1. The probability of coverage for an arbitrarily
located user under general shadowing and fading is
Pc (T ) � P (SNR > T )

=

∫ rmax

rmin

∫ ∞

0

fX0
(x0)fR0

(r0)

(
1− FG0

(
Trα0 σ

2

psx0

))
dx0dr0,

(11)

where fR0
(r0) is given in Lemma 2 or Lemma 3 and fX0

(x0)
is the PDF of X0.

Proof. To obtain (11), we start with the definition of coverage
probability:

Pc (T ) = ER0
[P (SNR > T |R0)]

=

∫ rmax

rmin

P (SNR > T |R0 = r0) fR0
(r0) dr0

=

∫ rmax

rmin

P
(
G0X0 >

Trα0 σ
2

ps

)
fR0

(r0) dr0. (12)

The upper limit for the integral is due to the fact that the
satellites with smaller than θmin elevation angle have no
visibility to the user. The proof is completed by substitution of
the product distribution of two independent random variables
in (12).

The average achievable data rate (in bit/s/Hz) of an arbitrary
user over generalized fading channels and shadowing can be
derived in the following proposition.

Proposition 2. The average rate (in bits/s/Hz) of an arbitrarily
located user and its serving satellite under general shadowing
and fading assumption is

C̄ � E [log2 (1 + SNR)]

=
1

ln(2)

∫ rmax

rmin

∫ ∞

0

∫ ∞

0

fX0
(x0)

(
1− FG0

(
rα0 σ

2

ps

(
et − 1

)))

× fR0
(r0) dx0dtdr0. (13)



TABLE I
SIMULATION PARAMETERS

Parameters Values
Path loss exponent, α 2
Rician factor, K 100
Transmission power, ps (W) 10
Noise power, σ2 (dBm) -103
User’s latitude, φu (degrees) 61.5
Mean and standard deviation of lognormal 0, 9
distribution: µs (dB), σs (dB)

Proof. Taking the expectation over serving distance and chan-
nel gain, we have

C̄ = EG0,X0,R0
[log2 (1 + SNR)]

=
1

ln(2)

∫ rmax

rmin

E
[
ln

(
1 +

psG0X0r
−α
0

σ2

)]
fR0

(r0) dr0

(a)
=

1

ln(2)

∫ rmax

rmin

∫ ∞

0

P
[
ln

(
1 +

psG0X0r
−α
0

σ2

)
>t

]
fR0

(r0) dtdr0

=
1

ln(2)

∫ rmax

rmin

∫ ∞

0

P
[
G0X0 >

rα0 σ
2

ps

(
et − 1

)]
fR0

(r0) dtdr0,

(14)

where (a) follows from the fact that for a positive random
variable X , E [X] =

∫
t>0

P (X > t) dt.

IV. NUMERICAL RESULTS

In this section, we corroborate our analytical findings
through Monte Carlo simulations. The propagation model
takes into account the large-scale attenuation with path loss
exponent α = 2, the small-scale Rician fading with param-
eter K = 100, and lognormal shadowing. As a result, the
corresponding channel gains, Gn, (being the square of the
Rice random variable) have a noncentral chi-squared distri-
bution, χ2, with two degrees of freedom and non-centrality
parameter 2K. Therefore, the CDF in Propositions 1 and 2 is
FG0

(g0) = 1 − Q1

(√
2K,

√
g0

)
, where Q1(·, ·) denotes the

Marcum Q-function. The lognormal shadowing is represented
as X0 = 10X0/10 such that X0 ∼ N (µs, σs), where N is a
normal distribution with µs and σs being its mean and standard
deviation in decibels. Thus, the PDF of lognormal shadow-

ing is fX0
(x0) =

10
ln(10)

√
2πσsx0

exp

(
− 1

2

(
10 log10(x0)−µs

σs

)2
)
.

The simulation parameters are given in Table I.
Figure 2 verifies the coverage expression given in Propo-

sition 1, considering different altitudes for N = 648 and
ι = 90◦. The user is assumed to be at Tampere, Finland
(φu = 61.5◦). As shown in Fig. 2, the simulation results
(markers) are perfectly matched with the analytical expression
(lines) given in Proposition 1. With increasing the altitude,
coverage decreases accordingly due to more drastic path loss
for larger distances. The effect of shadowing on coverage
probability is ambiguous. As it is shown in the figure, as the
chance of the user being in outage increases, shadowing affects
the coverage probability more positively, the reason being that
shadowing randomness increases the chance of a user with
poor SNR to be in coverage. It can be also interpreted that
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Fig. 2. Verification of Proposition 1 with simulations when K = 100, ι =
90◦, rmin ∈ {500, 1000, 1500} km, φu = 61.5◦, and θmin = 10◦.

user association techniques based on maximum received signal
are able to considerably improve the coverage probability.
Validation of data rate given by Proposition 2 is shown in

Fig. 3 for different minimum elevation angles. The data rate
decreases with increasing the minimum elevation angle due to
a reduction in the chance of satellite visibility to the user. For
smaller values of θmin, the data rate increases by decreasing
the altitude due to the reduction in path loss. However, as θmin

increases, the higher altitudes result in a higher data rate since
the visibility probability increases by rising the altitude.
Coverage probability and data rate versus altitude for

different users’ latitudes, satellites’ inclination angles, and
minimum required elevation angles are depicted in Figs. 4
and 5, respectively. Starting from very low altitudes, coverage
probability and data rate improve with increasing the altitude
since a better chance of line-of-sight is attained for the serving
satellite which is then followed by a decline caused by more
severe path loss in higher altitudes. In both plots, the optimum
altitude increases with rising the minimum elevation angle
while the maximum achieved coverage and rate decrease
accordingly. Moreover, smaller inclination angles result in a
superior performance due to the higher density of satellites
and, therefore, the existence of a stronger serving channel.

V. CONCLUSIONS

In this paper, we studied the performance of low Earth orbit
satellite networks in a more generic form comparing with
the existing literature on this topic. The satellite network is
modeled as a nonhomogeneous Poisson point process which
models the uneven distribution of satellites along different
latitudes with its intensity being a function of satellites’ actual
distributions. Utilizing such a model for satellites’ locations
facilitates derivation of the coverage probability and data rate
of an arbitrary user under general fading and shadowing. The
proposed analysis paves the way for a more reliable integration
of the LEO networks and the existing cellular network in 6G.
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Fig. 3. Verification of Proposition 2 with simulations when K = 100, ι =
90◦, rmin ∈ {500, 1000, 1500} km, φu = 61.5◦, and θmin = 10◦.
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Fig. 4. Coverage probability for different altitudes when K = 100, T =
10 dB, and ι = {90◦, 70◦}.
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Abstract—Providing truly ubiquitous connectivity requires de-
velopment of low Earth orbit (LEO) satellite Internet, whose
theoretical study is lagging behind network-specific simulations.
In this paper, we derive analytical expressions for the down-
link coverage probability and average data rate of a massive
inclined LEO constellation in terms of total interference power’s
Laplace transform in the presence of fading and shadowing, ergo
presenting a stochastic geometry-based analysis. We assume the
desired link to experience Nakagami-m fading, which serves to
represent different fading scenarios by varying integer m, while
the interfering channels can follow any fading model without
an effect on analytical tractability. To take into account the
inherent non-uniform distribution of satellites across different
latitudes, we model the LEO network as a nonhomogeneous
Poisson point process with its intensity being a function of
satellites’ actual distribution in terms of constellation size, the
altitude of the constellation, and the inclination of orbital planes.
From the numerical results, we observe optimum points for
both the constellation altitude and the number of orthogonal
frequency channels; interestingly, the optimum user’s latitude
is greater than the inclination angle due to the presence of
fewer interfering satellites. Overall, the presented study facilitates
general stochastic evaluation and planning of satellite Internet
constellations without specific orbital simulations or tracking data
on satellites’ exact positions in space.

Index Terms—Massive communication satellite networks, Low
Earth orbit (LEO) Internet constellations, interference, coverage
probability, average achievable data rate, stochastic geometry,
Poisson point process.

I. INTRODUCTION

Recent advances towards 6th generation (6G) wireless net-
works require progression and development of non-terrestrial
networks to provide seamless connections with high trans-
mission capacity [1]–[4]. Among non-terrestrial networks, low
Earth orbit (LEO) satellite Internet constellations have gained
increasing popularity as they provide global connectivity for
unserved or underserved regions, where the deployment of
terrestrial networks is not feasible or economically reasonable
[5], [6]. Deploying thousands of satellites will ensure that
every single person or appliance on Earth could be connected
and no location is left in outage.
While the performance of many LEO constellations (e.g.,

Starlink, OneWeb, Kuiper) has been evaluated through
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network-specific simulations to put the commercial plans for-
ward, a general scientific understanding of their performance
is limited in the open literature. Conventional simulation-based
studies are restricted to few number of satellites with determin-
istic locations which is not capable of evaluating the general
performance of a massive satellite network consisting of
thousands of satellites. Moreover, in most of the literature, the
coverage regions are assumed to have fixed circular footprints,
while selecting smaller inclination angles and simultaneous
consolidated operation of several LEO networks render a not-
so-regular Voronoi tessellation.
In this paper, downlink coverage probability and average

data rate of inclined LEO constellations are analyzed un-
der general shadowing and fading propagation models. The
satellites’ positions are assumed to be distributed as a non-
homogeneous Poisson point process (NPPP), which models
the satellites distribution across varying latitudes precisely
by setting the intensity function to be the actual density of
satellites in an actual constellation.

A. Related Works

The literature around LEO networks is mostly limited
to deterministic and simulation-based analyses. In [7], the
performance of two different LEO constellations was sim-
ulated assuming specific constellation sizes. The probability
of average call drop and the distribution of the number of
handoffs were studied for the Iridium constellation in [8]. A
deterministic model to characterize the visibility time of one
LEO satellite was presented in [9]. Since the model in [9]
is not valid for any arbitrarily located user, authors in [10]
contributed statistical analysis of coverage time in a mobile
LEO constellation. In [11], a LEO-based Internet-of-Things
architecture was presented so as to supply network access for
devices distributed in remote areas.
Stochastic geometry is an area of mathematics, which

deals with the study of random objects on Euclidean space.
In the area of telecommunication, stochastic geometry has
been extensively utilized to model, evaluate, and develop the
wireless communication networks with irregular topologies
[12]–[14], especially for two-dimensional (planar) terrestrial
networks [12]–[20]. Various studies in stochastic geometry
modeling of multi-tier and cognitive networks were reviewed
in [15]. Observations in [16] have shown that the Poisson
point process (PPP) and a regular grid model provide lower
and upper bounds on the network performance metrics, re-
spectively, with the same deviation from the actual network
performance. The research in [17], [18], being an extension to
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[16], modeled a multi-tier network considering the limitations
for the achievable quality-of-service. The coverage of uplink
was studied in [19] assuming base stations and devices are
distributed as independent PPPs.
The application of stochastic geometry to three-dimensional

wireless networks has gained remarkable attention in the
literature [21], [22]. In [21], a PPP model was applied to
model and analyze the coverage in three-dimensional cellular
networks. Since the PPP, despite providing tractable analysis,
is not accurate when applied to networks with limited nodes
in a finite area [23], a binomial point process (BPP) can be
utilized instead to capture the characteristics of such networks
[24], [25]. A finite network of unmanned aerial vehicles was
modeled as a BPP in [22], [26]. In [24], [27], a planar
network with an arbitrary shape was studied assuming the
transmitter is positioned at a fixed distance. The results were
then generalized in [20], by using two protocols for selecting
the transmitter.
On the literature around the LEO satellite networks, the

analysis is limited to few number of satellites with known loca-
tions and/or coverage spots. In [28], with tools from stochastic
geometry, authors have developed a method to characterize
the magnitude of Doppler shifts in a LEO network. Resource
control of a satellite–terrestrial network was investigated in
[29], in order to minimize the outage probability and maximize
the data rate. Focusing on only a single spotbeam, the hybrid
satellite–terrestrial network supporting 5G infrastructure has
been presented in [30], [31]. In [32], the outage probability of
a satellite-based Internet-of-Things, in which LEO satellites
relay uplink data to ground stations, is derived in closed
form by assuming a low number of satellites at deterministic
locations.
Recently, more research on LEO networks using stochastic

geometry has started emerging. The generic coverage and rate
analysis of satellite networking have been formulated in our
study [33], by modeling the satellites as a BPP on a spherical
shell and using the tools from stochastic geometry, without
considering any deterministic model of orbits. However, the
approach used in [33] is unable to include the varying density
of satellites over different latitudes, except through numerical
computations, to adjust the performance deviation in the actual
and the uniformly modeled constellations. In fact, in practical
constellations, the satellites are not evenly distributed across
different latitudes [34], i.e., as the user gets farther from
the equator towards the poles, more satellites are visible to
it. In [34], we derived a mathematical expression, named as
effective number of satellites, based on the actual constellation
geometry to compensate for the performance mismatch caused
by non-uniform distribution of satellites on the orbital shell.
The satellites’ positions are modeled as a nonhomogeneous

Poisson point process (NPPP) in [35] to analyze the coverage
and rate of a noise-limited interference-free LEO network.
Utilizing NPPP not only enables us to tractably analyze
the LEO network performance, but also models the actual
distribution of satellites precisely by setting its intensity to
be the physical density of satellites along different latitudes.
Similar contributions on performance evaluation of a LEO
network were also presented in [36] using a homogeneous

PPP without considering the varying density of satellites on
different latitudes. The results were then used in [37] to
optimize the constellation altitude.
The work in [38] characterizes the distance distribution in

two different communication links in a LEO satellite network:
link between a user on Earth and the nearest satellite to it
and the link between a satellite and its nearest neighboring
satellite. Unlike in [33], the satellites are assumed to be
placed at different known altitudes, i.e., on multiple orbital
shells. Stochastic geometry and the results from [38] were
then utilized in [39] to obtain the downlink probability of
coverage for a LEO network, where satellite gateways act as
relays between the satellites and users on Earth. An uplink
communication scenario was characterized by considering
interfering terrestrial transmitters in [40].
This paper, unlike our prior works [33], [34], adopts non-

homogeneous Poisson point process to model the satellites’
locality, for which the varying density along different latitudes
is embedded in the PPP’s intensity function. Moreover, a more
general fading model, i.e., Nakagami-m, transceivers’ antenna
patterns, and shadowing attenuation due to the blockage of
the signals by obstacles surrounding the user, are considered in
our analysis. This paper also includes interference analysis in a
generic form which was neglected in [35] and the performance
metrics are evaluated in terms of the Laplace function of
interference.

