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Abstract—Regression testing wants to prevent that errors,
which have already been corrected once, creep back into a system
that has been updated. A naı̈ve approach consists of re-running
the entire test suite (TS) against the changed version of the
software under test (SUT). However, this might result in a time-
and resource-consuming process; e.g., when dealing with large
and/or complex SUTs and TSs. To avoid this problem, Test Case
Selection (TCS) approaches can be used. This kind of approaches
build a temporary TS comprising only those test cases (TCs)
that are relevant to the changes made to the SUT, so avoiding
executing unnecessary TCs. In this paper, we introduce CATTO
(Commit Adaptive Tool for Test suite Optimization), a tool
implementing a TCS strategy for SUTs written in Java as well
as a wrapper to allow developers to use CATTO within IntelliJ
IDEA and to execute CATTO just-in-time before committing
changes to the repository. We conducted a preliminary evaluation
of CATTO on seven open-source Java projects to evaluate the
reduction of the test-suite size, the loss of fault-revealing TCs,
and the loss of fault-detection capability. The results suggest that
CATTO can be of help to developers when performing TCS. The
video demo and the documentation of the tool is available at:
https://catto-tool.github.io/

Index Terms—Software testing, test case selection, regression
testing

I. INTRODUCTION

Regression testing wants to prevent that errors, which have
already been corrected once, creep back into a system that
has been updated [1]. A naı̈ve approach, namely Retest-all,
consists of re-running the entire test suite (TS) against the
changed version of the software under test (SUT) [2]. The
problem with Retest-all is that the re-execution of the entire
TS might result in a time- and resource-consuming process,
especially when the SUT and its TS grow in size and/or
complexity. Moreover, there are Agile development practices,
like test-driven development [3], which leverage continuous
regression testing, requiring the developer to execute the TS
several times during a development session. If the execution
of the TS demands too much time or too many resources,
the developer is likely not to execute regression tests as many
times as the Agile development practice would require. To
tackle this problem, researchers have devised several strate-
gies, which can be grouped into three main groups: test
suite minimization (or reduction), Test Case Selection (TCS),
and test case prioritization [1]. Both test suite minimization

and TCS strategies seek to reduce the size of the TS that
will be re-executed against the SUT. To that end, test suite
minimization strategies remove redundant/obsolete test cases
(TCs), either temporarily or permanently, from the TS. On
the other hand, TCS strategies temporarily remove TCs that
are not modification-aware. In other words, TCS strategies
build a temporarily TS by selecting a subset of TCs (from
the original TS) that are relevant to the changes made to the
SUT, so avoiding executing those TC that do not exercise the
changed parts. Finally, TC prioritisation strategies concern the
identification of an “ideal” ordering of TCs maximizing some
desirable properties (e.g., early fault detection).

In this paper, we introduce CATTO (Commit Adaptive Tool
for Test suite Optimization), a tool implementing a TCS
strategy for SUTs written in Java that selects TCs to be re-
executed by comparing the call graphs of the two versions of
the SUT (i.e., the versions before and after some changes are
made to the SUT). Unlike other TCS tools (e.g., SPIRITuS [4],
Pythia [5], or TestTube [6]), CATTO does not require code
coverage information but determines a link between source
code and corresponding test cases using a generated call graph
(see Sect. III). It can be therefore used in application contexts
where code coverage information (e.g., statements covered
by TCs) is not available. Moreover, to allow developers to
execute CATTO just-in-time before committing changes to the
repository, we implemented a plugin for IntelliJ IDEA [7] that
wraps its functionalities.

CATTO was specifically developed with the intention to fo-
cus on fast feedback during the development cycle, preferring
technologies that are not resource intensive, also accepting
a lower accuracy of the tool. We conducted a preliminary
evaluation of CATTO on seven open-source Java projects to
evaluate the reduction of the test-suite size, the loss of fault-
revealing TCs, and the loss of fault-detection capability.

II. CATTO COMPONENTS

CATTO consists of two main components: CATTO CORE
and CATTO INTELLIJ IDEA. CATTO CORE contains the
application logic, CATTO INTELLIJ IDEA is a plugin for
IntelliJ IDEA to provide the features of CATTO CORE during
development.
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TABLE I
SELECTION CRITERIA DESCRIPTION.

