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ABSTRACT
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Master of Science Thesis
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Joint communication and sensing (JCAS) is an emerging research topic aiming to integrate
radio communications and radar systems in time and frequency domains along with the spatial
domain. Integration in the spatial domain relies on a suitable beamforming technique for acquiring
desired detection performance levels for both operations. Beamforming methods in the context of
JCAS systems, with an emphasis on convex optimization, are studied in this thesis. A previously
established work on beamformer design for optimum antenna selection is reviewed and dupli-
cated to establish the groundwork for the main research. The novel beamforming algorithm pro-
posed in this work maximizes the detection performance for the radar function in a JCAS system
while maintaining the communication performance at an acceptable level. This is accomplished
in the presence of clutter and with no assumption of a direct path between the transmitter and
the communication user. A mathematical groundwork is presented for acquiring a valid convex
optimization problem to represent the beamforming objective and constraints, along with using
rank one decomposition to convert the result into a beamforming weight vector usable in practical
application. The tests performed on a simulation environment showed that performance tradeoffs
between radar and communication functions are observable on acquired results, in addition to
assurance about the validity of assumptions made during problem definition.
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1. INTRODUCTION

The past decade has seen rapid development of research on coexistence, co-operation,

and co-design of radio communication and radar systems. These technologies have been

developing in parallel for decades before starting to intersect more and more in contempo-

rary research. Instances of commonalities between radar sensing and radio communica-

tion include partially overlapping system architecture[1], circuitry[2], and signal process-

ing techniques[3]. These correspondent features have been among the motivating factors

behind the research on joint radar and communication systems, alongside the concern on

efficient bandwidth usage, which was also among driving forces behind research on co-

existence, i.e. a lower level of integration, between communication and radar systems[4].

Co-existence of radar and radio communication systems relies on each system treating

the signal from the other as interference and attempting to mitigate them. A higher level of

integration is achievable with co-operating radar and communication systems that share

information with each other for performance improvements. One popular approach to

achieve this goal is to utilize passive sensing for the radar functionality[5], which relies

on the radar system receiving signals from other radio transmitters, for example, Digital

Video Broadcasting (DVB), 802.11 access point (AP). This approach has several issues,

including the strong direct path signal leakage on the surveillance channel, in addition to

the problem that the only way to know signal waveform is to tap off from the reference

channel.

The problems mentioned above could be overcome by increasing the integration level

of radar and radio communication systems, by co-designing them rather than aiming for

mere co-existence. Joint communication and sensing (JCAS) is a co-design solution

that utilizes a jointly designed common transmit signal for both purposes and possibly

shares most of the receiver hardware except signal processing algorithms[2]. JCAS dif-

fers from other spectrum-sharing concepts by using a fully shared transmitter in addition

to a largely shared receiver that consists of components such as frequency mixers, phase

shifters, and low-noise amplifiers. This allows JCAS systems to have higher spectral ef-

ficiency than systems designed with other spectrum-sharing concepts while also causing

the waveform design aspect of the system to be more complicated. Design and optimiza-

tion of the transmit waveform are among the main challenges of designing a JCAS system

since the transmitted signal is required to carry information efficiently to communication
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receivers and illuminate radar targets with high enough power radiation for maximizing

detection performance while keeping the receiver processing from being too complex.

There have been numerous works on co-designed radar and communication systems

under different names, including JCAS, Radar-communications (RadCom), joint radar

and communications(JRC), joint communications and radar(JCR), and dual function radar

communications(DFRC). The terms JRC and JCR are occasionally used to imply the

priority of radar operation over the communication operation or vice versa, respectively, in

co-designed systems. Throughout this thesis, the term JCAS will be used for joint radar

and communication systems in general, and the term JRC will be used when referring

to JCAS systems that prioritize the radar operation over communication operation, in the

sense that main beam is allocated for radar operation, as in the case of Chapters 3 and

4. Research on JCAS systems, in general, aims to increase the level of integration in time

and frequency domains, in addition to the spatial domain. This thesis work contributes to

spatial domain integration and, more specifically, beamforming for JCAS systems.

A good beamforming algorithm is an integral part of designing the optimal JCAS waveform

since weights of antenna array elements can be optimized for providing the best possible

signal-to-clutter and noise ratio (SCNR) for the radar target detection while keeping an ac-

ceptable signal-to-noise ratio (SNR) for the communication operation in JCAS systems.

Beamforming studies within the context of JCAS systems aim to increase the integration

of radar and communication components in the spatial domain, complementing the stud-

ies on time and frequency domain integration. This thesis work focuses on beamforming

in the context of JRC systems and approaches two different problems with objectives

of minimizing the usage of RF chains, and maximizing the detection performance, re-

spectively, while providing a novel method for solving the latter problem under specific

conditions.

Beamforming is the problem of assigning suitable weights for each element in an an-

tenna array system to achieve desired gain levels for signals radiated to or received from

different spatial locations. This concept is analogous to a linear spatial FIR filter since

beamformers weights and linearly combine the sensor inputs that correspond to different

spatially sampled signals. In this thesis, Convex optimization techniques are used for

finding the optimal beamforming weights in Chapter 3 and Chapter 4. Specifically, the

critical steps carried out to achieve this goal include:

1. Mathematical formulation of the optimization problem,

2. Converting the formulated optimization problem into a convex optimization problem.

Chapter 3 is devoted to finding the minimum number of active antennas to guarantee

acceptable performances of the radar and communication systems, as proposed by[6].

This was achieved by having the objective function as an approximation of l0 norm of
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the weight vector and setting the constraints so that the antenna pattern at illuminated

directions is formed in a way that gain will be no smaller than a set level for radar or

communication operations depending on the direction angle. On the other hand, Chap-

ter 4 is aimed at maximizing the radar SCNR while complying with the power constraints

and minimum acceptable value of communication SNR. Problem premises is similar to

the work in[7] in the sense of having prior information about clutter and utilizing it to im-

prove SCNR on the receiving signal. Unlike the problem in cited work, however, only

one non-negligible clutter element has been assumed in this work to achieve the global

optimal solution rather than the local optimal as reached in[7]. The steps of manipulating

the mathematical expressions in the optimization problem statement to achieve a convex

optimization problem are presented in Chapter 4 before applying approximations and

rank reduction algorithms on the result to get a vector of beamforming weights. Simu-

lation results are presented at the end of Chapter 4, which characterize the trade-off

between radar SCNR and communication SNR, in addition to confirming the validity of

the approximations made during problem definition.

The remaining chapters of this thesis are organized as follows: Chapter 2 provides more

detailed background on beamforming and JCAS systems. Chapter 3 elaborates on the

antenna selection problem for JCAS systems, reviews the solution presented in [6], and

presents the results acquired from duplication of the solution method proposed in the

reference paper. Chapter 4 contains a thorough explanation of the premises for a JCAS

beamforming problem and the approach proposed in this thesis for solving it, in addition

to the evaluation of acquired results. Chapter 5 concludes the thesis with a summary of

previous chapters.
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2. JCAS SYSTEMS AND BEAMFORMING

This chapter provides details about different types of radar and communication systems

with different integration levels, alongside the concept of beamforming, to describe where

this thesis work fits in. Historical background and previous research on co-existing, co-

operating, and co-designed radar and communication systems are summarized in sub-

section 2.1. Descriptions of the basics of beamforming, definitions of some of the well-

known optimal beamformers, and a short introduction to convex optimization are given in

subsection 2.2.

2.1 Background on JCAS

Coexistence, cooperation, and joint design of communication and sensing systems is an

emerging research topic, mainly motivated by the scarcity of spectrum resources. Due to

the fact that those two systems share many commonalities, both in the sense of hardware

and signal processing algorithms, it is viable to build multi-purpose systems with both

functionalities. This concept can be traced back to works published as early as 1960s

[8] where radar pulses were modulated for communication data transmission, albeit with

low data rates. Succeeding those works, studies on cognitive radio systems have been

done based on secondary users (usually communications users) shaping their spectrum

usage around primary users (usually radar users) [9] [10]. Most recent publications in this

field are on application-driven systems that strictly require joint radar and communica-

tion functionality for their operation, such as the Internet of Things (IoT)[11] and vehicular

radar-communication systems [12][13]. Integration of JCAS in mobile networks results

in Perceptive Mobile Networks (PMNs) that increase the versatility of mobile networks

by granting them the utility of spatial perception, which makes numerous sensing utili-

ties possible with existing mobile network infrastructure. It has been a research topic in

recent years[14]. In order to establish where the contributions of this thesis work stand

among research on JCAS research, the following subsections will elaborate on different

integration levels in the design of those systems.
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2.1.1 Co-existing radar and communication systems

Radar and communication systems consider each other as interferers in the case of co-

existence. The only difference in system components between the case of separate radar

and communication systems operating independently and the case of co-existence is that

both systems have their respective canceler components that attempt to mitigate the in-

terference caused by the other system. The information required for mitigating the inter-

ference both systems cause on each other is not shared between them but is estimated.

The Block diagram in Figure 2.1 depicts a co-existing system with blocks for mitigating

the interference caused to each other by radar and communication components.

Figure 2.1. Block diagram representing co-existing radar and communication systems.

Even though co-existence allows co-located radar and communication systems to op-

erate smoothly within the same frequency band without interfering with each other, the

spectral efficiency it provides is limited due to the restrictiveness of interference mitiga-

tion methods. A beamforming solution was proposed in [15], where a convex optimization

approach was utilized in solving the problem of maximizing radar detection performance

while performance requirements for communication operation are met. A cooperative

spectrum-sharing approach is implemented in [16], which relies on multi-objective opti-

mization. The interested reader may refer to the survey [4] for a detailed synopsis of

research on the co-existence of radar and communication systems.

2.1.2 Co-operating radar and communication systems

Co-operating radar and communication systems treat each other as sources of interfer-

ence, just as co-existence. Likewise, they operate by employing interference cancellation

methods but with the key difference of having shared knowledge from each other. A
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depiction of this is provided by Figure 2.2. Sharing mechanism may differ by the ap-

proach used for cooperation. One prominent example of the type of co-operating radar

and communication system is passive radars, which utilize the received information from

communication users for the purpose of improving direct path estimation and tracking per-

formances. Another case of sharing mechanism is the usage of radar processing results

for the purpose of improving the transmission or receiving equalization for the communi-

cation operation.

Figure 2.2. Block diagram representing cooperating radar and communication systems.
Red lines indicate information sharing between components.

