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ABSTRACT
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Master’s Thesis
Tampere University
Automaation Tietotekniikka
February 2023

This paper describes an architecture for decoupling the development process from product
implementation for a service in cloud domain. By using automation, a high enough level of
abstraction can be achieved in order to effectively and easily create and deploy new instances
of an application for customers without involving the developers of the underlying software. The
goal of this is to free resources for enhancing the underlying code base, and to enable horizontal
development for bringing in new customers. The architecture is implemented on the Kubernetes
container management platform and leverages its design concepts.
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1 INTRODUCTION

Imagine a world class violin player. Any notes you put in front of her she can play
flawlessly and beautifully, but she cannot compose. The record company is known for
its contemporary reputation and Bach just won’t cut it anymore, so they hire an army
of composers to help her provide new experiences to the audience. She gets to play,
composers get to compose, and the record company makes money.

In the world of data, the violin player would be a data streaming framework and its
developers. This paper is about enabling horizontal scaling in developing of data
streaming applications for a large international telecom corporation. In other words to
facilitate the role of a composer: a domain expert.

With an increasing customer base, developing and administering new customer use
cases becomes a time consuming task. This promotes new business requirements
for development efficiency. The workforce should concentrate on their specific field of
work in order to achieve maximum productivity. In an evolving data ecosystem, the tools
used must provide a way to distinguish responsibilities between software developers and
domain experts.

The organization that ordered this thesis has domain experts and software developers.
Domain experts are not expected to possess deep knowledge of software, nor are
software developers expected to know everything about the field of telecommunications.
However, to construct a sound data pipeline for the domain, knowledge of both is needed.
These stakeholders must work together in order to produce data-pipelines that bring value
to customers. Currently domain experts would produce a specification of the data flow in
the pipeline. No requirements exist for the formatting of the specification and the software
developers are left with interpreting the specification in order to build the pipeline. The
specification evolves as the projects evolve and introduce change that is not managed.

The software ecosystem at hand consists of multiple different projects. A generic base
project exists. It contains sub-projects for different kinds of data pipelines, their application
code and deployment. Also the codes for a different service utilizing some parts of
the same framework also reside in this project, making it an enormous code base with
multiple developers from multiple different countries in multiple timelines. Most of the
code is made by developers who have since been re-assigned to different duties. The
metrics and analysis are reporting increasing technical debt. While the developing team
is adept to fix all this, pressuring timelines force the team to develop new pipelines to
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customers and thus, the debt keeps increasing. A solution was proposed to decouple the
development processes for the code base and the actual products by software.

The decoupling of the development processes requires a proper interface. A domain
expert should be able to create and modify data processing workflows without low level
programming skills. To tackle this problem the following concepts are introduced as
prerequisites. The business domain of this thesis is the Cloud concept defined in chapter
2. The implementation domain is Kubernetes, which is an application management
system designed to fit the needs of the cloud domain, and on which the applications
are run. To consider a data processing workflow created or modified, it is expected to
be able to be delivered to a production system without a software developer. Thesis
will explore architectural patterns and paradigms of software development in the cloud.
Thesis investigates existing resources and implementations that Kubernetes and its
design choices provide and enable.

The goal for this thesis is divided into three research questions. It starts out by resolving
the question: What requirements are there for the domain experts to configure the data
processing workflows? Answering this question will require defining the stakeholders of
the development process. The business requirements will ultimately drive the functional
and non-functional requirements of the system.

After these requirements have been clarified the thesis aspires to further clarify the
details of the resulting construct. The goal of the abstraction is to make the creation,
configuration and productification of a sound data pipeline easier for a domain expert.
With the requirements defined the next question is brought forward: In Kubernetes
domain, what design choices do we have to implement such an abstraction? The thesis
proceeds by examining the tools in our disposal and what prerequisites such tools impose
on the architecture.

After the type and characteristics of interface are clear the final implementation details of
the constructs are considered. This prompts the third research question: In Kubernetes
domain, what tools do we have to implement an interface that fulfills the requirements?
This includes building the implementing constructs based on previous design constructs
and evaluating them against the requirements.

The research method for this thesis is the design-oriented constructive research method
by Järvinen P. and Järvinen A. [1] pictured in figure 1.1. It’s goal is to solve real
world problems by developing a set of constructs from which a prototype or an artefact
is developed. Constructs can be handled as abstract concepts that have a limitless
amount of possible implementations. Constructs can be defined to mean any and all
human-made artefacts such as diagrams, designs, models, organizational constructs,
commercial products, or data structures. In this thesis the constructs revolve around a
specific domain which is the Kubernetes platform and thus have a well defined set of
implementations available.

First the current state of the project is identified. From the project a requirement is defined



3

Figure 1.1. Design-oriented constructive research [1]

for a decoupled development process with a proper abstraction. This is the desired state.
From this demand a set of requirements are derived which take the state of the project
towards the desired one. These requirements prompt constructs that will be used to
implement a prototype. The prototype is then tested and by iterating, new requirements
are identified and implemented until the desired state of the project and the desired quality
of the prototype is reached. [1]

This thesis focuses on the first three stages of the design-oriented constructive research.
The research questions aspire to reach the state of a developed construct, from which
building and testing a prototype can be started in order to reach the desired state. The
document is structured as follows. Chapter 2 discusses the general domain in which
our application operates. Chapter 3 takes a look at the tools utilized in a defined cloud
domain, Kubernetes. Chapter 4 defines the requirements for our configuration model.
Chapter 5 presents the proposed construct. Chapter 6 evaluates the results and how
well the research questions were answered. Thesis closes by conclusions in chapter 7.
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2 CLOUD COMPUTING AND SERVICE
ORIENTATION

Cloud in its modern context was coined around the year 2006 [2]. David C. Wyld
describes the metaphor of cloud in the world of computing to have been of almost
mystical in nature, describing the internet in diagrams and mapping operations of the
networked environments. Essentially the emerging of cloud computing represented a
rudimentary evolution in the location of computing resources and the economics of
computing. Services are delivered over the Internet from a remote location when the
actor needs it as opposed to the resources residing on the devices in the actor’s physical
environment.

