
Aleksi Hirvonen

COORDINATION BETWEEN MULTIPLE

MICROSERVICES: A SYSTEMATIC MAPPING

STUDY

Master of Science Thesis

Faculty of Information Technology and Communication Sciences

Examiners: Davide Taibi

Xiaozhou Li

February 2023

i

ABSTRACT

Aleksi Hirvonen: Coordination between multiple microservices: A Systematic Mapping Study
Master of Science Thesis
Tampere University
Master’s Programme in Information Technology
February 2023

The popularity of microservice architecture has risen recently due to its multiple advantages
partly related to the increased independence of services. One of the features that improve inde-
pendence is decentralized data management, which outlines that each service should manage
its own data with preferred data management technologies. However, the usage of decentralized
data management brings problems, especially with data consistency when data owned by sepa-
rate microservices must be modified in coordination. To alleviate this, a shared database between
services could be used as it removes the need for coordination altogether, but then again, the
usage of a single database could defeat some of the benefits of microservice architecture by in-
creasing tight coupling between services. Therefore, it is important to consider other possibilities
to manage the coordination while maintaining the independence of the services.

We conducted a systematic mapping study to find out suitable design patterns to manage
the coordination between multiple microservices. Firstly, design patterns that seemed widely dis-
cussed and adopted were identified. After this, these patterns were presented using a template
that included advantages and disadvantages for each pattern.

The results gathered in the systematic mapping study show that even though traditional sys-
tems pursue strict consistency with ACID guarantees, eventual consistency patterns, such as the
saga pattern, seem to be more popular in the microservice environment. This is due to draw-
backs within distributed transaction protocols including limited concurrency and reduced availabil-
ity which makes developers choose loosened consistency as a trade-off for higher availability and
increased performance. The prevalence of the saga pattern can be seen in the selected works
as there are multiple articles proposing methods to manage different parts of the pattern. Also,
implementation details were mainly related to the saga pattern in the selected works.

Even though the saga pattern is currently the most prevalent option, there is still interest in
highly consistent coordination methods in the research community. Multiple solutions have been
proposed, which either propose new consistency protocols with strict consistency guarantees or
entirely new solutions to remove the need for coordination completely. However, there are no novel
solutions that could manage the requirements of microservice architecture reliably in the industry
setting yet. Therefore, further research is still required to refine already proposed solutions or to
vision new solutions for this problem.

Keywords: 2PC, TCC, saga, orchestration, choreography, coordination, transaction, microservice,
systematic mapping study

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Aleksi Hirvonen: Koordinaatio usean mikropalvelun välillä: Systemaattinen kirjallisuuskartoitus
Diplomityö
Tampereen yliopisto
Tietotekniikan DI-ohjelma
Helmikuu 2023

Mikropalveluarkkitehtuurin suosio on kasvanut huomattavisti viimeisen kymmenen vuoden ai-
kana sen tarjoamien hyötyjen takia, jotka ovat osittain seurausta palveluiden vähentyneestä riip-
puvuudesta toisiinsa. Riippumattomuutta lisää esimerkiksi hajautettu tiedonhallinta, jonka mukaan
jokaisen palvelun tulisi olla vastuussa omistamansa tiedon hallinasta käyttäen sopivinta tietokan-
tateknologiaa. Vaikka tällä voidaan saavuttaa useita etuja, aiheuttaa se myös uusia ongelmia eten-
kin tiedon yhtenäisyyden hallinnassa kun usean palvelun hallitsemaa tietoa täytyy muokata yhteis-
työssä. Tämä ongelma voitaisiin välttää käyttämällä yhteistä tietokantaa palveluiden välillä, mutta
se osittain poistaisi mikropalvelun hyödyt tuomalla lisää riippuvuusuhteita mikropalveluiden välil-
le. Tästä syystä on tärkeää tarkastella muita vaihtoehtoja hajautetun tiedon hallintaan siten, että
mikropalvelun hyötyjä on mahdollista ylläpitää.

Tässä työssä toteutetaan systemaattinen kirjallisuuskartoitus, jonka tavoitteena on löytää so-
pivia malleja usean mikropalvelun väliseen koordinointiin. Aluksi työssä tunnistetaan koordinointi-
mallit, joista käydään paljon keskustelua kirjallisuudessa. Tämän jälkeen jokaisesta valitusta mal-
lista keskustellaan käyttäen yhteistä keskustelukaavaa, joka sisältää mallin määrittelyn sekä hyö-
tyjen ja haittojen listaamisen.

Kirjallisuuskartoituksessa saatujen tulosten perusteella huomattiin, että mikropalveluarkkiteh-
tuurissa suositaan malleja jotka tarjoavat lopulta yhtenäistä tulosta (eng. eventual consistent). Tä-
mä eroaa huomattavasti perinteisistä ohjelmistoista, joissa yhtenäisyyden täytyy olla ehdoton ja
toteuttaa kaikki ACID periaatteet. Ero johtuu osittain siitä, että mallit joilla voidaan tarjota ehdo-
ton johdonmukaisuus usean palvelun välillä vähentää mahdollisuutta rinnakkaisuudelle ja lisäksi
vaikuttaa palveluiden saavutettavuuteen heikentävästi. Tästä syystä mikropalveluarkkitehtuurissa
usein luovutaan ehdottomasta yhtenäisyydestä, koska sen seuraksena voidaan saavuttaa kor-
keampi suorituskyky ja lisääntynyt saavutettavuus. Etenkin saga-mallin havaittiin olevan suosittu
yhtenäisyyden hallintaan mikropalveluiden välillä, koska siitä keskusteltiin ja siihen liittyviä paran-
nusehdotuksia ja toteutustapoja ehdotettiin useissa töissä.

Vaikkakin saga-malli on tällä hetkellä yleisesti käytetty tapa mikropalveluiden välisessä koordi-
noinnissa, valitusta kirjallisuudesta huomattiin myös tarve ehdottoman johdonmukaisuuden toteut-
taville malleille. Useita uusia malleja ehdotettiin ratkaisemaan tämän hetkisissä ratkaisuissa olevia
ongelmia, mutta myös ratkaisuja joilla voitaisiin poistaa tarve usean palvelun väliseen koordinoin-
tiin ehdotettiin. Vaikka ehdotetut mallit ovatkin lupaavia, ne ovat vasta suunnitteluvaiheessa eikä
niitä voida käyttää luotettavasti tai helposti teollisuusympäristössä. Tästä syystä lisätutkimuksia
tarvitaan näiden uusien mallien jalostamiseen tai kokonaan uusien mallien visiontiin.

Avainsanat: 2PC, TCC, saga, orkestraatio, koreografia, koordinaatio, transaktio, mikropalvelu, sys-
temaattinen kirjallisuuskartoitus

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

This work was carried out while being employed by Vertex Systems Oy. First, I am thankful

for Juhana Rajala, who provided support, helpful advice, and proofreading while acting

as my thesis supervisor from Vertex Systems.

I would also like to express my gratitude towards Timo Tulisalmi and Petri Molkkari for the

possibility to work full-time on the thesis. Additionally, I am grateful to my co-workers for

the great atmosphere, where it was pleasant to work with the thesis.

I also feel thankful to my supervisors from Tampere University, Davide Taibi and Xiaozhou

Li for their assistance and feedback during the process. Their guidance on how to conduct

a mapping study was invaluable in order to shape the thesis into its final form.

Finally, I want to show my appreciation to Emma, my friends, and my family for their

encouraging words and tremendous support during my studies.

Tampere, 6th February 2023

Aleksi Hirvonen

iv

CONTENTS

1. Introduction . 1

2. Background. 3

2.1 Transaction basics . 3

2.1.1 ACID properties . 3

2.1.2 Isolation levels . 4

2.1.3 BASE properties . 5

2.2 Microservices . 6

2.2.1 Advantages of microservice architecture 8

2.2.2 Disadvantages of microservice architecture 9

2.2.3 Coordination between multiple microservices 10

2.3 Related work . 10

3. Methodology . 12

3.1 Goal and research questions 12

3.2 Search strategy . 13

3.2.1 Bibliographic sources and search string 13

3.2.2 Inclusion and exclusion criteria 14

3.2.3 Search and selection process 15

4. Results . 17

4.1 Design patterns for coordination between multiple services (RQ1 & RQ2) . 17

4.1.1 Saga pattern . 19

4.1.2 Two-phase commit . 26

4.1.3 Try-Cancel/Confirm . 29

4.1.4 Other solutions . 32

4.2 Novel design patterns for transactions spanning multiple services (RQ1 &

RQ2) . 33

4.2.1 Novel saga-based patterns 33

4.2.2 Novel 2PC-based solutions 38

4.2.3 Other novel patterns . 40

4.3 Implementation of the saga pattern (RQ3 & RQ4) 45

4.3.1 Local operation and sending message must be atomic 45

4.3.2 Missing isolation property. 47

4.3.3 Implementation frameworks 48

4.4 Implementation of other patterns (RQ3 & RQ4) 51

v

5. Discussion . 52

5.1 Design patterns . 55

5.2 Future directions . 56

6. Threats to validity . 58

6.1 Construct validity . 58

6.2 Internal validity. 58

6.3 External validity . 59

7. Conclusion . 60

References . 62

Appendix A: The selected papers . 65

vi

LIST OF SYMBOLS AND ABBREVIATIONS

2PC Two-phase commit

ACID Atomicity, Consistency, Isolation, Durability

BASE Basically Available, Soft state, Eventually consistent

CAP Consistency/Availability/Partition tolerance

CQRS Command and Query Responsibility Segregation

ES Event Sourcing

GTM Global transaction manager

LSN Log sequence number

MAS Multi-Agent System

MVCC Multi-version concurrency control

OCC optimistic concurrency control

P/T Place and Transition

REST Representational State Transfer

ROA Resource Oriented Architecture

SHMT Single-head-multiple-tails

SMS Systematic Mapping Study

SOA Service Oriented Architecture

ST Single-tail

TCC Try-Cancel/Confirm

TPS transactions-per-second

1

1. INTRODUCTION

Microservice architecture has gotten more popular in the industry over the last ten years

and multiple large companies have adopted it such as Netflix, The Guardian, and Amazon

[1]. Adoption of the microservice architecture has been high due to the advantages it

provides such as higher scalability, independent deployment, and the possibility to choose

the most suitable technologies for each service. However, as with each architectural

pattern, also microservice architecture involves multiple disadvantages such as increased

latency, and possible data consistency issues.

Data consistency problems are related to the usage of multiple databases where mi-

croservices can manage their own data with selected database technology. Even though

the usage of multiple databases relates to all previously mentioned advantages of the

microservice architecture, the possibility for database transaction is lost as a trade-off

when data in multiple microservices needs to be modified in coordination. For this, addi-

tional patterns are required to manage the coordination. To achieve similar transactional

guarantees as with database transactions, distributed transaction protocols such as two-

phase commit are required to be used. However, when strict consistency is used for the

coordination, the availability of the system decreases as stated by CAP theorem [2]. As

developers are willing to relax the consistency to gain better availability for the system,

patterns with eventual consistency have risen to challenge more traditional distributed

transaction protocols.

The saga pattern is one of the most discussed patterns for coordination in microser-

vices to guarantee eventual consistency. This pattern allows dividing the coordination

into smaller microservice level sub-transactions which are executed in a sequence. In

case that error occurs, already finished steps are reversed with compensating transac-

tions. As the coordination is managed as a sequence and not inside a single transaction,

short-lived failures of participants do not affect the possibility of successfully finishing the

task. This is not the same with strict consistency patterns as the availability of each

service is required to commit.

A choice between design patterns could be made based on previous experience or by

comparing patterns based on commonly available information. Especially when there is

no previous experience, the quality of commonly available information becomes crucial

2

for finding a suitable solution. For this reason, it becomes important to collect a compre-

hensive description of each design pattern in a way that it can be understood why they

are used, how they can be implemented, and what problems could occur in the imple-

mentation. In addition, an overview of the coordination methods and related recent works

could be beneficial for researchers to understand the current stage of the research field

and possible future directions. With this motivation in mind, a Systematic Mapping Study

(SMS) is conducted.

The contribution of this work is in four parts:

(i) Design patterns used for coordination between multiple microservices

(ii) Advantages and disadvantages of extracted design patterns

(iii) Implementation of found design patterns and problems that arise in the implemen-

tation

(iv) Advantages and disadvantages of extracted implementation patterns

To our knowledge, there has only been a limited amount of work studying design patterns

and their implementation [3] [4]. Differences between our work and related literature are

further discussed in section 2.3. With this work, we aim to give a comprehensive view

of the design and implementation of coordination between services which should help

companies to find the most suitable patterns for their needs. Also, the current stage of

the research is reviewed to help find trends for future studies.

The structure of this work is as follows. In chapter 2, related concepts of transactions and

microservice architecture are discussed. Also, related work is discussed in the chapter.

Chapter 3 first defines the used methodology and after that goals, research questions,

and how the search was conducted using the chosen methodology. Results of the con-

ducted search are then gathered and organized for further discussion in chapter 4. Re-

sults are then discussed in chapter 5, and possible threats to the validity of our work are

covered in chapter 6. Finally, this work is concluded in chapter 7.

3

2. BACKGROUND

In this section, concepts related to our work are defined and discussed. As our work will

study coordination between multiple microservices, it is important to understand some

basic concepts of transactions as trade-offs based on these concepts are made between

different design patterns. After this, the microservice architecture is defined using com-

mon characteristics, advantages, and disadvantages of the architecture to better under-

stand properties that might be important when implementing an application using this

architectural pattern. After this, related work is reviewed and differences compared to our

work are outlined.

2.1 Transaction basics

In software engineering, a transaction is a concept that is used to respond to threats

concerning concurrent execution, partial execution, and possible crashes in database

systems. As databases implement a transaction paradigm, it gives programmers the

possibility to work with data sequentially while the database works concurrently. [5]

2.1.1 ACID properties

In traditional transaction processing systems, data integrity is an important characteristic

and should be managed in all cases, even when there are unexpected problems with

the hardware or software. Generally, ACID properties have been used to check how well

transaction processing systems can manage integrity. These properties can be defined

as follows [6]:

• Atomicity confirms that either all operations inside the transaction succeed or none

succeed which means that there is no possibility for a partial transaction to commit.

This means that in case of failure, rollback or abort is performed.

• Consistency is a guarantee that initially consistent database should also be consis-

tent after a transaction has been committed. This means that each integrity con-

straint set must be enforced before and after each transaction. Integrity constraint

can be, for example, a rule that each ID must be unique or that balance cannot be

negative.

4

• Isolation provides serializability which means that multiple transactions could be

executed in a serial order that provides the same output as running the same trans-

actions concurrently. This makes it possible that developers can think that each

transaction is run alone in isolation from other transactions.

• Durability guarantees that after a transaction has been executed, all updates are in

stable storage which handles problems such as power outages or operating system

failures.

These properties can be usually guaranteed in traditional databases. However, in dis-

tributed systems, where multiple underlying databases are used, this compliance is harder

to achieve but is possible using distributed transaction protocols. Even if it is possible to

achieve all of these properties in distributed systems, it is not always desirable due to the

decreased performance as a trade-off.

2.1.2 Isolation levels

To increase the performance, the isolation property of ACID can be relaxed. There are

multiple levels of isolation that define what other users might see while the transaction

is in progress. Isolation levels are defined based on anomalies that can be defined as

follows [7]:

• Dirty write: If there is a possibility of overwriting modifications made by a transaction

that has not yet been committed or rolled back, this anomaly is possible. In case

either of these transactions wants to rollback, the correct previous value is hard to

obtain.

• Dirty read: When a transaction T1 modifies a resource and another transaction T2

reads the same resource before T1 rolls back. When T1 rolls back, T2 has a value

that should not exist as T1 rolled back its transaction.

• Non-repeatable read: If transaction T1 reads a value of a resource and after that,

another resource modifies or deletes the same resource, T1 will not get the same

value as with the initial read.

• Phantom read: When transaction T1 queries a set of resources with specified con-

ditions, it can not be guaranteed that the same set of resources is returned with

rereading. This is because there is a possibility that another transaction has cre-

ated and committed a resource corresponding to the same condition whilst T1 is in

progress.

• Lost update: There is a possibility that the update made by a transaction is lost

in the following case. Transaction T1 reads a resource and after that, transaction

T2 reads that same value and commits modifications to the same resource. If

transaction T1 then uses that previously read value and commits, updates made by

5

T2 are lost.