Signals of various types may be used for passive sensing. For instance, digital audio

broadcast signals are utilized in [17]. Short-ranged detection was performed by passive

sensing of WiFi signals in [18]. Microwave links from cellular communication networks

have also been used for various passive sensing applications, namely for monitoring

weather phenomena such as fog [19] and rainfall [20]. The main ideas behind those

works rely on the fact that environmental deviations, including weather changes and the

movement of system objects, influence the propagation of radio communication signals.

There are, however, two major drawbacks in passive sensing. Coherent sensing is not

possible in passive radars since the clock phase of the receiver cannot be known by the

transmitter. This leads to difficulties in ranging and joint processing. The other drawback

is that the design of the waveform used for communication operation is not known by the

passive radar, and differentiating interference and signal is not possible due to that. Tak-

ing the performance and spectral efficiency to the next level is possible by using a single

waveform designed for both sensing and communication operations, which is coined as

the integration level of co-design.
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2.1.3 Co-design of radar and communication systems

Co-designed radar and communication systems are jointly developed in all stages. Both

systems are considered during design to attain optimal performance for one of the sys-

tems while guaranteeing a specified minimum performance for the other system. In this

context, high spectral efficiency is achieved with co-designed systems since a single

waveform, and therefore the same frequency band is used for both functions. Overall sys-

tem performance is also further improved by having practically all the information in the

system shared between components for radar and communication operations. Communi-

cation performance is improved in co-designed systems by channel equalization feedback

provided by radar components while sensing performance is enhanced in return by com-

munication users via usage of dedicated codes and modulation for pilot sequences in

order to aid the radar operation. A simplified block diagram of such a system is illus-

trated in Figure 2.3. Co-designed systems generally require elaborate signal processing

algorithms and medium access control (MAC) protocols.

Figure 2.3. Block diagram representing co-designed radar and communication systems.
Red line indicates information sharing between components.

One of the main factors that separate co-designed systems from lower integration levels

and other spectrum-sharing concepts is that co-designed joint radio and communication

systems share the majority of the transmitter hardware, in addition to sharing most of the

receiver hardware albeit to a lower degree than the transmitter. Exemplary works that

could be classified as co-design of radar and communication systems include [21] where

a software defined radio (SDR) system was implemented for joint radar-communication

operation, [22] where viability of mmWave vehicular communication with infrastructure-



8

mounted sensors was studied, and [23] where a PMN system architecture that unifies

downlink active sensing, downlink passive sensing, and uplink sensing was proposed.

2.2 Beamforming

The system modality assumed in this thesis for work done in technical chapters is a mono-

static broadcast channel[24]. This modality assumes a single transmitter for both radar

and communication operations, which transmits a unified waveform for both purposes as

depicted in Figure 2.4. One of those operations is carried out in a dependent manner

on the other. Either the radar waveform is modulated to carry the information to be com-

municated across, or the preamble sequence for communication message transmission

is used as the radar signal.

Figure 2.4. A simple diagram of joint radar and communication operation with the mono-
static broadcast.

While this kind of system has a simplified receiver design, allowing the use of both pulse

and continuous waveforms, it can be easily extended to multiple user and target configu-

rations without requiring a complicated MAC protocol. The main drawback of this modality

is that it suffers from either the information rate or detection performance being limited[25].

Utilizing highly performing beamforming algorithms is among the ways to compensate for

the shortcomings of this modality, and is also an essential part of any joint radar and

communication system design that utilizes antenna arrays.

2.2.1 Fundamental beamforming techniques

Beamforming is an array signal processing technique for ensuring an array of antenna

elements produces the desired beam pattern, usually to transmit one or multiple spatially

directive signals. Particularly in this work, the digital beamforming is investigated, which

also refers to precoding. Even though beamforming can be performed both on receive and
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transmit modes, the rest of this subsection will elaborate on beamformers while assuming

they are working on receive mode.

Antenna

ADCADC

ADCADC

ADCADC

ADCADC

Digital 
beamforming 

processor

Digital signal 
processor ...

RF chain for each antenna

Figure 2.5. The block diagram used in [26] that shows the fundamental elements of a
digital beamformer. The chain of analog-to-digital converter (ADC), frequency mixer, and
low noise amplifier (LNA) are commonly referred to as radio frequency (RF) chain.

A brief schematic digital beamforming system is shown in Figure 2.6. This contrast with

analog beamforming, which down-converts and digitizes the summation of all antenna

signals using a shared RF chain, each antenna in the digital beamforming system is

equipped with an RF chain (LNA, mixer and ADC). In the digital beamforming system,

phase shifting and weighting operations are all done in the digital processor. Com-

pared with analog beamforming, full digital operation brings higher flexibility and wide-

band beamforming by infinite precision digital time delay. It is also viable to approach

beamforming as a spatial filtering problem. Similar to how a generic finite impulse re-

sponse (FIR) filter linearly aggregates the time-sampled signal that the filter is applied,

beamformers also produce a scalar output signal by linearly combining the signal that is

sampled spatially by each of the receivers[27]. Therefore, just as the main idea of filter

design is to acquire the filter coefficients for optimal performance, the principal part of de-

signing a beamforming system is the acquisition of weights allocated for each of the array

elements. Optimization methods are a powerful tool in beamforming for that purpose, and

specifically, convex optimization is preferred when possible since finding a local optimum

is equivalent to finding a global optimum in convex optimization problems.

In an antenna array, if the amplitude and phase weighting for the nth element is shown as

wn = ane
jθn , (2.1)
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the output of whole array could be represented as

y(k) =
∑︂
n

wnxn(k) (2.2)

= wHx(k), (2.3)

at time k where

w =
[︂
w1 w2 . . . wN

]︂T
(2.4)

x =
[︂
x1 x2 . . . xN

]︂T
. (2.5)

The optimum beamformers are designed by setting up optimization problems with weight

vector w as optimization variables and varying objective functions depending on the type

of optimum beamformer. This subsection will include short summaries of three optimal

beamformers[27]. For the rest of this subsection, the beamforming weight vector will be

denoted by w.

• Multiple sidelobe canceller (MSC) [28]

This beamformer consists of a main channel, which is pointed at the desired direc-

tion with high gain, and auxiliary channels that are weighted to cancel the interfer-

ence components in main channel. Its objective function is given by

min
w

E{|ym −wHxa|2}, (2.6)

where xa is the auxiliary data, ym is the primary data, and E is the expected value

operator. Optimum weights in this beamformer can be shown to be w∗ = R−1
a rma

where rma = E{xay
∗
m} and Ra = E{xax

H
a }. The main drawback of this beam-

former is that weight determination depends on the desired signal being received

from the main channel only, and not from auxiliary channels.

• Reference Signal [29]

This beamformer relies on having sufficient preliminary knowledge about the de-

sired signal and employing that to create a reference signal used in the objective

function of the beamformer optimization problem. The beamforming weights are

optimized to minimize the mean square error between the reference signal rep-

resenting the desired signal and the beamforming output, which is acquired by

weighting the array data. The objective function of this beamformer is:

min
w

E{|y − yr|2}, (2.7)

where yr is the reference signal, y = wHx is the array output, and x is the acquired

array data. Beamforming weights vector optimized by this method is equivalent to
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w∗ = R−1
x rxd, where rxd = E{xy∗d} and Rx = E{xxH}. This beamformer is

useful in situations where enough information is known about the desired signal

while its direction is unknown.

• Maximum SNR [30]

The objective of this beamformer is to choose weights to maximise signal-to-noise

ratio (SNR). This requires preliminary knowledge of desired signal and noise since

their covariance matrices are used in the objective function. This beamformer is

viable in specific applications. Namely, radar systems are suitable for utilising max-

imum SNR beamformers since noise can be estimated. At the same time, no de-

tection is performed, and the desired signal is already known since it is transmitted

from the radar system itself. The objective function of the maximum SNR beam-

former is:

max
w

wHRsw

wHRnw
. (2.8)

If received array data is modeled by x = s+n with s and n being signal and noise

components respectively, Rs = E{ssH} and Rn = E{nnH} are the covariance

matrices of them. The optimum beamforming weight vector for this beamformer is

w∗ =

(︃
1

c

)︃
R−1

nns, (2.9)

where c is a complex number given by
wT

opts

wT
optRnnwopt

. While this beamformer guaran-

tees the true maximization of SNR, its usage is limited because it requires prelimi-

nary information on noise and desired signal.

2.2.2 Contemporary research on beamforming for JCAS systems

Numerous works have been published about beamforming methods for joint radar and

communication systems. Cramér-Rao bound is employed as a performance metric when

setting up the optimization problem for beamforming purposes in [31]. Authors of [32]

present beamforming design methods based on a multibeam framework, which they also

introduced in the same paper. Another work on multibeam beamforming is presented in

[33], where the optimal combination of sub-beams is investigated. The same authors also

study the topic further in [34]. Joint radar and communication beamforming in the context

of vehicular networks is studied in [35], where roadside units are utilized for the estima-

tion of motion parameters of vehicles as a side benefit of joint radar and communication

operation. Likewise, authors of [36] also employ the side benefits of a joint radar and

communication system via the use of roadside units and an extended Kalman filtering

framework they introduce to increase performance while estimating vehicle states.

Two articles about beamforming problems in joint radar and communication are consid-
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ered as main references for the next two chapters of this thesis that constitute the main

practical work and contribution. The first one is a study on the antenna selection prob-

lems in the context of providing the optimal antenna pattern while activating the smallest

number of antennas as possible in the antenna array [6]. The authors of this article form

an optimization problem that minimizes both transmit power and the number of selected

antennas while developing an iterative weighting algorithm to keep the convexity of the

problem while including the number of selected antennas as a variable. The work done

in this article is reviewed and duplicated in Chapter 3.

Figure 2.6. The diagram used in [6] illustrates the antenna selection strategy they pro-
pose in the paper.

The other reference article is [7] in which authors consider a joint radar and communi-

cation system model with the indirect path for communication users, which are modelled

by channel vectors, and performance is optimized via quadratic programming. Chapter

4 approaches the same problem with a similar model, albeit with the simplification of

defining a single clutter source, and proposes a solution method that results in a globally

optimal solution, as opposed to [7] in which the modelled problem is solved with a local

optimum. The factor that allows the method proposed in this thesis to reach the global

optimum is that convexity of the beamforming optimization problem is preserved by a se-

ries of mathematical manipulations and substitutions of expressions. At the same time,

[7] solves a non-convex problem.