More profoundly anything from email communication to batch processing large data sets
can be moved away from individual PC’s or corporate data centers. It also abstracts away
all the underlying layers of the technology stack leaving the user with only the computing
power at their use without the need to manage any of the complexity or technology that
is included in providing the power. [3]

Since then the field has evolved to a collection of principles and well-established models
for developing, providing and using cloud based applications. One of the dominant
taxonomies is the everything as a service (XaaS) service provisioning model. It describes
an outline for Service-Oriented architecture (SOA) and design to support the development
and deployment of software applications as individual services. [4]

A service is an isolated, compact and logical representation of a composable business or
technical task with a certain outcome. Services as modular units of functionality can be
arranged into multiple different systems. An example of such composing is a mechanism
called layering [5] Figure 2.2 describes the different ’aaS’ concepts in a software as
a service business model and how they map into different layers of the cloud stack.
In XaaS, the resources, including infrastructure, storage, networking and computing
systems, can be abstracted as SOA-based services through layering and other common
mechanisms such as modularity and loose coupling. The result is that, network and cloud
services may be orchestrated to create compounded services that are delivered to end
users as entire systems. [4]

Software as a service is a business model for delivering a software service to customers.
The goal of software as a service is to minimize the cost of managing software owned
by different customers. Software as a service introduces a single code base. The
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Figure 2.1. Service oriented architecture [5]

built software is run on cloud infrastructure and accessed by clients through various
client devices. The customers only own their configurations, or, the interpretation of the
application and it’s data. This eliminates the task of handling different software versions
on different clients. Upgrades done to the code base are provided to each customer
simultaneously. [7]

The constructs in this thesis adapt the ideology behind the SaaS (software as a service)
model in figure 2.3. In this thesis the principles are applied to in-house development
process, where ’customers’ are experts within the organisation producing customers
different solutions. While derived from the same code-base, each customer gets the
software delivered to their on-premise cloud, only with different configurations.

2.1 Designing Software for the Cloud

When software harnesses the advantages of the cloud computing model, it is designed in
a "cloud-native" way. In their definition The Cloud Native Computing Foundation restricts
cloud-native development to only use open source software stack that is microservices-
oriented, dynamically orchestrated and containerized. Cloud-native implies that the



6

Figure 2.2. Infrastructure, platform and software as a service responsibilities [6]

applications reside in a public cloud, in contrast to them living in an on-premises data
center. [8]

Pahl et. al [5] demonstrate a distinct software architectural style regarding continuous
service systems operation and development. They introduce a group of principles and
patterns for designing model-based, control-theoretic architectures for the cloud. This is
to address the challenges of a multi-tiered, highly fragmented and distributed environment
architecture. The style takes into account the full provisioning stack all the way from
application to platform and resources, how they are operated, and how they are managed
dynamically. To support this thesis, a few key characteristics for the cloud are defined
from this architectural style.

Service orientation follows principles of modularity, layering, and loose coupling.
Virtualization requires providing services for portable application containers and shared,
virtualized resources. Adaptivity and Elasticity demand support for dynamic adaptation
and variability management. Uncertainty is a fundamental factor in cloud environments
caused by heterogenity, multi-user involvement, changing contexts and distribution. [5]
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Figure 2.3. SaaS model [7]

These characteristics are met with certain patterns such as microservices, dynamic
models and control at runtime with controller-based feedback loops, DevOps and
continuous development with the goal to manage quality. [5]

2.1.1 Virtualization

Virtualization makes it possible to elastically manage and provide resources as services
to the applications. Pahl et. al [5] distinguish three forms of virtualization, depicted in 2.4.

Infrastructure virtualization divides physical infrastructures, creating committed resources
of virtual nature. This enables multiple operating systems and applications to be run
concurrently on the same server.

Platform virtualization abstracts the technology stack (platform) so the virtualized
applications can be managed flexibly. This can be achieved through containerization,
which means using portable light weight application containers, who build on
infrastructure virtualization techniques for process isolation, assembled on top of platform
components.

Application virtualization targets to separate the underlying platform and infrastructure
from the applications. This way they may run concurrently while shifting through
platforms.

2.1.2 Adaptivity and Elasticity

Pahl et. al [5] used a set of model dimensions aligned with the cloud to contextualize
adaptation. In the cloud system objectives evolve and can be expressed more flexibly,
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Figure 2.4. Forms of virtualization [5]

which result in adaptation to contain a set of goals. By monitoring the applications and
resources change can be captured as a cause for adaptation. Cause has the parameters
source, type, frequency and anticipation. Since the frequency varies it is essential to use
prediction techniques to anticipate change.

Adaptation as action is reacting to change. The implementation of adaptation will have the
following attributes: type, autonomy, scope, duration, timeliness, and triggering. When
finished there will be an impact of the adaptation on the system. The impact will be
measured by criticality, predictability, overhead and resilience.

Scaling

Scaling can happen vertically or horizontally [9]. Vertical scaling means adding resources
to the system by increasing the capacity of existing servers. More of the hardware’s
resources are directed towards the processing related tasks. Vertical scaling is limited by
the maximum capacity of the hardware.

Horizontal scaling means adding more servers to the system. In modern cloud
architectures this can be done dynamically. As traffic increases the demand is met by
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Figure 2.5. Vertical scaling

adding more servers to the system. With lowered traffic the system optimizes resources
by decreasing the number of servers automatically. [9]

Figure 2.6. Horizontal scaling

2.1.3 Uncertainty

Cloud as a multi-tiered modular environment adds a high degree of uncertainty to reliably
measuring system qualities. Pahl et. al [5] identify the following different sources of
uncertainty.