Operation Selected Test Case
Production Method
– added or modified The respective test methods
– deleted Test methods that covered it
– deleted in a hierarchy All tests methods covering the actual

production methods in hierarchy
Constructor of a production class
– added, modified or deleted All test methods covering the production

methods in that class
Static field of a production class
– added, modified, or deleted All test methods covering the production

methods in that class
Test Method
– added The new test method
– modified The modified test method
Static field, constructor or fixture
method of a test class
– modified All test methods in that test class

As shown in Fig. 1 (on the left hand side) CATTO CORE
performs six sequential steps, described as follows.

1) Dynamic classes loading: the tool loads the classes of
the current and previous version of the project and their
dependencies. We rely on SOOT, a third-party component,
to transform byte-code in an intermediate representation
(called “JIMPLE” [8]), necessary to have a normalized
representation of the code that is easier to compare.

2) Instrumentation: Once all classes are loaded, CATTO
CORE dynamically creates a Java test class for each actual
test class, adding to each test method a call to the fixture
methods if they are declared in the class itself or in a
parent class (e.g., setUp() and tearDown()). This step is
required to ensure the creation of a reliable call graph.

3) Call graph creation: Once the fake test classes are
created, CATTO CORE uses these as a starting point for
the generation of the call graph of the current version
of the project. The generation of the call graph starts
from the test methods and goes through the production
code, mapping in this way each production method to its
corresponding test methods.

4) Code Analysis: Then, CATTO CORE analyzes the two
versions of the project searching for code changes and
marking all the methods and class modified. CATTO
CORE marks a method or class as changed according to
the operations described in Tab. I.

5) Test Case Selection: The methods marked in the previous
step are used by CATTO CORE to select the test methods
to execute. For each marked method, the corresponding
test methods are selected. Tab. I describes all the criteria
the tool adopts to perform TCS.

6) Test Case Execution: Finally, when the test methods are
selected, CATTO CORE executes them and displays the
results, as well as the error stack trace in case of failure.

The component CATTO INTELLIJ IDEA extends the function-
ality of CATTO CORE integrating it in IntelliJ IDEA. This
integration not only provides a user interface of CATTO CORE

within a development environment, but also (1) catches the
commit event and prepares CATTO CORE to execute the anal-
ysis before the code is committed; (2) retrieves the previous
version of the project (the version of the project at the time of
the last executed commit); (3) builds the current version of the
project; (4) runs CATTO CORE; (5) returns the test execution
summary to the user and asks them whether to proceed with
the commit or not; (6) saves the committed version of the
project in a hidden folder for future analyses. Figure 1 (left
hand side) shows the order in which these steps take place and
how the CATTO CORE steps are integrated within the CATTO
INTELLIJ IDEA to perform TCS.

Intercept commit
event

Check if a
previous version

of the project
exists

Save the current
version of the

project for future
analysis

Retrieve the
previous version

of the project

Build the current
version of the

project

Ask user if the
project shall be

committed

true

false

false

true

CATTO IntelliJ IDEA plugin CATTO Core

Dynamic class
loading

Instrumentation

Call graph
creation

Code analysis

Test selection

Test execution

Fig. 1. Activity diagram of CATTO and the interaction between its parts
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III. THE CATTO ARCHITECTURE

Figure 2 depicts the architecture of our tool in form of a
UML component diagram also depicting the relevant packages.
CATTO CORE relies on SOOT as a third-party component and
CATTO INTELLIJ IDEA exploits the IntelliJ IDEA Platform
SDK API. Due to space limitations, we discuss only the
architecture of CATTO CORE, being it the core of the system.

CATTO CORE is composed by four main packages: project,
code.analyzer, test.selector, test.runner.

«component»
CATTO Core

«component»
CATTO IntelliJ IDEA plugin

«component»
IntelliJ IDEA platform 

plugin API

project code.
analyzer

«component»
Soot

test

selector runner build.
listener config
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Fig. 2. CATTO architecture at the package level
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The project package manages a single version of the project
and contains all the information about it (e.g., dependencies).
It allows distinguishing between the current and the previous
version of a project, setting up SOOT differently depending
on the case, in particular creating the call graph only for the
current version of the project.