2.2.3 Convexity and convex optimization

Even though many existing optimal beamformers provide well-defined formulas for op-

timum beamforming weight vectors for different situations, including the ones listed in

section 2.2.1, it is not possible to have a formulated solution for every possible system

and optimization problem. In most cases, especially when dealing with JCAS systems
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due to their multi-purpose nature, an optimization problem has to be built from scratch

by defining objective functions and constraints regarding the parameters to be optimized

and system requirements to be satisfied. In this regard, the main challenge is ensuring

that the resulting problem is solvable and provides a globally optimum result. Both of

these requirements could be satisfied by utilizing convex optimization, which makes it an

invaluable tool in solving beamforming problems. A brief introduction to basic concepts

regarding convex optimization is provided in this subsection since convex optimization

techniques are employed in Chapters 3 and 4 of this thesis.

A convex function is defined as f : Rn → R where the domain of f is a convex set, and

for all x, y variables from the domain of f , and a θ with 0 ≤ θ ≤ 1, the following inequality

holds[37]:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.10)

This inequality can be visualised as the line segment between any two points on f lying

above the graph of f between those points. Minimization problems with convex objective

functions are favourable because finding the local minimum of a convex function is equiv-

alent to finding its global minimum. Solving a maximization problem based on a convex

objective function is also possible by changing the sign of the objective function. This

is based on the fact that f is concave if −f is convex, and finding the local maximum

of a concave function is equivalent to finding its global maximum. This relation between

convex and concave functions will be utilized in section 4.2 when approaching the radar

SCNR maximization problem.

Mathematically, an optimization problem of minimizing f0(x) while satisfying the con-

straints fi(x) ≤ bi, i = 1, . . . ,m and hi(x) = 0, i = 1, . . . , p, which are called inequality

constraints and equality constraints respectively, can be written as:

min f0(x) (2.11)

s.t. fi(x) ≤ bi, i = 1, . . . ,m (2.12)

hi(x) = 0, i = 1, . . . , p. (2.13)

If the three additional requirements of the objective function f0 being convex, inequality

constraint functions fi being convex, and equality constraint functions hi being affine are

satisfied for an optimization problem, the problem in question is a convex optimization

problem. Stating the beamforming problem objectives as convex optimization problems

constitute a central part of the approaches described in Chapters 3 and 4. It should be

noted that even if convex optimization cannot directly solve a beamforming problem, it can

still make the solution more reachable by providing approximate solutions and a better un-

derstanding of the problem. Solution approaches to problems defined in Chapters 3 and

4 utilize iteration and rank reduction, respectively, in tandem with convex optimization.
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3. ANTENNA SELECTION

This chapter is focused on the antenna selection problem in the context of JRC sys-

tems, and is organized as follows: Section 3.1 describes the model of JRC system. The

antenna selection strategy proposed in [6] is summarized in section 3.2, and results ac-

quired from duplication of the proposed strategy are presented in section 3.3. Discussed

problems in this chapter and the next chapter are solved with a convex optimization ap-

proach.

3.1 System model

The joint system assumed in this problem prioritizes radar operation by assigning the main

beam in an antenna pattern and relying on sidelobes for transmission to communication

users. Communication messages are transmitted by employing a set of beamforming

weights which preserve the optimal antenna pattern but have varying amplitudes and

phases, corresponding to different directions of communication users, for each symbol

to be transmitted. The approach used here is a quadrature amplitude modulation (QAM)

based sidelobe modulation.

The main motivation behind developing an antenna selection algorithm is to reduce the

system cost while retaining the performance. The waveform to be transmitted in a JRC

system is fed through an array of RF chains, which are expensive, before being passed to

the transmit antenna array, which is considerably cheaper component. RF chains contain

the circuitry for digital-to-analog conversion, frequency mixing, and power amplification.

The antenna selection strategy proposed in the work that is referenced in this chapter

assumes a system setup where a smaller number of RF chains are connected to a larger

number of transmit antennas and aims to provide a reliable method to decide which an-

tennas should be activated to keep the desired level of performance for both operations

while keeping the number of active antennas as small as possible.

The set of angles considered the main lobe direction is denoted as Θrad. The set of

sidelobe direction angles will be denoted as Θsl during the system model described in

this subsection. Any angle belonging to either of those sets is denoted by θr ∈ Θrad

and θϵ ∈ Θsl respectively. Gr represents the desired gain for radar operation in the

main lobe. The phase profile for the main lobe is represented as ϕ(θr), a function of
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Figure 3.1. A simple schematic of the JRC system setup.

θr. Let the amplitude and phase to be ensured at direction θc for communication symbol

coding purposes be denoted as ∆c and ejϕc , respectively, where θc is the direction of cth

communication receiver. The vector of beamforming weights is represented as w, and

the array response vector for the transmit antenna array when transmit direction is set to

θ is shown as a(θ). With these parameters, an optimization problem for acquiring the w

vector for the best possible performance can be stated as:

min
w

max
θr∈Θr

|Grade
jϕ(θr) −wHa(θr)|, (3.1)

s. t. |wHa(θϵ)| ≤ ϵsl, θϵ ∈ Θsl, (3.2)

wHa(θc) = ∆ce
jϕc . (3.3)

The objective function of this problem statement is interpreted as follows: There are vary-

ing amounts of absolute valued differences between the desired values and acquired

values of gain and phase at each θr direction in the main beam. Objective function (3.1)

establishes that the w vector is chosen so that for the θr direction with a maximum dif-

ference between desired and acquired values, that difference should be as small as pos-

sible. Additionally, the constraint (3.2) ensures only a certain amount of maximum gain

at sidelobe directions which will be used for communication operation, while constraint

(3.3) guarantees the specific amplitude and phase values that correspond to the symbol

to be transmitted to the communication user at the relevant direction. The approach to

the antenna selection problem referenced in this chapter is based on this optimization

problem.
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One manipulation that should be done on the problem statement is to convert the min-

max problem into a single minimization problem for convexity. This could be done by

ensuring via problem constraints that the absolute value difference between the desired

beam pattern and the acquired beam pattern is below a certain threshold value for each

discrete θr value that falls in the main beam direction interval, and modifying the objective

function to minimize that threshold. With this modification, problem (3.1)-(3.3) can be

equivalently written as:

min
w,t

t (3.4)

s. t. |Grade
jϕ(θr) −wHa(θr)| ≤ t, θr ∈ Θr, (3.5)

|wHa(θϵ)| ≤ ϵsl, θϵ ∈ Θsl, (3.6)

wHa(θc) = ∆ce
jϕc . (3.7)

This is a convex optimization problem since objective function (3.4) and inequality con-

straint functions (3.5)-(3.6) are convex functions, in addition to the equality constraint (3.7)

being an affine function which necessarily makes it both convex and concave. It is possi-

ble to use CVXOPT or another convex optimization solver tool to acquire the optimal t,w

values. That value will be a parameter for defining the constraint function about radar

performance in the antenna selection problem. The acquired t value will be denoted as

γtol in the upcoming problem definitions.

3.2 Antenna selection strategy

Setting a constant γtol value as the constraint for the maximum tolerable difference from

desired radar antenna pattern frees up the objective function since there is no t variable

to be minimized. The antenna selection problem statement takes the form:

min
w

f(w) (3.8)

s. t. |Grade
jϕ(θr) −wHa(θr)| ≤ γtol, θr ∈ Θr, (3.9)

|wHa(θϵ)| ≤ ϵsl, θϵ ∈ Θsl, (3.10)

wHa(θc) = ∆ce
jϕc , (3.11)

where f(w) will be a convex objective function relating to the number of selected an-

tennas, which depends on the beamforming weight vector. A straightforward approach to

building this objective function is to utilize the so-called l0 norm, which returns the number

of nonzero elements of the corresponding vector. There are, however, some issues with

directly using an l0 norm in this problem. Reasons for this will be clarified by comparing
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l0 norm to the definition of lp norm function, which is defined as:

||x||p :=

(︄
n∑︂

i=1

|xi|p
)︄1/p

, (3.12)

where ||x||p is lp norm, or p-norm, of x. All lp norms are norm functions, and they are

convex for p ≥ 1. These statements follow directly from the defining properties of norm

functions in general. Those properties are as follows[38]:

• Norm is nonnegative: ||x|| ≥ 0 for all x ∈ Rn,

• Norm is definite: ||x|| = 0 only if x = 0,

• Norm is homogeneous: ||tx|| = |t|∥x∥, for all x ∈ Rn and t ∈ R,

• Norm satisfies the triangle inequality: ||x+ y|| ≤ ||x||+ ||y||, for all x, y ∈ Rn.

First, it should be shown that lp norms satisfy the requirement of norm functions. Nonneg-

ativity, definiteness, and homogeneity properties can be verified trivially by just substitut-

ing the lp norm definition in (3.12) into respective statements. Triangle inequality is more

difficult to confirm for the lp norm case. Still, it has already been proven by Minkowski in-

equality that Lp spaces are normed vector spaces, which means triangle inequality holds

for all lp norms where p ≥ 1:(︄
n∑︂

i=1

|xi + yi|p
)︄1/p

≤

(︄
n∑︂

i=1

|xi|p
)︄1/p

+

(︄
n∑︂

i=1

|yi|p
)︄1/p

. (3.13)

The fact that lp norms satisfy the triangle inequality directly implies that they are convex

functions. This can be observed by substituting the norm function into (2.10) where the

requirement of convexity is defined:

||θx+ (1− θ)y||p ≤ θ||x||p + (1− θ)||y||p. (3.14)

One can see right away that this inequality holds true based on homogeneity property

and satisfaction of triangle inequality by norm functions. However, this still only holds true

for p ≥ 1. Zero norms do not satisfy the homogeneity property for norms and therefore

are not norm functions, since they instead satisfy the equality

||tx||0 = ∥x∥0. (3.15)

for t ̸= 0 and this means absolute scalability does not hold for l0 norms.

