
i

Ville Nyrhilä

TESTING AND SIMULATION MONITOR
FOR TRAIN SYSTEMS

A case study in software engineering and design

"Faculty of Information Technology and Communication Sciences"

"Master's Thesis"
"Examiner: Hannu-Matti Järvinen"

"Examiner: Jukka Saari"
"November 2022"

TIIVISTELMÄ

"Ville Nyrhilä" : "Testing and Simulation Monitor for Train Systems"
Diplomityö
Tampereen yliopisto
"Tietotekniikan DI-ohjelma"
Marraskuu 2022

Nykyaikana junissa on sulautettuna suuri määrä erinäisiä laitteita, jotka tarkkailevat junan tilaa
ja sääntelevät sitä erinäisin tavoin. Näiden laitteiden tilan seuraamiseen ja muokkaamiseen tar-
vittiin oma, erillinen työkalunsa. Kyseisen työkalun tuottaminen ja kuvailu oli tämän työn tavoite.
Työkalun nimeksi annettiin ”Tobamon”.

Työn teoreettiseksi kehykseksi otettiin design science, joka on alun perin keksitty jo 1950-
luvulla. Se on levinnyt ja tullut sovelletuksi monilla eri tekniikan aloilla. Kasvavissa määrin sitä
käytetään myös ohjelmistotuotannon saralla. Design sciencen tarkempi määritelmä lainataan
Hevner et co. paperista, jossa luetellaan suunnittelutieteen seitsemän perustavanlaatuista suun-
taviivaa: Design as an Artifact, Problem Relevance, Design Evaluation, Research Contributions,
Research Rigor, Design as a Search Process, ja Communication of Research.

Työssä esitellään käytetyt teknologiat. Tobamonin perustoiminnallisuus toteutettiin tässä
työssä Pythonilla. Nettisivunäkymä, jossa monitoroitujen laitteiden tilat eri ajanhetkinä esitetään
kaaviomuodossa, on toteutettu JavaScriptillä ja tämän erinäisillä kirjastoilla. GraphQl-kyselykieltä
käytettiin kohdelaitteiden tilojen selvittämiseen. Postman-ohjelmaa käytettiin Tobamonin kehityk-
sen aikana nettisivunäkymän käyttämien API-päätepisteiden testaamiseen.

Tämän jälkeen kuvaillaan alkuperäiset suunnitelmat Tobamonista, sekä sen kehittämisen vai-
heita. Moni alun perin suunniteltu ominaisuus jouduttiin jättämään pois, sillä aika ei riittänyt. Käy-
tettyjä työskentelytapoja kuvaillaan.

Kehityksen vaiheiden jälkeen kuvaillaan Tobamonin tässä työssä saavuttama lopullinen
muoto. Sellaisenaan se kykenee yhdistämään palvelimeen, joka on junassa tai testipenkissä. Yh-
teyden kautta se pystyy tarkkailemaan ennalta konfiguroituja oheisia laitteita.

Viimeisenä muodostetaan yhteenveto, arvioidaan Tobamonin kehitystyön sujumista ja tulok-
sia. Mahdollisia jatkokehitysideoita harkitaan.

Avainsanat: Software Engineering, Design Science, monitori, juna, Teleste

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

ABSTRACT

"Ville Nyrhilä" : "Testing and Simulation Monitor for Train Systems"
"Master's Thesis"
Tampere University
"Master's Programme in Information Technology"
November 2022

In the modern times there are a lot of devices embedded within trains. These devices monitor
the state of the train and modulate and modify it in various ways. A software was needed for
monitoring and altering the state of said devices. The development of that tool was the goal of
this work. “Tobamon” was given as the name of said software.

Design science was chosen as the theoretical framework for this work. Design science re-
search was originally invented in the 1950s and has since come to be used in many types of
engineering. It is increasingly being used in Software Engineering research as well. A more defi-
nition of design science is borrowed from a paper by Hevner et al., which introduces seven es-
sential guidelines of design science: Design as an Artifact, Problem Relevance, Design Evalua-
tion, Research Contributions, Re-search Rigor, Design as a Search Process, and Communication
of Research.

In this work, the set of technologies used are introduced. The basic functionality of Tobamon
was implemented using Python. The web page view, in which the states of monitored devices at
given points in time are drawn up in a chart, was implemented with JavaScript and its assorted
libraries. The GraphQL query language was used for finding out the states of the machines. Post-
man was used for testing the API endpoints in use of the web page view during development of
Tobamon.