Uncertainty in adaptation and its models. Choosing adaptation policies can be a
subjective process. The policy may require continuous re-evaluation because of
unpredictable changes in environment or application demand. Adaptation thresholds are
dependent upon knowledge of system behaviour. The also rely on knowledge on how
resources are managed.

Uncertainty in dynamic provisioning environment. Managing resources in the cloud is not
immediate. During this window that can be minutes for Virtual Machines, the application
is at risk to workload rises, causing uncertainty.

Uncertainty in monitoring data. To control one needs to continuously monitor application
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states and resources in which applications are deployed to promptly react to variations in
load. Monitoring is essentially measuring that is prone to deviations and noise.

Uncertainty in change enactment. Same change can take different times based on
uncertainty in underlying resources.
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3 MANAGING APPLICATIONS IN KUBERNETES

Kubernetes is a tool that wraps around the paradigms defined in chapter 2.1. It abstracts
away the hardware infrastructure to expose the user an entire data center as a single
computational resource. It allows the user to deploy software services and run them
without having to deal with the actual servers to which the tasks are distributed. When
deploying multiple services through Kubernetes, it allocates each service to a server,
deploys it, and enables it to find and communicate with the other components of the
whole application through an internal network.

Kubernetes is a software system that allows its users to deploy and manage containerized
applications. It depends on the Linux container features to run unrelated applications
without the need for manually deploying these applications on each possible host and
without having to know any internal details of these applications. Because these apps run
in isolated independent containers, they have no influence on other apps running on the
same servers, which allows for running applications for completely different organizations
on the same hardware.

From on-premises datacenters to the largest cloud provider operated datacenters, the
larger the datacenters, the more Kubernetes starts to be useful. Increasing complexity
handled by a simple platform is very useful for developers to deploy and run any type
of application, while the hardware providers can remain completely oblivious to the
multitude of apps running on hardware they own. Figure 3.1 illustrates the abstraction
for developers working with Kubernetes. [10]

The Kubernetes architecture depicted in figure 3.2 consists of nodes. Nodes represent
different hardware units with boundaries. A Kubernetes cluster can have two kinds of
nodes: master nodes and worker nodes. Master node controls and manages the whole
Kubernetes system through the Control Plane. The applications deployed by developers
are run on the worker nodes.

The Master node is made of four vital components that control the cluster and enable it to
function. Kubernetes API Server is the main communication endpoint for developers and
other control plane components. Etc Distributed (etcd) is a key-value storage that acts
as a persistence storage for the API server and holds the state of the cluster. Scheduler
assigns a worker to each Kubernetes component of an application. Controller Manager
performs cluster-level tasks, such as keeping track of the worker nodes, handling node
failures, and replicating components. These four components can also be replicated and
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Figure 3.1. Kubernetes use-case illustration [10]

split to multiple master nodes to ensure high availability.

The worker nodes run the containerized applications. To run, monitor and provide
services to applications the worker nodes use three components. A Container run-time
runs the containers. The most common ones include Docker and rkt. Kubelet manages
containers on its node by communicating with the API server. Kubernetes Service Proxy
load-balances network traffic between application components. [10]
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Figure 3.2. Kubernetes cluster architecture [10]

When looking at how Kubernetes controls the state of the cluster it is important to note
that the API Server does not do anything except store resources on etcd, and notify
clients about changes in these resources. Etcd acts as a persistence layer for the API
Server. A component can request to be notified on a resource creation, modification or
deletion. Clients watch for these events through an HTTP connection to the API server.
The actual state of the system is ensured by controllers running in the Controller Manager.
It combines multiple controllers for different kinds of resources. These controllers are not
aware of each other and only communicate with the Kubernetes API.

3.1 Configuration Patterns For Kubernetes

This chapter compares different configuration patterns in Kubernetes. The chapter
introduces four different configuration patterns. Applications need configuration for
accessing external services, production-level tuning and data sources. Instead of hard-
coding configuration in applications the configuration should be externalized so that it can
be changed even after building the application.

3.1.1 Environment Variable Configuration

This pattern describes the simplest way to configure applications. Putting configuration
into universally supported environment values is the easiest way to externalize
configuration for small sets of configuration values. [11]

Using environment variables for storing the application configurations is recommended
by The Twelve-Factor App. The approach is simple and works for any platform or
environment. There is no operating system that cannot define environment variables
or make them available to applications. [11]

Environment variables are easy to use and widely known. The concept fits well with
containers and all the runtime platforms support environment variables. But they are not
secure and for the management of these values to not become too hard, they shouldn’t
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exceed a decent amount. With a large number of environment variables a level of
indirection is often used. The configuration is put in various configuration files, one file
conforming to a single environment. A single environment value is then used to select one
of these files. An example of this approach are profiles from Spring Boot. This couples
the configuration tightly with the applications and causes image rebuild for every change
in any environment. [11]

As environment variables are universally applicable, they can be set at various levels.
This makes it hard to track where a given environment variable comes from because
of the fragmentation of the configuration definitions. If defining environment variables is
not constricted to one place, it might be hard to find the definition of a variable. And
even if it is a clear location, it may be overridden in another location. For example, it is
possible to replace environment variables defined within a Docker image during runtime in
a Deployment resource in Kubernetes. Without a central place where all the environment
variables are defined, the debugging of the configuration becomes an issue. Environment
variables, while simple to use, are mainly applicable for simple use cases and face difficult
limitations when the configuration is more complex. [11]

3.1.2 Configuration Resource

Kubernetes provides native resources for configuring ordinary and confidential data. This
allows for decoupling the lifecycles of configuration and application. The Configuration
Resource pattern describes the ConfigMap and Secret resources, their usages and
limitations. [11]