Since lp norms are convex, it is possible to easily define a convex optimization problem
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that minimizes the transmit power in the form:

min
w

||w||22 (3.16)

s. t. |Grade
jϕ(θr) −wHa(θr)| ≤ γtol, θr ∈ Θr, (3.17)

|wHa(θϵ)| ≤ ϵsl, θϵ ∈ Θsl, (3.18)

wHa(θc) = ∆ce
jϕc . (3.19)

Although the above optimization minimizes the power consumption, it does not ensure the

fewest possible number of antennas to be selected. To ensure the optimal antenna selec-

tion, one can insert an additional constraint of ||w||0 ≤ Mmax to this problem where Mmax

is the maximum number of allowed antennas. Its optimal value could be found by trial and

error. Another option is to modify the objective function into the form ||w||22+η||w||0 where

η is a tuning parameter for setting the balance between the minimum possible transmit

power and the minimum possible number of antennas. Since both of these approaches

use the non-convex l0 norm, zero norm statements have to be approximated by convex

functions for the problem to be convex. l1 norm can be utilized for that purpose since it

is a convex function and provides the closest approximation of l0 norm among lp norms.

This leads to the following problem statement:

min
w

||w||22 + η||w||1 (3.20)

s. t. |Grade
jϕ(θr) −wHa(θr)| ≤ γtol, θr ∈ Θr, (3.21)

|wHa(θϵ)| ≤ ϵsl (3.22)

wHa(θc) = ∆ce
jϕc . (3.23)

The main shortcoming of this approximation is that larger weights in w get penalized

more, which would not happen in l0 norm case. One of the main ideas in [6] is to weight

w after the optimization problem is solved based on how much power is allocated at each

antenna array element. The problem is solved once more after this weighting, and this

time penalization strength is less affected by size of individual weights in w. This process

is repeated until the number of selected antennas converges or a specified number of

maximum iterations is reached. The new problem statement is in the form:

min
w

||w||22 + η∥u(i) ⊙w∥1 (3.24)

s. t. |Grade
jϕ(θr) −wHa(θr)| ≤ γtol, θr ∈ Θr, (3.25)

|wHa(θϵ)| ≤ ϵsl, θϵ ∈ Θsl, (3.26)

wHa(θc) = ∆ce
jϕc , (3.27)
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where u(i) is the weight vector at ith iteration, and mth element of u(i) is defined as:

um =

⎧⎨⎩
1

|w(i−1)
m |

, if |w(i−1)
m | > δ,

1
ϵ
, if |w(i−1)

m | ≤ δ,.
(3.28)

where ϵ and δ are very small numbers, and w
(i−1)
m is the mth element of w acquired dur-

ing previous iteration of the problem. δ is used as a comparison point to detect antenna

elements that are not selected or, in other words, have practically zero weights. Those

antenna elements are ensured to be not selected in the upcoming iteration by setting the

weights corresponding to those elements as the large number of 1
ϵ
. The multiplicative in-

verse of their magnitude scales the remaining antenna elements selected in the previous

iteration to ensure that the optimization problem solver will not be affected by the weight

size of individual elements in w when calculating its l1 norm. This provides a reliable

approximation of the l0 norm while maintaining convexity in the objective function.

Even though utilizing a weighting vector along with l1 norm is a reliable way to have a

convex approximation of l0 norm, which provides the means for creating an objective

function for minimizing the number of selected antennas, the antenna selection is only

optimized for the set of constraints given at that time. This is not problematic for constraint

functions of θr and θϵ as sidelobe, and main beam intervals are expected to be fixed for

the whole operating duration. However, transmitted symbol amplitude ∆c and phase

ejϕc are expected to change for each symbol to be transmitted to each individual user.

For a case with N sets of possible symbols to be transmitted, it will be required to find N

beamforming vectors that provide the required performance and have the optimal antenna

selection. The weight vector for nth set of transmit symbols and relevant amplitude and

phase levels for those will be denoted with the subscript of n for the remainder of this

chapter. This leads to the following generalized problem statement for all N cases:

min
wn

||wn||22 + η∥u(i) ⊙wn∥1 (3.29)

s. t. |Grade
jϕ(θr) −wH

n a(θr)| ≤ γtol, θr ∈ Θr; n = 1, . . . , N, (3.30)

|wH
n a(θϵ)| ≤ ϵsl, θϵ ∈ Θsl; n = 1, . . . , N, (3.31)

wH
n a(θc) = ∆n,ce

jϕn,c ; n = 1, . . . , N, (3.32)

which means the output for the whole problem should be in the form of a matrix W that

has optimal beamforming vector wn for nth case for its nth column, and with M number

of rows where M is the total number of selected and nonselected antenna elements in

the system. Using the previously built algorithm N times and acquiring the weight vector

for each case separately is a straightforward solution for the generalized problem. How-

ever, this is not the optimal approach since selected and nonselected antennas may differ

between cases due to the fact that sparsity is enforced separately for each case when the
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l0 norm is approximated for individual weight vectors. This may lead to frequent switching

of antennas between on and off states, especially in communication operations with high

data rates, which increases the system complexity. In addition to avoiding high system

complexity, another advantage of having the same selected and nonselected antenna ar-

rangement between transmit symbols is that the same antennas will be turned off for the

whole JRC operation. Those antennas may be utilized for another operation at the same

time, which will increase the functionality of RF chains they are connected to.

Another idea in [6] is utilizing the group sparsity concept in building the objective function

for the convex optimization problem. Mixed l1,q norm is employed for acquiring a measure

of group sparsity in W matrix. l1,q norm is a matrix norm defined as:

∥w∥1,q =
M∑︂

m=1

(︄
N∑︂

n=1

|wn,m|q
)︄1/q

, (3.33)

where |wn,m| is the weight magnitude of M th antenna element for the transmission of N th

communication symbol. Minimization of this mixed norm for l1,2 case provides an antenna

setup with the same antenna elements with different beamforming weights utilized for

each unique symbol transmission. Nevertheless, a weighting function should also be

utilized to select antenna elements for each case based on the closest approximation

of l0 norm calculated on the column vector representing that case. Weight function has

the same purpose of scaling down the magnitudes of elements in weight vectors while

assigning large weights to unselected antenna elements, as in (3.28). This time, the

multiplicative inverse of l2 norm of each row in W is used as a scaling factor for those

rows, while the antenna elements assigned very low weights in the previous iteration are

scaled up in the same way. The new weight vector, represented as v, has its mth element

defined by the function:

v(i)m =

⎧⎪⎨⎪⎩
1(︂∑︁N

n=1 |w
(i−1)
n,m |q

)︂1/q , if
∑︁N

n=1 |w
(i−1)
n,m | > δ,

1
ϵ
, if

∑︁N
n=1 |w

(i−1)
n,m | ≤ δ.

(3.34)

Replacing the l1,2 norm, along with weighting function, in the previous problem statement

results in:

min
wn

||wn||22 + η
M∑︂

m=1

(︄
v(i)m

N∑︂
n=1

|wn,m|q
)︄1/q

, (3.35)

s. t. |Grade
jϕ(θr) −wH

n a(θr)| ≤ γtol, θr ∈ Θr; n = 1, . . . , N, (3.36)

|wH
n a(θϵ)| ≤ ϵsl, θϵ ∈ Θsl; n = 1, . . . , N, (3.37)

wH
n a(θc) = ∆n,ce

jϕn,c ; n = 1, . . . , N. (3.38)
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This problem statement minimizes power usage and provides the minimum possible num-

ber of selected antennas, in a manner that indices of nonselected antenna elements are

consistent throughout each possible set of transmit symbols. The optimization problem

has to be solved iteratively until optimal results are obtained while updating the weight

function v
(i)
m at each iteration. At the initialization stage, all the weights are set to one.

Since the final convex optimization problem is now obtained, the step-by-step process

of the antenna selection strategy proposed in [6], and reviewed in this chapter, can be

described as follows:

1. Initially, set the weight vector v(0) as a 1×M vector of ones.

2. Solve the optimization problem defined in (3.35)-(3.38).

3. Update the each element v(i)m of the weight vector v(i) based on the values acquired

from step 2, in accordance to (3.34).

4. If the results converge or the maximum number of iterations is reached, terminate.

Otherwise, return to step 2.

3.3 Simulation results

A simulation setup was built based on Algorithm 1 proposed in the reference paper, and

acquired results were comparable to the ones presented in reference work. Likewise the

reference paper, CVX [39] [40] was the solver tool used for performing these simulations.

The main beam allocated for radar operation was set to be directed towards angle 0◦,

while the sidelobe region was set as Θsl = [−60◦,−7◦) ∪ (7◦, 60◦]. Two communication

users were placed in directions 30◦ and 40◦. The simulated antenna array had 40 trans-

mitters, and the maximum allowed sidelobe gain was set to be 20 dB below the main beam

gain. After solving the optimization problem described in (3.24)-(3.27) for the simulation

setting, the weight vector was updated following (3.28). This was repeated for 5 times in

total whereupon convergence occurred. Figure 3.2 shows the number of selected anten-

nas after each iteration. A visualisation of the antenna array profile is presented in Figure

3.3, and transmit beam pattern after convergence is shown in Figure 3.4.
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Figure 3.2. Figure depicting the total number of selected antennas with respect to itera-
tion number. It can be observed that convergence is reached within the first few iterations.
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Figure 3.3. Schematic of array profile for each iteration, showing the locations of selected
antenna elements within the array with respect to their indices.
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Figure 3.4. Acquired antenna pattern after last iteration. Main beam length and position,
along with the gain drop from main beam to sidelobes, are accurate to the given simulation
settings.
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4. SCNR MAXIMIZATION STRATEGY FOR JRC

SYSTEMS

This chapter provides a thorough explanation of finding the optimal beamformer for im-

proving the detection performance in JRC systems by maximizing SCNR. Section 4.1

elaborates on how SCNR directly relates to detection performance of a radar system.

System model is described along with signal model used for representing SCNR and

SNR expressions for radar and communication operations, respectively, in section 4.2. A

convex optimization problem is defined for maximizing radar SCNR while satisfying com-

munications requirements in section 4.3, and a rank-reduction algorithm is applied in

section 4.4 to convert the information acquired by solving the optimization problem into a

weight vector that is usable in a beamforming system model. The chapter concludes with

interpretation of simulation results in section 4.5.