• Read and write skews: These anomalies can happen if there is a constraint be-

tween two resources X and Y. Read skew can happen when transaction T1 reads

resource X but before it can read the resource Y, another transaction T2 modifies

resources X and Y. Eventually when T1 reads resource Y, constraint between re-

sources X and Y are no longer valid as X is read before the modification and Y

after the modification. Write skew is possible when transaction T1 reads resources

X and Y but before it can commit wanted modifications, transaction T2 modifies

the resource Y. Eventually when T1 modifies resource X, constraint between these

resources might be broken.

Isolation levels are defined based on anomalies that are not allowed the stronger the

isolation gets. The following list includes isolation levels from weakest to strongest.

• Read uncommitted: Prevents only dirty write anomaly. Other previously mentioned

anomalies can occur.

• Read committed: Prevents dirty write and dirty write anomalies. Other previously

mentioned anomalies can occur.

• Repeatable read: Prevents other anomalies but not phantom read.

• Snapshot: Phantom read can sometimes occur and write skew can occur. Other

anomalies are prevented.

• Serializable: Prevents all previously mentioned anomalies which makes it the strongest

isolation level.

When isolation is relaxed, higher concurrency can be achieved but as a consequence,

there is a possibility for dirty reads or setting an incorrect state. This is why the trade-off

when setting isolation level is between performance and correctness of the state. [7]

2.1.3 BASE properties

In all cases, strict consistency provided by ACID properties is not desirable as there are

trade-offs to it. According to the CAP theorem, any system can only ensure two desirable

attributes from partition tolerance, consistency, and availability. As this theorem is related

to the whole system and not only database transactions, the definition of consistency

differs from consistency in ACID-properties [2].

• Partition tolerance: States that the system should still be receptive even when

individual components are unavailable.

• Availability: Intended response should be returned for each request made to the

system.

6

• Consistency: Each operation made to the system should look like it was made at

once. Only the latest value should be returned, otherwise, an error is returned.

When data is partitioned in multiple database servers, partition tolerance is required as a

system should be operational even though one of the partitions is unavailable. This leaves

a trade-off to be made between consistency and availability. However, it is important to

notice that the trade-off must be made only in cases when a partition occurs.

When consistency is desirable, ACID transactions for partitioned databases can be pur-

sued using distributed transaction protocols. However, in the case of a partition when

consistency is desirable, the availability of the system is impacted as availability is the

product of the components required for the operation. [8]

In cases where high availability is pursued, distributed transactions enforcing ACID prin-

ciples are not suitable. As an alternative set of principles, BASE semantics has been

proposed which stands for Basically available, Soft state, and Eventually consistent. With

BASE semantics, outdated data can be momentarily accepted if it is guaranteed to be

eventually consistent. Exchange for weaker consistency is made as it allows manage-

ment of partial failures with less complexity and gives a possibility for better performance

and higher availability. [9]

2.2 Microservices

Microservice architecture has become more popular in the last ten years and multiple

big companies have adopted it such as Netflix, The Guardian, and Amazon [1]. Related

to the definition of this pattern, there has been a discussion in the literature about if

microservice architecture is a subset of more traditional Service Oriented Architecture

(SOA) or an entirely new architectural pattern [1].

As there is no clear consensus on microservice architecture in the literature, multiple

different definitions have emerged for it. In this thesis, an acknowledged set of common

characters for microservices from Lewis et al. [1] is used. This definition includes the

following nine characters [1]:

• Componentization via Services. Service should be independently deployable and

runnable where all communication goes through their public interfaces. Running

independent services makes it possible to change services without having to rede-

ploy the entire application which is the case for traditional monolithic applications.

When a service needs to be updated, only that certain service needs to be rede-

ployed.

• Organized around business capabilities. Instead of dividing teams based on tech-

nology layers, such as the database layer and the backend layer, in the microservice

teams are assembled to manage and implement multiple different layers inside a

7

singular service. With this, teams have knowledge from multiple different aspects

of development, and cross-team implementations are not needed as often.

• Products not projects. Microservice application should be seen as a product that

is both developed and maintained by one team for the whole lifetime. This differs

from the project model, where development is managed by one team, and then

reassigned to the maintenance team on completion.

• Smart Endpoints and Dumb Pipes. Communication methods between services and

clients should be lightweight and not include any logic. This aims to keep services

decoupled as all logic related to a service is managed within that service. For

example, HTTP requests or messaging protocols such as RabbitMQ can be used

as lightweight communication protocols.

• Decentralized governance. The technologies used can be selected per microser-

vice. This enables the selection of the most suitable technologies depending on the

use case and the team’s preferences.

• Decentralized Data Management. In each microservice, data is managed in the

way preferred by the team. This might include different conceptual models of sim-

ilar data between different microservices if it is necessary. In addition, each mi-

croservice controls the storage of its own data and can choose the technology

used according to the needs and expertise of the team.

• Design for Failure. Failure of one service should not cascade to other services

and failures should affect user experience as little as possible. To detect failures,

real-time monitoring is used extensively where architectural and business-related

metrics are monitored.

• Automation. In microservices, continuous integration and continuous delivery pat-

terns are used, which means that infrastructure automation is used in every stage

of the pipeline when setting it up for production.

• Evolutionary Design. Microservices should be independently replaceable and up-

gradeable. As microservices are small sizewise, it is easier to replace or rewrite the

service application. Services should be designed in a way that new features can

be easily added while still supporting maintainability.

As this set includes common characteristics for microservice architecture, it is expected

that all of these characteristics are not visible in each microservice-based architecture [1].

Based on the definition, microservice architecture usually consist of small independent

services which communicate through lightweight protocols. As services are independent,

the most suitable technologies can be used in the development of each microservice. An

example of a microservice architecture in use can be seen in figure 2.1.

8

Figure 2.1. An example of a simple microservice architecture

2.2.1 Advantages of microservice architecture

As multiple organizations have adopted microservice architecture, there must be major

advantages compared to already existing architectural patterns such as monoliths. The

following list contains advantages that were mentioned in multiple sources including in-

dustry inquiry [10], gray literature reviews[11], and acknowledged gray literature [1] [12].

• Scalability. Easier scalability than monoliths.[13][12] In the microservice architec-

ture, only services that require scaling due to higher load can be scaled separately.

In the case of monoliths, the whole application has to be scaled even though a

higher load affects only a singular part of an application. [12].

• Organization structure. As microservice is structured around a single business

capability, shared responsibilities among teams are minimized, and team size for

a microservice remains manageable [13] [12]. This might help to lower the cost to

develop an application [10].

• Deploy independently. Compared to monoliths where small changes might require

the whole application to be redeployed, microservice can be deployed without af-

fecting the execution of other services [12] [13]. The possibility of independent

deployment allows fast release cycles and quick feedback from modifications [13].

• Diversity in technologies. As microservices are independent of each other, the most

suitable technologies can be chosen for each microservice. [10] [12] [11]

These advantages are all related to dividing an application into smaller services which

are all self-contained for easier scaling, independent deployment, and the possibility to

choose multiple technologies based on requirements. As microservices manage single-

responsibility, organizations can be also structured to minimize cross-team development.

9

2.2.2 Disadvantages of microservice architecture

As for each architectural pattern, there are a set of disadvantages for the microservice

architecture which must be taken into consideration. Disadvantages found in multiple

sources including peer-reviewed literature [13] [10] [11], and acknowledged gray literature

[12] are listed below.

• Hard to learn. Microservice architecture includes multiple different technologies

which require an extensive amount of knowledge [12] [13]. This is why it either re-

quires a lot of training to implement a microservice-based application or an already

advanced developer [13].

• Increased latency. Microservice communication must be done over the network

instead of in-process calls which increases latency [12] [10].

• Data consistency harder to maintain. As independent databases might be used in

a microservice architecture, ensuring data consistency with transactions spanning

multiple databases becomes complex. [10] [12] [11].

As seen in the listing, data consistency is one of the problems in microservices. Soldani

et al. [11] found out in their work about "the pains and gains" of microservices, that

data consistency and distributed transactions were seen as the most significant concerns

about storage management in microservices. [11]. Also, Zhou et al. [10] discovered in

their industrial inquiry that the database-per-service pattern was only practiced by 10% of

the interviewees. According to the authors, problems with distributed transactions while

ensuring data consistency caused practitioners to switch back to a single database. [10]

It is possible to avoid the complexity of data consistency by using a shared database

among microservices, or by designing services in a way that there is no coordination be-

tween multiple microservices [4]. In these cases, coordination is not required, or database

transactions can be used instead.

However, using a shared database causes coupling between services [1] which should

be avoided for the previously mentioned independent deployment of microservices. A

shared database also removes the possibility to use the most suitable database tech-

nologies for each microservice which was also listed as one of the advantages. Due to

these disadvantages, developers may decide to use a database-per-service pattern even

though it introduces possible problems with data consistency.

Also, dividing functionality into microservices is complicated [13] which might lead to set-

ting microservice boundaries incorrectly [10]. There might also be situations where coor-

dination between services is required even though boundaries are set wisely.

10

2.2.3 Coordination between multiple microservices

In case that shared database cannot be used, and services cannot be designed in a way

that transaction objects reside within a single microservice and database, other ways to

manage coordination and data consistency between services should be thought of.

As seen with the disadvantages of microservice architecture, data consistency between

multiple services is hard to maintain. Strict consistency requires that after an update has

been completed, the updated value will be returned for every subsequent access [14].

In microservice coordination, this is harder to obtain as coordination requires modifying

resources in multiple databases.

To alleviate this problem, strict consistency between services can be relaxed to eventual

consistency [11] as already visited with BASE semantics. Eventual consistency guaran-

tees that if there are no new updates to the database, eventually it will return the last

value updated by user [14].

With eventual consistency, each service could be updated as a sequence. In case of a

failure in one of the participating services, services could be restored to the initial state

with compensating transactions. As an updated service might still return to the initial

state in case of failure, strict consistency cannot be promised. Even though eventual

consistency alleviates problems with data consistency, it is not still easy to implement

[11]. This is why design patterns to implement coordination with eventual consistency are

required.

Strict consistency might be still required when working with sensitive data [11], which is

why design patterns with strict consistency are also required. For this, distributed trans-

action protocols that enforce ACID principles could be used.

In this work, design patterns that can be used to manage the coordination between mi-

croservices are studied. For each pattern found in the literature, advantages and disad-

vantages are listed to easily understand trade-offs and possible use cases. Also, imple-

mentation methods found in the literature are studied to find the best ways to implement

these patterns.

2.3 Related work

In this section, related literature for coordination between multiple services is discussed.

Discussion includes a short description of the work done, and how our work will differ from

theirs. After a comprehensive search, only two works [3] [4] that compare microservice

coordination patterns were found.

Laigner et al. [3] use peer-reviewed articles, open-source repositories, and a survey

11

for developers to find out used practices for data management in microservices. Found

coordination mechanisms are listed, but the advantages and disadvantages are only dis-

cussed briefly. Also, the implementation of these patterns is not discussed in this article.

Our study will complement this study by discussing patterns more extensively, and by

studying the current stage of research for coordination mechanisms.

Ntentos et al. [4] use quantitative method to analyze "grey literate" to find the most used

data management practices in the industry. With this information, a reusable architectural

design decision model is generated to help with architectural decision-making. As one

subsection, coordination between services is discussed and a decision framework for se-

lecting a suitable coordination pattern is proposed. The proposed patterns are discussed

briefly and only high-level benefits and disadvantages are given for each. To implement

these design patterns, it is necessary to know about the advantages and disadvantages

of implementation also. In this sense, our mapping study will complement this study with

a more comprehensive view of each design pattern.

12

3. METHODOLOGY

In this section, the process for a systematic mapping study is presented. A systematic

mapping study is conducted based on the process defined by Petersen et al. [15] with an

additional snowballing process defined by Wohlin [16].

In the remaining section, the goals for the mapping study and research questions are

presented. Based on these, the search strategy is defined which is then used to find

relevant articles to be used in the study.

3.1 Goal and research questions

The goal of this work is to map the current state of patterns and techniques for coordi-

nation between multiple services. For patterns, high-level design patterns and code-level

implementation patterns are considered in this study. Also, an attempt is made to identify

directions and opportunities for future research.

Based on set goals, research questions (RQs) for the mapping study are defined as

follows.

RQ1 What design patterns could be used in coordination between multiple microser-

vices?

RQ2 What are the advantages and disadvantages of extracted design patterns?

RQ3 How extracted architectural patterns can be implemented and what problems arise

with the implementation?

RQ4 What are the advantages and disadvantages of the extracted implementation pat-

terns?

The first research question is used to find out which design patterns have been used

in research for coordination between multiple microservices. Design patterns are high-

level solutions to frequently occurring problems that are written in a common format for

easy interpretation [17]. With RQ1, we want to find out which patterns have been the

most used in the context of microservice architecture. To a get better understanding of

acquired patterns, the context for possible use cases should be mapped somehow. With

RQ2, we aim to collect a list of advantages and disadvantages which can be used to help

13

Figure 3.1. An overview of the selection process

use case detection for each pattern.

As design patterns are high-level solutions to frequently occurring problems, there is still

room to implement these in multiple ways. With RQ3, we aimed to identify these imple-

mentation patterns related to findings from RQ1. To get a better understanding of the

implementation patterns gathered with RQ3, the advantages and disadvantages of each

should be listed. With RQ4, we aim to give a comprehensive listing of advantages and

disadvantages for each implementation pattern. As a whole, research questions should

give a comprehensive overview of the current state with patterns relating to coordination

between multiple services and how to implement them when the context is taken into

consideration.

3.2 Search strategy

The search strategy includes a selection of relevant bibliographic sources, the construc-

tion of the search string, and a definition of inclusion and exclusion criteria. With help of

this strategy, we aim to find the most relevant articles related to our aforementioned goal.

The overview of the selection process is represented in figure 3.1.

3.2.1 Bibliographic sources and search string

Relevant bibliographic sources were used to identify relevant resources. As suggested by

Kitchenham et al. [18], bibliographic sources were chosen to include publishers’ digital

14

libraries and two general indexing databases. The sources include IEEEXplore Digital

Library, ACM Digital Library, Science Direct, Web of Science, and Scopus where the first

3 are digital libraries and the last two are general indexing databases.

To find relevant resources, a search string was constructed based on the goals of this

work. The search string was divided into two distinct parts: the first part is used to de-

scribe the context "microservice architecture" and the second part is used to find articles

related to the topic of interest "coordination between multiple services". For the first part,

multiple variations were used to find all articles referencing microservices. For the sec-

ond part, as there is no singular established way to define coordination between multiple

services, only the term "transaction" was used in the search string to find all possible

variations including the wanted subject. With this term, it should be possible to find ar-

ticles referring to this topic with different terminology such as distributed transaction and

transaction-less coordination.

Finally, the following search string was used: (microservice* OR "micro-service*" OR

"micro service*") AND transact*. The search string was applied to fields Abstract and

Title in the aforementioned databases and libraries. The symbol * is used in search terms

to capture plural forms and verb conjugations.

3.2.2 Inclusion and exclusion criteria

To find relevant articles to this mapping study, a set of inclusion and exclusion criteria was

constructed.

Based on our RQs, inclusion criteria for this mapping study were defined as follows:

IC1 Papers discussing advantages and disadvantages with design patterns for coordi-

nation between multiple services

IC2 Papers discussing implementation patterns or details for coordination between mul-

tiple services

IC3 Papers proposing new methods to implement coordination between multiple ser-

vices.

For exclusion, the following criteria were set up:

EC1 The paper is not written in English

EC2 The paper is duplicated. In this case, the most recent copy is chosen

EC3 The paper is out of topic. In this case, the terminology might have been used in a

different context

EC4 The paper is not peer-reviewed. However, non-peer-reviewed contributions are

considered if their citations are considerably higher than the average of citations in

15

Selection process step Number of papers

Extract papers from bibliographic sources 113

Filter by title and abstract 86 rejected

Filter by full reading 12 rejected

Backward and forward snowballing 6 added

Papers accepted 21

Table 3.1. The selection process for the literature

included peer-reviewed papers.

Exclusion criteria consist of generic criteria which can be used to easily filter articles not

suitable to be added to the study. The assumption is made that most of the articles related

to this topic are published in English which is why papers written in other languages are

excluded.

3.2.3 Search and selection process

The search was conducted in January 2022 and a total of 113 unique articles were re-

turned from the aforementioned set of databases and digital libraries when searching by

title and abstract.

First, the applicability of constructed criteria was tested before applying inclusion and

exclusion criteria to the rest of the papers. The test was conducted by selecting a subset

of 10 random papers from retrieved papers.

After applicability testing, refined inclusion and exclusion criteria were applied to the title

and abstract of retrieved papers. Each article was read by a singular author and the

decision was made him independently. Of 113 initial articles, 27 were included after

applying criteria to the title and abstract.