Configuration resources are introduced as a more flexible option for keeping all the
configuration data in a single place instead of distributing it around to various resource
definition files, or putting the whole file into an environment variable. ConfigMaps and
Secrets provide storage and management for key-value pairs. The keys of a ConfigMap
holding data can be used in two ways: as a reference for an environment variable, key
being the name, or as a filename, as files are mapped to a volume mounted in a Pod. With
the file mode mounts are updated when the ConfigMap is updated via the API, making hot
reload of configuration possible. Environment variables can’t be changed after a process
has been started, thus hot reload is not possible in environment variable mode. [11]

Secrets are a secure version of the ConfigMap and can be consumed as environment
variables. They are only distributed to nodes running Pods that need access to them.
They are stored in memory in a temporary file-system and removed with the Pod. They
are never written to physical storage. They are stored in encrypted form to Etcd. [11]

ConfigMaps and Secrets are used to store configuration information in dedicated
resource objects easily managed with the Kubernetes API. The main advantage of
using ConfigMaps and Secrets is decoupling the usage of configuration data from its
definition. It allows to manage the objects by using configurations independently from the
applications. Some limitations of the Configuration resources include a 1 MB size limit
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for Secrets and an individual quota on the number of ConfigMaps that can be used per
project or namespace. [11]

3.1.3 Default Values

Default values make developing through an interface easier, as they abstract away
configurations that one might not need or know to exist. The convention over configuration
paradigm, which encourages decreasing the number of decisions the developer using the
framework is required to make, is further enabled by using default values. [11]

If changing default values is made a difficult task they might become an anti-pattern for
an evolving application. Stakeholders relying on defaults will always be surprised when a
default value changes. The change must be communicated. A change in default values
should always be considered a major change and with semantic versioning a change in
default values should always be an increase in the major version number. [11]

If a given default value does not satisfy the requirements it’s better to remove the default
value and compel the user to provide a configuration value. This avoids silent unexpected
behavior and makes the application break as early as possible. [11]

Default values should only be used for values that can be reliably predicted. A reasonable
default should last for a long time. Using defaults prompts the use of a clear and indicative
documentation. [11]

3.2 Design Patterns For Kubernetes

This sections explains few of the main software design patterns used around the subject
of configuration an application management on Kubernetes. The chapter introduces three
different design patterns.

3.2.1 Declarative Deployment

Declarative deployment is a design pattern that allows for using different strategies for
updating applications on Kubernetes. This pattern is encapsulated in a Kubernetes
concept called Deployment. With one it’s possible to use different strategies and tune
the process of updating an application. This makes sense when updates are required
to be made considering the frequency of the updates and the efficacy of the scheduler.
The scheduler requires containers with adequately defined resource policies, appropriate
placement policies and sufficient resources on the host system. [11]

For the Deployment to be able the start and stop a group of Pods in a predictable manner,
containers need to listen for lifecycle events e.g. SIGTERM, and to provide health-check
endpoints to signal that they have started successfully. Should they do so, the platform
can shut down containers cleanly and start updated instances to replace them. When
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these concepts have been satisfied, everything else in the upgrade process can be
defined in a declarative way. The update can be executed with predefined steps and
an expected outcome making it a one atomic action. [11]

The Deployment turns the manual process of updating applications into a declarative task
that can be automated. Ready-made deployment strategies, rolling deployment and plain
recreation govern the replacement of expired containers by new ones, and the release
strategies, blue-green deployment and canary deployment govern how a new version of
the service is brought available to the consumers. [11]

Figure 3.3. Deployment update strategies [11]

Rolling update removes downtime from the update process. This requires the application
to have replicas, or multiple pods running. One by one the old pods are terminated and
after a termination a new pod is spun up onto its place. This, compared to the fixed
deployment where old pods are first shut down after which the new ones are started,
ensures that a replica of the application is always running. [11]

Blue-Green release is used in production environments to minimize downtime and reduce
the risk of for example data loss in a data processing application. There is no out-of-the-
box automated way for Blue-Green releases in Kubernetes. The idea is to apply a second
e.g. Deployment on side of the existing one. Once the deployment is up and running the
traffic is directed from the old one to the new one. Then it is safe to delete the old
deployment, since it is not serving any consumers anymore. [11]

Canary release deploys a new version of an application softly. In a canary release only a
small subset of old service instances are replaced with new ones. The strategy let’s only
some of the consumers reach the updated version. After the new version has proven to
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be adept, can the rest of the instances be replaced. [11]

3.2.2 Managed Life Cycle

Containerized applications managed by cloud-native platforms adapt their lifecycles by
listening to the events emitted by the managing platform. They do not have any control
over their own lifecycle. The Managed Lifecycle pattern describes the best practices on
how applications should react to these lifecycle events. [11]

Kubernetes as an example of a cloud-native platform provides the ability to run and scale
applications predictably and reliably on top of sometimes unreliable cloud infrastructure.
Applications running on these platforms conform to a set of constraints and contracts. The
applications honor these contracts so that they are able to benefit from the capabilities
of the platforms. Graceful start up and shutdown without widely impacting the consumer
services is achieved as a result handling and reacting to the lifecycle events. Application
lifecycle should not be considered to be in the control of the user, but fully automated by
the platform. [11]

There are different events for controlling a container. Events such as SIGTERM, and
SIGKILL signals are emitted by the platform. In addition to these process signals, lifecycle
hooks such as postStart and preStop are provided. A container can listen to these events
and react to them. [11]

Figure 3.4. Managed container lifecycle [11]

The SIGTERM signal is the correct moment for a container to shut down in a clean way.
The container can receive the signal if Kubernetes has decided to shut it down. It can
be because of a Pod that the container belongs to is ordered to shut down, or it can be
due to a failed liveness probe. The signal acts as a gentle nudge for the container to shut
down as quickly as possible. This can mean different things for different containers. [11]