4.1 Objective of SCNR Maximization

Analogous to the symbol detection in communication systems, radar systems rely on

decision-making between two hypotheses of a target actually being present or not for de-

tection. While the noise is always present in the system, the system receives a signal

resulting from the reflections off the target in addition to noise in case of detection. Suc-

cessfully distinguishing between the cases of a varying noise signal and a varying noise

signal plus a varying target return signal relies on having a high SNR. Both the noise

amplitude and target return signal amplitude have their own probability density functions

(PDF) depending on noise PDF and transmit power, respectively. The probability of suc-

cessfully identifying a case where detection occurs is referred to as the detection rate

(DR), while the probability of making a decision in favour of detection while no target pres-

ence is named the false alarm rate (FAR). The detection threshold is negatively correlated

with the FAR, alongside with the DR, which is positively correlated with peak output SNR

in addition[41]. Besides the noise, clutter reflection is another source of FAR. Thus, in the

radar system with the presence of clutter, the measurement signal-to-clutter-noise-ratio

(SCNR) is often used for derive the DR. Thus, it necessarily follows from here that max-

imizing SCNR for a fixed FAR is equivalent to maximizing the DR, as shown in Figure

4.1.
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Figure 4.1. Figure from [41] depicting the positive correlation between detection rate and
signal-to-interference and noise ratio (SINR).

Figure 4.2. Figure from [42] demonstrating the noise PDFs and target plus noise PDFs
for lower and higher SNR cases in (a) and (b), respectively.
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A visual depiction of the relationship between detection rate and SNR is provided in Fig-

ure 4.2, where a smaller overlapping area exists between noise and target plus noise

PDFs in higher SNR cases. SNR maximization is essential in the design of radar sys-

tems, and one of the optimum beamformers explained in Chapter 2.2.1 has maximiza-

tion of SNR as its objective function. Even though that beamformer is generally suitable

for radar applications, its expression for optimal weights is not directly usable in the JRC

system model described in this chapter. There are extra constraints that emerge when

radar and communication systems are merged, and they are critical for the JRC system

performance. The multi-purpose system assumed in this work has to satisfy constraints

for communication performance and power consumption in addition to maximizing the

detection performance. The rest of this chapter elaborates on a method for maximizing

the ratio of target return signal power to the noise power plus clutter return signal power

combined, or signal to noise and clutter ratio (SCNR) for short, while satisfying the per-

formance requirements for communication operation and power budget restriction at the

same time for JRC system.

4.2 System model

The model used in this chapter is different from the one used in the previous chapter

in terms of the system setting, assumed preliminary information about the system, and

the mathematical expression used to state the optimization problem. The beamforming

approach described in this part will be concerned with single-user mmWave JRC systems

where there is only a single non-negligible clutter that can be detected by radar operation.

A direct path for the communication operation is not assumed this time, and a channel

vector h is used to model the reflectivities of possible point reflectors connecting the

transmitter and user. Performance requirements for the communication operation are

satisfied again by the problem constraints as the priority is still in the radar operation.

However, this time, the constraints will enforce the communication performance by setting

a lower threshold for SNR only. Direct connection is assumed between the transmitter

and radar target along with clutter. Radar performance is ensured by setting the objective

function as an expression proportional to the power transmitted to and received back from

the direction of the target and inversely proportional to the added effects of the noise and

power reflected back from clutter.

The system assumed in this part is a phased antenna array with half of the antennas al-

located for transmitting the waveform that is used for both radar target detection and car-

rying the communication message, with the other half allocated for receiving the reflected

signal from the radar target and clutter. The waveform is multiplied by the beamforming

vector and put through a phase shifter before getting transmitted. Return signal sensed

by the antenna elements allocated for receiving is subjected through the phase shifter
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again and processed further for the acquisition of sensing parameters which is beyond

the scope of this work about beamforming. A schematic of the system setting can be

seen in Figure 4.3.

Figure 4.3. Visualization of JRC operation and simplified block diagram of the transmitter
side.

The mathematical expression of the received radar signal is acquired by multiplying the

transmit waveform x by weight vector u, transmit and receive steering vectors at(θ) and

ar(θ) directed at radar target θt and clutter θc, scaled by reflection factors of the target σt

and clutter σc:

r = σtar(θt)a
H
t (θt)ux+ σcar(θc)a

H
t (θc)ux+ n, (4.1)

where n is the noise vector. Likewise, the signal received by the communication user is
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given by:

yc = hHux+ ν, (4.2)

where ν is the noise affecting the transmitted communication symbol. Left multiplying

(4.1) by wH yields the received combined radar return signal, making the substitution

A(θ) = ar(θ)a
H
t (θ), it could be written as:

yr = wHr = σtw
HA(θt)ux+ σcw

HA(θc)ux+wHn. (4.3)

The average SCNR expression is acquired by the ratio of the target return signal power

to the clutter return signal power plus noise power. Noise is assumed to have a variance

of N
′
0 and thus could be shown as an identity matrix scaled by N

′
0:

γr =
σ2
t |wHA(θt)u|2

σ2
cw

H(A(θc)uuHAH(θc) + I
N

′
0

σ2
c
)w

. (4.4)

Average communication SNR is expressed similarly as:

γc =
|hHu|2

N
′
0

. (4.5)

It is clear from (4.4), (4.5) that the radar SCNR and communication SNR are dependent

on u. In the next section, an optimization problem is formulated to find the optimal value of

u which guarantees communication SNR over a set threshold while having the maximum

possible radar SCNR.

4.3 Problem Formulation

Now those expressions will be used to form an optimization problem, and it will gradually

be converted into a convex optimization problem. Maximizing γr by setting w and u

vectors while keeping total transmit power ||u||22 under an upper bound and keeping γc

above a lower bound constitutes an optimization problem stated as:

maximize
w,u

γr = σ
|wHA(θt)u|2

wH(A(θc)uuHAH(θc) + IN0)w
(4.6)

s. t. ||u||22 ≤ Pt, (4.7)

wHw = ||w||22 = 1, (4.8)

γc =
|hHu|2

N
′
0

≥ Γc, (4.9)
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Begin

Acquisition of expressions for γr and γc

Formation of the optimization problem with a minimizing objective function

Substitution of w with MVDR weights in γr

Utilization of Sherman-Morrison formula to replace inverse matrix expression with a linear expression in γr

Rephrasing of γr as the Schur complement of a matrix X

Replacing uuH with U in objective function and constraints

Solution of the resulting convex optimization problem via PICOS[43] to acquire the optimal U

Decomposing the acquired U ∗ into uuH via rank-reduction algorithms

Finish

Figure 4.4. Flowchart of the steps described in this chapter for acquiring the optimal
beamforming weight vector u for maximizing radar SCNR.
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where σ = σ2
t /σ

2
c is the ratio between squares of target reflection factor and clutter

reflection factor, and N0 = N
′
0/σ

2
c is noise variance divided by squared clutter reflection

factor. Receive weights w are expected to set gain for the radar target direction to unity

while keeping the total array output power unchanged. Therefore, minimum variance

distortionless response (MVDR) weights[44] can be used to express w in terms of u and

A(θ).

wMVDR =
M−1(u)A(θt)u

uHAH(θt)M−1(u)A(θt)u
, (4.10)

where M is the spatial covariance matrix given by:

M (u) = A(θc)uu
HAH(θc) + IN0 (4.11)

Substituting w with wMVDR in γr yields:

γr = σ
|( M−1(u)A(θt)u

uHAH(θt)M−1(u)A(θt)u
)HA(θt)u|2

( M−1(u)A(θt)u
uHAH(θt)M−1(u)A(θt)u

)H(AH(θc)uuHAH(θc) + IN0)
M−1(u)A(θt)u

uHAH(θt)M−1(u)A(θt)u

(4.12)

= σ
( M−1(u)A(θt)u
uHAH(θt)M−1(u)A(θt)u

)HA(θt)uu
HAH(θt)(

uHA(θt)M−1(u)
uHAH(θt)M−1(u)A(θt)u

)

( M−1(u)A(θt)u
uHAH(θt)M−1(u)A(θt)u

)H(AH(θc)uuHAH(θc) + IN0)
M−1(u)A(θt)u

uHAH(θt)M−1(u)A(θt)u

(4.13)

Since the value of uHAH(θt)M
−1(u)A(θt)u is a scalar and its multiplicative inverse is

present in both numerator and denominator, it can directly be eliminated. That leads to:

γr = σ
uHAH(θt)M

−1(u)A(θt)uu
HAH(θt)M

−1(u)A(θt)u

uHAH(θt)M−1(u)(AH(θc)uuHAH(θc) + IN0)M−1(u)A(θt)u
(4.14)

Multiplying both sides by the denominator after this elimination yields:

γru
HAH(θt)M

−1(u)(AH(θc)uu
HAH(θc) + IN0)M

−1(u)A(θt)u = . . .

σuHAH(θt)M
−1(u)A(θt)uu

HAH(θt)M
−1(u)A(θt)u (4.15)

Both sides of the equation are multiplied with the vector uHAH(θt)M
−1(u), so it is possi-

ble to eliminate it from both sides. Even though vectors do not have inverses themselves,

they can be multiplied by their Hermitians to result in scalars or covariance matrices,

which can be eliminated by getting multiplied by their multiplicative inverses. Eliminating
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the left-multiplied uHAH(θt)M
−1(u) and right-multiplied by M−1(u)A(θt)u results in:

γr(A
H(θc)uu

HAH(θc) + IN0) = σA(θt)uu
HAH(θt) (4.16)

γrM(u) = σA(θt)uu
HAH(θt) (4.17)

Right-multiplying both sides with M−1(u)A(θt)u results in:

γrA(θt)u = σA(θt)uu
HAH(θt)M

−1(u)A(θt)u (4.18)

Now both sides can be left-multiplied first by uHAH(θt), then by (uHAH(θt)A(θt)u)
−1

in order to eliminate the A(θt)u expression from both sides. This allows the problem

statement to be rewritten as:

maximize
u

γr = σuHAH(θt)M
−1(u)A(θt)u (4.19)

s. t. ||u||22 ≤ Pt, (4.20)

γc =
|hHu|2

N
′
0

≥ Γc (4.21)

Then this problem can be rephrased so that the objective function is a minimum:

minimize
u

− y (4.22)

s. t. σuHAH(θt)M
−1(u)A(θt)u ≥ y (4.23)

||u||22 ≤ Pt, (4.24)

γc =
|hHu|2

N
′
0

≥ Γc (4.25)

The inverse matrix expression M−1(u) can be converted to a linear expression by utiliz-

ing Sherman-Morrison formula[45]:

(N + abT )−1 = N−1 − N−1abTN−1

1 + bTN−1a
(4.26)

where N ∈ Rn×n is an invertible square matrix and b,a ∈ Rn are column vectors, and

1 + bTN−1a ̸= 0. N is an identity matrix scaled by N0 in the case of this problem, and
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a = b = A(θc)u. Substituting those in the formula yields:

M−1(u) = (IN0 +A(θc)uu
HAH(θc))

−1 (4.27)

= I
1

N0

−
1
N0

IA(θc)uu
HAH(θc)

1
N0

I

1 + uHAH(θc)
1
N0

IA(θc)
(4.28)

=
1

N0

(I − A(θc)uu
HAH(θc)

N0 + uHAH(θc)A(θc)u
) (4.29)

=
1

N0

(I − A(θc)uu
HAH(θc)

N0 + tr(A(θc)uuHAH(θc))
) (4.30)

Substituting this with M−1 in the γr expression yields:

γr =
σ

N0

uHAH(θt)(I − A(θc)uu
HAH(θc)

N0 + tr(A(θc)uuHAH(θc))
)A(θt)u. (4.31)

Expression in (4.23) can be rewritten as γr−y ≥ 0 in order to treat γr−y as a 1×1 positive

semi-definite matrix and utilize Schur complement to further transform the problem. Let a

matrix X be defined such that:

X =

⎡⎣ A(uuH) B(uuH)

BH(uuH) C(uuH)

⎤⎦ , (4.32)

where,

A(uuH) =
σ

N0

uHAH(θt)A(θt)u− y, (4.33)

=
tr(A(θt)uu

HAH(θt))

N0

− y,

B(uuH) = uHAH(θt)A(θc)u, (4.34)

= tr(A(θc)uu
HAH(θt)),

B(uuH)H = uHAH(θc)A(θt)u, (4.35)

= tr(A(θt)uu
HAH(θc)),

C(uuH) =
N0

σ
(N0 + tr(A(θc)uu

HAH(θc))). (4.36)

It should be minded that since expressions for A, B, and C all result in scalars when

evaluated, they can be put in trace operations without their values getting changed.

They can then get reorganized inside trace operation due to the cyclic property of trace:

tr(ABC) = tr(BCA) = tr(CAB).

According to Schur complement’s conditions for positive definiteness semi-definiteness,

provided that C is positive definite, then X is positive semi-definite if and only if its Schur

complement X/C is positive semi-definite[46].

If C ≻ 0, then X ⪰ 0 ⇔ X/C = A−BC−1BH ⪰ 0. (4.37)
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C(uuH) is clearly positive definite since it is an expression of addition of two non-zero

real numbers. Positive semi-definiteness of one of X/C or X imply the positive semi-

definiteness of the other, and X/C is equal to:

X/C = A−BC−1BH , (4.38)

=
σ

N0

uHAH(θt)A(θt)u− y − uHAH(θt)A(θc)uu
HAH(θc)A(θt)u

N0

σ
(N0 + tr(A(θc)uuHAH(θc)))

, (4.39)

=
σ

N0

uHAH(θt)(I − A(θc)uu
HAH(θc)

N0 + tr(A(θc)uuHAH(θc))
)A(θt)u− y, (4.40)

= γr − y. (4.41)

Since γr − y is equal to X/C and it being larger than or equal to 0 implies the positive

semi-definiteness of X and vice versa, the optimization problem constraint involving γr

and y can be rewritten as a constraint enforcing the positive semi-definiteness of X ,

minimize
u

− y (4.42)

s. t. X ⪰ 0, (4.43)

||u||22 ≤ Pt, (4.44)

γc =
|hHu|2

N
′
0

≥ Γc, (4.45)

where X is the matrix described in (4.32). One last factor that keeps this problem from

being convex is that expression uuH which can be written as U in order to get rid of the

quadratic expression. It is also required to change the other expressions with uuH in the

problem statement to equivalent statements with U for the sake of convexity. Constraint

of power budget, ||u||22 ≤ Pt can also be rewritten as tr(U ) ≤ Pt by the steps:

||u||22 = uHu Sum of each vector element’s square (4.46)

= tr(uHu) Trace of a scalar is equal to that scalar itself (4.47)

= tr(uuH) Cyclic property of trace (4.48)

= tr(U) (4.49)

Likewise, problem constraint enforcing the lower threshold for communication operation
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SNR can be rewritten as an expression of U by applying these steps on γc:

γc =
|hHu|2

N
′
0

Squared magnitude of a complex scalar (4.50)

=
hHuuHh

N
′
0

Equal to multiplying the scalar with its complex conjugate (4.51)

=
tr(hHuuHh)

N
′
0

Trace of a scalar is equal to that scalar itself (4.52)

=
tr(hhHuuH)

N
′
0

Cyclic property of trace (4.53)

=
tr(UH)

N
′
0

hhH is written as H (4.54)

Replacing all of these expressions with their counterparts in the original problem state-

ment results in:

minimize
U

− y (4.55)

s. t. X =

⎡⎣ A(U) B(U)

BH(U ) C(U )

⎤⎦ ⪰ 0, (4.56)

tr(U) ≤ Pt, (4.57)

γc =
tr(UH)

N
′
0

≥ Γc. (4.58)

(4.59)

U is acquired by the multiplication of u by its Hermitian. It is possible to enforce the

property of U being a Hermitian matrix by defining it as such in the solver tool. However,

it is also required to express that U should only have one vector spanning its range.

Adding the constraint rank(U) = 1 would satisfy that requirement, but it will also render

the problem unsolvable by complex optimization algorithms since rank constraints are

non-convex expressions. A suitable approach here is to solve the stated problem without

imposing any constraints on the rank of U and then process the resulting U through a

rank-reduction algorithm in order to get a rank one matrix that can be decomposed as

U = uuH where u will be the weight vector to be used in beamforming as shown in

Figure 4.3.

4.4 Rank reduction

Inputting the previous problem statement through a convex optimization problem solver

tool results in the minimum possible value of y, and values of U , X , γc that provide

the satisfaction of conditions for acquiring that result. Let the values acquired from the
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problem solution represented with an asterisk such as U ∗. The elements of matrix X

with solved values can be shown as:

X =

⎡⎣ σ
N0

tr(A(θt)U
∗AH(θt))− y∗ tr(A(θc)U

∗AH(θt))

tr(A(θt)U
∗AH(θc))

N0

σ
(N0 + tr(A(θc)U

∗AH(θc)))

⎤⎦ =

⎡⎣a∗ b∗

b∗ c∗

⎤⎦ .

(4.60)

Here it should be noted that two elements of matrix X , B(U) and BH(U) are equivalent

to each other due to a property of trace operation:

tr(MH) = tr(M ) For any matrix M (4.61)

tr((A(θc)U
∗AH(θt))

H) = tr(A(θt)U
∗AH(θc)) = b∗ (4.62)

Writing the expressions for elements of X in open form, isolating the operations involving

U ∗, and rearranging the trace operation inputs by cyclic property results in:

tr(AH(θt)A(θt)U
∗) =

N0

σ
(a∗ + y∗) (4.63)

tr(AH(θt)A(θc)U
∗) = tr(AH(θc)A(θt)U

∗) = b∗ (4.64)

tr(AH(θc)A(θc)U
∗) =

σ

N0

(c∗ −N0) (4.65)

Additionally, there are two more equations relating U ∗ to other values acquired by opti-

mization problem solution.

tr(U ∗) = P ∗ (4.66)

tr(U ∗H) = γ∗
cN

′

0 (4.67)

Now the task of performing the rank one decomposition U ∗ = uuH is equivalent to

finding a vector u that satisfies the equations (4.63) to (4.67) when U ∗ is substituted

by uuH in those. Among these equations, (4.64) could be eliminated by approximating

AH(θt)A(θc) as 0. This is due to the fact that steering vectors directed to different angles

approach to orthogonality with each other as the number of antennas approaches infinity,

as stated in Corollary 2 in [47]. Since this approximation describes an equation where

U ∗ is multiplied by zero, which will be satisfied as b∗ = 0 no matter the value of U ∗, there

are only 4 non-trivial equations that define u.
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Current problem is to find a vector u such that:

tr(AH(θt)A(θt)uu
H) = tr(AH(θt)A(θt)U

∗) =
N0

σ
(a∗ + y∗), (4.68)

tr(AH(θc)A(θc)uu
H) = tr(AH(θt)A(θc)U

∗) =
σ

N0

c∗ −N0, (4.69)

tr(uuH) = tr(U ∗) = P ∗, (4.70)

tr(uuHH) = tr(U ∗H) = γ∗
cN

′

0. (4.71)

Now in order to acquire the optimal beamforming vector u, it is needed to apply the

Theorem 2.3 in [48], which relies on previously established theorems [49][50]. Theorem

assumes four Hermitian matrices, A1, A2, A3 and A4, of size n where n ≥ 3, and another

Hermitian matrix of the same size, X , that has rank r and is positive semidefinite. It

further assumes that at least one matrix among A1, A2, A3 and A4 has a nonzero result

when put through inner product operation, A • Y = Re{tr(AHY )}, with any nonzero

Hermitian positive semidefinite matrix Y of size n. The theorem states that one can find

a nonzero vector y such that:

A1 • yyH = A1 •X (4.72)

A2 • yyH = A2 •X (4.73)

A3 • yyH = A3 •X (4.74)

A4 • yyH = A4 •X (4.75)

where y ∈ Range(X) if r ≥ 3. If r = 2, then for any z /∈ Range(X) y exists in the linear

subspace spanned by z and Range(X). This can be applied to the problem discussed

in this chapter by making the substitutions A1 = AH(θt)A(θt), A2 = AH(θc)A(θc),

A3 = I , A4 = H , and X = U ∗. Further elaboration on the algorithm for acquiring y has

been done in Appendix A. The resulting vector y will be the optimal beamforming vector

represented with u until now.

4.5 Simulation Results

Simulations aimed to observe the tradeoff between performances of radar and commu-

nication operations were performed on situations with varying antenna array elements

and lower thresholds for communication operation SNR. PICOS[43] was used as the tool

for solving optimization problems in this chapter. Parameters for the noise power and

transmit power had the most critical effect on the system performance due to their ra-

tios to each other being directly related to SCNR. In the simulations whose results are

presented in this subsection, ratio of transmit power to the noise power was set as 100.

Constant values of clutter and target reflection factors were set as σc = σt = 1 during
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the simulations. Direction of the target was set towards 30◦, while clutter direction was

set as 60◦. Distance between antenna elements was assumed to be d = λ/2 when mod-

elling steering vectors at(θ) and ar(θ), where λ is the transmit signal wavelength. The

convex optimization problem for each and every one of the situations was solved with a

new randomized channel vector for each iteration before performing the rank reduction

to acquire the u vector for each case. Simulations were repeated 20 times with different

randomly generated channel vectors every time, and resulting values of radar SCNR and

communication SNR were averaged over all 20 results.
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Figure 4.5. Change in radar SCNR as different values of communication SNR are en-
sured by setting different Γc values ranging from 7 dB to 20 dB when defining problem
constraints. N is the number of antennas.