A full read was carried out with 27 papers included by title and abstract. To filter all

relevant papers, inclusion and exclusion criteria were used. After this stage, 15 papers

were chosen to participate in the mapping study.

In addition to the systematic mapping study process, backward and forward snowballing

was performed. This step was carried out with 16 papers selected for the mapping study.

For the backward snowballing process all referenced articles were considered and for for-

ward snowballing all articles referencing selected articles were considered. After review-

ing articles gathered from snowballing, five additional articles were added to the mapping

study. Works by Richardson [SP20] and Newman [SP21] were added from gray literature

as there were a notable amount of citations compared to other selected works.

The aforementioned process resulted in 21 works published between 2014 and 2021.

16

Selected papers include 20 unique works and a book chapter by Fan et al. [SP2] which

can be seen as a simplified version of previously presented work [SP1] from the same

authors. Results from each step of the process can be seen in the table 3.1.

17

4. RESULTS

In this section, the results of the systematic mapping study are presented. In section

4.1, found design patterns for coordination between multiple services are presented and

discussed. Also, the advantages and disadvantages of previously found design patterns

are discussed and collected in a table for easier comparison. To better understand the

implementation of these patterns, in section 4.3 the most used implementation patterns

found are presented for each design pattern. Also, the advantages and disadvantages

observed in selected works are discussed.

For a start, common statistics for the final set of papers are presented. As shown in the

previous section, 21 works were retrieved. Figure 4.1 shows the distribution for publication

years where it can be concluded that the topic is relatively new for research as the first

papers found to relate directly related to microservice implementation are from 2018. A

single article from 2014 is also included in selected works, but it discusses coordination

from a web service point of view. Even though the sample is small, an upward trend

in publications can be seen for this research topic. Figure 4.2 shows the distribution for

document types of primary studies where the main type is a conference paper and the

second type is an article. This further demonstrates that this topic is new in the research

community.

4.1 Design patterns for coordination between multiple services

(RQ1 & RQ2)

This section presents established design patterns used to manage coordination between

multiple microservices. The potential advantages and disadvantages of these patterns

are also visited for easier comparison. In section 4.1.1, the traditional saga pattern, and

its two variants are presented and discussed. The next section 4.1.2 includes a discus-

sion about the Two-phase commit (2PC) pattern. Try-Cancel/Confirm (TCC) pattern is

discussed in section 4.1.3.

In table 4.1, patterns discussed in the selected works and the frequency of mentions

are gathered. General saga pattern was mentioned and discussed in eight works [SP3],

[SP5], [SP9], [SP11], [SP15], [SP17], [SP20], [SP21], six works discussed saga chore-

ography and orchestration discussed in [SP4], [SP10], [SP14], [SP18], [SP20], [SP21]

18

Figure 4.1. Distribution of publication years

Figure 4.2. Types of selected works

19

Design pattern # of studies

Two-phase commit (2PC) 13

Saga pattern 12

Try-confirm/cancel (TCC) 6

Other 5

Novel saga-based patterns 4

Novel approaches 4

Novel 2PC-based patterns 2

Table 4.1. Patterns mentioned in selected works

which of both were mentioned in all six articles.

Pattern 2PC was mentioned and discussed in 13 studies [SP1] [SP5] [SP6] [SP7] [SP8]

[SP9] [SP11] [SP14] [SP15] [SP17] [SP18], [SP20] [SP21] and TCC in six studies [SP3],

[SP6], [SP11], [SP12], [SP13], [SP19].

Five works discussed novel approaches for coordination based on the saga pattern. Novel

2PC-based patterns were discussed in two works by the same authors. Four works dis-

cussed novel approaches not based on any visited patterns. Other possibilities such as

the usage of distributed databases and the usage of stream processors were discussed

in 5 studies.

It is observed that the most prominent patterns discussed in the literature are the saga

pattern and 2PC but this itself doesn’t mean that these patterns are suitable to be used

with microservices. It was noticed while reviewing the literature, that 2PC is usually given

as an example of how transactions were implemented in distributed systems before mi-

croservice architecture. However, as availability is an important characteristic of microser-

vices, traditional 2PC is not usually encouraged to be used. 2PC is further discussed in

section 4.1.2.

Concept, Goal, Properties, Evolution, Reported Usage, Advantages, and Disadvantages

template introduced by Taibi et al. [19] is used to discuss the design patterns.

4.1.1 Saga pattern

In this section, the saga pattern and its two variants, orchestration and choreography, are

discussed. General advantages and disadvantages are applicable to both choreography

and orchestration. Orchestration and choreography define the inner structure of how a

saga manages coordination between services.

Saga pattern

20

Figure 4.3. A general flow of a saga pattern (Modified from source [20])

Concept: Microservice architecture embraces the decentralized data management prin-

ciple with a database-per-service pattern to improve loose coupling of the services and

to enable the usage of different database technologies in the services. However, this

removes the possibility to use database transactions for transactions involving multiple

microservices. As a consequence, an additional pattern for the coordination of opera-

tions involving multiple microservices is required. In the selected works, the saga pattern

appeared as a highly used pattern to implement coordination between services.

The saga pattern was introduced in 1987 by Garcia-Molina et al. [21] as a way to manage

long-lived transactions, and later was rediscovered for managing coordination between

microservices. With the saga pattern, a change that affects multiple services is sepa-

rated into smaller microservice level sub-transactions which are run in sequence to reach

the desired outcome. Each of these sub-transactions within a single microservice can

be implemented with ACID guarantees. The objective of the saga pattern is either to

successfully finish all sub-transactions participating or to cancel all operations if any of

them fails. In case of a failure, already finished sub-transactions are compensated using

reverse operation. The reverse operation should return the state of each participating

service to the state before the saga was initiated or to a similar state. An example of a

transition to a similar state is given in the example below.

An example of the general structure of the saga pattern including transactions and com-

pensating transactions are shown in figure 4.3. In the example, there is a failure in the

payment service which starts the compensation process of the saga. As failure happens

in the payment service, subsequent notification service is not called. After compensating

transactions have finished, the saga ends. In the case of this example, the order service

returns to a similar state as it was before the saga execution by setting the order status

to cancel. Stock service returns to the same state by removing the reservations.

The saga consists of a reversible, pivot, and repeatable sub-transactions. All reversible

transactions happen before the pivot transaction, and all repeatable transactions happen

after the pivot transaction. If failure happens at the latest in the pivot transaction, the saga

is canceled. If the pivot transaction succeeds, the saga can be successfully performed as

all following operations can be repeated until they succeed. [SP10]

21

Goal: The goal of the saga pattern is to provide a way to manage the coordination of

services when operations span multiple services. As each performed step must be com-

pensated, the state will be consistent eventually.

Properties: In the saga pattern, compensating transactions are related to recovering from

business failures and not technical failures such as participating service which is not

responding. [SP21]

For durability, the state of the saga could be persisted to logs in stable storage [SP17]

[SP15]. These logs could be used in case of failure to continue the saga flow.

Evolution and reported usage: The saga pattern was first introduced in 1987 for long-

lived transactions by Garcia-Molina et al. [21], and later reconsidered as a pattern for

microservice architecture. Discussion of the general saga pattern for microservices was

found in eight works [SP3], [SP5], [SP9], [SP11], [SP15], [SP17], [SP20], [SP21] where

general advantages for the saga pattern was discussed.

General advantages for the saga pattern are:

• Higher availability. This is achieved as a trade-off for losing strict consistency as

stated by CAP theorem [SP10]. To manage this, ACID principles for the saga work-

flows must be relaxed which means introducing BASE semantics as an alternative

to follow [SP15]. Also, as an isolation property is broken due to dividing coordi-

nation into microservice level sub-transactions which can be visible during a saga

execution, availability is improved [SP10].

• Improved performance. In the experiments conducted by Xue et al. [SP11], it was

noted that when coordination is moved out of the local transactions, performance is

improved. De Heus et al. [SP5] mention improved performance due to separating

coordination into smaller sub-transactions. Also, throughput is improved over 2PC

as resource locks are required only for local transactions [SP17] [SP11].

• Scalability. As stated by Stefanko et al. [SP15], relaxed ACID semantics also im-

prove the scalability.

Multiple disadvantages was also mentioned for the general saga pattern:

• Missing isolation property. Intermediate states might be visible to other transac-

tions during the saga execution [SP15] [SP20]. As isolation is missing, a dirty read

is possible when transaction T2 reads a resource modified by a transaction T1,

and later transaction T1 needs to be compensated. In this case, T2 will have an

inconsistent state for the resource. [SP11] [SP20]

• Risk of inconsistent state. Might be possible in cases where other participating

services have committed while at least one aborts due to service failure [SP11].

Stefanko et al. [SP15] also mention possible participant failures as a problem that

22

Figure 4.4. An example of a saga orchestrator

needs to be solved.

• Only eventually consistent. For higher availability, only strict consistency is replaced

with eventual consistency. Eventual consistency promises that the state will even-

tually become consistent after the saga has been completed. [SP15] Eventual con-

sistency is mentioned by [SP10] [SP20] is only provided. [SP9]

The saga pattern is usually divided based on coordination styles which are orchestration

and choreography. First, the saga orchestrator is discussed.

Saga orchestrator

Concept: In the saga orchestrator pattern, coordination is managed by the central or-

chestrator. This means that participating microservice receives an initiating request from

the orchestrator and after completing the required tasks, sends a response to the orches-

trator about a successful or failed operation. An orchestrator can either be one of the

participants, which could mean that the first service to participate also manages orches-

tration. Orchestration could be also managed in a separate service, where the only task

is to manage all sagas of the system.

An example of a saga orchestrator, where the participant acts also as an orchestrator is

shown in figure 4.4. In the example, the order service manages the flow of the saga and

calls other microservices in sequential order.

Properties: Even though the communication method between the orchestrator and par-

ticipants is not outlined, according to Newman request/reply seems to be the preferred

solution [SP21]. Also, Richardson [SP20] states that a command/reply interaction pattern

23

should be used when implementing saga with orchestration.

Reported usage: Six works mentioned and discussed saga orchestration [SP4], [SP10],

[SP14], [SP18], [SP20] [SP21]. In these works, the following advantages and disadvan-

tages were observed.

Advantages for saga orchestration are:

• Low coupling between services. Services are loosely coupled as only the orches-

trator calls them and services never call others [SP10]. This is also mentioned as

an advantage in three other works. [SP18] [SP14] [SP20] However, there is still

high coupling between participating services and the orchestrator [SP21].

• More maintainable. As saga-related logic is in one place, maintaining becomes

easier [SP10]. In an experiment conducted by Rubrabhatla [SP4] it was remarked

that when the saga becomes bigger, management is easier with the orchestrated

approach as logic resides in one place. Also, it might not be necessary to modify

service behavior when integrating it to a saga flow [SP18].

• Easier to understand. As logic resides in one place, it is easier to understand the

flow of the saga without having to look at multiple places [SP21].

and disadvantages:

• More messages required for coordination. Two works [SP18] [SP4] mentioned that

the orchestrated approach requires more messages for coordination than a similar

solution with choreography as all communication must be transported through the

central orchestrator. As seen in an experiment conducted by Rubradhatla [SP4],

additional messages decreased the performance of the orchestrated solution in

comparison to the choreographed one. [SP4]

• Single point of failure. According to Röwekamp et al. [SP10], a single point of

failure is a trade-off for loosely coupled architecture and better maintainability. Also,

Limon et al. [SP14] mention a single point of failure as a problem that also leads to

the centralization of traffic.

• Risk of centralization of logic. There is a risk that too much logic will reside in

the coordinator as it might be easy to relocate logic that should be managed by

services into the orchestrator. However, this causes services to become dump

components directed by smart orchestrator. [SP21] [SP20] According to Newman

[SP21], this could be avoided by using participating service also as a coordinator

which distributes saga coordination logic to multiple different places. Also, if the

coordinator only manages the flow of the sagas with call sequencing, this problem

should not occur [SP20].

Saga choreography

24

Figure 4.5. An example of a saga choreography

Concept: In saga choreography, coordination is managed as collaboration with all partici-

pating services. This means that each service participates in a saga by catching an event

sent by a previous service to initiate required actions, and then by sending an event for

the successful or failed operation. An event for a successful operation is captured by a

subsequent service and an event for failed operation is captured by a previous service to

perform compensating actions.

An example of a saga choreography is shown in figure 4.5. In the example, it can be seen

that each service receives an event to initiate its action, and after finishing the action,

a message about a successful or failed operation is sent. This event is then caught by

subsequent service to initiate the next step.

Properties: Even though interaction style is not enforced, an event-driven approach is

preferred with a choreographed saga. A message broker could be used to send and

deliver these events reliably. [SP21]

As the state of the saga is distributed amongst participants, correlation ID is required to

be passed with events to connect the state. For example, this identification can be used

in the case of compensating transactions to find a correct resource [SP21] [SP20]. In

the previous example, the order ID could be sent as a correlation ID to identify the state

associated with the saga.

Reported usage: Six works mentioned and discussed saga choreography [SP4], [SP10],

[SP14], [SP18], [SP20], [SP21]. In these works, the following advantages and disadvan-

tages were observed.

25

Mentioned saga choreography advantages are:

• Fewer messages required for coordination. In an experiment conducted by Rudrab-

hatla [SP4], the response time of the choreographed solution was lower than that of

the orchestrated solution. According to the author, this was due to fewer messages

required to coordinate the choreographed solution [SP4].

• Low coupling between services. There is no direct knowledge about other services

as each service only needs to respond to certain events and send an event after

any modifications made to state [SP21] [SP20] [SP14]. However, it can also be

argued that choreography is tightly coupled as visited in the disadvantages list.

and following disadvantages were mentioned:

• More complex. Two works [SP21] [SP20] mentioned that it might be hard to un-

derstand the flow of the saga when the coordination logic is distributed amongst

participating services. Similar results were seen in an experiment conducted by

Rubrabhatla [SP4] where it was noted that the choreographed approach was more

complex to implement when required events increased.

• Risk of tight coupling. There is a risk of tight coupling when it is required to modify

an event sent by participating service. In these cases, the sender and receiver

need to be updated in cooperation to work. [SP20] Due to the tight coupling, it

might become complicated to change a saga that uses a choreographed approach

[SP10]. Tight coupling between services was also mentioned by one other work

[SP18].

As seen in the above chapter, there are fundamental differences between orchestrated

and choreographed implementation of the saga pattern. Even though both of the coordi-

nation methods can be used when implementing saga, preferred solutions can be seen in

the works for different situations. Newman [SP21] mentions that it might be easier to use

orchestrated approach if a team manages each service inside the saga flow. However, if

services participating in a saga are managed by multiple teams, it might be easier to use

the choreographed solution [SP21]. Rubrabhatla [SP4] noticed with experiments that for

sagas which consist of a small number of services, choreography can be useful. This is

especially the case when there are strict performance requirements. However, when the

saga flow is more complex, the orchestrated approach might become preferable [SP4]

[SP20]. According to Röwekamp et al. [SP10], the orchestrated approach seems to be

the preferred solution in the industry as downtimes related to the central point of failure

are uncommon in comparison to the problems caused by using choreographed solution

[SP10].

One or more of the aforementioned issues of the saga pattern could be solved using novel

saga-based patterns demonstrated in the upcoming section 4.2.1. Certain implementa-

26

Figure 4.6. The first phase of a two-phase commit (Modified from source [20])

tion patterns could be also used to resolve one or more of the aforementioned issues

which are further discussed in section 4.3.

4.1.2 Two-phase commit

Concept: In the first phase, the coordinator sends PREPARE message to all participating

services to prepare for a transaction. Service returns either a YES or a NO depending on

if it can participate in the transaction. In the second phase, the coordinator sends COM-

MIT message if all participating services have returned YES vote. If even one service

cannot participate in the transaction, the coordinator sends ABORT message to each

service. [22]

The first phase of the two-phase commit is shown in figure 4.6, and the second phase is

shown in figure 4.7. In this example, the payment service cannot participate in the trans-

action and returns no vote. This means that the coordinator sends ABORT message to

participants that returned YES vote as resources reserved for the transaction should be

released. It is not necessary to send ABORT message to participants that returned NO

vote [22]. If all participating services return a YES vote, the coordinator sends a COMMIT

message to each service, and services return acknowledgment after a successful opera-

tion. Acknowledgment is sent for the coordinator to inform that participants are aware of

the end result and have acted properly [22]. After the coordinator has received all DONE

27

Figure 4.7. The second phase of a two-phase commit in case of rollback (Modified from
source [20])

messages, it can forget the transaction.

