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ABSTRACT
Rendering 6-degrees-of-freedom (6DoF) spatial audio requires sound-source position tracking. Without further
assumptions, directional receivers, such as a spherical microphone array (SMA), can estimate the direction
of arrival (DoA), but not reliably estimate sound-source distance. By utilizing multiple, distributed SMAs,
further methods are available that directly infer the position in 3-D space. Typically used DoA intersection
by triangulation delivers problematically noisy estimates, therefore, statistical filters are better suited. In this
study, we compare the performance of different DoA to position tracking strategies. DoA angles suffer from
the well-known angle wrapping problem, which is especially problematic in Gaussian filters. However, these
filters are attractive due to their low computational complexity. Using circular and spherical statistics, the non-
linear extensions of the Kalman filter can be formulated to explicitly treat the discontinuity of DoA angles.
Furthermore, we introduce a time adaptive regularization of the filter update by the instantaneous sound-field
diffuseness estimate. An experiment with three first-order SMAs in a reverberant room shows an improved
distance error compared to the mean DoA intersection baseline. The results highlight the importance of treating
the angle wrapping and the stabilization when incorporating the sound-field diffuseness estimate.
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1 INTRODUCTION
Many applications demand for tracking a target position, while the sensors only give azimuth (or bearing) and
elevation measurements. Such measurements are often direction of arrival (DoA) estimates, for example emanating
from wave propagation, specifically sound-waves in acoustic signal processing. An array of microphones, in
particular a spherical microphone array (SMA), allows to capture directional sound and several methods have
been proposed to extract the angle of incidence from such recordings. Without further assumptions, however,
SMAs only allow to estimate the DoA and thus not sound-source distance. Therefore, further methods are needed
to localize a source position from DoA estimates.

Utilizing multiple microphone arrays simultaneously can improve the tracking performance. Distributed SMAs
allow to also estimate sound-source distance, and therefore position, for example by triangulating the respective
DoA estimates. However, triangulation is known to be error prone, e. g. , because of noisy estimates, or calibration
problems with multiple sensors. Particularly in acoustics, room reflections can heavily influence triangulation,
since the reflections interfere with the source DoA measurement, hence leading to incorrect estimates. A strategy
to mitigate the common issues arising from such geometrical approaches is to instead utilize statistical inference.
Statistical filters are a powerful method in source tracking and trajectory smoothing, which can be formulated
to infer a sound-source position estimate by processing the DoA measurements of distributed SMAs. The
Kalman filter [4] is arguably the most prominent example here, due to its robust design and low complexity
implementation. It has been employed in numerous target tracking applications with great success. For non-linear
models, as in the present application, several extensions have been proposed. These methods typically rely on

��������



linearization, or on sigma-point sampling, and the differences for the presented application will be investigated in
this study.

A particular challenge of DoA angles is their circularity and inherent discontinuity. For example, an azimuth
angle of 0 and 2p correspond to the same direction, and this behavior imposes further problems in formulating a
tracking filter on the unit sphere. Several approaches treating angular measurements have been proposed, for
example, the wrapped Kalman filter [15], modified coordinate systems [6], a formulation in spherical harmonics
[11], or utilizing spherical statistics [1, 16, 5, 2]. The present article will apply and compare some (low-
complexity) methodologies to first-order spherical microphone arrays and discuss their implications in the context
of parametric spatial audio.

2 METHODS
2.1 Problem Formulation
The problem on hand requires tracking an object in 3-D space, by only observing angular DoA measurements.
We will consider a target in 3-D with its position and velocity xxx = [x,y,z, ẋ, ẏ, ż]>, observed by receivers r at
position pppr 2 R3 in Cartesian coordinates ppp = [px, py, pz]>, each delivering a DoA measurement yyyr in azimuth
and elevation angles WWW = [f ,q ]> 2 S2, where we may write the latter as a unit vector, formalized as a vector on
the unit sphere manifold uuu 2 S2 = {uuu 2 R3 : ||uuu||= 1}.