After this, the initial designs, and subsequent stages of the development of Tobamon are de-
scribed. Many originally intended features had to be left out due to time constraints. Development
techniques are described.

Following description of development, the form which Tobamon ultimately took is described in
much detail. As it is, Tobamon can connect to a server on the train or test bench and monitor
devices on board. The devices to be monitored can be configured in the configuration file of To-
bamon.

Lastly, a conclusion is drawn, the development of Tobamon is assessed as well as the result.
Potential future topics are considered.

Keywords: Software Engineering, Design Science, monitor, train, Teleste

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

FOREWORD

I wish to give thanks to my immediate family for all their encouragement and support. I wish to

thank them for all the ways they tried to urge me to study when I was younger and more given to
distractions. I wish to give thanks to my extended family as well. It has become a custom among
us to value education and to pursue it, and so it has been for three generations now. I owe it to
all of us, that we have developed this culture and these values. For my cherished nephew and
niece, I hope you, your generation and all who come after you keep to the values and customs of
our clan.

I want to express my deepest gratitude to Teleste for giving me this chance to create this thesis
work. I wish to thank all my managers and coworkers for all the help they’ve provided and all their
patience with this work. I will never forget this debt of gratitude I owe the company and apologize
for any inconvenience it may have caused.

For the staff of the university in general, I also wish to give many thanks for their hard work
and patience. Concerning the latter, I also wish to present an apology, for my overly long stay at
the university which surely must have caused some frustration.

In the earliest parts of my studies, I was negligent and had my priorities in all the wrong places.
I was very childish. Were it that I had had wisdom already then all these years ago, I would have
seen to it that I graduated much sooner. Nevertheless, few go through life without any regrets or
failures. I am therefore not bitter, that I previously could not see. I am grateful, that I was able to
learn. What’s important is that we learn from our errors and improve our ways.

I hope that this experience can serve as an example that youth inevitably give way to wisdom
and that the scales of folly will fall off the eyes of those who are willing learn. I have seen in myself
a tremendous growth from who I was. None of us is perfect. We all have the capacity to improve.

CONTENTS

1. INTRODUCTION .. 1

2. THEORETICAL FRAMEWORK .. 3

2.1 Design Science .. 3

2.2 Guidelines. ... 5

2.2.1 Design as an Artifact ... 7
2.2.2 Problem Relevance ... 7
2.2.3 Design Evaluation ... 7
2.2.4 Research Contributions... 9
2.2.5 Research Rigor ... 10
2.2.6 Design as a Search Process ... 10
2.2.7 Communication of research .. 11

3. TOOLS AND METHODS USED .. 13

3.1 Python.. 13

3.2 JavaScript .. 13

3.3 Chart.js .. 14

3.4 GraphQL .. 14

3.5 Postman ... 14

3.6 Programming style ... 15

4. PLANS AND DEVELOPMENT .. 17

4.1 Initial meetings and provisional designs ... 17

4.2 Full concept ... 17

4.3 Automated testing .. 21

4.4 Auxiliary code... 22

4.5 Communicating with device server ... 23

4.6 API endpoints... 24

4.7 Problems in generating a visualization ... 27

4.7.1 The search for a library ... 27
4.7.2 Chart.js for development ... 28

5. IMPLEMENTATION .. 32

5.1 Tobamon Core ... 34

5.2 Listener .. 36

5.3 DataHolder ... 39

5.4 Visualizer ... 41

5.4.1 API implementation ... 41
5.4.2 The web page view ... 42

6. CONCLUSION .. 47

6.1 Design Science Assessment .. 47

6.2 Design and Implementation Assessment ... 47

6.3 Future Ideas ... 48

6.4 Concluding Words .. 48

REFERENCES... 49

IMAGES

Image 1: Categories of design artifacts visualized. ... 4
Image 2: Test and Generate Cycle, based on Hevner et al. [13] 11
Image 3: Initial Plan of Tobamon .. 18
Image 4: Initial Plan of the Monitor element. ... 18
Image 5: Initial Plan of the Simulator element. .. 20
Image 6: Initial Plan of a Scripting System .. 20
Image 7: A testing strategy combining equivalence partitioning and fuzz testing. 22
Image 8: Screenshot of the Postman setup. ... 26
Image 9: Visualizer running with test data. .. 31
Image 10: Typical use environment for Tobamon. .. 32
Image 11: Tobamon Class Diagram. ... 33
Image 12: A 3D render representing a generic test bench setup. 34
Image 13: The Core sits in the center and coordinates the other components. 35
Image 14: Listener Class Diagram. ... 37
Image 15: Listener workflow. .. 38
Image 16: DataHolder saving data. ... 40
Image 17: Web page view script flow visual representation. 43
Image 18: Tobamon running with data from the device. .. 45
Image 19: Tobamon running with more dense data from an actual test device. 46