The code.analyzer package provides change analysis fea-
tures between two different code versions. To allow a truthful
comparison between two versions of the same method, CATTO
checks the name of the package and the header of the method.
When the package name and the header are equal, CATTO
compares the body of the methods marking the method as
modified if there are some changes in the body. When the
header of the method and the package are different, the method
is marked as new if does not belong to any class of the
previous version, otherwise, it is marked as deleted. By using
the byte-code and transforming this into a SOOT normalized
intermediate representation, CATTO is also able to ignore
cosmetic changes in the code.

The test.selector package analyzes the call graph to find
the tests to select. To minimize the required time to analyze
the call graph, CATTO utilizes multi-threading and performs
the search starting from the marked methods, going up the
graph until a test method is found. For each test method, the
corresponding sub-call graph is analyzed; the above mentioned
search strategy allows the tool to analyze only those sub-call
graphs containing a marked method.

The test.runner package allows running the selected test
methods. To allow Junit to launch the test methods, the project
and its dependencies are loaded dynamically and added to
the JAVA classpath. The use of JUnit [9] to execute the
test methods ensures that all and only the necessary fixture
methods (e.g., methods tagged with @Before or @After)
are executed before and after the selected test methods.

IV. TYPICAL USAGE SCENARIO

This section describes how developers can use CATTO in
a typical scenario. Lets suppose Alice, a developer, is adding
a new feature to a system. After concluding the work, she
will commit the changes. At this point, CATTO intercepts the
commit event, selects and runs only the test methods that
cover the newly implemented methods (see step 1 and 2 in
Figure 3) and shows the results of the executed test methods
in the console (see step 3 in Figure 3). If some tests fail,
CATTO notifies the failure to Alice (see step 4 in Figure 3),
thus, she can choose whether to commit anyway or to fix the
issue(s) before proceeding with the commit.

Now suppose that Alice continuous her work and after a
while somebody notices a bug in the new feature. Alice finds
out what has to be changed, updates the code, adds testing
code to cover it and commits the changes. CATTO, intercepts
the commit, selects the new test methods and the test methods
that cover the changes in the code, runs these, and, as before,
shows the output in the console and notifies Alice about the
results of the regression testing.

In summary, CATTO encourages Alice to practice continu-
ous testing intercepting git [10] commits and visualizing tests
results directly within the IDE.

V. TOOL VALIDATION

The validation was performed using seven Java open source
systems (denoted below as S1–S7): Apache Commons IO [11],
Apache Commons Beanutils [12], Apache Commons Codec
[13], DBCP [14], JXPath [15], JFreeChart [16] and JGap [17].

We selected these systems because they are Java projects,
are open-source, belong to different domains, and have non-
trivial test suites. The validation was performed using SMUG
[18], a mutation generator tool. To simulate source code
changes, for each of the seven considered projects, we created
30 mutated versions using SMUG (using the default configu-
ration). While creating the mutated versions, SMUG executes
the test methods tracking the failures. We validated CATTO by
considering the original version as the previous version and the
nth−mutated version as the current version. As an outcome,
we expected that all the failed test methods would be selected.
For each pair (original and mutated version) we calculated the
following metrics, referring to the fault revealing selected test
methods as X and the fault revealing test methods as Y :

• Test Suite Reduction (TSR): the percentage of reduction
of the test suite, calculated as the proportion between
the number of test methods in the original test suite
and the number of test method in the selected test suite.
The higher the value, the smaller the selected test suite.
Therefore, the most desirable value is 1.

• Inclusiveness. (I): the capability to select all the fault-
revealing TCs. I = X

Y , if Y 6= 0, 1 if Y = 0. The most
desirable value is 1.

• Reduction in Fault Detection Capability (RFDC): the
loss of capacity of the selected test methods in revealing
faults. RFDC = 1 − X

Y if Y 6= 0, 1 if Y = 0. The
most desirable value is 0.