The quantity of interest is the state vector at the current time step xxxkkk, which causes the observed measure-
ments yyykkk. Because the true target state is unknown and can only be observed through noisy measurements, the
target state is modeled by a probability density function (PDF). In a Bayesian framework, where the target is
considered to move as a Markov process, the posterior PDF contains all information given all past and current
measurements. This framework allows to formulate an optimal estimator as a recursive filter that consists of a
prediction, and an update/correction step [13], thereby determining the most likely xxxkkk by statistical inference.

The state space model at time step k is expressed in form

xxxk ⇠ p(xxxk|xxxk�1) ,

yyyk ⇠ p(yyyk|xxxk) .
(1)

We model the state of a target with a prior density

p(xxx) = N (xxx; µµµ,PPP) , (2)

where N (xxx; µµµ,PPP) expresses a Gaussian PDF with mean µµµ and covariance PPP evaluated at xxx. The dynamics of
the system are modeled by a constant velocity model. Because we use discrete time steps k in time intervals Dt,
the model is discretized as

xxxk = AAAxxxk�1 +qqqk�1 , with AAA =

2

6666666666664

1 0 0 Dt 0 0

0 1 0 0 Dt 0

0 0 1 0 0 Dt

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3

7777777777775

, (3)

where AAA 2 R6⇥6 is the transition matrix and qqq process noise. The measurements at receiver r are modeled as

yyyr
k = h(xxxk, pppr)+ rrrk , (4)

with the non-linear measurement function h : Rnx 7! S2, where nx is the dimension of xxx, and the measurement
noise rrrk. The measurement function converts the target state xxx to the observed DoA angles yyyr and is hence



dependent on the position of the receiver pppr, which leads to the measurement model of
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The observations will only contain the DoA in terms of azimuth f and elevation q , per microphone array r,
and h can be conveniently implemented as cart2sph(xxxx,y,z � pppr), which converts from Cartesian coordinates to
azimuth and elevation angles. All measurements are then stacked into a single vector yyyk.

Uncertainty is modeled as the zero-mean Gaussian process noise qqqk�1 ⇠ N(000,,,QQQ) and Gaussian measurement
noise rrrk ⇠ N(000,,,RRR), which is assumed to be independent of the state and measurements. The process noise
covariance after discretization is assumed to be related to q as

QQQ = q

2

6666666666664

Dt3/3 0 0 Dt2/2 0 0

0 Dt3/3 0 0 Dt2/2 0

0 0 Dt3/3 0 0 Dt2/2

Dt2/2 0 0 Dt 0 0

0 Dt2/2 0 0 Dt 0

0 0 Dt2/2 0 0 Dt

3

7777777777775

. (6)

2.2 Intersection
When trying to find a potential source position the geometrical approach may set the baseline approach. In the
geometrical approach, rays are casted from the receivers in the direction of their estimated DoAs. In practice,
however, these rays might not all intersect in (3-D) space. As in [8], we may define the intersection as the point
of minimal distance between rays instead as

pppisc = (ppp1 + t1uuu1 + ppp2 + t2uuu2)/2 , (7)

with

t1 =
(ppp2 � ppp1)

>uuu1 +(ppp1 � ppp2)
>uuu2(uuu>1 uuu2)

1� (uuu>1 uuu2)2 , (8)

t2 =
(ppp1 � ppp2)

>uuu2 +(ppp2 � ppp1)
>uuu1(uuu>1 uuu2)

1� (uuu>1 uuu2)2 , (9)

between two receivers at ppp1 and ppp2, with their respective unit vector DoA estimates uuu. In practice, both t
are required to be positive values in order to produce an intersection in the same half-plane. The mean of all
intersections from SMA receiver pairs is used as the baseline approach in this study.

2.3 Gaussian Filters
We consider a Gaussian filtering distribution

p(xxxk|yyy1:k)' N(xxxk|mmmk,PPPk) . (10)

The filter prediction step can be described in matrix form due to the linear transition model, leading to predicted
mmm�

k and PPP�
k by

mmm�
k = AAAmmmk�1 ,

PPP�
k = AAAPPPk�1AAA>+QQQk�1 .

(11)



The update step involves the non-linear measurement model function h, hence requires extension strategies
discussed in the following sections.