B. Contributions and Paper Organization

We model the satellites’ positions in a LEO network as
a nonhomogeneous PPP which facilitates not only using the
tools from stochastic geometry, but also capturing the exact
characteristics of the actual constellations, i.e., the uneven
distribution of satellites across different latitudes. Unlike in
[33], [34], [39], by selecting the intensity of NPPP to fit the
actual distribution of satellites on an orbital shell, there is no
mismatch between the performance of theoretical stochastic
constellations and actual deterministic LEO networks. We
derive the intensity of NPPP in closed form in terms of
the constellation parameters: the total number of satellites,
altitude of the constellation, latitude of the satellites, and the
inclination of the orbits. The model is extensible to develop
an analysis on satellite-to-satellite communication, similar to
what was proposed in [41] for three-dimensional wireless
sensor networks.
As the main contributions, we utilize stochastic geometry

to formulate the coverage and average achievable rate of a
user served by a LEO constellation in terms of the derivative
of Laplace transform of interference power.1 Our derivations
do not rely on exact location of every single satellite and are
applicable for performance analysis of any given constellation
as long as the constellation parameters are known. Modeling
the satellites’ locality as a NPPP, the analytical expressions
obtained from a stochastic constellation geometry can be par-
ticularly used to analyze the actual deterministic constellations.

1Thus, the present study, unlike the preliminary results presented in [35]
that are limited to the special case of scheduling an orthogonal channel for
every satellite, includes the cumulative interference from all other satellites
that are visible to the user and share the same channel.
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In propagation modelling, unlike most of literature on this
topic, we take into account the effect of shadowing caused by
the presence of the obstacles surrounding the user. To retain
analytical tractability and still cover different fading scenarios,
we assume Nakagami-m fading with integer m as well as
shadowing with any desired distribution for the propagation
model of desired links.2 For interfering signals, any arbitrarily
distributed fading and shadowing can be considered, since the
analytical tractability is unaffected. Frequency reuse has been
also taken into account by randomly assigning the frequency
channels to the satellites. Random channel assignment pre-
serves the tractability of our analytical derivations since it can
be modeled by thinning the original nonhomogeneous Poisson
point process.
In this paper, antenna pattern, despite the conventional

approach, is formulated and included in the performance
analysis by representing the antenna gain as a function of the
relative distances between the user and the satellites. Finally,
we evaluate two critical performance metrics, i.e., coverage
and data rate, in terms of several key design parameters, such
as altitude of the constellation and the number of frequency
channels. From the numerical results, we are able to observe
optimal points for these parameters for some specific network
setup. Counter-intuitively, the user which resides in higher
latitudes, away from the constellation borders, has the best
performance due to existence of fewer interfering satellites
in that region. Some constellation design guidelines, e.g., on
orbital inclination and altitude, are also provided through the
numerical results.
The remainder of this paper is organized as follows. Sec-

tion II describes the system model and the mathematical pre-
liminaries for modeling a LEO network as a NPPP. The main
outcome of this study, which is the derivation of analytical
expressions for downlink coverage probability and average
achievable rate of a terrestrial user, is presented in Section III,
which involves also the analysis of the Laplace transform of
interference power. We provide numerical results in Section IV
for the verification of our derivations and studying the effect of
key system parameters such as the size of the constellation and
its altitude as well as the channel parameters on the network
performance. Finally, we conclude the paper in Section V.

II. SYSTEM MODEL

In this section, first, we present the characteristics and
geometries of actual low Earth orbit satellite constellations.
Next, we will introduce the mathematical preliminaries for
modeling the actual network as a stochastic point process.

A. Actual Inclined Constellations

As shown in Fig. 1, we consider a LEO communication
satellite constellation consisting of N satellites launched uni-
formly on circular orbits with inclination angle, ι, and altitude
that is denoted by rmin — the subscript indicates the minimum
possible distance between a satellite and a ground user (as

2Varying the value of m, we are able to control the multi-path fading
severity. For instance, m = 1 corresponds to Rayleigh fading environment
while m → ∞ represents non-fading channels.

Fig. 1. A constellation in an example case of N = 400 satellites flying on
ι = 53◦ inclined orbits. The borders of two spherical caps above the user are
shown: the outer one covers all visible satellites to the user while the inner
one is empty of satellites and the serving satellite is located on its border.

measured at the zenith). Satellites’ spherical coordinates in
terms of their latitude and longitude are denoted by (φs, λs).
A user terminal is located on any specific latitude, denoted

by φu, on the surface of Earth that is approximated as a perfect
sphere with radius r⊕ ≈ 6371 km. Satellites rising above the
horizon at an angle of θs ≥ θmin are the only ones capable of
transmitting signals to the users. As such, rmax refers to the
maximum distance at which a satellite and a user are able to
communicate (and it occurs when θs = θmin), and

rmax

r⊕
=

√
rmin

r⊕

(
rmin

r⊕
+ 2

)
+ sin2(θmin)− sin(θmin). (1)

In this paper, the serving satellite is the one with the shortest
distance to the user. We perform frequency reuse by assuming
K, with K ≤ N , orthogonal frequency channels available for
the network. The satellites are distributed randomly among the
channels, which potentially causes co-channel interference to
the user from N

K −1 satellites which share the same frequency
channel. All satellites on the same channel that are elevated
above the horizon to an angle of θs ≥ θmin cause interference
to reception of the user.
The variables R0 and Rn, n = 1, 2, . . . , N , represent the

distances from the user to the serving satellite and the other
interfering satellites, respectively, while H0 and Hn denote
the corresponding channel gains to model fading. Shadowing
effect is modeled by random variables Xn, n = 1, 2, . . . , N ,
correspondingly. It is worth noting that losses caused by near-
ground obstacles in the last few meters of the signal path,
named as excess path loss in [36], can be approximated
by properly setting the shadowing distribution and its cor-
responding parameters. On the other hand, our analysis is
also capable of including the effect of elevation angle on
the shadowing by expressing it as a function of the relative
distances between the user and the satellites. However, in this
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paper, we do not explicitly formulate that to simplify the
expressions. Obviously, Hn = Xn = 0 if Rn > rmax for
some n = 1, . . . , N . The attenuation due to atmospheric gases
is insignificant for frequencies below 20 GHz (at least, or even
at higher bands below the oxygen absorption peak at 60 GHz)
[42, Fig. 10], which is the practical range for downlink LEO
communication in well-known constellations [43].
For the serving channel, we adopt Nakagami-m fading

which will enable not only to consider a wide range of multi-
path fading conditions but also to maintain the tractability of
our derivations. On the other hand, for the interfering channels,
we consider arbitrary fading distributions since they have no
effect on the tractability of our analysis and, hence there is
no need to limit our results to some specific fading models.
Following the same logic, we also obtain more general results
by assuming arbitrarily distributed shadowing for all — the
serving and the interfering — channels.
To simplify notation, when NI > 0, we let indices n =

1, 2, . . . , NI correspond to those NI ≤ N/K − 1 satellites
with θs ≥ θmin that cause co-channel interference. The user
and the satellites are equipped with directional antennas having
gains denoted by Gu(θu) and Gs(θn), respectively, while θu
and θn are the angles between the line-of-sight path and their
corresponding antennas’ boresight. We assume that the user’s
antenna boresight is directed towards the sky, perpendicular to
Earth’s surface, and the satellites’ antennas’ boresight always
radiates towards the center of Earth. When all antennas have
symmetrical radiation patterns, using the law of cosines, we
obtain θu and θn as

θu(Rn) = π − cos−1

(
r2⊕ +R2

n − (r⊕ + rmin)
2

2r⊕Rn

)
(2)

and

θn(Rn) = cos−1

(
R2

n − r2⊕ + (r⊕ + rmin)
2

2Rn (r⊕ + rmin)

)
, (3)

respectively. As can be seen from (2) and (3), the antennas’
radiation patterns are one-to-one functions of the relative
distances between the user and the satellites. Thus, in the
rest of this paper, we will denote the user’s and the satellites’
antenna gains directly as Gu(Rn) and Gs(Rn), respectively,
and Gt(Rn) = Gu(Rn)Gs(Rn) is the overall antenna gain.

According to the described model, the signal-to-
interference-plus-noise ratio (SINR) of the link is given
by

SINR =
ptGt(R0)H0X0R

−α
0

I + σ2
, (4)

where pt is the transmit power of satellites, the constant
σ2 is the additive noise power, the parameter α is a path
loss exponent, which should be set to α = 2 for satellite
communication since the signal travels through free space for
most of its path, and

I �
NI∑

n=1

ptGt(Rn)HnXnR
−α
n (5)

is the cumulative interference power from all NI other satel-
lites above the user’s horizon that share the same frequency

channel with the serving satellite. The distance from the user
to its nearest satellite is

R0 = min
n=1,2,...,Nvis

Rn, (6)

where Nvis is a variable representing the number of visible
satellites to the user (cf. the outer cap in Fig. 1).

B. Nonhomogeneous PPP Model

In the constellation described earlier, the satellites appear
unevenly along the lines of latitudes, which means, e.g.,
that there are more visible satellites for a user located close
to inclination limits than for one on equatorial region. In
order to model the latitude-dependent distribution of satellites,
we assume that the satellites are distributed according to a
nonhomogeneous PPP, ξ, on a spherical surface with radius
r⊕ + rmin. The NPPP is characterized with its intensity,
δ(φs, λs), which varies according to the satellites’ latitude
(and/or longitude).
By the definition of a NPPP, the number of points in some

bounded region A of the orbital shell is a Poisson-distributed
random variable denoted by N . Thereby, the probability to
have n satellites in A is given by

Pn (A) � P (N = n) (7)

=
1

n!

(∫∫

A
δ(φs, λs) (rmin + r⊕)

2 cos(φs) dφsdλs

)n

× exp

(
−
∫∫

A
δ(φs, λs) (rmin + r⊕)

2 cos(φs) dφsdλs

)
,

where δ(φs, λs) is the intensity function of nonhomogeneous
PPP at latitude φs and longitude λs. Based on the given system
model, A is the spherical cap where viewable satellites to
the user exist (cf. the outer one in Fig. 1), with surface area(
δπ

(
r2max − r20

))
/(1− rmin

r⊕+rmin
) (See [33, Appendix A]).

In order to precisely model a LEO network as a NPPP, we
first need to characterize the intensity function based on the
actual physical network as follows. The preliminaries obtained
herein will be used shortly towards contributing expressions
for probability of coverage and average achievable rate.

Lemma 1. When satellites are distributed uniformly on low
circular orbits with the altitude, rmin, and the inclination
angle, ι, the intensity function of the nonhomogeneous PPP
is a function of latitude, φs, only and given by

δ(φs) =
N√

2π2(rmin + r⊕)2
· 1√

cos(2φs)− cos(2ι)
, (8)

and we can denote δ(φs, λs) = δ(φs) since it does not depend
on λs, for φs ∈ [−ι, ι].