Goal: The goal of this pattern is to manage distributed transactions with the central co-

ordinator consistently and atomically. No commits are made to databases before the

coordinator is sure that each participating service can commit.

Properties: In the first phase, each service makes the necessary preparations so it can

guarantee commitment. This means that each service might lock necessary resources

and wait until the coordinator sends either COMMIT or ABORT message to release them.

Logs are written to persistent storage during the protocol in the coordinator and all par-

ticipating services to ensure failure handling [22]. The coordinator must write three log

entries which include start-transaction log before sending the PREPARE messages, com-

mit log before sending COMMIT messages, and Done log after all DONE messages are

received. After commit log is written, a transaction can be considered to be committed.

Logs start-transaction and commit should be force-written which means that they must

be synchronously written to persistent storage before sending messages to participants.

[23]

Each participant must force-write two logs called prepare before sending YES vote and

committed before sending DONE message. After prepare log is written, a participant can

not unilaterally abort the transaction and must wait for the decision from the coordinator.

28

[23]

In the prepare-phase after a participant has persisted modifications to be made by the

transaction, a participant can be considered to be prepared. Each participating service

must be in the prepared state before any of them should commit. If this property is not

enforced, 2PC could lead to non-atomic results when one participant commits while there

is no guarantee that non-prepared participant can restore required modifications in case

of service failure. [23]

After a participant has sent YES vote, it must wait for a decision from the coordinator.

As participants cannot rollback without a permit from the coordinator, a failure of the

coordinator could cause prolonged locking of resources. Blocking cannot be avoided by

transaction protocols that guarantee atomicity. [23]

Reported usage: Thirteen works mentioned or used 2PC pattern [SP1], [SP5], [SP6],

[SP7], [SP8], [SP9], [SP11], [SP14], [SP15], [SP17], [SP18], [SP20], [SP21] and following

advantages of 2PC were observed:

• Strict consistency. In certain sectors such as e-finance or e-commerce, strict con-

sistency is desired which requires the usage of protocols such as 2PC [SP1].

• Full ACID guarantees. According to de Heus et al. [SP5], ACID properties are

guaranteed as a trade-off for performance decrease. Also, three other works [SP15]

[SP9] [SP6] mention ACID guarantees when discussing 2PC.

• Strictly serializable. As a trade-off for decreased performance, 2PC provides high-

est isolation level for transactions [SP5]. As stated by Fan et al. [SP1], strict serial-

izability is preferred by developers in traditional distributed databases which can be

acquired with 2PC.

As can be seen, there are not many mentions of the advantages of traditional 2PC in the

literature related to microservices. Most of the aforementioned advantages were related

generally to this pattern and not especially related to implementing 2PC in a microservice

architecture.

Below is a list of disadvantages which might make 2PC not suitable for microservice

architecture as quality attributes of microservices might be at risk:

• Modern technologies might not support XA-standard. A preferred standard for dis-

tributed transaction management is X/Open XA, which must be supported by each

participating database and message broker to have the possibility to use a two-

phase commit protocol [SP20]. However, modern technologies such as MongoDB

or RabbitMQ do not support this standard [SP20]. As stated by Knoche et al. [SP6],

the missing support of distributed transactions with modern technologies might

cause developers to switch to eventual consistency protocols. Even when suit-

29

able technologies are used, application-level code might be required to implement

functionalities such as prepare and abort, which requires a profound knowledge of

database concepts [SP9].

• Reduced availability. All participating services must be available at the same time,

which reduces the whole availability of the process as the overall availability is the

product of the availability of participating services. [SP20]

• Decreased performance. As locks are held for the whole duration of the 2PC pro-

cess, performance is limited for high-concurrency and high-scale systems such as

microservices where the possibility for transaction conflicts is increased [SP1]. This

happens as transactions must lock resources for the whole duration of the proto-

col and block other transactions from using the same resources [SP1]. According

to de Heus et al. [SP5], the protocol trades-off performance for strict atomicity

with its blocking process. In an experiment conducted by Fan et al. [SP1], a dra-

matic decrease in throughput can be seen when contention for the same resources

increases as the transaction must block resources for the whole duration of the

process. Similarly, when contention for the same resources increases, the latency

of 2PC increases dramatically due to the blocking nature of the protocol as seen

in the experiment conducted by Fan et al. [SP1]. In the experiment conducted by

Xue et al. [SP11] total request times were measured for transactions managed by

2PC, TCC, and Saga pattern. It was seen that composition using 2PC had twice as

long total request time compared to other management methods, which according

to Xue et al. [SP11] was due to additional waiting caused by locked resources.

Two other works [SP8] [SP21] also mention increased latency as a problem caused

by locking resources for the whole duration of the transaction. Also, committing

rates dropped significantly in an experiment conducted by Fan et al. [SP1] when

contention increased. This was also due to blocking caused by locks held by other

ongoing transactions [SP1].

Even though there are problems with traditional 2PC which might make it non-suitable

for a microservice architecture in most cases, there is still a need for highly consistent

transaction patterns with ACID properties [SP1]. Improvements based on 2PC patterns

are proposed and demonstrated in section 4.2.2.

4.1.3 Try-Cancel/Confirm

Concept: Instead of implementing rollback and commit, Try-Cancel/Confirm implements

cancel and confirm. The pattern has a similar structure as other two-phase commit proto-

cols where in the first phase participants are asked to try to participate in the transaction.

If each service can participate, confirm-message is sent to each to confirm the transac-

tion.

30

Figure 4.8. Try-confirm/cancel patterns alternative ways to cancel

The pattern differs from 2PC in the way that participating services manage their re-

sources. Instead of locking resources with database locks, intermediate states are used

instead for reservation. While outlining the protocol in the work by Pardon et al. [SP19],

the assumption is made that each participating service must be able to reserve its re-

sources for coordination. As each service sets intermediate states using short-lived ACID

transactions at service-level [24], isolation property is removed from the transaction which

increases concurrency related to 2PC [SP19]. When resources are reserved with inter-

mediate states in the try-phase, a timeout is also set for them. If the reservation times

out, services will cancel the reservation without a need for input from the coordinator. As

participating services can perform cancellation with a timeout, a possible anomaly where

at least one service cancels while others confirm might occur [SP19]. As participating

transactions are not managed inside one global ACID transaction, each cancel requires

the usage of a reversible transaction which should restore the state back to the state

before the transaction started [SP13].

The trying phase is similar as seen in figure 4.6 where the coordinator sends a try-request

to participating services, and services return a yes-vote if they can participate. As a

difference, each participating service sets an expiration time for reservation which can

be used to release the resources as seen in figure 4.8 if no confirm-message is sent by

the coordinator. As an alternative to a timeout, the coordinator can also send a cancel-

31

message to participating services.

Goal: The goal of this pattern is to offer atomic transactions1 for multiple services with a

simple rollback.

Properties: Participating service might reserve resources for the duration of the trans-

action but the coordinator can cancel reservations before timeout if it is known that all

participants cannot participate. However, as database locks are not used, it is possible to

view resources before the transaction has finished. Resources are released at the latest

when reservations time out.

Reported usage: The usage of TCC was discussed in six studies [SP3] [SP6] [SP11]

[SP13] [SP19] [SP12]. Experiments including TCC were carried out by Xue et al. [SP11].

Ramirez et al. [SP3] implemented an empirical study on microservice development,

where TCC was proposed as one of the patterns to maintain data consistency across

microservices. Frosini et al. [SP12] compared their proposed approach with multiple

other methods including TCC.

The following advantages were observed in four works:

• Easy implementation of rollback. As each participating service sets timeout which

will cancel reserved resources automatically, no central rollback from the coordi-

nator is required [SP19]. Timeouts are also enforced for TCC in an experiment

conducted by Xue et al [SP11]. Xie et al. [SP13] also mention easy rollbacks as an

advantage but also mention that the usage of reversible transactions might require

a lot of developing effort.

• Can process other tasks while waiting for a command from the coordinator. In the

experiment concluded by Xue et al. [SP11], implementation with TCC was twice as

fast to finish the experiment compared to 2PC-based implementation. According

to the authors, this was due to the possibility to respond to requests concurrently

[SP11].

• Atomicity guaranteed. As the coordinator waits for a decision from each partici-

pant, all reservations are either committed or compensated [SP19]. This is also

mentioned in the work by Frosini et al. [SP12]. A specific case where atomicity

might not be guaranteed is discussed in the disadvantages listing.

However, following disadvantages for the pattern were observed:

• Resource reservation time might be long. As there should be enough time for all

services to try and confirm, resources might be reserved for a long time [SP13].

According to Pardon et al. [SP19], the pattern uses intermediate states instead of

database locks which makes it possible to view reserved resources while a transac-

1Exception for atomicity reviewed in the disadvantages listing

32

tion is ongoing. In some cases, this makes it possible to modify the same resources

concurrently2 [SP11]. However, with some resources concurrency is not possible

which might cause poor performance and long waiting times [SP13]. Pardon et al.

[SP19] also mention that resources must be compatible with the pattern to work

properly 3.

• Atomicity can not be preserved in a specific case. There is a possibility that af-

ter starts sending confirm-messages to participants, one of the participants might

timeout before it can commit. In this case, atomicity can not be guaranteed as

one service cancels a reservation while others commit. In these cases, human

intervention might be required to fix the state. [SP19]

• Missing isolation property. As intermediate states are used instead of database

locking, resources modified by the ongoing transaction are visible to others [SP19].

Missing isolation is also mentioned by one other work when comparing their pro-

posal with existing solutions such as TCC [SP12].

4.1.4 Other solutions

This section includes a discussion about other solutions found in the selected works.

First, stream processing systems and how those could be used to implement coordination

between services in the future are discussed. Then, distributed database systems are

shortly discussed as an alternative to the previously mentioned patterns.

Stream processing systems

Katsifodimos et al. [SP9] argue that dataflow engines could be used as a base for data

management and stream processing in event-driven microservices.

Even though stream processing systems have been known as analytic engines, mod-

ern solutions also support consistency for the distributed state which is required for mi-

croservices. Consistency is guaranteed with exactly-once-state processing guarantees.

Even though consistency can be guaranteed, requirements for microservice architecture

such as transactions, and query-able state cannot yet be achieved by stream processors.

According to the authors, these deficiencies must still be solved for stream processing

systems for them to be reliable data management solutions for microservices.[SP9]

Distributed databases

Distributed online transaction processing systems such as VoltDB and H-Store and other

distributed databases such as Spanner are also discussed in multiple selected works.

As an advantage, scalability, consistency, and the possibility to query global state are

2E.g. a stock service could freeze items with reservation. This makes it possible for other services to
also freeze the same item if there is enough stock which enables concurrency

3Pardon et al. [SP19] uses airline seat reservation system as an example of reservable resources.

33

mentioned [SP9]. Even though distributed OLTP systems partition their data, at least H-

Store can partition data in a way that most of the transactions are performed in a single

partition [SP1].

As a disadvantage for distributed databases, it is required to persist the state of all

microservices in a single distributed database to achieve consistent transactions [SP9]

[SP2] [SP8]. Also, these systems require the code to run transactions to be persisted as

a stored procedure. This might bring problems as transaction logic is usually inseparable

from microservices [SP9].

4.2 Novel design patterns for transactions spanning multiple

services (RQ1 & RQ2)

In this section, novel solutions found in the selected works are discussed. First, novel so-

lutions include patterns based on the saga pattern which are discussed in section 4.2.1.

After this, section 4.2.2 includes a discussion about 2PC-based solutions. Lastly, solu-

tions that are not based on previously visited patterns are discussed in section 4.2.3.

4.2.1 Novel saga-based patterns

Novel patterns based on saga pattern were reported in four studies [SP10], [SP11],

[SP14], [SP18]. Proposed novel patterns aim to improve the shortcomings of the tra-

ditional saga pattern. Improvements over traditional the saga pattern, and advantages

and disadvantages of novel saga-based patterns are collected in table 4.2.

Petri Net Saga

Röwekamp et al. [SP10] remarked that concurrency within saga is hard to implement

with current solutions as complexity increases rapidly when parallel steps are added.

To alleviate the complexity, they have proposed a solution where the saga is modeled

using Petri net formalisms, with the possibility to use a graphical representation of the

saga. According to the authors, this solution should add better concurrency handling and

transparent execution context.

In their proposal, two different types of Petri Net formalisms called Place and Transition

(P/T) nets and Reference nets are used. P/T nets use places and transitions to move

from one state to another via predefined steps. In the context of sagas spanning multiple

microservices, the place is mapped to a service participating in the saga, and transitions

are mapped to messages which are used to initiate functionality in the next participating

service. P/T net is then transformed into reference net, which is the second Petri net

formalism used, to include necessary properties such as failure handling and possible

rollbacks. As there are concepts specific to the saga pattern, such as pivot-transaction,

34

general solutions for transformation to reference net could not be used.

With the P/T net, a saga can be modeled sufficiently and with lowered complexity while

still having high readability. With the implementation created in the first phase, error

handling and compensating actions can be implicitly deduced while transforming into ref-

erence net format. As the Reference net is a higher-level formalism, it is possible to model

failure cases within it. Transformation to reference nets is also required as generated saga

is then run in RENEW-simulator4 which only supports this format. RENEW-simulator is

written with Java which restricts the proposed solution to Java programming language.

Also, the saga needs to be written with Petri net formalism using Petri Net Modeling Lan-

guage5 (PNML) which is not generally used technique amongst developers.

An example of a bookstore that uses presented Petri Net Sagas is given. This solution is

built with Spring6 as the backend framework, and Eventuate Tram Sagas 7 to handle saga

execution. With this example, they concluded that concurrency handling can be improved

with the possibility of parallelizing normal step-by-step processes inside a singular saga

which means that there is a possibility to run tasks inside multiple participating microser-

vices at the same time. However, there cannot be data passing between concurrently

run sub-transactions which reduces possibilities for parallel processes as usually data is

passed to subsequent the participant in the saga.

Single-head-multiple-tails & Single-tail

Xue et al. [SP11] remarked that there are unsolved problems with the saga pattern in-

cluding the possibility to view incomplete data, and insufficient management for com-

munication and node failures. To fix these problems, they proposed new composition

mechanisms for saga choreography based on data dependencies between services to

reach a consensus in run-time.

Based on structures found in data dependency analysis, namely sequence, fork and join,

two composition patterns called Single-tail (ST) composition and Single-head-multiple-

tails (SHMT) composition are defined. In these compositions, the head is a service that

only calls other services, and the tail is a service that only receives calls from other ser-

vices. Defined patterns can be found in any microservice compositions by evaluating data

dependencies between services when each service is responsible for its own data.

In ST composition, other services but tail handle their tasks and sends information to

succeeding services. After the tail service has received a request, it handles its task and

sends a confirmation to other services if the task has succeeded. ST composition can

reach consensus under conditions that confirmation can be fetched from tail service and
4Renew-simulator http://www.renew.de/
5Petri net modeling language https://www.pnml.org/
6Spring-framework https://spring.io/
7Eventuate Tram Sagas https://github.com/eventuate-tram/eventuate-tram-sagas

35

proper timeouts are set for services. Timeouts are used for compensation in case any

step of composition fails or a confirmation message is not sent by the tail service.

In SHMT, each service except tail handles its task and sends information to succeeding

services. The tail service also handles its task but then reports the state to the confirma-

tion service. One of the participants works as a confirmation service to collect information

from tail services about a successful or failed operation and after receiving the state from

each tail service sends a confirmation to the whole composition. Similarly to ST compo-

sition, consensus can be reached if timeouts are set for each participating service and

confirmation can be fetched from the confirmation service.

Both of these patterns use resource reservation to make incomplete data isolated from

other processes. Also, required information about the request is persisted before each

task. It is proven in the article that these composition mechanisms can reach a consen-

sus between services in run-time if previously mentioned conditions are met. Timeouts

are used in services to restore the state with compensation in case of service or com-

munication failures and when services cannot query the state from the tail service or

confirmation service. For these patterns to work, it is required that the state of the saga

can be somehow fetched from confirmation or tail service to release resources in partic-

ipating services. Other errors, such as errors related to business logic boundaries, are

presumed to be handled correctly by services.

Two experiments using public datasets are conducted to compare composition patterns

presented in this paper with TCC and 2PC patterns. The first experiment uses SHMT

composition and the second experiment uses ST composition to compare patterns using

total request time and resource reservation time for different sets of compensated and

finished transactions. With experiment results, it can be seen that these novel composi-

tion patterns can effectively reach consensus with a performance comparable to or faster

than centrally coordinated TCC.

SagaMAS

Limon et al. [SP14] argued that missing higher-level concept of transaction in the saga

pattern causes problems that need to be solved with additional implementation patterns

such as Event Sourcing (ES) and Command and Query Responsibility Segregation (CQRS).