As highlighted before, angular measurements call for special care when calculating their mean and difference,
hence we adapt the classical filter solutions in the following. Angular means and differences occur in multiple
filtering equations, for example when calculating the difference between the predicted and the observed state,
also referred to as filter innovation. We will expect problems near the wrapping boundaries, since e. g. , the angle
f = 0 and f = 2p represent the same angle, therefore, the mean and angular difference needs to reflect this
property. One simple mitigation of the wrapping problem is to calculate the difference between two angles from
arguments of their respective complex numbers [7, Ch. 2]. As any complex number can be represented as radius
r and angle f , with the imaginary number i =

p
�1, their difference becomes

f1 �f2 = \(exp(i(f1 �f2))) , (12)

which preserves direction. The (weighted) mean can be defined as the weighted mean of their complex number
representations zi = exp(ifi)

f̄ = \(z̄) = \(Âwizi) . (13)

The above can easily be adapted to treat the wrapping problem in S2, or similarly, average the components of
unit vectors uuu and transform back to yyy (see also [1]).

2.3.1 Extended Kalman Filter
A natural choice for non-linear Gaussian filtering is the extended Kalman filter (EKF) that is based on a local
linearization of the model by Taylor series expansion. For a linear approximation, the first two terms are sufficient,
hence differentiation stops after the Jacobian. The matrix form allows for a very efficient implementation, however,
the filter requires the analytical derivation of the Jacobian. For the current problem, the Jacobian (where it exists)
was implemented with entries
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=
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)2

y� py

(x� px)2 ,

df
dy

=
1

1+(
y�py
x�px

)2

1
(x� px)

,

df
dz

= 0 ,

dq
dx

=
1

1+
✓

z�pzp
(x�px)2+(y�py)2

◆2 (�x)
z� pz

((x� px)2 +(y� py)2)3/2 ,

dq
dy

=
1

1+
✓

z�pzp
(x�px)2+(y�py)2

◆2 (�y)
z� pz

((x� px)2 +(y� py)2)3/2 ,

dq
dz

=
1

1+
✓

z�pzp
(x�px)2+(y�py)2

◆2
1

((x� px)2 +(y� py)2)1/2 .

(14)

The filtering equations include the prediction step according to Eq. (11). The update step leads to the posterior
with mmmk and PPPk, using the Jacobian HHH(·), according to [13, Alg. 5.4] as

SSSk = HHH(mmm�
k )PPP

�
k HHH>(mmm�

k )+RRRk ,

KKKk = PPP�
k HHH>

k (mmm
�
k )SSS

�1
kkk ,

vvvk = yyyk �h(mmm�
k ) , subject to Eq. (12) ,

mmmk = mmm�
k +KKKkvvvk ,

PPPk = PPP�
k �KKKkSSSkKKK>

k .

(15)

Note the angular difference in calculating the innovation vvv, wherefore we call this modification EKF SPH in the
following.



2.3.2 Unscented Kalman Filter
A common criticism about the extended Kalman filter is the insufficient approximation of the non-linearity and
hence inferior performance in some circumstances [14]. Therefore, the slightly more flexible unscented Kalman
filter (UKF) has been proposed [18], where the Gaussian is described by a set of sigma-points X . These
sigma-points can then be propagated through any (non-linear) model function g as Y = g(X ). The sigma-points
sample around the mean and are chosen such that they can approximate a Gaussian distribution by its mean and
covariance [13, eq. 5.76] with

E [g(xxx)]' µµµU =
2n

Â
i=0

W (m)
i Yi , subject to Eq. (13) ,

C [g(xxx)]' SSSU =
2n

Â
i=0

W (c)
i (Yi �µµµU )(Yi �µµµU )

>subject to Eq. (12) ,

(16)

reflecting the angular wrapping, similar to [1], labeled UKF SPH in the following. The sigma-points are found
as [13, eq. 5.74]

X 0 = mmm ,

X i = mmm±
p

n+l [
p

PPP]i ,
(17)

where the associated weights Wi are given in [13, eq. 5.77] and sum to unity, and with the square-root of the
covariance matrix

p
PPP (e. g. , by Cholesky factorization). The parameter l is chosen as in [13, eq. 5.75]

l = a2(n+k)�n , (18)

where a = k = 1 were set without further optimization. A deterministic sampling scheme on the unit hypersphere
has been proposed in [5].