If a container has not shut down after the SIGTERM signal, or the following default
grace period of 30 seconds, a SIGKILL signal is issued which shuts down the container
forcefully. This motivates designing and implementing applications with swift startup and
shutdown processes. [11]

The postStart hook comes into play after the container has been created. It is
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asynchronous with the container’s process. It is defined as a ’blocking call’ which means
that the container status remains Waiting until it completes. This keeps the Pod status in
the Pending state. Different use cases include delaying the startup state of the container,
and preventing container from starting before fulfilling a set of preconditions. [11]

The preStop hook comes into play before the container is terminated. It follows the
principles of SIGTERM signal and should be used for a graceful shutdown when it’s not
possible to react to the SIGTERM signal. As in the hook is executed before triggering the
SIGTERM. [11]

There are more lifecycle controls on the Pod level. An init-container is an initialization
mechanism where a container runs sequentially, until completion and before any of the
application containers in a Pod start up. They can be used for Pod-level initialization
tasks. [11]

3.2.3 The Operator Pattern

In a microservice architecture the systems comprise of multiple services that need to be
configured to work in conjunction to achieve the goal of the business process. The cloud
sets requirements for the systems to be adaptive and elastic.

In their paper [12] Cosmo R. D. et al. bring forth the problem of writing distributed and
adapting software systems in the cloud. They especially emphasize the challenge of
maintaining and reconfiguring such systems. They present frameworks that address the
issue such as CloudFoundry [13], Canonical’s Juju [14] and Fractal’s FraSCAti [15]. In all
the approaches the user assembles a working system out of components that have been
particularly designed, or adjusted, to work in conjunction.

The user is required to select and connect the components and in the case of
reconfiguration, a manual reassembly of the system is required. The user can also write
code to reassemble the system. Cosmo R. D. et al. argue that automation is a key
concept in tackling this challenge. When the need to reconfigure appears frequently,
or the number of components and services involved increases it becomes necessary to
specify configurations at a certain level of abstraction. This requires developing tools that
enable the transformations that lead the state of the system configuration to a desired
one declared by the user.

Kubernetes architecture makes it possible to extend the cluster with custom controllers
such as the one in figure 3.5 without modifying the code of the platform itself. To do so,
a custom client for the Kubernetes API, and a Custom Resource to control are created.
This design is called the Operator Pattern. Result is a state controller that defines a
flexible single interface for application configuration in the form of a Kubernetes Custom
Resource. These controllers are called Operators.

The operator pattern is a documented pattern for software extensions to Kubernetes that
automate tasks that Kubernetes itself does not provide. The automation happens by
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building a custom controller. A controller is essentially a control loop watching the state
of the cluster through the API server and reacting to events with the goal of moving
the current state towards a desired state. A simple control loop is illustrated in figure 3.5.
Operators are clients to the Kubernetes API. Operator is a controller that handles Custom
Resources. [16]

Figure 3.5. Operator control loop [17]

In Kubernetes, a resource is defined to be an endpoint in the API that stores a collection
of API objects of a certain kind. Custom Resources are user-defined resources that
extend the Kubernetes API. To get the Kubernetes API to handle user-defined resources,
a Custom Resource Definition is required. Custom Resource Definition defines the
resource’s attributes and template for the API. The controller should only be able handle
Custom Resources that conform to the CRD. [18]

3.3 Operator Reconcile Loop

Reconcile loop is a programmable concept where a controller watches the state of the
cluster and determines the necessary actions to change it accordingly. It is a function,
called reconcile loop, triggered by an event to watched resources. An Operator can
for example watch changes to a Custom Resource and then create and maintain a child
resource according to the state described in the Custom Resource. Figure 3.6 represents
this use case.

When the Custom Resource is created the reconcile loop will create an object
representing the Kubernetes resource. Kubernetes API is then requested to find out
if the resource already exists. If it doesn’t it gets created. Had the Custom Resource
been updated instead of created, a check is made whether the child resource has been
updated. If so, an update is triggered to the API. If any errors happen in execution there’s
a choice of requeueing the request for reconcile again.

3.4 Operator Practices for Production

There are great options for getting started with basic operator pattern programming such
as the Operator Software Development Kit [19]. Although much of the development
has been automated, the generated chassis covers only the very basic functionality, as
in creation and deletion of resources. In the context of this thesis a production ready
controller required some additions to the reconciling logic.
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Figure 3.6. Example of a reconcile loop

3.4.1 Filtering Reconcile Requests

Reconcile request is a request that activates the execution of the reconcile loop in the
controller. In some use cases the reconcile loop is inconvenient to be run on every event
that happens on the watched resource. For example updating the status object of a
Custom Resource may not need to trigger a reconcile request.

To filter out reconcile requests a predicate can be used. Predicates are filters
programmed for the watch function to allow only specific events to trigger a reconcile
event.
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3.4.2 Handling Custom Deletion Tasks

If resource deletion does not require additional logic, deletion of the child resource is fairly
simple and does not require code in the reconcile loop. An owner reference can be set
of the child resource for the main resource. Then a deletion request to the main resource
will result in all the referenced resources in its ownership to be deleted.

Sometimes deleting a custom resource will require logic that the basic owner reference
will not cover. For example when there is a need to delete objects in some other API than
the Kubernetes’. A solution is to catch a Custom Resource deletion event in the reconcile
loop by using a Kubernetes finalizer. In the reconcile loop a finalizer is added after the
object has been created. Once a resource with a finalizer is issued to be deleted, it
gains a deletion timestamp. This in turn triggers a reconcile loop during which a check is
made to look for the deletion timestamp, perform deletion related tasks, and finally delete
the finalizer. A Kubernetes resource will get deleted only after its finalizers have been
deleted.

3.4.3 Upgrading Custom Resource Definition

To upgrade a Custom Resource Definition simply deleting the old one and replacing it
with a new one is not advisable. Deleting a Custom Resource Definition results in the
deletion of all related Custom Resources from the cluster. Upgrading a CRD requires
a thought out process where the CRD, existing resources, and the controller have been
considered.