Proof. The intensity function is equivalent to the actual den-
sity of the satellites on an orbital shell element created by
spanning the azimuthal angle from 0◦ to 360◦ on the orbital
shell at latitude φs, that is calculated as

δ(φs) =
NfΦs(φs) dφs

2π(rmin + r⊕)2 cos(φs) dφs
, (9)
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TABLE I
SUMMARY OF MATHEMATICAL NOTATION

Notation Description
r⊕; rmin; rmax Earth radius (6371 km); Constellation altitude; Maximum possible distance between a user and a visible satellite

R0; Rn Serving distance; Distance to the nth satellite
N ;NI;K Constellation size; The number of interfering satellites; The number of frequency channels
Gu;Gs;Gt Antenna gain of the user; Antenna gain of the nth satellite; Overall antenna gain
H0;Hn Channel fading gain of the serving link; Channel fading gain of the nth link
X0;Xn Shadowing component of the serving link; Shadowing component of the nth link

α Path loss exponent
pt Transmission power satellites
σ2 Additive noise power
T SINR threshold for coverage probability

Pc; C̄ Coverage probability; Average achievable rate

which is the ratio of the number of satellites resided on the
surface element to the element’s area. Substituting the proba-
bility density fΦs(φs) of random latitude Φs [34, Lemma 2]
completes the proof.

If the intensity of satellites is simplistically presumed to be
uniform all over the orbital shell, it can be written as follows.

Lemma 2. When satellites are uniformly distributed on a
sphere, the point process turns into a homogeneous Poisson
point process with a constant intensity given by

δ =
N

4π(rmin + r⊕)2
, (10)

which does not depend on latitudinal/longitudinal parameters.

Thus, for the special case when satellites are distributed
uniformly on the orbital shell, by substitution from Lemma 2,
the probability given in (7) can be expressed in closed form
as

Pn (A) =
1

n!

(
N

(
r2max − r2min

)

4r⊕ (r⊕ + rmin)

)n

exp

(
−N

(
r2max − r2min

)

4r⊕ (r⊕ + rmin)

)
.

(11)

III. PERFORMANCE ANALYSIS

In this section, we focus on the performance analysis of a
LEO satellite network in terms of coverage probability and
data rate of a user in an arbitrary location on Earth. We utilize
stochastic geometry in order to formulate coverage probability
and rate as a function of the network and the propagation pa-
rameters. Two main components of our analytical derivations
are the distribution of the distance to the nearest satellite and
the Laplace function of interference which will be presented
throughout this section.

A. The Distance to The Nearest Satellite

In this paper, the serving satellite is assumed to be the
nearest one to the user. Therefore, an important parameter for
coverage and rate analysis is the probability density function
(PDF) of the distance to the nearest satellite, R0, which is
given as follows.

Lemma 3. The PDF of the serving distance R0, when the
satellites are distributed according to a nonhomogeneous PPP
with a latitude-dependent intensity, δ(φs), is

fR0
(r0)

= 2r0

(
rmin

r⊕
+ 1

)
exp(−γ(r0))

∫ min(φu+φ0,ι)

max(φu−φ0,−ι)

δ(φs)

× cos(φs)√
cos2(φs − φu)− cos2(φ0)

dφs,

(12)

where

γ(r0) = 2(rmin + r⊕)
2

×
∫ min(φu+φ0,ι)

max(φu−φ0,−ι)

δ(φs) cos(φs) cos
−1

(
cos(φ0)

cos(φs − φu)

)
dφs

(13)

and φ0 is the polar angle difference between the serv-
ing satellite and the user which is given by φ0 =

cos−1
(
1− r20−r2min

2(rmin+r⊕)r⊕

)
. Equation (12) is valid for φ0 ≥

|φu| − ι and r0 ∈ [rmin, 2r⊕ + rmin] while fR0
(r0) = 0

otherwise.

Proof. See Appendix A.

We validate the PDF of the serving distance given in
Lemma 3 (lines) by Monte Carlo simulations (markers) in
Fig. 2. As shown in the figure, for larger number of satellites,
it is more likely that the serving distance has a value close
to the constellation altitude. The PDF becomes more uniform
and its maximum point diverges from the constellation altitude
for fewer number of satellites. For user’s latitudes greater than
the inclination angle, e.g., φu = 65◦ in the figure, the serving
distance has a value greater than the altitude depending the
constellation size and its altitude.
When the density of satellites is presumed to be uniform,

i.e., it is not a function of latitude, the PDF of the serving
distance can be obtained in closed form as follows.

Lemma 4. The PDF of the serving distance R0 when the
satellites are distributed uniformly with constant intensity
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Fig. 2. PDF of the serving distance, R0, given in Lemma 3, for rmin =
500 km, ι = 53◦, and θmin = 10◦. The lines and the markers show the
theoretical and simulation results, respectively.

given in Lemma 2 is

fR0
(r0) =

Nr0
2r⊕(rmin + r⊕)

exp

(
−N

(
r20 − r2min

4(rmin + r⊕)r⊕

))

(14)

for r0 ∈ [rmin, 2r⊕ + rmin] while fR0
(r0) = 0 otherwise.

Proof. In this proof, the same principles are used as in
Lemma 3. However, the integration from a constant density
over the cap sphere will reduce to a simple expression. Thus,
FR0

(r0) = 1 − exp
(
−N

(
r20−r2min

4(rmin+r⊕)r⊕

))
. Calculating the

derivative of the CDF w.r.t. r0 completes the proof.

The PDF of the serving distance is also derived in [33]
assuming satellites are uniformly distributed as a BPP. It is
worth noting that the Taylor series expansion of Lemma 4
and the serving distance distribution given in [33, Lemma 2]
are the same for the first two terms. The difference between
the serving distance in a uniformly distributed constellation
given in [33] and the homogeneous Poisson point process in
Lemma 4 is insignificant since the argument of exponential
function in (14), i.e., N

(
r20−r2min

4(rmin+r⊕)r⊕

)
, is small.

B. Coverage Probability and Average Data Rate

The coverage probability is the probability that the SINR
at the receiver is higher than the minimum SINR required
to successfully transmit the data. The coverage probability is
defined as

Pc (T ) � P (SINR > T ) = P
(
ptGt(R0)H0X0R

−α
0

I + σ2
> T

)
,

(15)

where T is the SINR threshold.
Using the above definition, we express the coverage proba-

bility of a user in the following theorem.

Theorem 1. The coverage probability for an arbitrarily lo-
cated user under a Nakagami fading serving channel while

both shape parameter and rate parameter of gamma distribu-
tion3 are m0, is

Pc (T ) � P (SINR > T )

=

∫ rmax

rmin

∫ ∞

0

fX0(x0)fR0 (r0)

[
e−sσ2

m0−1∑

k=0

∑k
l=0

(
k
l

)(
sσ2

)l
(−s)

k−l ∂k−l

∂sk−lLI(s)

k!

]

s=
m0Trα0

ptGt(r0)x0

dx0dr0,

(16)

where the PDF fR0 (r0) is given in Lemma 3 (or Lemma 4),
fX0

(x0) is the PDF of X0 and LI (s) is the Laplace transform
of interference power I calculated in the next section.

Proof. See Appendix B.

Let us then move on the average achievable data rate
(in bit/s/Hz), which is the ergodic capacity for a fading
communication link derived from Shannon-Hartley theorem
normalized to unit bandwidth. The average achievable rate is
defined as

C̄ � 1

K
E [log2 (1 + SINR)] . (17)

Unlike for the coverage probability, frequency reuse affects the
average rate in two opposite directions. One direction is the
improvement in SINR due to the reduction in the number of
interfering satellites which use the same channel. The other
direction which results in lower data rate is induced by a
reduction in the availability of the frequency band shared
among a group of satellites.
In the following theorem, we calculate the expression for

the average rate of a user over Nakagami fading serving chan-
nel. The interfering channel gains may follow any arbitrary
distribution.

Theorem 2. The average data rate of an arbitrarily located
user under a Nakagami fading serving channel and any fading
or shadowing distribution for interfering channels is given by

C̄ =
1

K

∫ rmax

rmin

∫ ∞

0

∫ ∞

0

fX0
(x0)fR0

(r0)

[
e−sσ2

m0−1∑

k=0

∑k
l=0

(
k
l

)(
sσ2

)l
(−s)

k−l ∂k−l

∂sk−lLI(s)

k!

]

s=
m0(2t−1)rα0
ptGt(r0)x0

dtdx0dr0,

(18)

where m0 is the parameter of Nakagami fading, and LI(s)
will be given in Lemma 5 and its corresponding corollaries,
which cover some special cases.

Proof. See Appendix C.

C. Interference Analysis

In this subsection, we derive the Laplace function of inter-
ference which is a key element of the performance expres-
sions in Theorems 1 and 2. We, first, obtain the expression

3Channel gain, being the square of Nakagami random variable, follows a
gamma distribution.
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considering a general propagation model which means that
no assumption is made regarding the specific expressions of
fXn(xn) and fHn(hn).

Lemma 5. When the server is at distance r0 ≥ rmin from
the user and interfering channels experience an arbitrary
distributed fading, the Laplace transform of random variable
I is

LI(s) � EI

[
e−sI

]
=

∞∑

n=0

Pn (A (rmax)−A (r0)) (19)

×
(∫ rmax

r0

∫ ∞

0

LHn
(sptGt(rn)xnr

−α
n )fXn

(xn)fRn|R0
(rn|r0)dx0drn

)n

,

where

fRn|R0
(rn|r0) =

dγ(rn)/drn
γ(rmax)− γ(r0)

(20)

is the probability density function of the distance from any
visible satellite to the user conditioned on the serving dis-
tance [33, Lemma 3]. The parameter A (rmax) represents the
spherical cap where all satellites that can be viewed by the
user exist while A (r0) is the cap above the user, empty of
satellites and with the serving satellite on its border (base of
the cap). The function fXn(xn) denotes the shadowing PDF
for the nth interfering channel.

Proof. See Appendix D.

In the special cases, where channels experience Nakagami
fading without any shadowing, Lemma 5 can be reduced into
the following corollary. The expression thereof is obtained by
substituting the Laplace function of a gamma random variable,
i.e., LHn

(z) =
mmn

n

(mn+z)mn , where mn stands for both shape
parameter and rate parameter of gamma distribution for the
nth link.

Corollary 1. When the interfering channels experience only
Nakagami fading (no shadowing), the Laplace function of
interference can be written as

LI(s) =

∞∑

n=0

Pn (A (rmax)−A (r0))

×
(∫ rmax

r0

mmn
n

(mn + sptGt(rn)r
−α
n )mn

fRn|R0
(rn|r0)drn

)n

,

(21)

where A (rmax) and A (r0) are the visible cap and the null
cap above the user, respectively. The PDF fRn|R0

(rn|r0) is
given in (20), and mn is the Nakagami fading parameter for
nth link.

When the intensity of the PPP is presumed to be constant
(regardless of the latitude), the Laplace function can be
obtained from the following corollary by simply substituting
γ(·) in (20) by the product of the density in Lemma 2 and
the surface area of the spherical cap formed by the distance
between the user and the given interfering satellite.

Corollary 2. The Laplace function of interference when the
satellites are distributed uniformly with constant intensity, and
their channels experience Nakagami fading, is given by

LI(s)

=
∞∑

n=0

1

n!

(
N

(
r2max − r20

)

4r⊕ (r⊕ + rmin)

)n

exp

(
− N

(
r2max − r20

)

4r⊕ (r⊕ + rmin)

)

×
(∫ rmax

r0

∫ ∞

0

2rnm
mn
n fX0

(x0)

(r2max − r20) (mn + sptGt(rn)r
−α
n )mn

dx0drn

)n

,

(22)

where fXn
(xn) is the PDF of the shadowing component and

mn is the fading parameter for Nakagami fading.

The following corollary presents the Laplace function of
interference in closed-form, under the assumptions given in
Corollary 2 and additionally excluding shadowing from the
propagation model.

Corollary 3. Assuming constant antenna gains, the Laplace
function of interference, when the satellites are distributed uni-
formly with constant intensity and their channels experience
only Nakagami fading (no shadowing), is given by

LI(s)

=
∞∑

n=0

1

n!

(
N

(
r2max − r20

)

4r⊕ (r⊕ + rmin)

)n

exp

(
− N

(
r2max − r20

)

4r⊕ (r⊕ + rmin)

)

× 1

(r2max − r20)

[
r2max 2F1

(
− 2

α
,mn;

α− 2

α
;− sptGtr

−α
max

mn

)n

− r20 2F1

(
− 2

α
,mn;

α− 2

α
;− sptGtr

−α
0

mn

)n
]
, (23)

where 2F1 (·, ·; ·; ·) is the Gauss’s hyper-geometric function
and mn is the fading parameter.

Finally, using the function given in [44, Eq. 9.100] and
substitution from special parameter values, the above can be
reduced to elementary functions. For instance, when m = 1
and α = 2, we have

LI(s)

=
∞∑

n=0

1

n!