The filter prediction is again given by Eq. 11. The sigma-point sampling is only necessary for the non-linearity
of the filter update, propagating the predicted state through the measurement function h. The exact filtering
equations are given in [13, Alg. 5.14], however, the angular difference and weighted angular means are here
subject to Eq. 12 and Eq. 13, respectively. The posterior of the update is carried out again as

mmmk = mmm�
k +KKKkvvvk ,

PPPk = PPP�
k �KKKkSSSkKKK>

k .
(19)

A square-root form can be found in [17], which requires fewer computational operations, besides numerical
stability benefits.

2.4 Spherical Distribution Filter Variant
The von Mises-Fisher (vMF) distribution properly defines a distribution on the sphere, with mean µµµ and
concentration parameter k . The concentration parameter is inversely proportional to the variance. The distribution
is derived by conditioning a Gaussian PDF on the hypershere, and can therefore be seen as an intrinsic approach
to the specific characteristics of angular measurements. In contrast to a Gaussian distribution in azimuth and
elevation, the vMF shows no angular stretching for increasing elevation angles (see [2]).

Let uuu again be the unit vector on the sphere, i. e. , n = 3, the probability density function of the vMF
distribution is given in [7, Eq. 9.3.4]

fvMF(uuu; µµµ,k) =C3 exp
⇣

kµµµ>uuu
⌘

, (20)

where for the present case the normalising constant simplifies to C3 =
k

sinhk . The distribution is uniform for
k = 0 and unimodal for k > 0 with mean

E [uuu] = An(k)µµµ , (21)



and covariance
C [uuu] =

An(k)
k

IIIn +


1�A2

n(k)�n
An(k)

k

�
µµµµµµ> . (22)

For the present case of n = 3 the above simplifies with [7, Eq. 9.3.9]

A3 = cothk � 1
k

. (23)

Based on the vMF distribution, a Gaussian filter has been formulated for position tracking with DoA
measurements, which lie in a Sn�1 manifold [2]. While the prediction step follows the standard Gaussian filter
solution, they have presented a solution for the update step using sigma points as in the UKF, but modeling the
measurements using vMF distribution, which is abbreviated as UKF vMF in this study. We re-arranged their
solution to have access to the Kalman gain matrix KKK, such that the update is available as in the form of Eq. (19).
It should be noted that the authors mention improved performance for an iterative optimization of AAA and RRR,
which was not carried out in favor for simplicity and comparability to the other presented methods.

2.5 Parameter Extraction
Considering a basic sound-field model of a sound-source in free-field conditions, the emitted sound impinges at
the microphone as plane-waves. The DoA of a sound-source is in opposite direction of its net acoustic energy
flow (i.e. acoustic intensity, or dependent on definition in the same direction). Extracting this intensity vector
iii is particularly convenient for spherical microphone arrays, as the spherical harmonic (SH) expansion of a
sound-field up to first order is proportional to the pressure p (zeroth order), and to the pressure gradient vvv (first
order). The (pseudo-) intensity vector is proportional to the measured

iii µ ¬{pHvvv} . (24)

The vector direction directly estimates the DoA WDoA of its predominant signal component

WDoA = \iii . (25)

The measured azimuth and elevation were extracted per time sample and then averaged per processing block
over Dt, and all simultaneous measurements stacked into yyyk. It has been shown that this simple technique leads
to reliable DoA estimates from first-order SH components [3]. However, reflections can influence the extracted
direction, because typically reflections are linearly correlated to the sound-source signal, but from competing
DoAs.

The estimates p and vvv also deliver an estimate of the sound-field sector energy E and diffuseness parameter y

y = 1� ||iii||
E

= 1� ||iii||
|p|2 + vvvHvvv

(26)

as an indicator of the degree of deviation from a purely propagating soundfield to fully reactive or isotropic sound
fields [12]. The diffuseness y is related to the length of the active intensity vector and is defined in y 2 [0,1],
which results in y = 0 for a single impinging plane-wave or far-field source, and y = 1 for no observed net
flow, occurring for example in a fully diffuse sound-field, such as dense reverberation. It can be interpreted
as the directionality of the sound-field intensity flow, which we will explore as a measure of the reliability of
the DoA estimate. The intuition here is that in a dry environment, the DoA is dominated by the direct path
net intensity flow of the sound-source of interest, whereas in a reverberant environment the superposition with
multiple reflections will result in a less reliable estimate. A similar and more elaborate concept is the direct path
dominance (DPD) test [10], applied to the pseudo-intensity vector in [9], which separates the covariance matrix
into sub-spaces instead and is therefore computationally more demanding.