Upgrading the CRD version requires the controller to handle both the new and the
previous versions. Then the old versions of Custom Resources are migrated to the new
CRD version. After this can the CRD be updated again to drop the old version.



22

4 REQUIREMENTS FOR ABSTRACTION

Abstraction is a powerful tool in developing an understanding of complex phenomena.
Abstraction is a result of recognizing similarities between certain objects, processes, or
situations, and the act of concentrating on these similarities while ignoring the differences
for the sake of ephemeral simplicity. The relevant similarities to the control and prediction
of becoming events form the fundamentals of the abstract concept. The differences are
trivial in the context. The abstract concept can be represented by a word or a picture or
any other symbols. [20]

Abstraction can be seen as simplification. At every stage of the abstraction the amount
of information needed to handle reduces. This makes abstraction a relation, where the
developer of the abstraction is able to choose the level of simplification and reduction.
[21]

4.1 Abstraction Layers

The top-most abstraction fundamental in the context of this thesis can be described as
transforming streams of data in a controlled manner. This merely brings forth the idea
that we have an influx of data and that we want to have a different outcome than what
was ingested. What the data contains, what is done to process it, or where it’s then
stored or mediated to is not information that is defined on the top level. To deeper
develop the understanding of this concept, a closer look is taken to identify more practical
levels of abstraction. The business requirements and current implementation details are
considered. This requires starting at the lower levels to build and identify the abstraction
levels in play. To succeed in transforming streams of data in a controlled manner, three
things are needed: computing power, control over the computing power, control over data
ingestion and transformation.

The computing power is provided to us by the cloud platform, be it public, hybrid or
private. Hence the cloud platform that we operate on represents the first abstraction
layer. It abstracts away all the details about how to utilize and maintain the hardware
which provides the computing power.

The second layer is offered by Kubernetes. Kubernetes gives us control over our
computing power. As explained in chapter 3 Kubernetes takes multiple server instances
and exposes them as a single computational resource. It gives us tools to harness the
computing power and the networking of the servers through documented resources.
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These resources and their configuration are abstractions of allocating resources and
opening communication channels between the services in the cluster.

The third layer is control over data. Apache Spark is used as a tool that provides means
of ingesting and transforming data streams on Kubernetes. The logic for data ingestion
and transformations can be written in programming languages such as Scala, Java and
Python using the libraries that Spark offers. Spark abstracts away the act of distribution
of the data computing to all the nodes in a Kubernetes cluster. The code is written in one
place as if the transformations would happen on a single computer, but the computing
tasks are under the hood distributed to all the available and configured computing nodes
at the cluster’s disposal. [22]

As Apache Spark requires specific expertise to use, further abstraction is required. Thus
the fourth layer is control over the ingestion and transformation logic. In the context of this
thesis a general configurable framework exists to offer different kinds of transformation
collections without the need for reprogramming the Spark application. This configuration
is an XML file.

The configuration file can be built by using a specific User Interface. This UI allows to
visualize and draw to generate a configuration for the fourth layer. The UI can be seen as
the fifth layer of abstraction.

Between the fourth level and the fifth one, the amount of information needed to handle
does not currently substantially reduce. It is still required for the user to familiarize the
framework that is being configured since it requires knowledge of low level programming
skills to fully conduct a configuration.

4.2 Requirements and Preconditions

This thesis in its context defines a successful abstraction with the following statement: A
domain expert should be able to create and modify data processing workflows without low
level programming skills. To achieve this the domain expert would need no knowledge of
the framework that is being configured to provide a sound product configuration. Also, an
argument should be considered whether deploying the application should even require
knowledge of Kubernetes. Actors should be able to configure and deploy the application
in Kubernetes from an abstracted layer. The concept can be likened to the specialists
having access to a driveable car, as opposed to just the engine. Whether this is fully
achieved also depends on other requirements of the system. The abstraction will likely
fall to some point on the abstraction spectrum by Rosso et. al in figure 4.1. [23]

The main goal of the successful abstraction is to make domain experts successful service
consumers in the cloud platform. With the spectrum, a choice can be made to make
Kubernetes completely transparent to the developing parties. Other option is to expose
as much of the flexibility as Kubernetes allows to a developer. [23] Third, with default
values, an operator and a multi-layered development process the abstraction does not
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Figure 4.1. Abstraction spectrum [23]

necessarily have to be a static choice. By setting levers in the automation a complete
flexibility can be allowed for the developer to determine how deep in the layers one
wishes to go. It can be possible to just use the final layer of abstraction, or, still do
some modifications on the next layer. This means that the abstraction provides simplicity
but does not force it.

The abstraction should be able to expose key features of Kubernetes. If not, over-time
the abstraction can become as complicated as the system that it’s abstracting. The
developers of the underlying engine can not consider the delivered engine to be a static
environment that is used for decades by the domain experts. Rosso et. al [23] argue,
that a constant communication between developers and the domain experts is needed to
determine increases in development velocity due to missing features or issues.

Versioning interfaces can structure this communication and make it a less strenuous
process. Novakouski et. al [24] concluded that key artifacts created during the
development of a service-oriented system should be included in a versioning solution
to avoid potential conflicts and promote proper change management by leveraging
versioning tools and recommended practices. For example, the company that ordered
this thesis has adopted the Semantic Versioning 2.0 [25] tool.