(
N

(
r2max − r20

)

4r⊕ (r⊕ + rmin)

)n

exp

(
− N

(
r2max − r20

)

4r⊕ (r⊕ + rmin)

)

×
(
1 +

sptGt

(r2max − r20)
ln

(
k + r20

k + r2max

))
. (24)

To perform frequency reuse, we assign each satellite randomly
and independently to a particular frequency channel. There-
fore, the satellites assigned to each of the orthogonal frequency
channels form a thinned version of the original PPP with
intensity δ(φs)/K. Since thinning preserves the Poisson point
process according the thinning theorem of PPP [13], we can
take into account the effect of frequency reuse by substitution
δ(φs) → δ(φs)/K in Laplace function of interference (in
Lemma 5 or the corresponding corollaries). Since the same
frequency channel is used by the user and its nearest satellite,
the frequency reuse has no effect on the original value of
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Fig. 3. Theorem 1 verification with simulations when φu = 25◦, ι = 53◦,
m ∈ {1, 2, 3}, and θmin = 10◦. The lines and the markers show the
theoretical and simulation results, respectively.

intensity that is used to obtain the PDF of the distance from
the user to the server in Lemma 3.

IV. NUMERICAL RESULTS

In this section, we provide numerical results to study the
effect of different network parameters on coverage probability
and average data rate using the analytical expressions obtained
in Section III. The performance of the network is evaluated
in terms of satellite altitude and the number of orthogo-
nal frequency channels, which provides important guidelines
into the satellite network design. Furthermore, our analytical
derivations are all verified through Monte Carlo simulations.
We consider the large-scale attenuation with path loss

exponent α = 2, and the small-scale Nakagami-m fading with
integer m ∈ {1, 2, 3}. The choice of the fading parameter
corresponds to several cases when a dominant line-of-sight
component is not available for the user due to being in
highly dense urban areas or at higher latitudes compared
to the inclination limits. We assume lognormal shadowing
which is represented as X0 = 10X0/10 such that X0 has a
normal distribution with mean µs = 0 and standard deviation
σs = 9 dB. Thus, the PDF of lognormal shadowing is

fX0
(x0)=

10

ln(10)
√
2πσsx0

exp

(
−1

2

(
10 log10(x0)− µs

σs

)2
)
.

(25)

The number of orthogonal channels is set to K = 10 in
all the numerical results unless otherwise stated. We assume
ideal isotropic antennas for the satellites as well as the user.
The equivalent isotropic radiated power (EIRP) and the noise
power are set to 40 dBm, and -103 dBm, respectively. The
operating frequency is assumed to be 2 GHz. For the reference
simulations, satellites are placed uniformly on orbits centered
at Earth’s center with radius r⊕ + rmin.

Figure 3 verifies our derivations given in Theorem 1 for
53◦ inclined orbits and a user located at 25◦ latitude. The
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Fig. 4. Theoretical coverage probability on different users’ latitudes, T =
5 dB, rmin = 500 km, ι = 53◦, m = 2, and θmin = 10◦. The expression
given in Theorem 1 is used to plot this figure.

total number of satellites and constellation altitude are chosen
to be 2000 and 500 km, respectively. As shown in the figure,
the markers that depict the Monte Carlo simulation results
are completely matched with the lines that represent our
theoretical expressions. Shadowing, as a random phenomenon,
may cause an increase or decrease in the received SINR at
the user’s place. As a result, a varying effect of shadowing
on the coverage probability can be observed for different
SINR threshold values in Fig. 3. Obviously, this behaviour
is thoroughly affected by the mean and variance of lognormal
shadowing. Larger values of m correspond to higher elevation
angles and, consequently, less multi-path distortion, which
result in slightly better coverage, but shadowing masks the
effect of fading at large.
The effect of user’s latitude on coverage probability is

depicted in Fig. 4 forK = 10 and 50. The coverage probability
when satellites form a NPPP with intensity given in Lemma 1
is shown by solid lines. Since the intensity increases as the
user moves to higher latitudes, the performance becomes more
unreliable due to increase in the density of satellites that share
the same frequency channel with the user’s serving satellite.
When the user is in higher latitudes than the constellation
inclination limits, the coverage probability starts increasing
due to the reduction in the number of visible interferers.
The coverage reaches its maximum at about 66◦ where the
serving satellite is the only visible satellite to the user, i.e.,
the performance becomes noise-limited. For latitudes larger
than 66◦, the coverage converges to zero quickly, since there
are no satellites above horizon to serve the user. When the
intensity of satellites is selected according to Lemma 2, the
coverage probability remains constant (dashed lines) all over
the Earth for any latitude.
Figure 5 illustrates the probability of coverage at different

altitudes. For all propagation environments, the coverage prob-
ability increases to reach its maximum value as the altitude
increases which is then followed by a decline due to the rise
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Fig. 5. Effect of altitude on coverage probability when T = 5 dB, φu =
{0◦, 25◦, 65◦}, ι = 53◦, m = 2, and θmin = 10◦. The expression given in
Theorem 1 is used to plot this figure.

in the number of visible interfering satellites. The optimum
altitude for φu = 0◦ is slightly larger than φu = 25◦, the
reason being that the intensity of satellites, and consequently
the number of interferers, is higher at upper latitudes. When
the user’s latitude is set to φu = 65◦, which means that the
user is located out of the constellation borders (φu > ι = 53◦),
a larger altitude is crucial for the constellation so that the
user can be served by a satellite within its visible range. As
a result, for altitudes lower than about 400 km, no visible
satellite is available to serve the user which results in zero
coverage probability.
Several constellation design guidelines can be extracted

from Figs. 4 and 5, e.g., regarding the orbital inclination and
altitude. The inclination angle does not need to be necessarily
greater than the maximum latitude of the intended service
area and it may even result in better performance for some
latitudes out of the constellation’s borders as long as there are
visible satellites to the user. On the other hand, increasing
the inclination angle to avoid outage on higher latitudes
necessitates more satellites to maintain the same density and,
consequently, the same performance all over the service area.
Similar compromise should be also considered for the altitude.
Higher altitudes provide better chance of visibility for the
users. However, the overall performance is degraded due to
larger path attenuation at those altitudes.
Besides from the performance evaluation, the derivations

in Theorems 1 and 2 can be utilized to determine different
constellation parameters for a desired performance criterion.
For instance, in Table II, we illustrate the minimum number
of satellites needed to provide a coverage probability of at
least 0.9 for a noise-limited LEO network in three different
cities. The inclination angle is assumed to be 53◦. As the
user gets closer to the inclination limits (53◦), fewer satellites
can provide the desired performance. Moreover, a larger
constellation size is required for higher altitudes in order to
compensate for the greater path loss. For Helsinki, being on
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Fig. 6. Theorem 2 verification with simulations when φu = 25◦, ι = 53◦,
m ∈ {1, 2, 3}, and θmin = 10◦. The lines and the markers show the
theoretical and simulation results, respectively.

TABLE II
MINIMUM CONSTELLATION SIZE TO PROVIDE 90% COVERAGE

PROBABILITY IN DIFFERENT CITIES

Cities Helsinki Singapore Sydney
(φu ≈ 60◦ N) (φu ≈ 1◦ N) (φu ≈ 34◦ S)

Altitude (km) 500 1500 500 1500 500 1500
Constellation size 380 560 230 300 165 210

a higher latitude than the inclination angle, more satellites are
required to achieve the same performance.
Figure 6 verifies the derivations for average data rate of a

user at the latitude of 25◦. As shown in the figure, the simu-
lation results are perfectly in line with theoretical expressions
in Theorem 2. The disparate behaviour of the curves is caused
by the two opposite effects of frequency reuse on the average
achievable rate. As the number of frequency bands increases,
the total number of interfering satellites on the same frequency
band declines which results in an increase in the data rate.
On the other hand, by increasing the number of frequency
channels, the bandwidth shared among a group of satellites is
reduced. An increase in the plot is observed at first as a result
of the decrease in interference received power, followed by a
drop which is due to comprising only 1

K of frequency band.
Figure 7, as a counterpart for Fig. 4, illustrates the variation

of data rate over different latitudes when the intensity of
Poisson point process is chosen to be according to Lemma 1
or, for comparison, Lemma 2. With intensity being as in
Lemma 1, data rate varies over the different user’s latitudes
as shown in Fig. 7. For 53◦ inclined orbits, there is a minor
decline in data rate which is followed by a sharp rise due to
a decrease in the number of visible interfering satellites when
the user leaves the inclination limits.
The effect of altitude on data rate is depicted in Fig. 8 for

K = 10. Similar to Fig. 5, from the minimum altitude at
which the user is able to visit at least one satellite, the data
rate increases rapidly until reaches a maximum point. After
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Fig. 7. Data rate on different users’ latitudes, K = 10, rmin = 500 km,
ι = 53◦, m = 2, and θmin = 10◦. The expression given in Theorem 2 is
used to plot this figure.

the maximum point, the data rate decreases more slowly due
to the increase in the number of interfering satellites as well
as satellites being at a farther distance from the user. The
altitude which maximizes the data rate varies with the user’s
latitude and, obviously, it has similar value which results in
the maximum coverage probability.

V. CONCLUSIONS

In this paper, a generic approach to obtain the analytical per-
formance of a massive low Earth orbit network was presented
by modeling the satellites’ locations as a nonhomogeneous
Poisson point process and utilizing the tools from stochastic
geometry. The density of the nonhomogeneous Poisson point
process is derived from the actual geometry of the constella-
tion which enables us to take into account the non-uniform
distribution of satellites across different latitudes. Our next
step was to apply this model to derive analytical expressions
for the coverage probability and average data rate of an
arbitrarily located user in terms of the distribution of fading
and shadowing as well as the Laplace function of interference.
From the numerical results, we concluded that, depending on
the shadowing parameters, the effect of shadowing on the
network performance is ambivalent. Furthermore, we showed
how the analytical results allow one to find — without involved
orbital simulations — optimum values for altitude, the number
of orthogonal frequency channels, and user’s latitude which
result in the largest coverage and/or throughput, given the
constellation parameters.

APPENDIX

A. Proof of Lemma 3

For a NPPP, the CDF of R0 can be written as

FR0
(r0) = 1− P(R0 > r0) = 1− P(N = 0), (26)

where P(N = 0) is the void probability of PPP in A(r0) that
can be obtained from (7) by setting n = 0. According to (7),
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Fig. 8. Effect of altitude on data rate when K = 10, φu = {0◦, 25◦, 65◦},
ι = 53◦, m = 2, and θmin = 10◦. The expression given in Theorem 2 is
used to plot this figure.

by integrating from the intensity over the spherical cap above
the user, we have

FR0
(r0)

=1− exp

(
−
∫ min(φu+φ0,ι)

max(φu−φ0,−ι)

β(φs)δ(φs)(rmin + r⊕)
2
cos(φs)dφs

)

(a)
=1− exp

(
− 2 (rmin + r⊕)

2
∫ min(φu+φ0,ι)

max(φu−φ0,−ι)

δ(φs) cos(φs)

× cos−1

(
cos(φ0)

cos(φs − φu)

)
dφs

)
, (27)

where β(φs) is the longitude range inside the spherical cap
above the user at latitude φs. Equality (a) follows from
substitution of β(φs) using the basic geometry. Taking the
derivative of (27) with respect to r0 completes the proof of
Lemma 3. Note that for φ0 ≤ |φu| − ι the CDF given in (27)
is zero since the spherical cap formed by polar angle φ0 above
the latitude φu is much farther from the constellation’s borders
to contain any satellite.

B. Proof of Theorem 1

To obtain the expression given (16), let us begin with the
definition of coverage probability:

Pc (T ) = ER0
[P (SINR > T |R0)] (28)

=

∫ rmax

rmin

P (SINR > T |R0 = r0) fR0 (r0) dr0

=

∫ rmax

rmin

P
(
ptGt(r0)H0X0r

−α
0

I + σ2
> T

)
fR0 (r0) dr0

=

∫ rmax

rmin

EI

[
P

(
H0X0 >

Trα0
(
I + σ2

)

ptGt(r0)

)∣∣∣∣I > 0

]

× fR0
(r0) dr0.
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Since satellites with elevation angles smaller than θmin are not
visible to the user, the integral has an upper limit. Then,

Pc (T )

(a)
=

∫ rmax

rmin

EI

[∫ ∞

0

fX0
(x0)

(
1− FH0

(
Trα0

(
I + σ2

)

ptGt(r0)x0

))]

× fR0
(r0) dx0dr0

(b)
=

∫ rmax

rmin

EI



∫ ∞

0

fX0(x0)



Γ

(
m0,m0

Trα0 (I+σ2)
ptGt(r0)x0

)

Γ (m0)







× fR0 (r0) dx0dr0

(c)
=

∫ rmax

rmin

∫ ∞

0

fX0
(x0)fR0

(r0) e
− m0Trα0 σ2

ptGt(r0)x0 EI

[
e
− m0Trα0 I

ptGt(r0)x0

m0−1∑

k=0

∑k
l=0

(
k
l

) (
m0

Trα0 σ2

ptGt(r0)x0

)l (
m0

Trα0 I
ptGt(r0)x0

)k−l

k!