For each system we calculated the average value of each metric
obtained comparing the original and each mutated version.

The results reported in Table II show that in two systems
the mean of the TSR is more than 0.85, in one is more than
0.6, in two is more than 0.3 and in two is below 0.2. For the
Inclusiveness, in all the systems the mean is more than 0.7,
with two cases where is more than 0.95. Finally, the mean of
RFDC, for all the systems, is between 0 and 0.15.

TABLE II
VALIDATION RESULTS

S1 S2 S3 S4 S5 S6 S7
TSR 0,63 0,31 0,90 0,86 0,25 0,40 0,09

I 0,88 0,84 0,87 0,78 0,71 0,97 0,96
RFDC 0,03 0,01 0 0 0,11 0 0,14

VI. RELATED WORK

Researchers have proposed several Test Case Selection
(TCS) approaches based on various techniques. Integer pro-
gramming [19], [20], data-flow analysis [21], [22], [23], [24],
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Fig. 3. Screenshot of an interaction with the CATTO INTELLIJ IDEA

graph walking [25], [26], [2], [27], textual difference and
information retrieval [4], [28], [5], modification detection [6],
and firewall [29], [30] are just some of the techniques that the
TCS approaches available in the literature rely on.

Fischer et al. [19], [20] introduced one of the earliest
TCS approaches. This approach used integer programming to
represent the TCS problem in the context of Fortran code.
Harrold and Soffa [21] applied data-flow analysis as a test
case selection criterion. Similarly, Taha et al. [22] provided a
test case selection framework based on an incremental data-
flow analysis method. Gupta et al. [23] used program slicing
techniques to find definition-use pairs that were impacted by a
code change. Wong et al. [24] integrated a data-flow selection
strategy with coverage-based minimisation and prioritisation.

Rothermel and Harrold proposed TCS approaches based on
graph walking. First, they focused on graph walking of control
dependence graphs [25]. Later, they extended their approach
by using program dependence graphs for intra-procedural
selection, and system dependence graphs for inter-procedural
selection [26]. They further extended their work by relying on
control flow [2] and inter-procedural control flow graphs [27].

Other approaches rely on the use of textual difference and
information retrieval. Volkolos and Frankl [5], [28] presented
Pythia, a TCS approach based on the textual difference be-
tween the source code of the two versions of the SUT. Romano
et al. [4] presented SPIRITuS, an information retrieval-based
TCS approach that uses method code coverage information and
a vector space model to select test cases to be run. Chen et
al. [6] introduced TestTube, a testing framework that selects
test cases based on modification detection. TestTube tracks
the execution of test cases to create links between test cases

and the program components it exercises. Finally, Gligoric et
al. [29], [30] proposed Ekstazi, a firewall-based approach that
selects test cases based on the changes to their dependent files.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present CATTO (Commit Adaptive Tool for
Test suite Optimization), a tool implementing a TCS strategy
for Java programs that selects TCs to be re-executed by
comparing the call graphs of the two versions of the SUT
(i.e., the versions before and after a change).

CATTO encourages the Agile practice of continuous testing
intercepting git commits and providing tests results directly
within the IDE. This relieves the developer of the burden of
constant context switching between development and testing.

In a Lean context, this tool represents the application of
Jidoka, a concept used in Lean Manufacturing that suggests
to “stop the line” (intended is the production line) in case a
problem is detected [31]. Jidoka has the goal of automating
quality assurance processes and to avoid unnecessary rework:
it does this by stopping the entire production until it is clear
how to fix an occurring problem. This strategy is not perfect
for everyone, but in context where the cost of fixing an issue is
higher than producing code, it is worth consideration. CATTO
implements the concept of “stopping the line” in two ways:
it automatically verifies (tests) the source code change (this
cannot be deactivated) and—in case of a problem—warns the
user. In the future, the strategies for regression testing will
be extended—adding also test case prioritization, to increase
the efficiency of the testing tool and to reduce testing time—
as well as the way users are notified about the problem: from
unobtrusive warnings to more aggressive strategy like to forbid
a commit in case of a failing test case.
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