TABLES

Table 1. Design-science research guidelines by Hevner et al. [13] 6
Table 2: Design evaluation methods by Hevner et al. [13] .. 8
Table 3: Chart drawing libraries for Javascript compared. ... 27
Table 4: API endpoints for the Visualizer. ... 41

ABBREVIATIONS AND MARKINGS

API Short for “Application Programming Interface”. “An interface that is
defined in terms of a set of functions and procedures, and enables
a program to gain access to facilities within an application.” [8]

ASCII Short for “American standard code for Information Interchange”. “A
standard character encoding scheme introduced in 1963 and used
widely on many machines.” [8]

PLC Programmable Logic Controller, especially in the context of Allen-
Bradley PLCs.

CIP Common Industrial Protocol. “CIP is a media independent protocol
using a producer-consumer communication model, and is a strictly
object oriented protocol at the upper layers.” [6]

DOM Document-Object Model. “A standard interface for representing XML
and HTML documents. The data is parsed into a tree of objects,
which a programmer can navigate and manipulate.” [8]

DSS Decision Support Systems. Software created for the purpose of
gathering and presenting relevant data to managers in an organiza-
tion.

GUI Graphical User Interface. ”An interface between a user and a com-
puter system that makes use of input devices other than the key-
board and presentation techniques other than alphanumeric charac-
ters.” [8]

Github A very popular providing Git repositories for its users.
HTTP HyperText Transfer Protocol. “An application-level protocol with the

lightness and speed necessary for distributed collaborative hyper-
media information systems.” [8]

INI A plain text file format used for configuring and initializing applica-
tions. File ending is “.ini”.

IP Address The address of a device with which it can be connected to using the
TCP/IP protocol.

IS Information Systems. “The branch of knowledge concerning the pur-
pose, design, uses, and effects of information systems in organiza-
tions.” [13]

ISO International Organization for Standardization. “-- the body respon-
sible for all international data-processing standards, and many oth-
ers.” [8]

IT Information Technology. “Any form of technology, i.e. any equipment
or technique, used by people to handle information.” [8] Typically
used to refer to the handling of information by means of computers
and software.

JS JavaScript. The most popular programming language for web
pages.

JSON JavaScript Object Notation. A popular format for storing or serializ-
ing objects in programming. Derived from the formation of objects in
the JavaScript programming language.

MIT Licence A popular legal licence for open source software. It is very permis-
sive.

OBA On-Board API. A Teleste API based on GraphQL.
TAM framework Short for “Technology Acceptance Model”. A framework “which pre-

dicts and explains why a given IT system might or might not be re-
ceived by a given target audience.” [13]

TCP/IP Transmission Control Protocol/Internet Protocol. “The obligatory
standard to be used by any system connecting to the Internet.” [8]

Tobamon Short for “Teleste OBA Monitor”. A software to monitor, record and
serve variables of devices on a train.

URL Uniform Resource Locator. “The address system used on the Inter-
net, for example, to specify the location of documents in the World
Wide Web.” [8]

UTF-8 8-bit Unicode Transformation Format. “A method of encoding
Unicode codepoints using one-byte unsigned integers”. [8]

dict A Dictionary, a Python datastructure with key-value pairs.
flag A boolean variable ; a kind of variable only capable of having one of

two values: ‘true’ or ‘false’.

.

1

1. INTRODUCTION

This thesis describes a project which was commissioned by Teleste. In the project a

software to monitor the state of various devices on a train was developed. Previously

this had been achieved with older software, which had over time become impractical and

hard to maintain.