]
dx0dr0

=

∫ rmax

rmin

∫ ∞

0

fX0
(x0)fR0

(r0)

[
e−sσ2

m0−1∑

k=0

∑k
l=0

(
k
l

)(
sσ2

)l
(−s)

k−l ∂k−l

∂sk−lLI(s)

k!

]

s=
m0Trα0

ptGt(r0)x0

dx0dr0.

(29)

The substitution in (a) follows from the product distribution
of two independent random variables, (b) follows from the
distribution of gamma random variable H0 (being the square
of the Nakagami random variable), and (c) is calculated by
applying the incomplete gamma function for integer values of
m0 to (b).

C. Proof of Theorem 2

Most of the steps in derivation of the data rate expression,
given in Theorem 2, are similar to those given in Appendix B.
According to the definition of the average data rate given in
(17), we have

C̄ = EI,H0,X0,R0
[log2 (1 + SINR)]

=

∫ rmax

rmin

EI,H0,X0

[
log2

(
1 +

ptGt(r0)H0X0r
−α
0

σ2 + I

)]
fR0

(r0) dr0

(a)
=

∫ rmax

rmin

∫ ∞

0

EI,H0,X0

[
P
(
log2

(
1 +

ptGt(r0)H0X0r
−α
0

σ2 + I

)
>t

)]

× fR0
(r0) dtdr0

=

∫ rmax

rmin

∫ ∞

0

EI,H0,X0

[
P

(
H0X0 >

rα0
(
σ2 + I

)

ptGt(r0)

(
2t − 1

)
)]

× fR0
(r0) dtdr0 (30)

where (a) follows form the fact that for a positive random
variable X , E [X] =

∫
t>0

P (X > t) dt. Thus, we have

C̄
(a)
=

∫ rmax

rmin

∫ ∞

0

EI

[∫ ∞

0

fX0(x0)

×
(
1− FH0

(
rα0

(
I + σ2

)
(2t − 1)

ptGt(r0)x0

))
dx0

]
fR0(r0) dtdr0

(b)
=

∫ rmax

rmin

∫ ∞

0

EI

[∫ ∞

0

fX0(x0)

×



Γ

(
m0,m0

rα0 (I+σ2)(2t−1)
ptGt(r0)x0

)

Γ (m0)


 dx0

]
fR0

(r0) dtdr0

(c)
=

∫ rmax

rmin

∫ ∞

0

∫ ∞

0

fX0
(x0)fR0

(r0)e
−m0(2

t−1)rα0 σ2

ptGt(r0)x0

× EI

[
e
−m0(2

t−1)rα0 I

ptGt(r0)x0

m0−1∑

k=0

∑k
l=0

(
k
l

)(m0(2t−1)rα0 σ2

ptGt(r0)x0

)l(
m0(2t−1)rα0 I

ptGt(r0)x0

)k−l

k!

]
dtdx0dr0

=

∫ rmax

rmin

∫ ∞

0

∫ ∞

0

fX0
(x0)fR0

(r0)

[
e−sσ2

m0−1∑

k=0

∑k
l=0

(
k
l

)(
sσ2

)l
(−s)

k−l ∂k−l

∂sk−lLI(s)

k!

]

s=
m0(2t−1)rα0
ptGt(r0)x0

dtdx0dr0.

(31)

Similar to the proof of Theorem 1, (a) follows from the product
distribution of two independent random variables, (b) follows
from the gamma distribution of serving channel gain H0, and
(c) is calculated by applying the incomplete gamma function
for integer values of m0 to (b).

D. Proof of Lemma 5

In this appendix, we derive the expression for Laplace
function of interference assuming arbitrary distributions for
fading and shadowing. Let us start with the definition of
Laplace function for random variable I which is

LI(s) � EI

[
e−sI

]

= EN ,Rn,Xn,Hn


exp


−s

∑

n∈ξ\{s}
ptGt(Rn)HnXnR

−α
n






= EN ,Rn,Xn,Hn


 ∏

n∈ξ\{s}
exp

(
−sptGt(Rn)HnXnR

−α
n

)

 .

(32)
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Due to i.i.d. distribution of Hn and Xn as well as their
independence from N and Rn, we have

LI(s)

= EN ,Rn


 ∏

n∈ξ\{s}
EXn,Hn

[
exp

(
−sptGt(Rn)HnXnR

−α
n

)]



(33)

(a)
= EN

[ ∏

n∈ξ\{s}

∫ rmax

r0

EXn,Hn

[
exp

(
−sptGt(rn)HnXnr

−α
n

)]

× fRn|R0
(rn|r0)drn

]
, (34)

where (a) is obtained by taking the expectation over the
random variable Rn conditioned on R0. Then

LI(s)
(b)
=

∞∑

n=0

Pn (A (rmax)−A (r0))

×
(∫ rmax

r0

EXn,Hn

[
exp

(
−sptGt(rn)HnXnr

−α
n

)]

× fRn|R0
(rn|r0)drn

)n

(c)
=

∞∑

n=0

Pn (A (rmax)−A (r0))

×
(∫ rmax

r0

∫ ∞

0

LHn

(
sptGt(rn)xnr

−α
n

)
(35)

× fXn
(xn)fRn|R0

(rn|r0)dx0drn
)n

,

where A (rmax) − A (r0) indicates the region above the user
where satellites which are more distanced from the user than
the serving satellite exist, (b) is obtained by taking the average
over the Poisson random variable N , and applying the law of
total expectation on independent random variables Hn and Xn

results in (c).
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Abstract—The dream of having ubiquitous and high-capacity
connectivity is coming true by emerging low Earth orbit (LEO)
Internet constellations through several commercial plans, e.g.,
Starlink, Telesat, and Oneweb. The analytical understanding of
these networks is crucial for accurate network assessment and,
consequently, acceleration in their design and development. In
this paper, we derive the coverage probability and the data rate
of a massive LEO network under arbitrarily distributed fading
and shadowing. The conventional user association techniques,
based on the shortest distance between the ground terminal
and the satellite, result in a suboptimal performance of the
network since the signal from the nearest server may be subject
to severe shadowing due the blockage by nearby obstacles
surrounding the ground terminal. Thus, we take into account
the effect of shadowing on the serving satellite selection by
assigning the ground terminal to the satellite which provides
the highest signal-to-noise ratio at the terminal’s place, resulting
in a more generalized association technique, namely the best
server policy (BSP). To maintain tractability of our derivations
and consider the latitude-dependent distribution of satellites, we
model the satellites as a nonhomogeneous Poisson point process.
The numerical results reveal that implementing the BSP for
serving satellite selection leads to significantly better performance
compared to the conventional nearest server policy (NSP).

I. INTRODUCTION

Low Earth orbit (LEO) Internet constellations are gaining
increasing popularity all around the world due to providing
seamless connectivity, especially for isolated regions where
deployment of terrestrial networks is not economically feasible
or for countries with restricted access to Internet. To keep pace
with the commercial progress of LEO networks and accelerate
their development, analytical modeling and understanding of
these networks — without time consuming and network-
specific orbital simulations — are of great importance.
Although several aspects of massive LEO constellations

have been investigated recently in the literature [1]–[10],
little attention was paid to the effect of shadowing on the
selection of the serving satellite, which noticeably affects
the network performance. The server association used in the
literature is based on the shortest distance, i.e., the so-called
the nearest server policy (NSP), which is the most simplistic
association technique and is rarely used in practice since it
is unable to include the effect of the large-scale attenuation,
i.e., shadowing, on the variation of the received signal. In
this work, we will implement the more realistic association
technique, the best server policy (BSP), which includes the
shadowing effect on the serving satellite selection by assigning

the ground terminal to a satellite that provides the highest
signal-to-noise ratio (SNR) at the terminal’s place.
The best server policy is frequently used to evaluate the

performance of terrestrial networks [11]–[13], and proved to
provide more reliable network performance. Moreover, the
best server policy is more in line with practical association
techniques since, in reality, the SNR at the receiver is a major
criterion to determine the server [13].
The literature on LEO network analysis has been mostly

limited to simulation-based deterministic analyses [14]–[16]
until recently that the application of stochastic geometry and
statistical models for tractable analysis of massive wireless
networks [17]–[22] was extended to LEO networks’ analysis.
Utilization of stochastic geometry enables characterization of
the serving distance which is a key parameter in performance
evaluation of theses networks. However, the serving distance
for analytical modeling of LEO networks is mostly assumed
be to the shortest distance between the user and the satellites.
In [1], we derived the coverage probability and the data rate

of a massive LEO network in presence of co-channel interfer-
ence by modeling the network as a binomial point process
(BPP). Since the satellites’ locations in actual constellations
barely follow a uniform distribution, we adjusted the inherent
performance mismatch numerically in [1]. The mismatch was
also compensated in [2] and [3] through analytically finding
the effective number of satellites for every user’s latitude and
modeling the network as a nonhomogeneous Poisson point
process (PPP) with a latitude-dependent intensity, respectively.
Unlike [1], [2], shadowing was included in the propagation
model in [3], but it had no effect on the association rule and
the user connects to its nearest satellite. A more generalized
system model was studied by inclusion of interference in [4].
The contact angle, i.e., the minimum angular distance

between the satellites and the user, is characterized in [5] to
evaluate the performance of a LEO network without consid-
ering the effect of shadowing attenuation. The results were
then used in [6] to find the altitude that maximizes coverage
probability. The uplink performance of a LEO network in
presence of terrestrial interferers was characterized in [7]. In
[10], the distribution of conditional coverage probability was
derived, given the nodes’ positions, for a satellite–terrestrial
relay network in order to evaluate the percentage of ground
users that may reach a target SINR threshold.
In [8], essential distance distributions were formulated for

LEO networks assuming satellites are distributed on multiple



concentric spheres, each of which has a known specific radius.
The results were then used to analyze the coverage probability
in [9] when satellite gateways relay the data between the
satellites and the terrestrial users. Despite assuming shadowed
Rician channels in [9], [10], they had no effect on the contact
distances.
According to the literature review, the best server policy

has not yet been characterized for analytical evaluation of LEO
networks, in spite of the fact that it is the most frequently used
association technique in practice. Moreover, the shadowing
effect, which enables the characterization of the best server
policy, was not considered in most of the literature.
In this paper, we formulate new analytical expressions to

evaluate the coverage probability and rate of a LEO network,
assuming that the server is selected based on the best server
policy. Including shadowing in the propagation model, we
assume that the ground terminal associates with the satellite
that provides the highest received SNR for the terminal. We
corroborate our derivations through Monte Carlo simulations,
and compare them with the conventional nearest server policy,
which was presented in [3]. As our numerical results illustrate,
the best server policy results in significantly better perfor-
mance in both coverage probability and data rate compared
with the nearest server policy.
The remainder of this paper is organized as follows. Sec-

tion II introduces the studied system model and the mathemat-
ical preliminaries to model a LEO network as a nonhomoge-
neous PPP. Distance distributions required to characterize the
coverage probability and the data rate of a LEO network are
presented in Section III. The numerical results are provided in
Section IV. Finally, the paper is concluded in Section V.

II. SYSTEM MODEL

In this section, firstly, we describe the actual LEO con-
stellation that will be studied in this paper. Secondly, we
present the (re)modeled nonhomogeneous PPP which not only
captures all the characteristics of the actual physical network,
but also enables us to tractably analyze and derive the network
performance metrics. One should note that the study holds
for both downlink and uplink directions equivalently although
some of the following system aspects are specified from the
downlink perspective for simplicity.
The actual network studied in this paper is a massive LEO

Internet constellation, as shown in Fig. 1, consisting of N
satellites which are distributed uniformly on circular orbits at
a given altitude, rmin. The orbital planes are all inclined to an
angle, denoted by ι. The ground terminals (GTs), i.e., users
and/or gateways, are located on Earth’s surface at an arbitrary
latitude denoted by φu. Earth is assumed to be a perfect sphere
with radius r⊕ ≈ 6371 km.

A satellite is visible to a ground terminal, i.e., it can receive
from or transmit to it, if it is elevated above the user’s horizon
to a minimum angle of θmin. The distances from the satellites
to the ground terminal, their corresponding channel gains, and
the shadowing coefficients are denoted by Rn, Gn, and Xn,
where n = 0, 1, . . . , N − 1. Throughout the paper, we reserve

Fig. 1. A LEO constellation in an example case of N = 1000 satellites
flying on ι = 53◦ inclined orbits at rmin = 1800 km. Only 6 example
orbital planes are shown for clarity.

index zero for the serving link, i.e., R0, G0, and X0 represent
the distance to the server, its corresponding fading gain and
its shadowing coefficient, respectively. A satellite and GT may
be able to communicate only if Rn ≤ rmax, where rmax is the
distance between the satellite and GT when the satellite is at
the minimum elevation angle, i.e., θmin. Obviously, rmax is a
function of θmin and is given as [3]

rmax

r⊕
=

√
rmin

r⊕

(
rmin

r⊕
+ 2

)
+ sin2(θmin)− sin(θmin). (1)

The signal-to-noise ratio at the receiver, based on the above
system model, can be expressed as

SNR =





psG0X0R
−α
0

σ2
, R0 ≤ rmax,

0, otherwise,
(2)

where ps is the constant transmission power. The parameter
α = 2 is a path loss exponent and the power of the additive
noise is denoted by σ2.