Expected trends of inversely related radar SCNR and communication SNR, in addition

to better radar SCNR with a larger number of antennas, can clearly be observed from

Figure 4.5. It should be noted that radar SCNR values here are not actual values cal-

culated by the radar range equation, but rather are range-independent values calculated

from equation (4.31) that give a measure that is proportional to the actual SCNR value

for comparison purposes. Change in performance based on target distance is not in

the scope of this work, but actual values can be estimated from the ones acquired from

simulation since radar SCNR is inversely proportional to target range to the power of 4.

Another set of simulations was performed for the purpose of inspecting how the approxi-
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mation made about b∗ in previous subsection affected the results. It was possible to find

the vector u resulting in a matrix that is approximately equivalent to U ∗ when multiplied

by its Hermitian, since there were 4 equations defining U ∗ was described from (4.68) to

(4.71). This was, however, only possible due to ignoring a fifth equation that related b∗ to

U ∗. Even though it is theoretically known that steering vectors directed at different an-

gles are orthogonal to each other as the number of antenna elements approaches infinity,

there will obviously be a smaller number of antenna elements in real applications. This

results in uu∗ producing a different result than U ∗ would produce when substituted for

it in (4.64). This implies that u is slightly different than the optimal possible vector, and

the difference is expected to get smaller as the number of antennas increases. An extra

pair of conditions, tr(AH(θt)A(θc)U
∗) = 0, and tr(AH(θc)A(θt)U

∗) = 0 were added

to the optimization problem to enforce b∗ actually being equal to 0. Results acquired from

6 8 10 12 14 16 18 20

Communication SNR lower limit(dB)

15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

R
a

d
a

r 
S

C
N

R
(d

B
)

N = 30(approx.)

N = 50(approx.)

N = 30(actual)

N = 50(actual)

Figure 4.6. Radar SCNR versus communication SNR plots with the different number of
antenna elements, for cases where b∗ is approximated to be zero and for cases where b∗

is actually zero.

simulations that had these constraints in their convex optimization phase were indicating

lower performance than results that did not have those constraints, which is expected

since adding more conditions leads to a lower maximum or higher minimum in optimiza-

tion problems, and the difference between those results was observed to be smaller for

cases with the higher number of antenna elements as seen in Figure 4.6. This is due to
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the fact that b∗ is already quite close to 0 for a large number of antennas, and extra condi-

tions do not put any serious restriction on the problem that would cause a non-negligible

change in the optimal result.



41

5. CONCLUSION

This thesis work investigates optimal beamforming in joint radar and communication sys-

tems. The main contribution is the novel SCNR maximization method for JRC systems

with no direct path between communication users, presented in Chapter 4. Other contri-

butions and conclusions include reviews of previous works about joint radar and commu-

nication systems, particularly on antenna selection and beamforming. A mathematically

intensive approach was followed during the writing phase and the viability of the proposed

methods was shown theoretically. Chapter by chapter conclusions are as follows:

Preliminary work for this thesis was based on reviewing and duplicating the antenna se-

lection algorithm proposed in [6], and Chapter 3 is devoted to that. The system model

is shortly described as a JRC system that utilizes QAM-based sidelobe modulation. The

motivation behind devising an antenna selection algorithm is explained, which could be

summarized as reducing the number of costly RF chains used for the JRC operation via

connecting multiple transmit antennas for each RF chain and using the smallest number

of antennas among those for the JRC operation. In contrast, the rest are used for other

possible operations simultaneously. The objective function is stated with respect to a ref-

erence main beam pattern similar to the reference signal beamformer. The direct path

between communication users was assumed in the system model. Then norm functions

are shortly explained since l0 norms and approximating them by calculating iteratively

weighted l1 norms constitute a core point of the antenna selection algorithm. The ini-

tial algorithm that optimizes the transmit power and antenna selection while satisfying

the system constraints for a single instance of communication transmission is presented.

Even though this algorithm satisfies the optimization goals for a single scenario, transmit

symbols change during transmission in practice, and this requires beamforming weights

to be reconfigured since having the active antennas change over time will require them

to be frequently switched on and off, which would cause problems, especially in situa-

tions with high data rate. A revised algorithm is later presented that utilizes the mixed l1,q

norm so that the locations of selected antennas in the array are kept the same between

different sets of transmit symbols, with a weighting function modified accordingly. The

chapter is finished with a detailed description of the revised algorithm, before presenting

the simulation results acquired from a re-creation of the initial algorithm.

Main contribution of this thesis work is a novel algorithm for acquiring globally optimal
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solution for the beamforming problem of attaining maximum detection performance with a

JRC system. A system model that is similar to the one in the previous chapter is used in

this part of the work, although with major differences being the objective function based

on SCNR rather than reference beam pattern and no direct path assumption being made

between communication users which requires the channel to be modelled and included in

the SNR expression for the communication operation. Assumptions about the system set-

ting are similar to the work done in [7], albeit with a simplified clutter model that assumes

only a single non-negligible clutter source. An objective function is built by dividing the

signal power of the radar target return by the powers of noise and clutter return. Problem

constraints consist of a power budget constraint that ensures the l2 norm of transmitter

beamforming weights is smaller than the available power, a receiver gain constraint that

prevents the total array output power from changing by constraining the l2 norm of re-

ceiver weight vector to be equal to 1, and a communication performance constraint that

sets the SNR of communication operation to be equal to or larger than a given thresh-

old value. This problem statement initially has two variables: the transmit beamforming

weight vector and the receive beamforming weight vector. However, receive beamforming

weights could be substituted by MVDR weights, leaving only the transmit beamforming

weight vector as the optimization variable. Doing this substitution, and rephrasing the

problem statement accordingly, results in the inverse matrix expression in the problem.

The Sherman-Morrison formula is then used to convert the inverse matrix into a linear

expression. The objective function is rephrased again after this by forming a matrix from

the statements acquired from one of the constraints and then employing Schur’s com-

plement and its properties to convert the SCNR maximization constraint into a positive

one semi-definiteness constraint which is a convex constraint function. Quadratic expres-

sions of transmit beamforming vectors are rewritten as matrices to preserve convexity in

the problem statement. If required, this process is reversed after acquiring a solution by

utilizing rank reduction methods. The chapter concludes by presenting simulation results

that depict the tradeoff between radar operation SCNR and communication operation

SNR, along with how the approximation of orthogonality between array steering vectors

pointing at different directions is affected by increasing the number of antenna elements

in the array.
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APPENDIX A: RANK REDUCTION METHODS

This appendix elaborates on algorithms for acquiring rank-one decomposition of Hermi-

tian matrices. These methods are relevant for Chapter 4.4 in this thesis, where a rank-one

matrix solution for the system of linear matrix equations defined by (4.68)-(4.71) is being

sought. Dot operator is used for denoting inner product between matrices A and B, such

as A •B = Re{tr(AHB)} in this appendix.

A.1 Single matrix case

Let A be a Hermitian matrix of size n, and X be a positive semidefinite Hermitian matrix

of size n and rank r. This decomposition relies on producing x vectors such that:

X =
r∑︂

i=1

xix
H
i (A.1)

xH
i Axi =

A •X
r

(A.2)

Eigenvectors of A are used in generating x vectors.

• Step 1: Eigenvalues λi and eigenvectors li of X are acquired by eigenvalue de-

composition. X can be built from those by X =
∑︁n

i=1 λilil
H
i .

• Step 2: If any those eigenvectors also satisfy λiliXlHi = A•X
r

, it is one of the x

vectors that satisfy (1) and (2). The process should be continued from step 5 in that

case.

• Step 3: A pair of ui =
√
λili are chosen such that uH

1 Au1 > A•X
r

, uH
2 Au2 <

A•X
r

and they are used for generating vi = (u1 + γu2). γ is found by solving the

equation:

(u1 + γu2)
HA(u1 + γu2) = (1 + γ2)

A •X
r

(A.3)
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which can be written in quadratic equation form:

γ2(uH
2 Au2 −

A •X
r

) + γ(uH
1 Au2 + uH

2 Au1) + uH
1 Au1 −

A •X
r

= 0

(A.4)

γ2(uH
2 Au2 −

A •X
r

) + 2γRe{uH
1 Au2}+ uH

1 Au1 −
A •X

r
= 0

(A.5)

It is known that the roots of this equation are real and have opposite signs from

quadratic equation properties. Roots are acquired by the formula:

γ1 =
−2Re{uH

1 Au2} −
√
∆

uH
1 Au2 − A•X

r

(A.6)

γ2 =
−2Re{uH

1 Au2}+
√
∆

uH
1 Au2 − A•X

r

(A.7)

where, (A.8)

∆ = 4γRe{uH
1 Au2}2 − 4(uH

1 Au1 −
A •X

r
)(uH

2 Au2 −
A •X

r
) (A.9)

• Step 4: The positive root is chosen among γ1 and γ2. Then another vector v is

built by:

v =
u1 + γu2√︁

1 + γ2
(A.10)

• Step 5: Acquired vector v is stored as the ith x vector xi and X matrix is updated

as X
′
= X − xix

H
i . Previous steps are repeated while updating X at each

iteration until r number of z vectors are acquired and rank(X) = 1.

A.2 Two matrix case

This case could be thought of as the single matrix case applied two times over. Premises

are same as the previous case, except there is an additional matrix B that is also Hermi-

tian and of size n just like A. This decomposition results in vectors xi such that:

X =
r∑︂

i=1

xix
H
i (A.11)

xiAxH
i =

A •X
r

(A.12)

xiBxH
i =

B •X
r

(A.13)

• Step 1: Single matrix decomposition is performed with A in order to acquire a set



50

of vectors ui such that:

X =
r∑︂

i=1

uiu
H
i (A.14)

uiAuH
i =

A •X
r

(A.15)

• Step 2: If any of those ui vectors also satisfy uiBuH
i = B•X

r
, then the process

should be continued from step 5 where the vector to be stored will be ui.