However not only the domain expert can be considered. The development work and
troubleshooting of the underlying framework should not suffer from the abstraction. The
performance, test-coverage and other quality measuring aspects of the existing software
should be at least preserved or enhanced. While not the focus in the context of this
thesis it should be made sure that no new quality issues arise due to the architecture that
enables our abstracted interface. The following set of requirements for the architecture
and interface are derived:

• The interface is intuitive and does not require low level programming skills

• Deploying a new workflow is automatic and efficient

• Updating an existing workflow is automatic and efficient

• The architecture follows cloud native principles
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– Data processing workflow scales

– Data processing workflow adapts to uncertainty in the cloud

• Development workflow of the engine does not suffer from the architecture

• The functionality and quality aspects such as performance, or test-coverage of the
existing engine are not worsened by the architecture
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5 PROPOSED CONSTRUCT

The goal of this chapter is to provide an architecture that enables our abstracted interface
by fulfilling the requirements described in the chapter 4. The proposed model is divided
into three sections: Development, Abstraction and Automation

5.1 Development

Development of the data pipelines happens with a service specific GUI (Graphical User
Interface) designed for building the configuration for the data pipeline engine. Until now
the GUI has only produced a single configuration file that maps the data transformations,
but the arrangement and deployment of the application requires knowledge about Helm,
Kubernetes, The code base and the underlying technology stack.

Figure 5.1 introduces an enhanced workflow. A packaging automation is introduced to
the GUI to produce the resources required by the abstracted interface. This poses a
requirement for the interface to be as simple as possible so that the packaging automation
does not introduce unwanted complexity.

Figure 5.1. Development roles and workflow

Deployment through the GUI can be automated within the software supply chain. By
packaging automation the GUI resources would be downloaded to a version controlled
project with a single click of a button. The GUI generates a job package with all the
necessary resources. Then the project is pushed to version control and ran through a
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generic Continuous Integration process (CI) to parse arguments and to arrange resources
into a deployable package. After passing functional tests the artifacts are deployed to a
staging environment for end-to-end testing.

The enhanced workflow decouples development of the data pipelines from development
of the engine. This enables horizontal scaling in development of the pipelines. More
customers can be on-boarded and pipelines for existing customers created as long as
a domain expert is available to interpret the specification of the case. In order for
the development of product configurations to scale horizontally, the development of the
engine has to scale vertically, meaning that constant maintenance, support, and possibly
new features must be considered in the development of the engine.

5.2 Configuration

For the development process to be as simple as possible the amount of information
passed to the deploying interface must also be as little as possible. To make the
Development process possible the underlying technology stack must be abstracted. The
prerequisite for the interface that abstracts the underlying technology stack is the use
of Kubernetes as the platform. In the development of the interface the requirements for
automation must be taken into account for the users be able to benefit from declarative
deployment in the stages of product deployment.

As Kubernetes is used as the platform it makes sense for the interface to rely on
Kubernetes as well. There are means of extending Kubernetes with the Operator pattern
defined in subsection 3.2.3. The Custom Resource Definition is introduced as the main
interface for a data pipeline. With it, we can define the properties needed for configuring
the engine which, in turn, interprets the configuration and produces a pipeline. Figure 5.2
showcases the architecture choices

Figure 5.2. Deployment and configuration of the pipeline with Custom Resource and
Operator
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As pipelines utilize Apache Spark they require multiple configurations and Kubernetes
resources. Managing all these values by the environment values configuration pattern is
not recommended for reasons explained in subsection 3.1.1. A lot of the configuration
can be abstracted by utilizing default values along with the Operator. Default values
are agreed and controlled by the engine developers, and the possibility is given for the
Custom Resource to override these values. Default values do not contain any business
logic, but information about the cluster, and tuning parameters for Apache Spark. The
implementation of the configuration uses the Kubernetes Configuration Resource design.

5.3 Automation

As described in chapter 2, cloud software lives in a highly dynamic environment. To
achieve the characteristics explained in the chapter such as adaptivity and elasticity,
the construct employs the Kubernetes Operator pattern. The operator is responsible for
managing the Kubernetes resources. It utilizes the Kubernetes API to watch for events in
etcd. Upon a Custom Resource creation event, the Operator picks up the event, reads the
Custom Resource properties and starts to execute a Reconcile loop described in section
3.3. The Reconcile loop creates all the necessary child resources Spark needs to be
able to start a pipeline. Resources in this example include Kubernetes Configuration
resources, Network Services and Storage claims. Pipelines also report metrics during
processing which are monitored by an external service to which the Operator provides
the configuration by API. Message queue topics are also handled by the Operator.

On an upgrade the operator performs updates on all the child resources based on the
Custom Resource. The Custom Resource is the only resource it watches for changes.
Filtering the rest by predicates is necessary since on an update the operator does not
benefit from multiple cascading reconcile results. The control needs to be idempotent
and atomic. This means if a node crashes with a metrics service on it, the operator does
not know it is gone. To fix this a periodic reconcile can be introduced to ensure adaption.

When a Custom Resource gets deleted all child resources will be deleted due to them
being owned by the Custom Resource. Deletes to external API’s are handled with custom
deletion mechanisms, such as described in subsection 3.4.2

Any resource malfunction that will abrupt the data pipeline will result in the pipeline
crashing and the operator creating a new one. If the Operator dies or the node it
operates on crashes, the pipeline will still live should its critical components reside on
another node. Thus, custom scheduling the Operator on a different node than the Spark
driver is required to ensure guaranteed adaptation. Also, it is possible, by adapting the
declarative deployment pattern from subsection 3.2.1 to upgrade the operator via fixed
deployment while the pipelines are running. To prevent data loss a Blue-Green release
is recommended strategy for the pipelines, but since the pipelines can be very resource
heavy, in on-premises cloud solutions with limited quota, fixed deployment with minimized
container stop and start-up times should be used.
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Scaling is possible statically by updating the Custom resource or dynamically by enabling
the Spark dynamic allocation. The dynamic scaling benefits from the Managed Lifecycle
Pattern described in subsection 3.2.2 that Kubernetes as a platform implements. Spark
worker instances, which are scheduled Kubernetes Pods on the platform can be deleted
and scheduled on the fly via API calls, based on ingested traffic. Enabling dynamic
allocation sets a requirement for the engine algorithms to be able to scale dynamically.
The benefits can be questioned in private cloud environments with limited quota if the full
capacity can be used.
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6 EVALUATION

The thesis set a desired state of the design-oriented constructive research by the
following statement: a domain expert should be able to create and modify data processing
workflows without low level programming skills. This was to be done through an
abstracted interface so that no low level programming skills would be required. A
graphical user-interface exists which is used to produce all the configuration components
of a pipeline. Packaging some of the configurations require skills that are not expected to
be possessed by the domain experts not allowing to reach the desired state. To simplify
and reduce the information needed to produce a data pipeline, the packaging automation
and further deployment automation aspects were covered.