In this paper, we implement the best server policy to select
the serving satellite. Accordingly, the serving satellite will be
the one which provides the strongest SNR for the receiver.
Since fading coefficients, Gn, vary quickly over the time, we
assume that they have no effect on the association technique.
Therefore, when implementing the best server policy, the
serving link must satisfy the following equation:

X− 1
α

0 R0 = min
n

(
X− 1

α
n Rn|Rn < rmax

)
. (3)

We then remodel the actual network, described earlier, as
a nonhomogeneous PPP which allows us to take into account
the varying density of satellites along different latitudes while
maintaining the tractability of our derivations [3]. Ergo, we
assume that the satellites are distributed according to a non-
homogeneous PPP, on a spherical shell with radius r⊕+ rmin.



By the definition of a nonhomogeneous PPP, the number
of points in some bounded region A of the orbital shell is a
Poisson-distributed random variable denoted by N . Thereby,
the probability to have n satellites in A is given by

Pn (A) � P (N = n) (4)

=
1

n!

(∫∫

A
δ(φs, λs) (rmin + r⊕)

2 cos(φs) dφsdλs

)n

× exp

(
−
∫∫

A
δ(φs, λs) (rmin + r⊕)

2 cos(φs) dφsdλs

)
,

where δ(φs, λs) is the intensity function of nonhomogeneous
PPP at latitude φs and longitude λs. Based on the given
system model, A is any spherical cap in the area where visible
satellites to the user exist.
The intensity of nonhomogeneous PPP, when satellites are

distributed uniformly on inclined low Earth orbits, is a function
the satellites’ latitudinal element, φs, which is characterized in
[3] as

δ(φs, λs) = δ(φs) (5)

=
N√

2π2(rmin + r⊕)2
√
cos(2φs)− cos(2ι)

.

As implied above, the intensity is inherently independent of
the satellites’ longitudinal element, λs.

III. PERFORMANCE ANALYSIS

In this section, we find mathematical expressions for the
coverage probability and the data rate of the described LEO
constellation under the best server policy. Modeling the satel-
lites locality as a nonhomogeneous PPP, we are able to find the
distance distributions, in terms of their cumulative distribution
function (CDF) and probability density function (PDFs), which
will contribute to arriving at our main derivations in this paper,
i.e., coverage probability and data rate.

A. Distance Distributions

In the following lemma, we derive the distribution of the
distance from the user to any visible satellite, Rvis

n , in terms
of its CDF.

Lemma 1. The CDF of the distance from any visible satellite
in the constellation Rvis

n to the ground terminal is given by

FRvis
n

(rn) � P (Rn < rn|Rn < rmax) (6)

=

∫∫
A(rn)

δ(φs, λs) (rmin + r⊕)2 cos(φs) dφsdλs∫∫
A(rmax)

δ(φs, λs) (rmin + r⊕)2 cos(φs) dφsdλs

for rmin ≤ rn ≤ rmax. A(rn) and A(rmax) are the cap area
where all satellites therein have a distance less than or equal
to rn and rmax to the GT, respectively.

Proof. The CDF of the distance from any visible satellite to
the GT is equal to the CDF of surface integral of δ(φs, λs)
over the spherical cap A(rn). Conditioning on the visibility,
the CDF is trivially calculated as in (6).

Corollary 1. The CDF of Rvis
n , when the satellites are dis-

tributed according to a nonhomogeneous PPP with a latitude-
dependent intensity, δ(φs), is

FRvis
n

(rn) (7)

=

∫min(φu+θ(rn),ι)

max(φu−θ(rn),−ι)
δ(φs) cos(φs) cos

−1
(

cos(θ)
cos(φs−φu)

)
dφs

∫min(φu+θ(rmax),ι)

max(φu−θ(rmax),−ι)
δ(φs) cos(φs) cos−1

(
cos(θ)

cos(φs−φu)

)
dφs

,

where θ(r) = cos−1
(
1− r2−r2min

2(rmin+r⊕)r⊕

)
is the polar angle

difference between a satellite and the ground terminal.

Proof. Corollary is obtained by calculating the longitude range
inside the spherical cap and with the aid of the basic geometry
(for more details see [3, Lemma 2]), and substitution in
Lemma 1.

Considering the effect of shadowing on BSP association,
let us define R̃0 � minn X− 1

α
n Rvis

n as the nearest effective
distance from the visible satellites to the user. The following
lemma gives the PDF distribution of R̃0.

Lemma 2. The PDF of the nearest effective distance R̃0 is
given by

fR̃0
(r̃0) =

∞∑

n=0

nPn (A(rmax))

×
∫ ∞

0

αz−α−1
n fXn

(
z−α
n

)
FRvis

n

(
r̃0
zn

)
dzn

×
(
1−

∫ ∞

0

αz−α−1
n fXn

(
z−α
n

)
FRvis

n

(
r̃0
zn

)
dzn

)n−1

, (8)

where the PDF of the random variable Zn � X− 1
α

n is
evaluated at point zn.

Proof. See Appendix A.

If satellites were distributed according to a homogeneous
PPP with constant density δ = N

4π(rmin+r⊕)2 , the distribution
of the nearest effective distance would be simplified as in the
following lemma. This requires compensating for the density
mismatch by replacing N by the effective number of satellites.

Lemma 3. The PDF of the nearest effective distance R̃0 when
the satellites are distributed uniformly with constant intensity,
δ = N

4π(rmin+r⊕)2 , is

fR̃0
(r̃0) =

∞∑

n=0

1

(n− 1)!

(
δπ

(
r2max − r2min

)

1− rmin

r⊕+rmin

)n

× exp

(
−δπ

(
r2max − r2min

)

1− rmin

r⊕+rmin

)

×


1−

∫ ∞

0

αz−α−1
n fXn

(
z−α
n

)



(
r̃0
zn

)2

− r2min

r2max − r2min


 dzn




n−1

×
∫ ∞

0

αz−α−3
n fXn

(
z−α
n

)(2r̃0 − r2min

r2max

)
dzn . (9)



TABLE I
SIMULATION PARAMETERS

Parameters Values
Path loss exponent, α 2
Rician factor, K 10
Transmit power, ps 50 dBm
Noise power, σ2 -120 dBm
Frequency 13.5 GHz
Mean and standard deviation of lognormal 0 dB, 9 dB
distribution: µs, σs

Proof. Since the intensity function δ is constant,
Pn (A (rmax)) is obtained simply by multiplying δ by
the surface of the spherical cap, A (rmax), where the
visible satellites can reside. Using Lemma 1, we have

FRvis
n

(
r̃0
zn

)
=

A( r̃0
zn
)

A(rmax)
=

( r̃0
zn
)
2−r2min

r2max−r2min
, since the density is

constant over the spherical shell.

B. Coverage Probability

In this subsection, we utilize the distance distributions ob-
tained in the previous section to derive the coverage probability
of a LEO constellation for an arbitrarily located ground termi-
nal under the best server policy. The coverage probability is the
probability of having a greater SNR than a minimum threshold,
T > 0, at the receiver. In other words, whenever the received
SNR is above the threshold level, the receiver is considered to
be within the coverage and the data is transmitted successfully.

Proposition 1. The probability of network coverage for an
arbitrarily located GT, under generally distributed fading and
shadowing as well as BSP association is

Pc (T ) � P (SNR > T )

=

∫ ∞

0

(
1− FG0

(
T r̃α0 σ

2

ps

))
fR̃0

(r̃0)dr̃0, (10)

where FG0
(·) is the CDF of the channel gain G0 and fR̃0

(r̃0)
is given in Lemmas 2 and 3.

Proof. To obtain (10), we start with the definition of coverage
probability:

Pc (T ) = ER̃0

[
P
(
SNR > T |R̃0

)]

=

∫ ∞

0

P
(
SNR > T |R̃0 = r̃0

)
fR̃0

(r̃0) dr0

=

∫ ∞

0

P
(
G0 >

T r̃α0 σ
2

ps

)
fR̃0

(r̃0) dr0, (11)

The proof is completed by substituting the complementary
CDF of G0.

Note that the effect of the shadowing distribution in the
coverage probability is embedded in the PDF of the nearest
effective distance, fR̃0

(r̃0), given in Lemmas 2 and 3.

C. Average Data Rate

Let us then turn to the average achievable data rate (in bits
per channel use), which states the ergodic capacity derived

from the Shannon–Hartley theorem over a fading communi-
cation link normalized to unit bandwidth.

Proposition 2. The average rate (in bits/s/Hz) of an arbitrarily
located GT, under BSP association, and generally distributed
fading and shadowing is

C̄ � E [log2 (1 + SNR)] =
∫ ∞

0

∫ ∞

0

log2

(
1 +

psg0r̃
−α
0

σ2

)
fG0

(g0)fR̃0
(r̃0) dg0 dr̃0,

(12)

where fG0
(g0) represents the PDF of channel gain G0 and

fR̃0
(r̃0) is given in Lemmas 2 and 3.

Proof. Taking the expectation over the serving distance and
the channel gain, we have

C̄ = EG0,R0
[log2 (1 + SNR)]

=

∫ ∞

0

EG0

[
log2

(
1 +

psG0r̃
−α
0

σ2

)]
fR̃0

(r̃0) dr̃0. (13)

The inner integral comes from the expectation w.r.t. G0.

IV. NUMERICAL RESULTS

In this section, we evaluate and compare the effect of the
two association policies, i.e., the best server policy (BSP)
which is analyzed above in this paper and the nearest server
policy (NSP) in [3], on the performance of a LEO network.
We also corroborate our analytical derivations through Monte
Carlo simulations on the actual constellations.
Since most of the signal path is through the free space,

we set the path loss exponent to α = 2. The small-scale
fading around the GT is assumed to be Rician with parameter
K = 10. The CDF and the PDF of G0, required to evaluate
Propositions 1 and 2, are

FG0
(g0) = 1−Q1

(√
2K,

√
g0

)
(14)

and
fG0

(g0) =
1

2
e−

g0+2K
2 I0

(√
2Kg0

)
, (15)

respectively, where Q1(·, ·) denotes the Marcum Q-function
and I0(·) is the modified Bessel function of the first kind.
Shadowing is assumed to have a lognormal distribution which
is represented as X0 = 10X0/10 such that X0 has a normal
distribution with mean µs = 0 and standard deviation σs =
9 dB. Thus, the PDF of lognormal shadowing is

fX0
(x0) (16)

=
10

ln(10)
√
2πσsx0

exp

(
−1

2

(
10 log10(x0)− µs

σs

)2
)
.

The ground terminal is located on 25◦ latitude. The trans-
mit power and the noise power are set to 50 dBm and
-120 dBm, respectively. The operating frequency is assumed
to be 13.5 GHz. For the reference simulated constellation,
satellites are placed uniformly on circular orbits centered at
Earth’s center with radius r⊕ + rmin. Table I summarizes the
simulation parameters used to generate the numerical results.
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Fig. 2. Verification of Proposition 1 with simulations when K = 10, φu =
25◦, ι = 53◦, rmin = 500 km, and θmin = 10◦. The lines and the markers
represent the analytical results and simulations, respectively.

Figure 2 depicts the coverage probability versus SNR
threshold for BSP, NSP, and non-shadowing environment for
N = 500 and 1000 satellites. A fair match between the theory
(plotted by lines) and the simulations (plotted by markers) is
observed in the figure. As can be seen in the figure, the BSP
results in a significantly better coverage probability compared
to NSP, since the overall SNR at the receiver is improved by
inclusion of shadowing in association policy. It is obvious that
when shadowing is assumed to be zero, the two association
techniques become the same.
The same as for the coverage probability, the BSP provides

more reliable data rate compared to the NSP as shown in
Fig. 3. We verify the expression given in Proposition 2
(depicted with lines) with simulations (depicted with markers).
The data rate slightly decreases with increasing the inclination
angle since the satellites’ density decreases accordingly. Larger
constellation size results in higher data rates due to more
chance of being connected to the best possible server.
The effect of constellation size on coverage probability

for BSP and NSP association techniques and two inclination
angles of ι = 53◦ and ι = 90◦ are illustrated in Fig. 4. The
SNR threshold is set to 10 dB. As expected, BSP shows a
superior performance compared to NSP and the performance
difference rises with increasing the constellation size. Smaller
inclination angles result in higher coverage probability due to
providing a higher density for a given number of satellites,
especially when the constellation size is not too large. As the
number of satellites exceeds a certain limit, the coverage prob-
ability saturates to a certain value, implying that increasing the
constellation size does not always improve the performance
(i.e., no better serving channel can be associated).
The data rate for different total number of satellites and

inclination angles is depicted in Fig. 5. The curves follow
the same behaviour as those in Fig. 4, which illustrates the
better performance of BSP. As can be seen, when σs = 9 dB,
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Fig. 3. Data rate versus inclination angle when K = 10, φu = 25◦, rmin =
500 km, and θmin = 10◦. The lines and the markers represent the analytical
results and simulations, respectively.
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Fig. 4. Coverage probability versus constellation size when T = 10 dB,
K = 10, φu = 25◦, ι = 53◦, rmin = 500 km, and θmin = 10◦.

the effect of shadowing on NSP association is insignificant.
Thus, we skipped plotting the results for non-shadowing case
in Fig. 5 since they overlap the results of NSP.