2.6 Modification of Filter Update
Under the assumption that a highly diffuse sound-field results in less reliable sound-source direction estimates, the
tracking algorithm may be further optimized for spatial audio applications. The sound-field diffuseness estimate



measured by each spherical microphone array can function as an indicator for unfavorable DoA estimation
conditions. The estimated sound-field diffuseness value seems to be a promising parameter in order to incorporate
additional sound-field information into the filtering algorithm. The diffuseness value does furthermore not only
indicate an unreliable measurement due to reverberation, it also goes to one if a DoA estimation is not possible
due to a lack of input signal. It therefore constitutes a threshold independent measure to detect insufficient input
signal, as it may occur in a speaker pause. A moving sound-source is likely to continue moving during a short
break (i. e. , in between words of a moving speaker), wherefore loosely continuing the dynamics seem sensible.

The filter update is regularized under unreliable conditions, which are indicated by high diffuseness values.
This work introduces a simple thresholding approach on the measurement noise RRR, influencing entry Rr of any
effected receiver r as

Rmod
r = tr Rr , if yr > yTH , (27)

and updates SSS accordingly in the form of
SSSk = SSSk +RRRmod

k . (28)

Because the Kalman gain KKK is inversely proportional to SSS, the update

mmmk = mmm�
k +KKKkvvvk ,

PPPk = PPP�
k �KKKkSSSkKKKT

k
(29)

heavily favors the predicted solution mmm�
k over the innovation vvvk in case of high diffuseness estimates. This

strategy avoids manipulating the Kalman gain directly, which might result in a inconsistent filtering formulation.
We tested a threshold of yTH = 0.1 and modulated with the corresponding diffuseness value as tr = 10yr. Note
that these values are chosen heuristically and further strategies should be investigated.

3 EVALUATION AND DISCUSSION
The evaluation of the presented methodology was carried out on simulated recordings of a moving source in
a reverberant room.1 An image-source reverberation model with a reverb time of RT60 = 0.5s calculated the
reflection pattern of the room outlined in Fig. 1 and Fig. 2. The impulse response at the microphones was updated
with the moving source in 0.2m increments. The sound-source was moving along a trajectory of 16m with a
velocity of 1m/s in a setup shown in Fig. 1. The sound-source first moves along a typical movement for speech
along the horizontal plane, and then corners sharply into an ascending motion. The virtual sound-source emitted
a white noise sequence, band-passed between 100Hz to 10kHz. The virtual microphone arrays delivered a set
of first-order spherical harmonic audio signals, which were then split into blocks of 1024 samples, followed
by the parameter extraction detailed in Sec. 2.5. Virtual first-order spherical harmonic receivers captured the
scenario in two different typical arrangements. First, an arrangement of three microphone arrays that captured the
room from various angles was simulated, depicted in Fig. 1. It is noted here, that the method does not require
the receivers to enclose the trajectory of the target, which is demonstrated by the target trajectory leaving the
visualized triangulation. Second, an arrangement consisting of three microphone arrays spaced along a common
axis, similar to a linear array, which is particularly relevant in practical applications. This arrangement shown
in Fig. 2 demonstrates the performance with all receivers located at the same height, besides exemplifying the
azimuthal angle wrapping challenge.

These scenarios were chosen to demonstrate multiple effects of the filter designs. We expect critical perfor-
mance differences around the circularity/ angle discontinuity, since the source passes the ±p relative azimuth
angle for the first part of the trajectory, i. e. , for microphone m1 in scene 1 and for all three microphones in
scene 2. The sharp corner should then uncover problems in the adaption of the filters. Furthermore, the increasing
elevation in the second part of the trajectory challenges the assumptions, as only the vMF filter models the
measurement statistics correctly in this case. The tracker was initialized with mmm0 offset from the true value by a
realization of standard normal noise, in order to investigate the convergence of the algorithms. The measurement
noise was set to a diagonal matrix where the entries correspond to an uncertainty of 5�, and the process noise
to PPP0 = III.