What the thesis does not consider however, are the details of the GUI used in the
configuration to actually provide the simplest, most expressive way to define the actual
data pipeline. This would need collaborating and interviewing the domain experts and
defining their workflows with the GUI through carefully thought out processes. What
should be considered further is the functionality of the GUI. The GUI needs to be
expressive enough for domain experts to be able to create evolving data pipelines.
The GUI needs to have a good enough user experience and proper workflows for the
domain experts to be willing to use it. Since it was determined that abstraction requires a
substantial reduction in information about the system between the final layers, the thesis
overlooked the fact that on the final layer information needs to evolve in order to enable a
new user group. The GUI development and enhancements were left out of the thesis as
out of scope and the thesis concentrated more on how the foundation of the abstraction
must be built for us to be able to start working on matters of content.

To enable this, the requirements listed in section 4.2 were defined. These only answer the
first research question with a broad non-functional requirements, but do not provide the
actual functional requirements. As of now the GUI focuses more on the system than on
the content which directed the improvement work more towards the system. Hence, the
thesis focused more heavily on the system requirements. The thesis actually answered
the question: What requirements are there for the system to abstract away unnecessary
information to create and modify data processing workflows

The domain of the construct was restricted to Kubernetes in this thesis. It introduces
Kubernetes design patterns that enable simple resources for an interface, that can
consequently enable the implementation of automation required to fulfill the set
requirements. The domain was restricted to Kubernetes so other options were not
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Requirement Fulfilling Construct

The interface is intuitive and does not
require low level programming

Kubernetes Custom Resource and
Engine Configuration

Deploying a new workflow is automatic
and efficient

Custom Resource and Kubernetes
Operator

Updating a new workflow is automatic
and efficient

Custom Resource and Kubernetes
Operator

The architecture follows cloud native
principles

Kubernetes Operator and Apache Spark
enable scaling and adaptive control

Development workflow of the engine does
not suffer from the architecture

Decoupled Development Process for
Products and the Code Base

The quality of the existing engine is not
worsened by the architecture

Decoupled Development Process for
Products and the Code Base

Table 6.1. Requirements and their constructs

considered. The thesis introduced the two sure choices for implementing the interface
which were the deployment resource and operator pattern. The Operator Pattern was
chosen, because when working with deployments, the additional Kubernetes resources
that the pipelines utilize would have needed to be configured before the deployment. A
Kubernetes Custom Resource could be used to describe the state of all the resources in a
single artefact. With the operator the description would automatically be transformed into
the state on the cluster creating all additional resources based on the description. Since
the use of a Custom Resource and a Custom Controller is becoming a standard industry
practice they were trivial to choose for implementing the interface. As the domain was well
restricted the scope for different design choices was quite narrow. However, answering
the second research question made it clear that using ready made resources from the
Kubernetes toolkit would not give us a good enough abstraction.

Kubernetes consists of an API which is used to declare a state on the cluster. Controllers
then achieve the state in the cluster by deploying resources defined by Kubernetes. The
nature of evolving and frequently changing configuration was answered with automation
of the service composition and configuration. Automation was also used to ensure high
availability of the system as per common cloud requirements. The thesis explored the
relevant tools in our disposal for achieving the design of automated service composition
via the Operator pattern, comprised of a Custom Controller and a Custom Resource.

A construct was proposed as the architecture of the system in chapter 5. With
the requirements and preconditions characterized as constructs the thesis proposes
a Kubernetes interface that implements the desired abstraction. Table 6.1 lists the
requirements and the constructs that fulfill them. With the use of Kubernetes Custom
Resource, Operator and Default Values design patterns, enough information could be
abstracted away to enable a more simple configuration to enable a packaging automation.
Everything after the deployment event is automated to the point of keeping the system
healthy assuming a proper configuration. The deployment event happening on an already
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running system results in an automated update process where the state defined by
a proper configuration is achieved in a declarative manner. Managed Lifecycle and
Declarative Deployment patterns were properly implemented in the design. A level of
cloud native status was achieved by utilizing the Kubernetes design patterns.
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7 CONCLUSION

This paper introduced a cloud controller architecture which enables decoupling the
development processes for an underlying code base, and product configurations. The
architecture facilitates an abstraction in the form of a configuration interface, that enables
domain experts to take over the customer-centric configuration work, freeing software
developers as resources to feature development. After some additional work, clear
boundaries between these two concepts can now more easily be established.

There are possible identified caveats for the system. The learning curve of the interface
might prove to be too steep in the sense that even with development, administrating and
monitoring capabilities time resources are still needed from the developers for instructing
and supporting customer production deployments. Also, what’s left for future to show is
whether maintaining the increased complexity of the underlying system will need as much
resources as potentially freed.

What was left out of the thesis is the administration, monitoring and troubleshooting of
the system. The capability for these is required to be available for service care personell
who support customer deployments. Configuration for logging and monitoring systems
provided by the cloud platform are included to be installed by the deployment automation.
A comprehensive documentation is written for the interface for on-boarding of the domain
experts in order to maximize the benefits of the unevolved interface. Future work could
investigate the expressive qualities of an interface and its user experience in order to
evolve it to an even more simple product configuration.
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