These implementation patterns themselves bring more complexity to the system and pos-

sibly a new set of problems to handle such as centralized points of traffic in case of ES.

To lessen complexity by integrating higher-level transaction concepts into sagas, they

have visioned a novel solution called SagaMAS which includes Multi-Agent System (MAS)

layer integrated as part of a microservice system to handle saga transactions. In the pro-

posed model, saga-specific logic is relocated to the agent layer which enables indepen-

dence between microservices. In the agent layer, each microservice has its own agent,

36

which manages the state of the microservice as part of a larger transaction. This means

that the agent calls the necessary functions from the microservice as part of the trans-

action and, if necessary, compensates for calls that have already been made in case of

errors. In addition, the agent persists the state of the transaction in case of agent layer

errors, so that the transaction can be returned to, tried again, or compensated. In the pro-

posed model, saga starts with the user calling microservice which then calls its own agent

to initiate the transaction. This is the only place where saga-related logic is required in

the microservice layer as after this MAS layer takes care of the rest of the transaction flow

and necessary calls to microservices. For messaging between agents and microservices,

REST-based microservices are chosen for lower coupling.

For evaluation of the visioned model, the first phase of the Prometheus methodology

called System specification phase is done, and the last two phases are left for future

work. The system specification phase includes the identification of goals and basic func-

tionalities of the visioned system. Even though architectural and detailed design phases

of Prometheus are out of the scope of this paper, some implementation patterns are cho-

sen for SagaMAS including JaCaMo framework8, which consists of Jason, CArtAgO and

MOISE to handle the implementation of MAS layer.

Clustered orchestrator

Malyuga et al. [SP18] argue that instead of creating an own coordinator for each new

saga, a central coordinator could be used which handles the coordination of each saga

in the system to lower the complexity of creating a new coordinator service for each

individual saga. However, a failure of the central coordinator could cause major problems

with saga flows as only it can handle the orchestration. To help with failure tolerance, they

have proposed the inclusion of an active-passive pattern to saga orchestration with one

central coordinator.

Novel pattern includes cluster orchestrator based on active-passive availability pattern

which consists of active and passive nodes for better fault-tolerance. Active node han-

dles saga flows and replicates data to passive nodes. In case of an active node failure,

a passive node can take its place and continue the coordination without losing any data.

In addition to cluster orchestrator, the paper proposes the usage of RESTful microser-

vices which makes it possible to handle transactions without adding additional logic to

microservices. As an active node might fail before the response is received via HTTP

request, each participating endpoint must be implemented as idempotent for the system

to work correctly. This enables passive nodes to continue unfinished Saga without caus-

ing any inconsistencies in participating services even in cases where services have done

modifications and could not send responses about successful operations. According to

the authors, the effort to implement idempotent services must be thought through as in

8JaCaMo-framework https://jacamo.sourceforge.net/

37

Design pattern Advantages Disadvantages Improvements over the
traditional pattern

Petri net sagas [SP10]
Performance gain with par-
allelization

Limited data passing be-
tween parallel processes

Possibility to parallelize
the steps in the saga

Simplified error handling
and rollback implementation

Saga must be written with
Petri net model

Currently limited to Java

SagaMAS [SP14]
Low coupling between mi-
croservices

Requires knowledge of MAS
related technologies

No central point of failure
in saga management

No central point of failure Higher level abstraction
for saga flows

Clustered orchestrator [SP18]
Higher fault tolerance Idempotent endpoints might

be complex to implement
Improved fault-tolerance
for a central orchestrator

No modifications to services Increased total saga time

Single-tail & Single-head-
multiple-tails [SP11]

Can reach consensus in
case of network or node fail-
ures

Services must wait for a
timeout in compensation if
other than tail service fails

Improved management
in case of network or
node failure

Incomplete data is not view-
able

If the state cannot be
fetched, resources stay
reserved

Table 4.2. Novel solutions based on the saga pattern

some cases it might be easier to migrate to messaging services instead of modifying

endpoints. As passive nodes must know about the status of requests made to services

to handle possible failures correctly, total Saga time might increase. To minimize the time

required for data replication, optimization methods for required information about sagas

could be used. This requires replicating only the necessary data to either continue the

coordination. As an optimization method for memory usage in replicas, in-memory sav-

ing of replicated data is presented which saves time as database operation is no longer

needed.

The proposed system is modeled to calculate the total time of the saga when orchestrator

replication is included. Provided model is evaluated using source values gathered from

other literature including payload sizes, throughputs, data coefficients, and saga sizes as

according to authors values would otherwise depend too much on implementation de-

tails. Based on the evaluation, it could be concluded that the time used for replication

before each local transaction is insignificant in comparison to the whole saga duration,

and optimizations in this department might not be that necessary. As stated by the au-

thors, this could be a result of chosen source value for local transaction time which is quite

high. Evaluations only include a comparison with the unoptimized saga using clustered

orchestrator and a traditional saga without using clustered orchestrator is not used as the

comparison value.

38

4.2.2 Novel 2PC-based solutions

Novel solutions based on 2PC were reported in two studies which include one article and

one book chapter. Both of these are based on the same study conducted by Fan et al.

[SP1] [SP2], where the book chapter [SP2] is a shortened version of the model proposed

in the article [SP1].

Two-phase commit*

In the article, Fan et al. [SP1] argued that as 2PC is a locking protocol, its performance

lacks in high-concurrency microservices, and the probability for deadlocks rises when the

amount of competing threads increases. To fix these shortcomings of traditional 2PC, a

novel transaction control protocol 2PC* is proposed which consists of a novel secondary

asynchronous optimistic-lock (SAOL) and novel concurrency control protocol.

SAOL allows multiple transactions to modify the same resource with sequential version

numbers controlling the order of execution. SAOL is divided into firstLock, which man-

ages resource locking between multiple different transactions, and secondLock, which

manages possible compensations for failed transactions. Resource reservation is divided

into three steps including begin, pre-commit, and second-commit phases. Begin phase is

used to get the correct version number and latest value of the wanted resource including

handling when another transaction is currently reserving the value. In pre-commit, wanted

resources are locked with firstLock if there are no other transactions currently modifying

them. Otherwise, initiated transactions are rolled back and the process is completed with-

out success. In the second-commit, locks are released and transactions committed. To

ensure the correctness of the proposed locking protocol, states of the protocol are written

with formal specification language TLA+9 and run with TLC tool to find possible errors. As

zero errors were returned by the tool, the authors argued that the novel locking protocol

will not lead to deadlocks and is strictly serializable.

To manage concurrent transactions, a novel concurrency protocol is proposed, which is

divided into begin and commit phases similar to in 2PC. To differentiate from the traditional

pattern, a graph structure to manage transactions and their possible conflicting transac-

tions are used. In begin phase, each microservice participating in distributed transactions

is called to initialize graph-node which contains conflicting transactions in that service. A

list of conflicting transactions is collected by going through all other unfinished transac-

tions and checking if they modify the same resources. This conflict list is then sent to the

coordinator which aggregates it with the existing graph of other transaction nodes and

their conflict-lists and removes possible duplicates. In the commit phase, the transaction

must wait for all of its preceding transactions to finish before all conflicting transactions

can be calculated using a graph algorithm called Tarjan. After each conflicting transaction

9TLA+ https://lamport.azurewebsites.net/tla/tla.html

39

is resolved, the transaction can be committed and the coordinator can be notified about

the result.

To evaluate the proposed solution, middleware prototype10 based on Spring-frameworks

aspect-oriented programming is implemented and evaluated using an experimental case

with three microservices. Microservices are implemented using Apache Dubbo frame-

work 11 with technologies such as Zookeeper, Nginx, Eureka, and Redis. With this setup,

experiments including tests for consistency, throughput, latency, committing rate, and

compensation are carried out. It can be concluded that consistency with distributed trans-

actions consisting of multiple microservices can be reached even in cases of run-time

exceptions. In throughput and latency experiments, a novel solution is compared with the

traditional 2PC pattern with varying conflict amounts between transactions. Conflicts are

caused by running an increasing amount of concurrent threads from 10 threads up to 500

threads.

It can be seen that throughput with a lower amount of concurrent threads doesn’t differ

significantly between traditional pattern and 2PC*. When a higher amount of concur-

rent threads are used for a higher possibility of conflicts, the gap between traditional

pattern and 2PC* starts to widen significantly with throughput performance. In the case

of 500 concurrent threads, experimented throughput for 2PC is only 12.7 transactions-

per-second (TPS) versus 2PC* patterns 304.6 TPS. Authors argue that the difference

in throughput is caused by using a novel locking protocol which reduces the blocking of

transactions.

Similarly in latency, an experiment with a lower amount of concurrent threads shows no

advantage for 2PC* compared to the traditional pattern. In experiments with moderate

or high amounts of concurrent threads, a clear advantage for 2PC* over the traditional

pattern can be observed. In the case of 500 concurrent threads, the reported latency of

2PC is 1352.7 milliseconds versus 2PC* patterns 623.2 milliseconds. Authors argue that

this is due to the possibility to avoid deadlocks in 2PC* using a graph structure and due

to less blocking of 2PC*.

In experiments relating to committing, it can be observed that with high conflict test cases

traditional patterns committing rate drops to almost zero. In the case of 2PC*, committing

rate stays consistently close to 100% which means that it can reliably commit transactions

even with high conflict amounts. The authors argue that 2PC* can more reliably commit

transactions with a high amount of concurrent threads as it tries to avoid aborting or

retrying transactions. In the experiment related to compensations, it can be observed that

2PC* can compensate unsuccessful transactions reliably related to traditional patterns.

Two-phase commit+

102PC* middleware prototype https://github.com/Leofan93/2pc-star
11Dubbo-framework https://dubbo.apache.org/en/index.html

40

In the book chapter, Fan et al. [SP2] propose a pattern called 2PC+ based on 2PC.

The novel pattern includes a novel secondary asynchronous optimistic-lock algorithm

(SAOLA) which is the same as SAOL proposed in the article about 2PC* [SP1]. How-

ever, the concurrency control protocol is not proposed in this book chapter. For evalu-

ation, the same experimental case is used with a slightly modified system setup, where

2PC* tests use Intel i7 -processor and 2PC+ tests use Intel i5-processor. Only throughput

and latency experiments are run to compare 2PC+ and traditional 2PC. Similar results

can be observed with 2PC* concluding that 2PC+ has a clear advantage in both latency

and throughput experiments compared to traditional 2PC. Remarkable is that 2PC+ can

respond to request in the latency experiment with 500 concurrent threads in 473.6 mil-

liseconds compared to 623.2 milliseconds in 2PC* experiment. Similar differences in

response time, in favor of 2PC+, can be seen in experiments with 200 and 300 threads.

In throughput experiments, 2PC* and 2PC+ have similar results with slight variation.

4.2.3 Other novel patterns

Patterns that cannot be classified in previous groups were reported in four studies [SP7]

[SP8] [SP12] [SP16]. In this section, these patterns are presented, and the advantages

and disadvantages for each presented pattern are collected in the table 4.3.

Fed-agent

Nikolic et al. [SP7] argue that multiple different representations of data using different

database paradigms could be used to make a system high-performance. This could in-

clude having a specialized database for text search and for analysis of statistics. How-

ever, the usage of multiple databases to store different representations of a singular object

causes problems with consistency as database transactions can only provide ACID prop-

erties at a local level. To handle this problem and provide global ACID properties and

consistency for multiple representations of a singular data object, a novel solution called

fed-agent is proposed.

Fed-agent works as a layer on top of microservices to handle read and write operations of

singular objects located in multiple databases. The layer consists of multiple agent-nodes

working together in Raft consensus group [25] to choose a leader amongst participating

nodes. Only leader-node can respond to write requests, whereas each node including

followers can respond to read requests. If the leader fails, a new leader is chosen from

the followers. To handle concurrency amongst multiple representations of a data object,

Multi-version concurrency control (MVCC) is used. In MVCC, objects in databases are

not overwritten but versioned as a new instance with an incremented version number.

The latest committed object is returned when an object is read even though a newer

uncommitted object exists. With MVCC, serializable isolation can be provided in a multi-

database transaction for a singular object. No modifications are required to be made to

41

participating microservices as coordination can be managed by implementing configura-

tion files for the agent-layer. The internal structure of fed-agent or configuration files is not

specified in this article.

To evaluate the proposed solution, a setup including an agent cluster and three microser-

vices is used. Microservices are written using Go-language, and a data object is saved

to databases PostgreSQL, ElasticSearch, and Tile38. Microservices themselves don’t in-

clude code related to distributed transaction management as configuration files are used

for transaction coordination. The setup is evaluated using Yahoo Cloud Serving Bench-

mark where overhead caused by fed-agent in comparison to direct microservice calls is

calculated. Overheads are tested for multiple situations including payload sizes, number

of agent nodes, number of concurrent threads, and amount of contention in the system.

For write requests, overhead in most test cases is between 7-10 milliseconds. This is true

with an exception for payload sizes higher than 200kB and with the amount of threads

higher than 50 as in these cases overhead rises up to 20 milliseconds. For read requests,

overhead is approximately 1 millisecond. The authors argue that overhead caused by the

addition of fed-agent is trivial as response times of microservices used in production are

significantly higher.

The proposed model does not currently work with the usual microservice architecture

where data is divided into multiple databases. However, in future work, a share-nothing

model is proposed to be added to the existing model.

GRIT

Zhang et al. [SP8] argue that current solutions for distributed transactions in microser-

vices are not suitable when high consistency is required. This is because current solu-

tions for highly consistent transactions, such as 2PC and deterministic databases, require

locking during the process which increases the possibility of conflicts and aborts.

To solve this problem, the authors propose a novel solution called GRIT which promises

consistent transactions across multiple microservices. GRIT takes advantage of deter-

ministic database engines and patterns such as Paxos-based logging. Also, optimistic

concurrency control (OCC) is used for transaction logic in microservices.

The solution consists of three phases called optimistic execution phase, logical com-

mit phase, and physical materialization phase. In the optimistic execution phase, the

transaction reads and modifies necessary resource objects and writes these steps to the

read/write set. Log sequence number (LSN) is also captured in this phase to be used in

the upcoming conflict resolution.

In the logical commit phase, conflict resolution is done on the database-level and global-

level. At first, at the database-level, the local read/write set about the transaction is sent to

the database transaction manager to check for possible conflicts. Conflicts are checked

42

from recently committed and cached write-sets. If conflicts are not found and the trans-

action only includes a singular database, write-sets can be added to the transaction log

to finish the logical commit. If the transaction includes multiple databases, a local commit

decision is sent to the Global transaction manager (GTM) which then orders participants

to either commit or abort the transaction. As the commit decision is made using cached

write-sets, no database locking is required during GTM decision. The logical commit pro-

cedure includes adding transaction write-set and corresponding LSN to the transaction

log but not yet committing to the database.

The physical materialization phase then handles database commits by playing the trans-

action logs sequentially at the database-level. The underlying database engine must be

deterministic to handle the log-playing. A deterministic database guarantees that the ex-

ecution order is the same as the write-sets appended to the log. As database execution

can be separated from the commit decision, scalability and performance can be acquired

according to the authors. Also, snapshot isolation can be provided with LSN.

The solution is demonstrated in the paper but no evaluation is made. Demonstration

describes a system including two microservices that then handle distributed transactions

using GRIT. Source files for this demonstration are not given.

Microservice-based database

Laigner et al. [SP16] argue that distributed data management in microservices causes

multiple problems such as additional coordination at the application-level, insufficient con-

sistency, fractured reads, and inconsistencies caused by a lack of commit protocols. To

handle these problems, the authors vision a novel database architecture to manage re-

quirements set by microservice architecture. This requires the addition of microservice

abstraction to the database-level to handle move complex communication of microser-

vices.

The solution is visioned where a single distributed database system called microservice-

based database is used to remove problems caused by database-per-service pattern.

The authors argue that a single database is not a problem with the decentralized data

management principle of microservices if developers can define constraints and the database

can enforce these constraints between microservices. To handle this problem, virtual

microservices are envisioned as an abstraction for novel microservice-based database

systems. Virtual microservices are abstract copies used inside the database system to

handle necessary constraints related to microservices including communication, and pri-

vate state management. The authors argue that when microservice is not a black box to

the database, it can handle microservice-related issues. In addition, the database could

handle consistent atomic distributed transactions between microservices.