1implementation using : https://github.com/polarch/shoebox-roomsim
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Figure 1. Simulated Scene 1 in two cross-sections, m marks the virtual spherical microphone arrays, s the
simulated source moving on the dashed line. The simulated room geometry is indicated by the solid boundary.
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simulated source moving on the dashed line. The simulated room geometry is indicated by the solid boundary.
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Table 1. Position error distance (RMSE) of filter estimate to true trajectory.

Estimator RMSE Scene 1 RMSE Scene 2

Mean Intersections 0.9322 0.4066

UKF naive 5.9020 12.4264

UKF SPH 0.3749 0.3247

EKF SPH 0.3694 0.3179

UKF vMF 0.3716 0.3240

Summarizing the performance, Tab. 1 shows the evaluated root-mean-square error (RMSE) Euclidean distance
between the true trajectory and the filter estimates. The filter performance results are similar and consistent
between both scenes. All solutions using angular filtering produce nearly identical results for the presented scenes.
In comparison to the naive UKF implementation (i. e. , without adapting the filtering equations), the spherical
variants show a clear improvement. Filters UKF SPH and EKF SPH use the spherical statistics Eq. 12 and 13,
whereas UKF vMF utilizes the vMF distribution. Furthermore, the spherical filters improve on the geometric
intersection approach baseline, with also much smoother and more stable results.

Figure 3 shows the tracking filter estimation in comparison with the simulated true trajectory for scene 1. It
shows that all algorithms, except the naive UKF, perform equally well and deliver accurate tracking of the sound-
source. Figure 4 visualizes the distance RMSE over time, indicating that all filters converge quickly from the
intentional initialization offset. The results show a clear indication that neglecting the circular nature of spherical
angle measurements leads to poor performance, which is consistent with the literature, e. g. , [1, 2] The naive
UKF without angular measurement adjustments to the filtering algorithm, leads to a significant estimation error
and trajectory divergence just at the point where SMA m1 produces measurements around ±p azimuth, which
also the information of two additional SMAs can not counterbalance. After the detour, the filter converges again
towards the solution of the other estimators. Scene 2 seems to highlight these problems even more significantly, as
demonstrated in Fig. 5 and 6. Again, the naive UKF solution produces unacceptable estimation errors, whenever
the trajectory passes the ±p azimuth wrapping of each receiver. The estimation error generally increased for
increasing elevation. With all receivers on one axis, the relative differences decrease, hence, statistical inference
becomes harder. Additionally, the measured diffuseness increased here, which led to higher uncertainty in the
DoA measurements according to Fig. 7. Interestingly, UKF vMF could only show a marginal improvement over
UKF SPH, which came at a significant increase in algorithmic complexity.

The estimated sound-field diffuseness value seems to be a promising parameter in order to incorporate
additional sound-field information into the filtering algorithm. This is particularly interesting, as these parameters
are usually extracted in parametric spatial audio at a very low computational cost. The diffuseness value does
furthermore not only indicate an unreliable measurement due to reverberation, it also reacts when DoA estimation
is not possible due to a lack of input signal. It therefore constitutes a threshold independent measure to detect
insufficient input, as apparent from Fig.7 for the first few time blocks. Future work could extend to multi-source
algorithms and exploring dedicated subspace-methods, e. g. , for the parameter estimation.

4 CONCLUSIONS
For this study, multiple computationally efficient non-linear Kalman filters were explored for 3-D target tracking
from DoA measurements. This concept was then applied to a moving source in a reverberant room, resembling
a both practical and challenging scenario. Concepts of addressing the particularities of spherical measurements
were demonstrated and evaluated. In order to mitigate problematic behavior in low SNR scenarios, additional
filter regularization dependent on the estimated sound-field diffuseness was explored. The concept of augmenting
the classical Kalman filter with information available in parametric spatial audio seems a simple and promising
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strategy in order to optimize sound-source position tracking. 2
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