V. CONCLUSIONS

In this paper, the best server policy to assign a ground
terminal to the best LEO satellite, which provides the highest
SNR at the receiver, is studied and compared with conven-
tional association techniques that only consider the distance
between transceivers. Utilizing a nonhomogeneous Poisson
point process to model the satellites’ locality, enabled us to
tractably analyze a LEO network for its two main performance
metrics, i.e., the coverage probability and the data rate, while
precisely capturing the characteristics of the actual physical
network. As a result, the distribution of the serving distance
based on BSP is derived mathematically which is a crucial
parameter in network performance assessment. From the nu-
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Fig. 5. Data rate versus constellation size when K = 10, φu = 25◦, rmin =
500 km, and θmin = 10◦.

merical results, other than verification of our derivations, we
presented the coverage probability and the data rate in terms
of different network parameters, e.g., inclination angle and
the constellation size. The best serving policy resulted in a
significantly better performance compared to the conventional
nearest server policy for different network parameter settings.

APPENDIX

A. Proof of Lemma 2

The CDF of R̃0 is defined as

FR̃0
(r̃0) = P

(
R̃0 < r̃0

)
= EN

[
P
(
R̃0 < r̃0

)
|N = n

]

=
∞∑

n=0

Pn (A (rmax))P
(
min
n

{
X− 1

α
n Rvis

n

}
< r̃0

)

=
∞∑

n=0

Pn (A (rmax))

×
(
1− P

(
X1

− 1
αRvis

1 > r̃0, · · ·,Xn
− 1

αRvis
n > r̃0

))

(a)
=

∞∑

n=0

Pn (A (rmax))
(
1−

(
1− FR̃n

(r̃0)
)n)

, (17)

where R̃n = Xn
− 1

αRvis
n and (a) follows from {R̃n} being

i.i.d. random variables. Since each R̃n is the product of
independent random variables Rvis

n and Zn � X− 1
α

n , the
product distribution is given by

FR̃n
(r̃0) =

∫ ∞

0

fZn
(zn)FRvis

n

(
r̃0
zn

)
dzn . (18)

Substituting fZn
(zn) = αz−α−1

n fXn
(z−α

n ) and taking the
derivative with respect to r̃0, the CDF of R̃0 is obtained as
given in Lemma 2.
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Abstract—Providing backhaul access for airborne networks
ensures their seamless connectivity to other aerial or terrestrial
users with sufficient data rate. The backhaul for aerial platforms
(APs) has been mostly provided through geostationary Earth
orbit satellites and the terrestrial base stations (BSs). However,
the former limits the achievable throughput due to significant
path loss and latency, and the latter is unable to provide full
sky coverage due to existence of wide under-served regions on
Earth. Therefore, the emerging low Earth orbit (LEO) Internet
constellations have the potential to address this problem by
providing a thorough coverage for APs with higher data rate and
lower latency. In this paper, we analyze the coverage probability
and data rate of a LEO backhaul network for an AP located at
an arbitrary altitude above the ground. The satellites’ locality
is modeled as a nonhomogeneous Poisson point process which
not only enables tractable analysis by utilizing the tools from
stochastic geometry, but also considers the latitude-dependent
density of satellites. To demonstrate a compromise on the
backhaul network’s selection for the airborne network, we also
compare the aforementioned setup with a reference terrestrial
backhaul network, where AP directly connects to the ground BSs.
Based on the numerical results, we can conclude that, for low BS
densities, LEO satellites provide a better backhaul connection,
which improves by increasing the AP’s altitude.

I. INTRODUCTION

Connecting aerial platforms (APs), e.g., airplanes, un-
manned aerial vehicles (UAVs), high altitude platforms
(HAPs), etc. to the ground users or other APs is envisioned
as a significant aspect in 6G airborne–terrestrial integration
[1]. To satisfy the high demands of APs for data rate, a
high quality backhaul connection is required to ensure the
collection of data from/to the APs. One approach to provide
backhaul for the airborne network is through geostationary
satellites, which provide full sky coverage for most of the
regions [2]–[4]. However, other than considerable delay caused
by traveling the signal over a large distance, the received signal
is subject to sever path loss which limits the achievable data
rate significantly. Terrestrial base stations (BSs) can also serve
as backhaul for the airborne network with considerably smaller
path attenuation and latency [5]–[8]. The main drawback of
the terrestrial network is the lack of full sky coverage due to
huge under-served regions, e.g., oceans and deserts. Moreover,
local operators may restrict the service for some global APs.
The emerging low Earth orbit (LEO) mega-constellation

networks, with the primary intention to provide connectivity
for remote and under-connected regions, have a great potential

This research work was supported by a Nokia University Donation.

to serve as backhauls for the APs due to offering less path
attenuation and delay w.r.t. satellites on the geostationary orbit,
and a better sky coverage w.r.t. the terrestrial network.
Along with rapid commercial progress of LEO mega-

constellations, e.g., Starlink, Oneweb, Kuiper, and Telesat,
their performance analysis when serving a ground gateway
and/or user has attracted significant attention recently [9]–
[15]. Stochastic geometry was deployed as the most promising
tool for analytical understanding of such ultra-dense LEO
networks. The first key step for stochastic geometry-based
analysis is modeling the satellites’ locality with a proper
point process which not only facilitates the tractability of the
derivations, but also captures the physical characteristics of the
network. A Binomial point process (BPP) was used in [9], [10]
to model a LEO constellation and derive the downlink cover-
age probability and data rate. Since the satellites’ locations in
actual constellations barely follow a uniform distribution, the
inherent performance mismatch was adjusted numerically in
[9], and analytically through finding the effective number of
satellites for every user’s latitude in [10].
To better address the uneven distribution of satellites on

orbits, in [11] and [12], a nonhomogeneous Poisson point
process (PPP) with a latitude-dependent intensity, was utilized
to model the satellites’ locations. In [13], [14], distance
distributions and the coverage probability were formulated
for a LEO network comprised of multiple concentric orbital
shells, each of which has a known specific radius. The contact
angle, i.e., the minimum angular distance between the satellites
and the ground user, is characterized in [15] to evaluate
the performance of a LEO network without considering the
effect of shadowing attenuation. In [16], the distribution of
conditional coverage probability was derived, given the nodes’
positions, for a satellite–terrestrial relay network to evaluate
the percentage of users that may reach a target SINR threshold.
Estimation and characterization of Doppler shift is addressed
in downlink LEO communication in [17].
Despite the significant utilization of stochastic geometry

for UAV-to-ground communication analysis [5]–[8], its appli-
cation on the study of LEO-backhauled APs has remained
unrecognized. In [18], a LEO backhaul, by considering only a
single orbit with few satellites at pre-determined positions, is
studied for both terrestrial and aerial BSs. The throughput of
both backhaul and access links is maximized jointly through
radio resource management and UAV trajectory optimization.
In [19], capacity and range of air-to-air and satellite networks



(a) Schematic of the system model. (b) A LEO constellation.

Fig. 1: An airborne network backhauled by either LEO or terrestrial
network for uplink and/or downlink connections.

are evaluated as a backhaul for APs through simulations only.
It was shown that integration of air-to-air communication and
LEO satellites improves the data rate of APs significantly.
Revenue maximization in LEO satellites in case of cooperation
of LEO satellites and HAPs as data backhaul is studied in [20]
for remote regions.
In this paper, we analyze the performance of a LEO satellite

backhaul for an airborne network in terms of the coverage
probability and the data rate. We model the satellites’ locality
as a nonhomogeneous PPP which leads to tractable analytical
derivations as well as compensation for the latitude-dependent
distribution of satellites over the spherical shell. Unlike the
existing literature, the satellites are assumed to have directional
antennas with their boresight radiating towards the AP. More-
over, we compare the performance of the described setup with
the performance of the terrestrial backhaul which provides
noteworthy criteria on the selection of the best backhaul for
APs, depending on the constellation parameters, the density of
ground BSs, and AP’s location. Using the numerical results,
we verify our derivations and illustrate the performance of both
backhaul networks in terms of different system parameters.

II. SYSTEM MODEL

Let us consider an airborne network, as in Fig. 1(a), which
can be backhauled by either a LEO satellite network or the
terrestrial BSs for both uplink and downlink directions. A high
quality backhaul connection may facilitate the connectivity of
APs in the airborne network to other APs or ground users via
access links. Each AP is located at an arbitrary altitude and
latitude, represented by aAP and φAP, respectively, above the
Earth’s surface, which is assumed to be a perfect sphere with
radius r⊕ ≈ 6371 km. Each AP may select the best backhaul
connection, i.e, the one which provides better coverage and
rate, between the LEO and the terrestrial network.
A LEO satellite backhaul to serve the airborne network

is shown in Fig. 1(b). The satellite network comprises N
satellites distributed uniformly on circular inclined orbits with
altitude and inclination angle denoted by as and ι, respectively.
Obviously, as > aAP or actually as � aAP. The maximum
distance at which an AP may communicate with a LEO

satellite (that is when the signal is not blocked by Earth) is

rmax =
√
2r⊕as + a2s +

√
2r⊕aAP + a2AP. (1)

The satellites and APs are equipped with directional anten-
nas with their main beam radiating towards the transceiver.
The satellites’ and the AP’s antenna gains are denoted by
Gs and GAP, respectively, and Gt = GAPGs is the overall
antenna gain. For terrestrial backhaul, the BS’s antenna gain
is denoted by GBS, and Gt = GAPGBS. It is worth noting
that the AP’s antenna gain is different for LEO- and BS-
backhauled connections. In this paper, we assume that APs
connect to their nearest satellite/BS which will be referred to
as the serving satellite/BS. As the network is equipped with
directional antennas, the performance is assumed to be noise-
limited. The signal-to-noise ratio (SNR) at the receiver can be
expressed as

SNR =





psGtHsR
−α
s

σ2
, Rs ≤ u,

0, otherwise,
(2)

where ps is the transmission power and Rs is the distance
between the AP and the serving satellite or BS with Hs being
its corresponding channel gain. The constant σ2 is the additive
noise power and α is a path loss exponent. The upper limit u =
rmax for LEO backhaul and u → ∞ for terrestrial backhaul.
To facilitate tractable performance analysis of the described

LEO backhaul network, we model the satellites as a nonhomo-
geneous Poisson point process. Such model not only enables
us to tractably analyze the performance of a LEO backhaul
network, but also models the varying density of satellites
across different latitudes in the actual physical network by
setting the intensity of nonhomogeneous PPP, δ(φs, λs), to the
actual distribution of satellites along different latitudes [11],
[12]. When satellites are distributed uniformly on low Earth
orbits, the intensity of nonhomogeneous PPP is a function the
satellites’ latitudinal element, φs, which is given as [11], [12]

δ(φs, λs)= δ(φs)=
N√

2π2(as + r⊕)2
√

cos(2φs)− cos(2ι)
.

(3)
By the definition of a nonhomogeneous PPP, the number

of points in a bounded region A of the orbital shell is a
Poisson-distributed random variable denoted by N . Therefore,
the probability of existing n satellites in A is given by

Pn (A) � P (N = n) (4)

=
1

n!

(∫∫

A
δ(φs, λs) (as + r⊕)

2 cos(φs) dφsdλs

)n

× exp

(
−
∫∫

A
δ(φs, λs) (as + r⊕)

2 cos(φs) dφsdλs

)
,

where δ(φs, λs) is the intensity function of nonhomogeneous
PPP at latitude φs and longitude λs.

Following the conventional approach for modeling the lo-
cations of terrestrial BSs [21], we assume that the BSs are
distributed as a homogeneous PPP with constant intensity,
given by δBS, on a flat plane.