The vision includes an architectural description for microservices and databases. For

43

microservices, the framework is used to handle database calls. An example of this frame-

work is given in Java and Spring. Using this framework, the database can build an abstract

representation of microservices and their dependencies on each other in the start-up. In

the database, architecture is layered into transaction processing, query processing, and

data storage. Transaction processing manages transactions and events across microser-

vices using the aforementioned virtual copies. Query processing can manage aggregate

private states from multiple microservices without affecting the strong isolation. Data stor-

age is divided into two other layers for the possibility to change storage providers and the

possibility to scale instances based on workload.

As the paper only includes vision, no evaluation is made. However, the authors argue

that this solution could be used to handle problems caused by the database-per-service

pattern and decentralized data management of microservices.

ReLock

Frosini et al. [SP12] propose a transaction model for web services including microser-

vices, which are Resource Oriented Architecture (ROA) and Representational State Trans-

fer (REST) compliant. According to the authors, the proposed solution can manage trans-

actions with full ACID guarantees.

ReLock consists of three services called Transaction Proxy, Transaction Service, and

Lock Service. Services are built as intermediary components between client and target

services to manage transactional needs. Each of the services must be stateless and

comply with REST principles and ROA.

Transaction proxy is used to manage the discovery of Transaction services, and coordina-

tion of the services. Coordination includes communication with Lock service, Transaction

service, and REST service in the correct order to manage the integrity of resources prop-

erly. This includes locking resources with a shared lock when it is read by the client and

with an exclusive lock when a client wants to commit modifications to it. The Proxy re-

quires transaction identifiers in HTTP-headers to coordinate the flow. The identifier is

created in the transaction service during transaction initialization.

Transaction service is used to manage transactions’ whole lifecycle and transaction re-

sources. When the transaction is initialized, timeout is set to rollback transaction auto-

matically if there is no commit or rollback request from a client. The transaction can be

committed or rolled back by a client using appropriate HTTP-requests. For each resource

modified by a transaction, a copy of the resource is created in the transaction service to

reflect the state of the resource before any modifications, and after any operations made

to that resource. The copy is used to compensate for any modifications made.

Lock service is used to manage access to resources with shared and exclusive locks.

The resource can have multiple shared locks simultaneously, but only one exclusive lock

44

at a time. A client can not acquire an exclusive lock for resources if there are shared locks

owned by other clients.

The solution is compared to related work using a set of properties. ReLock can reach

atomicity and isolation properties as only one transaction can modify resource or re-

source collection at the same time. Resource collection is modified by adding a new

resource to it or deleting an existing resource. In this case, an exclusive lock is required

for resource and resource’s collection. Also, compliance with HTTP and REST principles

was compared amongst related work and ReLock. ReLock complies with both of them

appropriately.

ReLock is not suitable for long-running transactions as pessimistic locking is used, and

it locks resources for the whole duration of the transaction. For distributed transactions,

the client must find a common transaction service to handle the transaction. Performance

evaluation of the solution is not implemented as part of this paper but is mentioned as

future work.

Design pattern Advantages Disadvantages

Fed-agent [SP7] ACID and consistent transaction
for single object over multiple
databases

Does not support share-nothing
model

No code modifications Response time overhead especially
for write-operations

GRIT [SP8]

Consistent transactions Requires usage of deterministic
database engines

No locks for database objects

Scalability and performance
increase by separated logi-
cal/physical commit

Microservice-based database [SP16]
Supports database transactions
with microservices

Database must support logical con-
straints handling

Logic related to distributed queries
and transactions are relocated to
database-layer

As the single database is used in
this pattern, Polystore is required if
data needs to be handled in multi-
ple formats.

ReLock [SP12]
Services do not require modifica-
tions

Pessimistic lock required with mod-
ify/delete

Easy scalability and availability for
services

Requires common transaction ser-
vice for transaction involving multi-
ple services

Full ACID compliance

Table 4.3. Advantages and disadvantages of other novel patterns

45

Figure 4.9. An example of an event store consisting of events

4.3 Implementation of the saga pattern (RQ3 & RQ4)

As seen in the section 4.1.1, there are multiple advantages but also disadvantages for

the saga pattern. In section 4.2.1, novel solutions based on the saga pattern for some

of these disadvantages were studied. In this section, deficiencies within the saga pattern

are examined one by one, and possible solutions to fix these are discussed. Deficiencies

include missing isolation property, and requirement for atomicity between local operation

and invoking the next participant.

4.3.1 Local operation and sending message must be atomic

Problem: Each participating service must complete a local operation and send a message

to the coordinator or to the subsequent participant. For this to be reliable, local operation

and sending messages must be an atomic operation where either both succeed or neither

succeed. [SP20] [SP14]

There are multiple possible solutions to overcome the requirement of atomicity between

local operation and invoking the next participant. Next, the most prominent solutions are

visited and discussed.

Event sourcing

Concept: State of the resources is managed as a sequence of events. When the state is

modified, a new event is added to the event queue. As added events can also be used to

invoke the subsequent participant, atomicity can be guaranteed. In figure 4.9, an example

of an event store for event sourcing is demonstrated. The example presents a stock store

that includes stock quantity for items.

To retrieve the current state, it is required to run these events in order as there is no single

object to portray the resources [SP14]. In the example from figure 4.9, it is necessary to

replay each event from the start if the current quantity of items is required. As it is hard to

obtain the current state of the resources with event sourcing, additional pattern command-

query responsibility segregation (CQRS) could be used to alleviate this [SP14] [SP20].

46

With CQRS, modifications and queries to the state are segregated from each other. In

the case of event sourcing, the command-side could be used to add new events in the

event sourcing pattern, and the query-side of CQRS could maintain the current state of

the event store for easier queries [SP14]. A simplified example of the query state and

how it could be composed is shown in figure 4.10. The state could be composed by

taking periodic snapshots [SP14] from the event store’s state or by subscribing to events

and updating the table [SP20] as shown in figure 4.10.

Figure 4.10. A snapshot of current quantities of items

Reported usage: The usage of event sourcing was discussed in three works [SP20]

[SP14] [SP15]. As seen in the work [SP15], at least one implementation library is based

on the event sourcing pattern. Also, CQRS is used as a pattern in libraries to implement

the saga pattern [SP15].

Advantages include a possibility to update the state and send a message atomically

[SP20]. Also, as each state modification is persisted as an event, it is easy to view the

history of the state [SP20].

However, as a disadvantage, the state becomes harder to obtain which might require the

usage of additional patterns [SP14]. Also, as it is required to modify the state to invoke

the next participant, it might become problematic in case of errors when the state is not

modified [SP20].

Transactional outbox

Concept: For invoking the next participant and local operation to be atomic, a message

could be first added to an additional table in the database as a part of the local transac-

tion. As a message and local operation are persisted in a single transaction, atomicity is

guaranteed. [SP20] An example of Transactional outbox is shown in figure 4.11. After a

message is atomically saved to the database, it is still required to send this message to

the coordinator or to the subsequent participant. For this additional patterns such as Log

tailing or Polling publisher patterns could be used. [SP20]

Polling publisher pattern periodically queries the additional table to check if there are new

messages that should be sent. Log tailing uses built-in transaction logs of databases to

47

Figure 4.11. An example of a transaction outbox (Modified from source: Richardson
[SP20])

find all modifications made and to publish a message to the coordinator or to the subse-

quent participant. [SP20]

Reported usage: The usage of Transactional outbox was discussed in one work [SP20].

As seen in the work by Stefanko [SP15], transactional messaging was used in one imple-

mentation framework called Eventuate Tram. However, Eventuate Tram is implemented

by Chris Richardson12 which is also the author of the selected paper [SP20] discussing

this pattern.

As an advantage, required modifications to resources and saving a message can be done

atomically. As an additional pattern is required for publishing the outbox messages, the

advantages and disadvantages of these patterns should also be visited. An advantage

of polling publishers is the simplicity as a simple query to the database is required to be

done. However, a disadvantage is that it might be an expensive operation when done

frequently. An advantage of log tailing is that it outperforms the polling publisher pattern

as built-in APIs of the databases are used. However, as a disadvantage, it might be more

complex to implement than a simple query to the database. [SP20]

4.3.2 Missing isolation property

Problem: As the saga pattern divides the coordination of multiple microservices into a

sequence of sub-transactions, it is possible to see modifications made by currently run-

ning sagas that could still be aborted or compensated. This causes problems such as

dirty reads [SP11] [SP15] [SP17] [SP20], lost updates [SP20] [SP5], and non-repeateable

reads [SP20].

12Eventuate Tools https://eventuate.io/about.html

48

There are multiple ways to alleviate the problems with missing isolation property. These

methods are listed below. Most of these countermeasures were demonstrated by Richard-

son [SP20] and one demonstrated by Xue et al. [SP11].

• Resource reservation guarantees that other operations cannot access locked re-

sources [SP11].

• Semantic locking uses flags to indicate the state of the resource. For example, this

could be a pending state while saga is unfinished to express that resource could

still be rolled back in case of failure. [SP20]

• Commutative updates can be in any order without affecting the end result. This

alleviates the problems with lost updates as the same end result will be achieved

with any order of modifications made to resources. [SP20]

• Pessimistic view reduces the risk of dirty reads by reordering the operations inside

a saga. For example, the operation with the most business risk could be rear-

ranged to be the last operation in a saga to minimize the possibility of failure and

compensation. [SP20]

• Reread value remedies lost updates by re-reading the resource before updating it

to check that it remains unchanged. In case that resource has been modified, the

saga should be aborted or restarted. [SP20]

4.3.3 Implementation frameworks

As there are multiple things to consider when implementing the saga pattern, an imple-

mentation might become laborious. To simplify the process of using the saga pattern,

implementation frameworks could be used which are discussed in two works by Stefanko

[SP15] and Durr [SP17].

Stefanko et al. [SP15] discussed and compared four Java-based frameworks to imple-

ment the saga pattern called Axon13, Eventuate Event Sourcing14, Eventuate Tram15 and

MicroProfile Long Running Actions (LRA)16. Comparison is made by implementing the

same sample application with each framework and comparing attributes such as main-

tainability, scalability, and performance. In performance testing, two scenarios were run

for each implementation where the first test included 1000 requests, and the second test

included 10 000 requests.

In the tests conducted by Stefanko et al. [SP15], it was noticed that Eventuate Event

Sourcing could not perform efficiently with the testing scenarios, and there were restric-

13Axon https://docs.axoniq.io/reference-guide/v/3.1/
14Eventuate Event Sourcing https://eventuate.io/gettingstarted-es.html
15Eventuate Tram https://eventuate.io/abouteventuatetram.html
16LRA https://github.com/eclipse/microprofile-lra

49

tions to use patterns such as CQRS and Event Sourcing. Also, another framework from

Eventuate called Eventuate Tram is discussed. With these justifications, Eventuate Event

Sourcing is left out of the further discussion.

Durr et al. [SP17] evaluated and compared two libraries to implement the saga pattern

called Eventuate Tram and Netflix Conductor17. The evaluation was conducted by imple-

menting a sample application with the help of these frameworks. In the evaluation, Durr et

al. [SP17] used characteristics for general saga execution, and microservice architecture

characteristics to compare the chosen patterns.

Eventuate Tram

Eventuate Tram is a framework specifically designed to implement the saga pattern. As

seen in the evaluation made by Durr et al. [SP17], Eventuate Tram realizes most of the

general saga characteristics such as the possibility to specify compensating transactions

and automate them, and the possibility to use either choreography or orchestration as a

coordination pattern. However, parallel execution of the transactions is not possible with

the Eventuate Tram [SP17].

As Eventuate Tram is a Java framework, it is only possible to use Java to write the orches-

trator [SP17]. This might limit the possibility of orchestrating the saga from the participant

because every participant who also acts as an orchestrator would have to be implemented

using Java. However, it is possible to use any programming language for services that

are only participating in sagas [SP17].

Stefanko et al. [SP15] noticed in their performance testing that Eventuate Tram could work

efficiently as a saga implementation framework. However, at the time of the writing, the

framework had a problem with improper timeouts with Kafka in the second performance

scenario with 10 000 requests. When the second scenario was successfully finished,

the sample application with Eventuate Tram managed to get the lowest time among the

selected frameworks.

Axon

The Axon is a framework to help with multiple core functionalities of the microservice ar-

chitecture such as communication and coordination. According to Stefanko et al. [SP15],

a problem with saga implementation using the Axon was that it could not manage the

internal lifecycle of the saga which left the implementation to developers. Also, this frame-

work is based on the CQRS pattern which might limit the usage if the pattern is not used

in all participating services. As this article by Stefanko et al. [SP15] where this framework

is evaluated is written in 2019, the situation might be different at present.

In the first scenario for performance testing, the sample application with Axon finished

17Netflix Conductor https://conductor.netflix.com/

50

successfully. The second scenario with 10 000 requests and 100 threads caused prob-

lems as the database lock could not be opened. This caused the testing to only success-

fully finish under 6000 requests out of 10 000 requests. However, Stefanko et al. [SP15]

reported this problem to the maintainers.

MicroProfile Long Running Actions (LRA)

LRA is a specification for an application programming interface (API) to implement consis-

tent long-running transactions without a need for any locking. This specification is based

on other specifications such as Java API for RESTful Web (JAX-RS), and the Context and

Dependency Injection (CDI). As a communication method, HTTP and REST are proposed

in the specification. [SP15]

Stefanko et al. [SP15] studied Narayana’s implementation of this specification. Even

though the specification proposes the usage of CDI and REST for implementation, Narayana

doesn’t set these as restrictions when developing. However, at the time of the writing,

REST was the only implemented method for communication. Saga execution and struc-

turing can not be managed by this framework as it only has the coordination of the flow

included. [SP15]

In the performance testing, both scenarios were successfully executed with the sample

application using Narayana LRA. However, the total time in both performance testing

scenarios was doubled compared to the sample application with Eventuate Tram. [SP15]

Netflix Conductor

Netflix Conductor is a framework to implement general distributed workflows and is not

specifically designed to implement the saga pattern. The Conductor works as a central

coordinator which accepts workflows in a JSON-format. [SP17]

As the Conductor is required as the central coordinator, choreography coordination can

not be used with this framework. When compensation is required, the framework only

allows for one failure workflow which then runs each compensation step even though

each transaction step has not run yet. This differs from Eventuate where only already

finished transactions are compensated. However, the Conductor allows parallel execution

of transactions which is not allowed with Eventuate Tram. [SP17]

Participating services can be written with any language, and clients for Java and Python

are included in the framework to help with the implementation. For failure cases, the Con-

ductor enforces timeouts for the saga execution which might be required in some situa-

tions. However, when the saga should never expire, enforced timeout becomes problem-

atic. [SP17] According to Durr et al. [SP17], Netflix Conductor can be used to implement

saga workflows efficiently.

51

4.4 Implementation of other patterns (RQ3 & RQ4)

In this section, implementation details for TCC are discussed briefly. The 2PC pattern is

not discussed as there was no literature related to implementation patterns for 2PC in the

selected works. The only prototype implementation of 2PC was proposed in the article

by de Heues et al [SP5]. However, this implementation was related to the Function-as-a-

Service environment which is why it is not further discussed in this chapter. Even though

Fan et al. [SP1] and Xue et al. [SP11] used 2PC as a reference in their testing, no

implementation details were shared.

The implementation details of the previously introduced novel patterns are demonstrated

in the section 4.2, which is why those patterns are not further discussed here.

Implementation of the TCC pattern

Implementation of the TCC pattern is discussed in one work by Pardon et al. [SP19]

where the design is based on RESTful architectural style. Communication between ser-

vices and coordinator is discussed, and examples are given on returned values. As imple-

mentation is only discussed at a high-level, there are no further details about the possible

implementation patterns.

The selected works do not include other discussions about implementation details for

the TCC pattern even though Xue et al. [SP11] used it as a reference pattern in their

experiments.

52

5. DISCUSSION

As seen in table 5.1, the selected papers only included implementations as research pro-

totypes which mostly were used to evaluate the proposed solution or to compare existing

frameworks to implement coordination based on design patterns. Research prototypes

for the saga pattern and 2PC were implemented for serverless systems in the work by de

Heues et al. [SP5]. However, this work is not included in the table as the implementation

is not strictly related to microservices.

Also, novel design patterns were discussed without implementation in multiple works

which are classified as vision papers in table 5.1. Vision papers included additions to

existing patterns or novel solutions to manage coordination between multiple services but

did not include a prototype in the evaluation.

In this section, answers to each research question are first summarized. After this design

patterns and implementation patterns are more closely discussed. Also, similarities and

differences in comparison to related work are visited.

Answers gathered from the selected works can be summarized as follows:

RQ1 What design patterns could be used in coordination between multiple microser-

vices?

The most prominent pattern seemed to be the saga pattern and after that the TCC.