• Step 3: Two vectors uH
1 Bu1 > B•X

r
, uH

2 Bu2 < B•X
r

are found among ui, and

they are used for generating vi = (u1 + wu2). w = γejα is a complex number

which has its phase defined as α = α1 + π/2 and its magnitude γ is found by

solving the equation:

(u1 + wu2)
HA(u1 + wu2) = (1 + γ2)

B •X
r

(A.16)

which can be written in quadratic equation form:

|w|2(uH
2 Bu2−

B •X
r

)+wuH
1 Bu2+wuH

2 Au1+uH
1 Au1−

B •X
r

= 0 (A.17)

The expression uH
2 Bu1 is a complex scalar and is represented as γpe

jα2 after this

point.

γ2(uH
2 Bu2 −

B •X
r

) + γejαγpe
−jα2 + γe−jαγpe

jα2 + uH
1 Au1 −

A •X
r

= 0

(A.18)

γ2(uH
2 Bu2 −

B •X
r

) + γpγ(e
jαe−jα2 + e−jαejα2) + uH

1 Au1 −
A •X

r
= 0

(A.19)

γ2(uH
2 Bu2 −

B •X
r

) + 2γpγcos(α− α2) + uH
1 Au1 −

A •X
r

= 0

(A.20)

γ2(uH
2 Bu2 −

B •X
r

) + 2γpγcos(α1 + π/2− α2) + uH
1 Au1 −

A •X
r

= 0

(A.21)

γ2(uH
2 Bu2 −

B •X
r

) + 2γpγsin(α2 − α1) + uH
1 Au1 −

A •X
r

= 0

(A.22)

It is known that the roots of this equation are real and have opposite signs from
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quadratic equation properties. Roots are acquired by the formula:

γ1 =
−2γpsin(α2 − α1)−

√
∆

2(uH
2 Bu2 − B•X

r
)

(A.23)

γ2 =
−2γpsin(α2 − α1) +

√
∆

2(uH
2 Bu2 − B•X

r
)

(A.24)

∆ = 4(γpsin(α2 − α1))
2 − 4(uH

1 Bu1 −
B •X

r
)(uH

2 Bu2 −
B •X

r
) (A.25)

• Step 4: The positive root is chosen among γ1 and γ2 to be named γ. Then two

other vectors v1 and v2 are built by:

v1 =
u1 + wu2√︁

1 + γ2
(A.26)

v2 =
wu1 − u2√︁

1 + γ2
(A.27)

• Step 5: The vector v1 is stored as the ith x vector xi, and update X matrix as

X
′
= X − xix

H
i . Previous steps are repeated while updating X at each iteration

until r number of x vectors are acquired and rank(X) = 1.

A.3 Three matrix case

In this case, there are three Hermitian matrices A, B, and C, of size n, in addition to

a nonzero Hermitian positive semidefinite matrix X of size n and rank r. Assuming that

r ≥ 3 it is possible to find a rank one decomposition of X , X =
∑︁r

i=1 yiy
H
i , such that:

A • yiy
H
i = A •X/r, i = 1, . . . , r; (A.28)

B • yiy
H
i = B •X/r, i = 1, . . . , r; (A.29)

C • yiy
H
i = C •X/r, i = 1, . . . , r − 2; (A.30)

Likewise, in the previous case, the decomposition for A and B is performed by employing

the methods for one and two matrix cases. Then, acquired vectors are utilized to form

an equation, resulting in another vector that will satisfy it for C. However, there are

three equations to satisfy this time, requiring an equation system with three unknowns to

acquire a solution.

• Step 1: Decomposition for two matrices is applied on A and B to acquire a set of
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x vectors such that:

X =
r∑︂

i=1

xix
H
i (A.31)

A • xix
H
i = A •X/r (A.32)

B • xix
H
i = B •X/r (A.33)

for all i = 1, . . . , r. The notation δa = A •X , δb = B •X , and δc = C •X will

be used from now on for simplicity.

• Step 2: If any of those xi vectors also satisfy C •xix
H
i = δc/r, process should be

continued from step 5 by storing that xi as one of the y vectors.

• Step 3: One of the x vectors is chosen so that C •x1x
H
1 − δc/r > 0, another one

is chosen so that C • x2x
H
2 − δc/r < 0, and a different third vector x3 is freely

chosen. Vector y is calculated as a normalized linear combination of those three

vectors:

y =
α1x1 + α2x2 + α3x3√︁
|α1|2 + |α2|2 + |α3|2

(A.34)

where α1, α2, and α3 are the three unknowns to be calculated. The equation

system is formed as follows:

A • yyH = δa/r (A.35)

B • yyH = δb/r (A.36)

C • yyH = δc/r (A.37)

These expressions will be rewritten for clarity purposes. (A.35) can be written in

the form:

A • yyH = Re{tr(yHAy)} (A.38)

= δa/r (A.39)

Substituting y with (A.34) yields:

δa/r = Re{tr(( α1x1 + α2x2 + α3x3√︁
|α1|2 + |α2|2 + |α3|2

)HA
α1x1 + α2x2 + α3x3√︁
|α1|2 + |α2|2 + |α3|2

)} (A.40)

=
1

|α1|2 + |α2|2 + |α3|2
Re{tr((α1x1 + α2x2 + α3x3)

HA(α1x1 + α2x2 + α3x3))}

(A.41)

Multiplying both sides with |α1|2 + |α2|2 + |α3|2 and proceeding with operations



53

leads to:

Re{|α1|2xH
1 Ax1 + α1α2x

H
1 Ax2 + α1α3x

H
1 Ax3 + . . .

α2α1x
H
2 Ax1 + |α2|2xH

2 Ax2 + α2α3x
H
2 Ax3 + . . .

α3α1x
H
3 Ax1 + α3α2x

H
3 Ax2 + |α3|2xH

3 Ax3}

= (|α1|2 + |α2|2 + |α3|2)δa/r

It is theoretically known that nHMn is real for any complex n vector. Therefore

terms with |αi|2 can be taken out of Re{. . . } parenthesis. δa could be substituted

with A • xix
H
i = xH

i Ax for any i = 1, 2, 3. Thus |αi|2 terms could be eliminated

by subtracting the right hand side from both sides:

Re{α1α2x
H
1 Ax2 + α1α3x

H
1 Ax3 + α2α1x

H
2 Ax1 + . . .

α2α3x
H
2 Ax3 + α3α1x

H
3 Ax1 + α3α2x

H
3 Ax2} = 0

Now it should be observed that (α1α2x
H
1 Ax2)

H = α2α1x
H
2 Ax1, (α1α3x

H
1 Ax3)

H =

α3α1x
H
3 Ax1, and (α2α3x

H
2 Ax3)

H = α3α2x
H
3 Ax2. Noting that each of these

terms are scalar and taking the Hermitian of a scalar is equivalent to taking their

complex conjugate, the property z + z = 2Re{z} could be used to rewrite the

equation as:

2Re{α1α2x
H
1 Ax2}+ 2Re{α1α3x

H
1 Ax3}+ 2Re{α2α3x

H
2 Ax3} = 0. (A.42)

Seeking the exact same steps with (A.36) results in:

2Re{α1α2x
H
1 Bx2}+ 2Re{α1α3x

H
1 bx3}+ 2Re{α2α3x

H
2 Bx3} = 0 (A.43)

(A.37) follows likewise, but |αi|2 terms cannot be eliminated since δc ̸= xH
i Cxi. It

becomes:

(xH
1 Cx1 − δc/r)|α1|2 + (xH

2 Cx2 − δc/r)|α2|2 + (xH
3 Cx3 − δc/r)|α3|2 + . . .

2Re{xH
1 Cx2α1α2}+ 2Re{xH

2 Cx3α2α3 + 2Re{xH
3 Cx1α3α1} = 0

• Step 4: It is theoretically known that this system of equations has a nonzero so-

lution. Acquiring the values of α1, α2, α3, possibly by employing a solver tool and

substituting them in (A.34) yields one of the y vectors.

• Step 5: Acquired vector is stored as ith y vector yi, and X is updated as X
′
=

X − yiy
H
i . Previous steps are repeated until rank(X) = 2, and two matrix

decomposition is applied on A and B that point to complete the rank reduction

process for those. C can only be decomposed until rank of X is reduced to 2 by
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this method. However, a similar theorem also works for this situation, which gets

utilized in the four matrix case.

A.4 Four matrix case

The rank-one decompositions for one and two matrix cases and a theorem similar to

rank-one decomposition for three matrix cases are utilized for this case. The relevant

theorem is mentioned in Step 2. This case is different from the previous three in the

sense that instead of performing a complete rank-one decomposition of X , a rank-one

matrix solution for the following system of linear matrix equations is being sought:

A • zzH = A •X (A.44)

B • zzH = B •X (A.45)

C • zzH = C •X (A.46)

D • zzH = D •X (A.47)

where A, B, C, and D are Hermitian matrices of size n with n ≥ 3, and X is a

nonzero Hermitian positive semidefinite matrix of rank r. A nonzero vector z that satisfies

this equation system could be found provided that the vector containing the results of

operations A •X , B •X , C •X , D •X is not a zero vector. A rephrasing in the form

of A •X = δa will be used for all four matrices in the system of linear matrix equations

in this subsection of the appendix.

• Step 1: Any nonzero δ is chosen among δa, δb, δc, and δd. We know that at least

one of them should be nonzero. Let us choose δd for this example.

• Step 2: According to "Theorem 2.2" in [48], given three Hermitian matrices M1,

M2, M3 of size n, and a nonzero Hermitian positive semmidefinite matrix X of

size n and rank r, a nonzero vector y can be found such that:

M1 • yyH = M1 •X (A.48)

M2 • yyH = M2 •X (A.49)

M3 • yyH = M3 •X (A.50)

as long as r ≥ 2. Applying this theorem to matrices M1 = A − δa
δd
D, M2 =

B− δb
δd
D, and M3 = C− δc

δd
D results in a nonzero n dimensional complex vector
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y such that:

yH(A− δa
δd
D)y = (A− δa

δd
D) •X = 0 (A.51)

yH(B − δb
δd
D)y = (B − δb

δd
D) •X = 0 (A.52)

yH(C − δc
δd
D)y = (C − δc

δd
D) •X = 0. (A.53)

• Step 3: Using the denotation t = yHDy
δd

leads to:

yHAy = tδa (A.54)

yHBy = tδb (A.55)

yHCy = tδc (A.56)

yHDy = tδd. (A.57)

• Step 4: The vector z that was being sought is equal to y√
t

as it could be seen from

the previous step.
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