III. PERFORMANCE ANALYSIS

In this section, we derive analytical expressions for the
coverage probability and data rate of the backhaul network.
The distribution of the shortest distance between AP and the
backhaul server, in terms of its cumulative density function
(CDF) and probability density function (PDF), is a key param-
eter to evaluate the SNR characteristics, which is expressed in
the following subsections.

A. Distance to the Serving Satellite or Base Station

In the following lemmas, we will obtain the PDF of the
shortest distance between an AP and a LEO satellite or a
terrestrial BS.

Lemma 1. The PDF of the nearest distance between an AP
with aAP < as and a LEO satellite, when the satellites are
distributed according to a nonhomogeneous PPP with intensity
δ(φs), is given by

fRs (rs) =

= 2rs

(
as
r⊕

+ 1

)
exp(−γ(rs))

∫ min(φAP+φmax,ι)

max(φAP−φmax,−ι)

δ(φs)

× cos(φs)√
cos2(φs − φAP)− cos2(φmax)

dφs,

(5)

where

γ(rs) = 2(as + r⊕)
2

×
∫ min(φAP+φmax,ι)

max(φAP−φmax,−ι)

δ(φs) cos(φs) cos
−1

(
cos(φmax)

cos(φs − φAP)

)
dφs,

(6)

and rs ∈ [as − aAP, rmax] while fRs (rs) = 0 otherwise. The
polar angle difference between the serving satellite and the
AP is φmax = cos−1

(
(as+r⊕)2+(aAP+r⊕)2−r2s

2(as+r⊕)(aAP+r⊕)

)
.

Proof. For a nonhomogeneous PPP, the CDF of Rs can be
written as

FRs
(rs) � 1− P(Rs > rs) = 1− P(N = 0),

where P(N = 0) is the void probability of PPP in A(rs) that
can be obtained from (4) by setting n = 0. Thus,

FRs
(rs) =

1− exp

(
−
∫ min(φAP+φmax,ι)

max(φAP−φmax,−ι)

β(φs)δ(φs)(as + r⊕)
2
cos(φs)dφs

)

=1− exp

(
− 2 (as + r⊕)

2
∫ min(φAP+φmax,ι)

max(φAP−φmax,−ι)

δ(φs) cos(φs)

× cos−1

(
cos(φmax)

cos(φs − φAP)

)
dφs

)
, (7)

where β(φs) is the longitude range inside the spherical cap
above AP at latitude φs. The latter equality follows from
substitution of β(φs) using the basic geometry. Taking the
derivative of (7) with respect to rs completes the proof. Note

that for φmax ≤ |φAP|−ι the CDF given in (7) is zero since the
spherical cap formed by polar angle φmax above the latitude
φAP is much farther from the constellation’s borders to contain
any satellite.

Let us then derive the serving distance distribution of a
reference setup, where an AP is served by the nearest terrestrial
BS. The scenario corresponds to the case when there is a
sufficient availability of BSs that can provide a high quality
backhaul connection for APs. The following lemma represents
the distribution of the shortest distance between an AP and a
ground BS. Similar approach was used to obtain the nearest
distance distribution for terrestrial networks [21] and UAV
networks [5].

Lemma 2. The PDF of the nearest distance between an AP
and a ground BS, when the BSs are distributed according to
a homogeneous PPP with constant intensity δBS, is given by

fRs
(rs) = 2πδBSrs exp

(
−πδBS

(
r2s − a2AP

))
. (8)

Proof. Assuming aAP � r⊕, Earth is approximately seen as
a flat plane from AP’s point of view. Thus, using the definition
of CDF and basic geometry, we have

FRs
(rs) � P(Rs < rs) = P

(√
a2AP +D2

s < rs

)

= FDs

(√
r2s − a2AP

)
, (9)

where Ds is the distance from the serving BS to the projection
of AP onto the ground plane. The complementary CDF of Ds

at
√

r2s − a2AP equals the null probability of the homogeneous
PPP on a circle with radius

√
r2s − a2AP, i.e., FRs

(rs) = 1−
exp

(
−πδBS

(
r2s − a2AP

))
. Taking the derivation with respect

to rs returns the PDF expression given in the lemma.

In the following subsections, we utilize the distribution
of the serving distance given in Lemmas 1 and 2 to obtain
analytical derivations for the probability of coverage and the
data rate of a LEO- or BS-backhauled airborne network.

B. Coverage Probability

The probability of SNR at the receiver being above a certain
threshold value, T > 0, is named as coverage probability in
telecommunication systems. Thus, whenever the received SNR
is greater than the threshold level, the data can be transmitted
successfully with error control coding.

Proposition 1. The probability of network coverage for an
arbitrarily located AP at an altitude, such that aAP < as,
under generally distributed fading is

Pc (T ) � P (SNR > T )

=

∫ u

l

(
1− FHs

(
Trαs G

−1
t σ2

ps

))
fRs

(rs)drs, (10)

where FHs
(·) is the CDF of the serving channel gain Hs. For

LEO-backhauled AP, fRs
(rs) is given in Lemma 1, u = rmax



TABLE I: Simulation Parameters

Parameters Values
Path loss exponent, α 2
Rician factor for LEO-backhauled channel, K 20
Rician factor for BS-backhauled channel, K 5
Transmit power for LEO-backhauled connection, ps 50 dBm
Transmit power for BS-backhauled connection, ps 40 dBm
Noise power, σ2 -120 dBm
Carrier frequency for LEO-backhauled connection 13.5 GHz
Carrier frequency for BS-backhauled connection 2 GHz
AP altitude 10 km

and l = as − aAP, while for BS-backhauled AP, fRs(rs) is
given in Lemma 2, u = ∞ and l = aAP.

Proof. To obtain (10), we start with the definition of coverage
probability:

Pc (T ) = ERs
[P (SNR > T |Rs)]

=

∫ u

l

P (SNR > T |Rs = rs) fRs (rs) drs

=

∫ u

l

P
(
Hs >

Trαs G
−1
t σ2

ps

)
fRs

(rs) drs, (11)

The proof is completed by substituting the complementary
CDF of Hs.

C. Average Data Rate

In the following proposition, we will derive the average
achievable data rate (in bits per channel use) which is defined
as the ergodic capacity derived from the Shannon–Hartley
theorem over a fading communication link normalized to unit
bandwidth, i.e., C̄ � E [log2 (1 + SNR)].

Proposition 2. The average rate (in bits/s/Hz) of an arbitrarily
located AP at an altitude, such that aAP < as, under generally
distributed fading is

C̄ =

∫ u

l

∫ ∞

0

log2

(
1 +

psGthsr
−α
s

σ2

)
fHs

(hs)fRs
(rs) dhs drs,

(12)

where fHs
(hs) represents the PDF of the serving channel gain

Hs. For LEO-backhauled AP, fRs
(rs) is given in Lemma 1,

u = rmax and l = as − aAP, while for BS-backhauled AP,
fRs(rs) is given in Lemma 2, u = ∞ and l = aAP.

Proof. Taking the expectation over the serving distance and
the channel gain, we have

C̄ = EHs,Rs
[log2 (1 + SNR)]

=

∫ u

l

EHs

[
log2

(
1 +

psGtHsr
−α
s

σ2

)]
fRs (rs) drs, (13)

and the expectation renders the inner integration in (12).
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Fig. 2: Coverage probability and data rate provided by a terrestrial
backhaul for some aerial platforms at different altitudes.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide numerical results to study the
effect of different network parameters on coverage probability
and average data rate of the LEO and terrestrial backhaul
networks for APs, using the analytical expressions obtained in
Section III. Furthermore, we verify all the analytical deriva-
tions through Monte Carlo simulations in Matlab.
We consider the large-scale attenuation with path loss

exponent α = 2, and the small-scale fading is assumed to
be Rician with parameter K. Thus, the CDF and the PDF of
Hs, required to evaluate Propositions 1 and 2, are FHs

(hs) =

1−Q1

(√
2K,

√
hs

)
and fHs(hs) =

1
2e

−hs+2K
2 I0

(√
2Khs

)
,

respectively, where Q1(·, ·) denotes the Marcum Q-function
and I0(·) is the modified Bessel function of the first kind.
The altitude of AP is set to 10 km, unless stated otherwise.

The satellites’ antenna gains within their beamwidth are ap-
proximated by a constant gain of 34 dBi. For LEO-backhauled
connection, APs are equipped with antennas which radiate
towards the sky with constant gain of 3 dBi, while for BS-
backhauled communication, both AP and BS are assumed to
have unity gain antennas.
The transmit power is set to 40 dBm and 50 dBm for

terrestrial and satellite backhauls, respectively, and their cor-
responding operating frequency is assumed to be 2 GHz and
13.5 GHz. The noise power is set to -120 dBm. For the
reference simulations, satellites are placed uniformly on orbits
centered at Earth’s center with radius r⊕+as. The simulation
parameters are summarized in Table I.
Figure 2 illustrates the coverage probability and data rate

provided by the terrestrial backhaul for APs at different
altitudes. The BSs are assumed to be distributed according to
a homogeneous PPP on a disc with radius 30 km. As can be
seen, for higher density of BSs and lower APs’ altitudes, the
terrestrial backhaul provides better probability of coverage and
data rate. However, for very low densities, which correspond to
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Fig. 3: Coverage probability versus the total number of satellites when
as = 500 km, aAP = 10 km, and T = 5 dB.

under-served regions, as well as for high altitudes of APs, the
performance of the terrestrial network degrades considerably,
especially in terms of the coverage probability.
The effect of the total number of satellites on the cover-

age probability and data rate of a LEO-backhauled AP are
illustrated in Figs. 3 and 4, respectively. The performance is
depicted for different AP’s latitudes and constellation incli-
nation angles. A better visibility is provided by increasing
the constellation size which leads to more promising perfor-
mance in terms of both metrics. For higher AP’s latitude the
performance is better due to higher density of satellites at
those latitudes and, consequently, the availability of closer
satellites to serve the AP. As shown in the figures, lower
inclination angles also provide higher rate and coverage due to
higher density for those constellations, i.e., the same amount
of satellites are distributed on a smaller region of the spherical
shell. Since as � aAP, the performance is only slightly
affected by varying the altitude of AP.
The probability of coverage and the data rate of a LEO

backhaul network versus the altitude of the constellation are
depicted in Figs. 5 and 6, respectively. As can be seen in the
figures, the smallest inclination angle and the highest AP’s
latitude provide better performance in terms of both perfor-
mance metrics due to the availability of more visible satellites
to the AP. Since the signal is exposed to more severe path
loss when traveling over a larger distance, the performance
degrades accordingly by increasing the constellation altitude.
The effect of AP’s altitude on the data rate of both terrestrial

and LEO backhauls are shown in Fig. 7. Despite the terrestrial
backhaul, the data rate for LEO backhaul slightly improves by
rising the AP’s altitude due to the increase in visibility and the
decrease in the serving distance, which results in smaller path
loss. However, since the altitude of AP is notably smaller than
the constellation altitude, the variation in the data rate is not
significant. The altitude range over which the LEO backhaul
outperforms the terrestrial backhaul is highly affected by the
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Fig. 4: Data rate versus the total number of satellites when as and
aAP are 500 km and 10 km, respectively.

density of BSs.
Based on the numerical results, it can be interpreted that

both terrestrial and LEO networks have the potential to serve
as the backhaul for the airborne network. Selecting the best
backhaul depends on several factors such as the LEO con-
stellation parameters, the BS density, and AP’s location. For
instance, terrestrial backhaul can provide higher data rate than
the LEO satellites, when the BS density is large or when the
AP is located at very high latitudes, out of the constellation
inclination limits. On the other hand, the AP is better to be
LEO-backhauled if the density of BS is extremely low or the
AP’s altitude is excessively high. It is also worth noting that in
highly dense urban areas where the transmission from the BSs
is subject to severe blockage due to the surrounding obstacles,
a LEO backhaul can provide better connectivity to the AP due
to having a higher probability of line-of-sight.

V. CONCLUSIONS

In this paper, we studied the performance of LEO mega-
constellation as a backhaul for an airborne network. Modeling
the satellites locality as a nonhomogeneous Poisson point pro-
cess enabled us to tractably analyze the performance of a LEO
backhaul network, while precisely capturing the characteristics
of the actual physical network by setting the intensity of PPP
to the actual density of satellites along different latitudes.
For sake of comparison, we also evaluated the performance
when APs are backhauled by terrestrial networks. From the
numerical results, other than verification of our derivations, we
presented the coverage probability and the data rate in terms of
different system parameters, e.g., constellation altitude, total
number of satellites, inclination angle, and AP’s location.
Based on the results, it is concluded that a LEO backhaul
can provide more promising performance in terms of both
coverage probability and data rate when the terrestrial BSs’
density is low and/or APs’ altitude is significantly high.
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Fig. 5: Coverage probability versus the altitude of the constellation
when N = 1000, aAP = 10 km, and T = 5 dB.
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Fig. 6: Data rate versus the altitude of the constellation when N =
1000 and aAP = 10 km.
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