Both of these patterns use relaxed ACID properties to increase the possibility of

concurrency, resulting in improved performance. Especially the prevalence of the

saga pattern can be seen clearly as the selected works include multiple proposals

to improve different sections of the protocol.

Even though these patterns are the most discussed, there seems to be a need for

highly consistent protocols used within microservices there are multiple proposals

in the research field for new solutions. However, these proposals are still in the early

stages of research and are not ready to be used in the field. Also, 2PC was dis-

cussed as a solution for highly consistent coordination which is not recommended

for microservice architecture due to its blocking nature and decreased performance.

RQ2 What are the advantages and disadvantages of extracted design patterns?

The main advantages of the saga pattern are improved availability and perfor-

53

mance. However, due to relaxed ACID principles, isolation is lost which can cause

problems with the state being visible to external processes or risk of the state be-

coming inconsistent. There are two coordination methods for the saga pattern:

orchestration and choreography.

Orchestration includes central coordination which improves maintainability, read-

ability, and low coupling between services. As a trade-off, it brings a single point of

failure to the system and a risk for the centralization of logic. Also, as each mes-

sage must be transported through the orchestrator, more messages are required to

manage the flow which could decrease the performance. In the choreography par-

ticipating services manage the coordination in collaboration. This method requires

fewer messages to manage the coordination but might become more complex as

the coordination logic is divided into the participating services. Also, as services

must receive messages sent by other services, there is a risk of tight coupling

where services must be updated in unison if the sent message must be modified

for some reason.

The usage of TCC brings advantages such as easier implementation for the roll-

back, guaranteed atomicity in most cases, and the possibility to add concurrency.

However, resources must be compatible with the protocol for the possibility of con-

currency. If resources cannot be used concurrently, resource reservation time might

become long which decreases the overall performance. Also, atomicity cannot be

guaranteed in a specific error case which could cause problems within implemen-

tation if not taken care of properly.

Other novel solutions were also proposed including GRIT, 2PC*, Fed-agent, Re-

Lock, and Microservice-based database. However, these are still in the early phases

of research, and cannot be seen as applicable solutions to implement the coordi-

nation yet.

RQ3 How extracted architectural patterns can be implemented and what problems arise

with the implementation?

Implementation details were mainly discussed for the saga pattern where a couple

of problems arise.

The first problem found in the selected works was the missing isolation which can

cause dirty reads, lost updates, and non-repeatable reads. However, multiple solu-

tions to manage this were found including resource reservation, semantic locking,

commutative updates, pessimistic views, or rereading the values.

The second implementation problem found was the requirement for atomicity while

sending the message to the subsequent participant and executing the local opera-

tion. Solutions for this included the usage of ES and CQRS patterns in cooperation,

54

or the usage of Transactional outbox. Two methods found in the selected works to

implement Transactional outbox were Polling publisher and Log tailing.

Implementation frameworks for the saga pattern were compared in two of the se-

lected works where it was seen that the Eventuate Tram is at least a suitable solu-

tion when implementing the saga pattern.

Implementation of the TCC protocol only included the usage of a RESTful archi-

tectural pattern where communication between the coordinator and participating

services is managed with REST.

RQ4 What are the advantages and disadvantages of the extracted implementation pat-

terns?

There were no advantages and disadvantages found for the implementation pat-

terns related to missing isolation property. However, for some of those patterns,

the advantages and disadvantages can be deduced as those were already used

in other related design patterns such as in the TCC and 2PC. Resource reserva-

tion could cause blocking, which decreases performance, in case database locks

are used for required resources. If intermediate states are used, correct use cases

must be found to enable the possibility of increased concurrency. Otherwise, per-

formance could suffer if not used proficiently. Also, re-reading values could cause

increased amounts of abort or restarts as before updating, resources are re-read

to alleviate the possibility for lost updates. Commutative updates and a pessimistic

view require finding suitable use cases which might be hard without a deep under-

standing of these methods.

Advantages and disadvantages were shortly discussed for the implementation pat-

terns related to the required atomicity between sending a message and executing

a local operation. With Event Sourcing, atomicity is built-in as only a single event

is required to add modifications to the state and to send a message. However, this

causes problems when it is required to send a message but not to make any modi-

fications. Also, it becomes hard to obtain the current state as the state is managed

as a series of events. To help with the state, CQRS can be used to supply a periodic

snapshot from the event store.

As an advantage, Transactional outbox was seen as a suitable solution to provide

atomicity. Other advantages and disadvantages related to Transactional outbox

found in the selected works were related to implementing it either with Polling pub-

lisher or Log tailing. Polling publisher was seen as a simple solution as well-known

query languages are used to poll the current state periodically. However, this pe-

riodic polling might cause performance issues. Log tailing uses built-in APIs of

databases to fetch the transaction log. According to one selected work, this could

55

Vision paper Research prototype

Saga-based solutions [SP14] [SP18] [SP4] [SP10] [SP11] [SP15] [SP17]

2PC-based solutions - [SP1], [SP2]

TCC-based solutions [SP19] [SP13]

Other solutions [SP8] [SP12] [SP16] [SP7]

Table 5.1. Reported design patterns in the selected works

be harder to implement but performance could be increased in comparison to the

usage of the Polling publisher.

5.1 Design patterns

The most prominent patterns discussed in the selected works for the coordination be-

tween multiple services were Two-phase commit, the saga pattern, and Try-Cancel/Confirm.

In the selected works discussion about 2PC was mainly related to it not being recom-

mended as a way to implement the coordination as the availability and the performance

are weakened compared to other solutions with loosened consistency requirements. This

result corresponds to related work by Ntentos et al. [4] where 2PC was not seen as a

suitable pattern due to performance impact even though strict consistency is provided.

Similarly, there were no signs of 2PC usage in open-source libraries or peer-reviewed

articles in the review by Laigner et al. [3]. Even though the result that 2PC might not be a

suitable pattern in microservice is equivalent to the related work, our work gives a more

comprehensive view of the advantages and disadvantages related to this pattern. This

differs from the related work where patterns were only discussed briefly.

Even though 2PC doesn’t seem to be a highly used pattern within microservice architec-

ture, a need for strict consistency patterns still exists. As seen in the related work, two

works by Fan et al. [SP1] [SP2] proposed a solution based on 2PC to improve its usage

in high contention situations such as microservices. Also, multiple other works proposed

novel solutions for strict consistency. As an outcome, a clear demand for suitable strict

consistency patterns to be used within microservice architectures can be seen.

Another solution for consistent coordination found in the selected literature was the Try-

Cancel/Confirm protocol, which was not noted in the related literature. The pattern itself

seemed like a trade-off solution between 2PC and the saga pattern where the commit is

made in two phases but isolation is relaxed for higher concurrency support. As resource

reservation is used instead of database locking, suitable business cases for this pattern

must be found where concurrency can be increased even when resources must be re-

served for the ongoing transaction. Also, there is a special case where atomicity can

not be guaranteed which could cause problems if not dealt with properly. In our opinion

56

TCC requires more research including working prototypes to prove that it is suitable in a

microservice architecture.

Overall, the saga pattern seems to be the most discussed and preferred solution to im-

plement the coordination between services when there are no requirements for strict con-

sistency. This can be seen in the selected works as there are most research prototypes

implemented using the saga pattern with microservice architecture. Also, a discussion

about frameworks to implement coordination was only found for the saga pattern which

indicates its prevalence as a design pattern for microservices. In the literature related to

the saga pattern, both choreography and orchestration were both discussed equally but

it seemed that orchestration was the preferred solution when the coordination task got

more complex.

In the related work by Ntentos et al. [4], the saga pattern with its two coordination styles

was seen as a suitable method, and differences between choreography and orchestration

were shortly discussed. In the work by Laigner et al. [3], it was noticed that open-source

libraries tend to use event-based workflows and choreographed coordination. In the in-

dustry setting, orchestration-based solutions seem to be more prevalent. Therefore, a

correlation between our results and this work might be present, as it can be assumed that

coordination in an industry setting might get complex. Similar results in our work and in

related work improve the reliability of the results gathered in our work.

As a difference to related works, our work puts more effort into understanding the advan-

tages and the disadvantages of the saga pattern and both of its coordination variants.

Also, the implementation of the saga pattern is thoroughly discussed, and possible prob-

lems in it are noted. As seen in the selected literature, problems within the implementation

of the saga pattern were discussed in multiple works, and solutions were proposed. There

still seem to be problems, mainly regarding failure management, that needs to be solved

for the saga pattern to be more suitable for the microservice architecture. There are also

problems that already have working solutions, such as missing isolation and the require-

ment for atomicity between an operation and sending a message, and might not need

attention from the scientific community.

5.2 Future directions

As observed in this work, coordination between multiple services might be hard to imple-

ment due to multiple aspects that need to be taken into consideration for the coordination

to be reliable. For this reason, coordination should be avoided as long as possible by

designing service boundaries in a way that cross-service calls are minimized. This could

be done, for example, by combining two services into one if there are a lot of depen-

dencies between them. It is also possible to use a shared database between multiple

services, which however adds coupling between services and therefore might not be a

57

suitable workaround with microservice architecture. As it is not always possible to avoid

coordination, coordination methods should be further improved for them to be easier to

implement with high reliability. In this section, possible future directions for the research

concerning the coordination methods are demonstrated.

Despite the weaknesses within the saga pattern, it can be observed within the selected

works that it is a commonly used way to implement coordination. The prevalence of the

saga pattern can also be seen as multiple selected works offer novel solutions to manage

its weaker aspects. With our work, the current stage of the research is extensively pre-

sented which makes it easier for the researchers to find future possibilities for the research

in the context of improving already proposed solutions or to find problems that do not yet

have any research initiated. As possible future works, implementation-related patterns

could be further compared to understand their difference and impact on microservice-

related properties such as availability and performance. Also, more research could be

conducted to further improve failure management or to compare already existing solu-

tions within the saga pattern especially when an orchestrator with a central coordinator is

used.

Try-Cancel/Confirm was discussed in multiple selected works, but there were no imple-

mentation details shared other than a high-level description by Pardon et al. [SP19]. As a

possible future work, use cases for TCC in the microservice architecture could be visited

more closely as the pattern requires used resources to be compatible with the protocol.

It can be observed, from the results of this work, that current solutions are not adequate in

all coordination situations due to their shortcomings. A need for high-consistency patterns

or solutions to avoid coordination altogether can be also observed as there are multiple

studies considering these possibilities in the selected works. For example, novel 2PC-

based patterns that could offer high consistency with sufficient performance are covered

in the selected works. Also, the use of stream processing systems is visioned even though

it has not been traditionally seen as a possibility for data management in microservices.

Additionally, a new type of database for microservices is visioned in the selected work by

Laigner et al. [SP16] to avoid the need for coordination between services altogether.

However, for the new patterns to challenge established solutions in the future, new re-

search is still required. As a potential future work, more research is required for the

proposed highly consistent patterns as all of them were in the early stages of research.

Future works could also include improving the stream processing systems, also as stated

by Katsifodimos et al. [SP9], for them to be a viable solution when managing coordination

between multiple services.

58

6. THREATS TO VALIDITY

In this section, possible threats to validity, and how these threats are avoided are dis-

cussed. Discussion is based on three validity categories namely internal, external, and

construct validity.

6.1 Construct validity

Construct validity considers how the study is designed, and if there are possible threats

within it.

The selection of a search string affects end result of the work significantly and if done

incorrectly can be seen as a major threat. The search string includes the words microser-

vice and transaction which both are generally used words when talking about this subject.

However, there is a possible threat with design patterns that might not be considered as a

transaction by some authors, and do not have an established terminology. One of these

patterns is the saga pattern which was described as a transactionless coordination, in

others as coordination mechanism between services, and in some as distributed trans-

action pattern. Even though there is no established terminology for the saga pattern, it

is usually discussed in the context of transaction management which partly mitigates the

threat.

The selection of inclusion and exclusion criteria for papers is important as those are used

to include the most important papers and to exclude low-grade works and out-of-the-

topic results. Threats concerning exclusion are minimized using general criteria such

as removing duplication, non-English articles, and out-of-topic results. Also, non-peer-

reviewed articles were only considered if citations were considerably higher than with

other selected works to minimize the threats.

6.2 Internal validity

Internal validity relates to how the study was conducted and if there are any threats to the

data analysis for this work.

To ensure that all the papers related to our topic were retrieved, the search was conducted

in multiple databases including digital libraries and general indexing databases. Gray lit-

59

erature was also considered if it had a considerable amount of citations compared to other

selected works. Also, to strengthen the results, backward and forward snowballing was

conducted. However, there is still a threat that some related papers were not retrievable

due to licensing issues or inadequate indexing.

As data extraction is manually implemented by the author, the possibility of bias can be

seen as a threat. However, this is mitigated by following SLR guidelines. Also, the data

extraction was first carried out by the author and then confirmed by examiners to reduce

the threat of bias.

As only descriptive statistics were used when processing results, threats to validity in the

analysis are minimal.

6.3 External validity

External validity defines how the results can be used outside the scope of this work and

if the results are generalizable. As no conclusions are made from the results of the

systematic mapping study, there are no threats to external validity.

60

7. CONCLUSION

In this work, we conducted a systematic mapping study to find out ways to manage the

coordination between multiple microservices. As a result, the most prevalent design pat-

terns were presented and discussed. Also, the implementation details of these patterns

found in the selected literature were reviewed and discussed.

As seen from the results, distributed transaction protocols, such as Two-phase commit,

which offer strict consistency were not the preferred solution in microservice architec-

ture due to limited concurrency and decreased availability. To increase performance,

ACID principles must be relaxed which was done by two other patterns found. The most

mentioned patterns with relaxed ACID principles were the saga pattern (57%) and the

Try-Cancel/Confirm (24%). Even though 2PC had the highest occurrence amongst se-

lected works (62%), the discourse was mainly centered around its incompatibility with the

characteristics of microservice architecture.

To confirm the prevalence of the saga pattern, four works proposed novel solutions for the

internal problems within the saga pattern, and two works discussed and compared imple-

mentation frameworks for the saga pattern. Solutions related to internal issues were

related to fault tolerance of central orchestration, fault tolerance in case of a node failure,

and an attempt to increase performance with parallelization. Also, implementation details

were mainly discussed for the saga pattern where it was seen that there are a couple

of problems that have existing solutions. The first problem is the missing isolation which

can be managed using solutions such as resource reservation or semantic locking. The

second problem is the requirement for atomicity between sending a message to the sub-

sequent participant and executing a local operation. This could be managed using log

tailing pattern or Event sourcing together with CQRS. In the comparison of the imple-

mentation frameworks, it was noticed that there are multiple frameworks that can be used

to implement the saga flows sufficiently. Especially a framework called Eventuate Tram

performed well in the experiments conducted by both authors as it contained most of the

required saga characteristics but also had high performance compared to other solutions.

In an addition to patterns with relaxed consistency, six novel solutions were proposed

in the selected works that provide highly consistent transactions. Based on this, it was

observed that there is still a need for high consistency solutions in certain use cases even

61

though current solutions, such as 2PC, are not preferred in the microservice architecture.

As seen from the results, the prevalence of the saga pattern and its two variants was

explicit. However, there still seems to be a need for highly consistent solutions at least in

the research community. Further research is still required to refine these strict consistency

solutions forward. Additionally, further research might be still necessary to deal with the

internal problems within the saga pattern. This could be done by either refining already

proposed implementation solutions or by finding new ways to manage the problematic

parts.

62

REFERENCES

[1] Lewis, J. and Fowler, M. Characteristics of a Microservice Architecture. URL: https:
//martinfowler.com/articles/microservices.html. (accessed 9.12.2021).

[2] Gilbert, S. and Lynch, N. Brewer’s Conjecture and the Feasibility of Consistent,

Available, Partition-Tolerant Web Services. SIGACT News 33.2 (June 2002), pp. 51–

59. ISSN: 0163-5700. DOI: 10.1145/564585.564601. URL: https://doi-org.
libproxy.tuni.fi/10.1145/564585.564601.

[3] Laigner, R., Zhou, Y., Salles, M. A. V., Liu, Y. and Kalinowski, M. Data Manage-

ment in Microservices: State of the Practice, Challenges, and Research Directions.

Proc. VLDB Endow. 14.13 (Sept. 2021), pp. 3348–3361. ISSN: 2150-8097. DOI:

10.14778/3484224.3484232. URL: https://doi-org.libproxy.tuni.fi/
10.14778/3484224.3484232.

[4] Ntentos, E., Zdun, U., Plakidas, K., Schall, D., Li, F. and Meixner, S. Supporting

Architectural Decision Making on Data Management in Microservice Architectures.

Software Architecture. Ed. by T. Bures, L. Duchien and P. Inverardi. Cham: Springer

International Publishing, 2019, pp. 20–36. ISBN: 978-3-030-29983-5.

[5] Vossen, G. Transaction. Encyclopedia of Database Systems. Ed. by L. LIU and

M. T. ÖZSU. Boston, MA: Springer US, 2009, pp. 3150–3151. ISBN: 978-0-387-

39940-9. DOI: 10.1007/978-0-387-39940-9_436. URL: https://doi.org/
10.1007/978-0-387-39940-9_436.

[6] Bernstein, P. A. and Newcomer, E. Chapter 1 - Introduction. Principles of Transac-

tion Processing (Second Edition). Ed. by P. A. Bernstein and E. Newcomer. Second

Edition. The Morgan Kaufmann Series in Data Management Systems. San Fran-

cisco: Morgan Kaufmann, 2009, pp. 1–29. ISBN: 978-1-55860-623-4. DOI: https:
//doi.org/10.1016/B978-1-55860-623-4.00001-9. URL: https://www.
sciencedirect.com/science/article/pii/B9781558606234000019.

[7] A Critique of ANSI SQL Isolation Levels. eng. SIGMOD 95: International Confer-

ence on Management of Data 24.2 (1995), pp. 1–10. ISSN: 0163-5808.

[8] Pritchett, D. BASE: An Acid Alternative: In Partitioned Databases, Trading Some

Consistency for Availability Can Lead to Dramatic Improvements in Scalability. Queue

6.3 (May 2008), pp. 48–55. ISSN: 1542-7730. DOI: 10.1145/1394127.1394128.

URL: https://doi-org.libproxy.tuni.fi/10.1145/1394127.1394128.

[9] Fox, A., Gribble, S. D., Chawathe, Y., Brewer, E. A. and Gauthier, P. Cluster-Based

Scalable Network Services. eng. Operating Systems Review (ACM). Vol. 31. 5.

New York, NY: Association for Computing Machinery, 1997, pp. 78–91.

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1145/564585.564601
https://doi-org.libproxy.tuni.fi/10.1145/564585.564601
https://doi-org.libproxy.tuni.fi/10.1145/564585.564601
https://doi.org/10.14778/3484224.3484232
https://doi-org.libproxy.tuni.fi/10.14778/3484224.3484232
https://doi-org.libproxy.tuni.fi/10.14778/3484224.3484232
https://doi.org/10.1007/978-0-387-39940-9_436
https://doi.org/10.1007/978-0-387-39940-9_436
https://doi.org/10.1007/978-0-387-39940-9_436
https://doi.org/https://doi.org/10.1016/B978-1-55860-623-4.00001-9
https://doi.org/https://doi.org/10.1016/B978-1-55860-623-4.00001-9
https://www.sciencedirect.com/science/article/pii/B9781558606234000019
https://www.sciencedirect.com/science/article/pii/B9781558606234000019
https://doi.org/10.1145/1394127.1394128
https://doi-org.libproxy.tuni.fi/10.1145/1394127.1394128

63

[10] Zhou, X., Li, S., Cao, L., Zhang, H., Jia, Z., Zhong, C., Shan, Z. and Babar, M. A. Re-

visiting the practices and pains of microservice architecture in reality: An industrial

inquiry. English. Journal of Systems and Software 195 (2023). URL: www.scopus.
com.

[11] Soldani, J., Tamburri, D. A. and Van Den Heuvel, W.-J. The pains and gains of

microservices: A Systematic grey literature review. eng. The Journal of systems

and software 146 (2018), pp. 215–232. ISSN: 0164-1212.

[12] Newman, S. Building microservices. eng. O’Reilly, 2015. ISBN: 1491950358.

[13] Taibi, D., Lenarduzzi, V., Pahl, C. and Janes, A. Microservices in Agile Software

Development: A Workshop-Based Study into Issues, Advantages, and Disadvan-

tages. Proceedings of the XP2017 Scientific Workshops. XP ’17. Cologne, Ger-

many: Association for Computing Machinery, 2017. ISBN: 9781450352642. DOI:

10.1145/3120459.3120483. URL: https://doi-org.libproxy.tuni.fi/10.
1145/3120459.3120483.

[14] Vogels, W. Eventually Consistent. Commun. ACM 52.1 (Jan. 2009), pp. 40–44.

ISSN: 0001-0782. DOI: 10.1145/1435417.1435432. URL: https://doi.org/
10.1145/1435417.1435432.

[15] Petersen, K., Vakkalanka, S. and Kuzniarz, L. Guidelines for conducting systematic

mapping studies in software engineering: An update. eng. Information and software

technology 64 (2015), pp. 1–18. ISSN: 0950-5849.

[16] Wohlin, C. Guidelines for Snowballing in Systematic Literature Studies and a Repli-

cation in Software Engineering. Proceedings of the 18th International Conference

on Evaluation and Assessment in Software Engineering. EASE ’14. London, Eng-

land, United Kingdom: Association for Computing Machinery, 2014. ISBN: 9781450324762.

DOI: 10.1145/2601248.2601268. URL: https://doi-org.libproxy.tuni.
fi/10.1145/2601248.2601268.

[17] Khwaja, S. and Alshayeb, M. Survey On Software Design-Pattern Specification

Languages. ACM Comput. Surv. 49.1 (June 2016). ISSN: 0360-0300. DOI: 10 .
1145/2926966. URL: https://doi- org.libproxy.tuni.fi/10.1145/
2926966.

[18] Kitchenham, B. and Brereton, P. A systematic review of systematic review pro-

cess research in software engineering. Information and Software Technology 55.12

(2013), pp. 2049–2075. ISSN: 0950-5849. DOI: https://doi.org/10.1016/j.
infsof.2013.07.010. URL: https://www.sciencedirect.com/science/
article/pii/S0950584913001560.

[19] Taibi, D., Lenarduzzi, V. and Pahl, C. Architectural patterns for microservices: A sys-

tematic mapping study. English. CLOSER 2018 - Proceedings of the 8th Interna-

tional Conference on Cloud Computing and Services Science. Vol. 2018-January.

Cited By :106. 2018, pp. 221–232. URL: www.scopus.com.

www.scopus.com
www.scopus.com
https://doi.org/10.1145/3120459.3120483
https://doi-org.libproxy.tuni.fi/10.1145/3120459.3120483
https://doi-org.libproxy.tuni.fi/10.1145/3120459.3120483
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/2601248.2601268
https://doi-org.libproxy.tuni.fi/10.1145/2601248.2601268
https://doi-org.libproxy.tuni.fi/10.1145/2601248.2601268
https://doi.org/10.1145/2926966
https://doi.org/10.1145/2926966
https://doi-org.libproxy.tuni.fi/10.1145/2926966
https://doi-org.libproxy.tuni.fi/10.1145/2926966
https://doi.org/https://doi.org/10.1016/j.infsof.2013.07.010
https://doi.org/https://doi.org/10.1016/j.infsof.2013.07.010
https://www.sciencedirect.com/science/article/pii/S0950584913001560
https://www.sciencedirect.com/science/article/pii/S0950584913001560
www.scopus.com

64

[20] Pal Singh, N. and Deshpande, A. Solving distributed transaction management prob-

lems in microservices architecture using Saga. URL: https://developer.ibm.
com/articles/use-saga-to-solve-distributed-transaction-management-
problems-in-a-microservices-architecture/. (accessed 4.4.2022).

[21] Garcia-Molina, H. and Salem, K. Sagas. 16.3 (Dec. 1987), pp. 249–259. ISSN:

0163-5808. DOI: 10.1145/38714.38742. URL: https://doi-org.libproxy.
tuni.fi/10.1145/38714.38742.

[22] Mohan, C., Lindsay, B. and Obermarck, R. Transaction Management in the R* Dis-

tributed Database Management System. ACM Trans. Database Syst. 11.4 (Dec.

1986), pp. 378–396. ISSN: 0362-5915. DOI: 10.1145/7239.7266. URL: https:
//doi-org.libproxy.tuni.fi/10.1145/7239.7266.

[23] Bernstein, P. A. and Newcomer, E. Chapter 8 - Two-Phase Commit. eng. Principles

of Transaction Processing. Second Edition. Elsevier Inc, 2009, pp. 223–244. ISBN:

1558606238.

[24] Pardon, G. and Pautasso, C. Towards Distributed Atomic Transactions over REST-

ful Services. eng. REST: From Research to Practice. New York, NY: Springer New

York, 2011, pp. 507–524. ISBN: 9781441983022.

[25] Ongaro, D. and Ousterhout, J. In Search of an Understandable Consensus Algo-

rithm. 2014 USENIX Annual Technical Conference (USENIX ATC 14). Philadelphia,

PA: USENIX Association, June 2014, pp. 305–319. ISBN: 978-1-931971-10-2. URL:

https : / / www . usenix . org / conference / atc14 / technical - sessions /
presentation/ongaro.

https://developer.ibm.com/articles/use-saga-to-solve-distributed-transaction-management-problems-in-a-microservices-architecture/
https://developer.ibm.com/articles/use-saga-to-solve-distributed-transaction-management-problems-in-a-microservices-architecture/
https://developer.ibm.com/articles/use-saga-to-solve-distributed-transaction-management-problems-in-a-microservices-architecture/
https://doi.org/10.1145/38714.38742
https://doi-org.libproxy.tuni.fi/10.1145/38714.38742
https://doi-org.libproxy.tuni.fi/10.1145/38714.38742
https://doi.org/10.1145/7239.7266
https://doi-org.libproxy.tuni.fi/10.1145/7239.7266
https://doi-org.libproxy.tuni.fi/10.1145/7239.7266
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro

65

APPENDIX A: THE SELECTED PAPERS

[SP1] Fan, Pan, et al. "2PC*: a distributed transaction concurrency control protocol of

multi-microservice based on cloud computing platform." Journal of Cloud Comput-

ing 9.1 (2020): 1-22.

[SP2] Fan, Pan, et al. "2PC+: A High Performance Protocol for Distributed Transactions of

Micro-service Architecture." Intelligent Mobile Service Computing. Springer, Cham,

2021. 93-105.

[SP3] Ramirez, Francisco, et al. “An Empirical Study on Microservice Software Develop-

ment.” 2021 IEEE/ACM Joint 9th International Workshop on Software Engineering

for Systems-of-Systems and 15th Workshop on Distributed Software Development,

Software Ecosystems and Systems-of-Systems (SESoS/WDES), IEEE, 2021, pp.

16–23, https://doi.org/10.1109/SESoS-WDES52566.2021.00008.

[SP4] Rudrabhatla, Chaitanya K. “Comparison of Event Choreography and Orchestration

Techniques in Microservice Architecture.” International Journal of Advanced Com-

puter Science & Applications, vol. 9, no. 8, Science and Information (SAI) Organi-

zation Limited, 2018, pp. 18–22, https://doi.org/10.14569/ijacsa.2018.090804.

[SP5] De Heus, Martijn, et al. “Distributed Transactions on Serverless Stateful Functions.”

DEBS 2021 - Proceedings of the 15th ACM International Conference on Distributed

and Event-Based Systems, 2021, pp. 31–42, https://doi.org/10.1145/3465480.3466920.

[SP6] Knoche, Holger, and Wilhelm Hasselbring. "Drivers and barriers for microservice

adoption–a survey among professionals in Germany." Enterprise Modelling and

Information Systems Architectures (EMISAJ)–International Journal of Conceptual

Modeling: Vol. 14, Nr. 1 (2019).

[SP7] Nikolic, Lazar, and Vladimir Dimitrieski. “Fed-Agent - a Transparent ACID-Enabled

Transactional Layer for Multidatabase Microservice Architectures.” 2021 16th Con-

ference on Computer Science and Intelligence Systems (FedCSIS), Polish Informa-

tion Processing Society, 2021, pp. 489–92, https://doi.org/10.15439/2021F46.

[SP8] Zhang, Guogen, et al. “GRIT: Consistent Distributed Transactions Across Polyglot

Microservices with Multiple Databases.” Proceedings - International Conference on

Data Engineering, vol. 2019-, 2019, pp. 2024–27, https://doi.org/10.1109/ICDE.2019.00230.

[SP9] Katsifodimos, Asterios, and Marios Fragkoulis. “Operational Stream Processing:

66

Towards Scalable and Consistent Event-Driven Applications.” Advances in Database

Technology - EDBT, vol. 2019-, 2019, pp. 682–85, https://doi.org/10.5441/002/edbt.2019.86.

[SP10] Röwekamp, Jan Henrik, et al. “Petri Net Sagas.” CEUR Workshop Proceedings,

vol. 2907, 2021, pp. 65–84.

[SP11] Xue, Gang, et al. “Reaching Consensus in Decentralized Coordination of Dis-

tributed Microservices.” Computer Networks (Amsterdam, Netherlands: 1999), vol.

187, Elsevier B.V, 2021, p. 107786–, https://doi.org/10.1016/j.comnet.2020.107786.

[SP12] Frosini, Luca, et al. “ReLock: a Resilient Two-Phase Locking RESTful Transaction

Model.” Service Oriented Computing and Applications, vol. 15, no. 1, Springer

London, 2021, pp. 75–92, https://doi.org/10.1007/s11761-020-00311-z.

[SP13] Xie, Yang, et al. “Research on the Architecture and Key Technologies of Inte-

grated Platform Based on Micro Service.” 2018 IEEE 3rd Advanced Information

Technology, Electronic and Automation Control Conference (IAEAC), IEEE, 2018,

pp. 887–93, https://doi.org/10.1109/IAEAC.2018.8577921.

[SP14] Limon, Xavier, et al. “SagaMAS: A Software Framework for Distributed Transac-

tions in the Microservice Architecture.” 2018 6th International Conference in Soft-

ware Engineering Research and Innovation (CONISOFT), IEEE, 2018, pp. 50–58,

https://doi.org/10.1109/CONISOFT.2018.8645853.

[SP15] Stefanko, Martin, et al. “The Saga Pattern in a Reactive Microservices Environ-

ment.” ICSOFT 2019 - Proceedings of the 14th International Conference on Soft-

ware Technologies, 2019, pp. 483–90, https://doi.org/10.5220/0007918704830490.

[SP16] Laigner, Rodrigo, et al. “A Distributed Database System for Event-Based Microser-

vices.” DEBS 2021 - Proceedings of the 15th ACM International Conference on Dis-

tributed and Event-Based Systems, 2021, pp. 25–30, https://doi.org/10.1145/3465480.3466919.

[SP17] Dürr, Karolin, et al. “An Evaluation of Saga Pattern Implementation Technologies.”

CEUR Workshop Proceedings, vol. 2839, 2021, pp. 74–82.

[SP18] Malyuga, Konstantin, et al. “Fault Tolerant Central Saga Orchestrator in RESTful

Architecture.” 2020 26th Conference of Open Innovations Association (FRUCT), vol.

2020-, no. 1, FRUCT, 2020, pp. 278–83, https://doi.org/10.23919/FRUCT48808.2020.9087389.

[SP19] Pardon, Guy, and Cesare Pautasso. “Atomic Distributed Transactions: a RESTful

Design.” Proceedings of the 23rd International Conference on World Wide Web,

ACM, 2014, pp. 943–48, https://doi.org/10.1145/2567948.2579221.

[SP20] Richardson, Chris. “Microservices Patterns” https://www.manning.com/books/microservices-

patterns , Manning Publications. Accessed: 14.4.2022

[SP21] Newman, Sam. "Building Microservices" https://learning.oreilly.com/library/view/building-

microservices-2nd/9781492034018/ , 2nd Edition. O’Reilly Media. Accessed: 14.4.2022

	Introduction
	Background
	Transaction basics
	ACID properties
	Isolation levels
	BASE properties

	Microservices
	Advantages of microservice architecture
	Disadvantages of microservice architecture
	Coordination between multiple microservices

	Related work

	Methodology
	Goal and research questions
	Search strategy
	Bibliographic sources and search string
	Inclusion and exclusion criteria
	Search and selection process

	Results
	Design patterns for coordination between multiple services (RQ1 & RQ2)
	Saga pattern
	Two-phase commit
	Try-Cancel/Confirm
	Other solutions

	Novel design patterns for transactions spanning multiple services (RQ1 & RQ2)
	Novel saga-based patterns
	Novel 2PC-based solutions
	Other novel patterns

	Implementation of the saga pattern (RQ3 & RQ4)
	Local operation and sending message must be atomic
	Missing isolation property
	Implementation frameworks

	Implementation of other patterns (RQ3 & RQ4)

	Discussion
	Design patterns
	Future directions

	Threats to validity
	Construct validity
	Internal validity
	External validity

	Conclusion
	References
	The selected papers