Teleste is a company which produces data networks and infrastructure and provides

both technology and whole solutions. The company was founded in 1954. It is headquar-

tered in Finland. Teleste does manufacturing in Finland and China. Overall, it is a very

large company, with offices in 20 countries. [1]

Teleste provides an integrated product, and their services enable building and running a

networked society better. Solutions of Teleste bring secure television and broadband

services to homes and public places, particularly to public transport. [1]

Keeping with the spirit of the modern times, trains too have an ever-increasing number

of devices doing sundry things during a ride. Developers have a need to monitor and test

each of these, which then necessitates tools and software. Here’s a translated quote

from a manager at Teleste describing the problem, the solution of which is the basis of

this work:

“No complete system is available when developing a train system. The customer infor-

mation system integrates to the other systems on-board the train through various inter-

faces. Towards this end of developing this component system and testing, it is necessary

to be able to monitor and control said interfaces. There are currently in use disparate,

different tools. In this [project], the purpose is to develop a single monitoring and simula-

tion tool, which will fulfill the requirements of several projects. In addition, new features

will be introduced especially into the monitoring of the interface.” [36]

It follows that just as there is a need to monitor devices for testing purposes, there needs

to be a means of simulating the subject in action. What use is it for a tester, if he must

test a train line on a track that is several hundred kilometers long and with several stops,

if he must always start from point zero? This cannot do. For this and other reasons, it is

necessary for one to be able to alter the states of the devices.

2

A name was needed for the software developed in this work, so it came to be designated

as “Tobamon”. It comes from the words “Teleste OBA Monitor”. “Tobamon” is also easier

to pronounce than a typical alphabet-soup abbreviation. Henceforth in this text, the prod-

uct will frequently also be called Tobamon, its proper name.

The goal of this work was the development of Tobamon, which is a computer program

for monitoring devices on a train. Tobamon is highly configurable. Software Engineering

is used as a framework for the development in this work. Additional perspective is bor-

rowed from design science, in which the measure of what can be achieved is investigated

by means of pushing the technology.

In Section 2, the intellectual discipline of design science (DS) research is explained in

detail. Section 3 describes technologies and techniques used in this project. In Section

4, the development of Tobamon is described. Section 5 documents the form of the com-

plete Tobamon.

3

2. THEORETICAL FRAMEWORK

The theoretical approach pursued in this paper is software engineering (=SE), specifi-

cally through a paradigm known as Design Science (=DS). DS was invented by R. Buck-

minster Fuller and he introduced it in 1957 at a presentation to the Royal Architectural

Society of Canada [11]. By today, design science is well established discipline that has

been around for decades and has been applied to many fields of engineering.

In this thesis, a definition of Design Science is borrowed from Hevner et al., who’s paper

is itself in Information Systems research (=IS). IS is a general field researching the inno-

vation and application of systems of information management [13].

Although Hevner’s paper is not in the field of software engineering, it is used here be-

cause it is concise, clear, and has been very influential. Design science was chosen

because of the nature of the work. What then is DS?

2.1 Design Science

Design science pursues the advancement of engineering knowledge by deliberately try-

ing to innovate. These innovations define ideas, practices, technical capabilities, and

products. The purpose of design science is to solve real-world problems. For example,

to try to come up with a new design pattern or try an existing design pattern in a novel

environment. DS is meant to produce generalized design knowledge, not ad-hoc solu-

tions to specific instances. The goal is to improve information systems, how they can be

better analyzed, designed, implemented, managed, and made use of. [9][13]

The principles and methodology of DS have become widely used in many fields of engi-

neering, including mechanical, civil, and architectural engineering. Even though for the

longest time DS was not recognized as an applicable paradigm for software engineering,

many SE papers de facto do line up with the DS paradigm. [9][25]

Design science was chosen as it is the most appropriate conceptual whole in which to

develop a product. One is presented with a problem, for which a software solution is

expected to be feasible and effective. Designing and implementing such a solution pro-

vides a stimulating and educative undertaking.

Design artifacts are a central concept to design science. IT artifacts can be such things

as vocabulary and symbols, grouped together as “constructs”. They can be abstractions

or representations, grouped together as “models”. They can be algorithms or practices,

4

mutually called as “methods”. IT artifacts can also refer to implemented and prototype

systems, known collectively as “instantiations”. As such, instantiations are fundamentally

more concrete than the other types of artifacts. Most DS papers in SE are in the category

of instantiations. [9][13][25] The division of design artefacts into categories is represented

in Image 1.

Image 1: Categories of design artifacts visualized.

Design science has been used to identify and handle a great number of design activities.

Many have been reduced to routine, but some are such things that are known as “wicked

problems”. Enumerated among these are:

“* unstable requirements and constraints based upon ill-defined environmental contexts

* complex interactions among subcomponents of the problem and its solution

* inherent flexibility to change design processes as well as design artifacts (i.e., malleable

processes and artifacts)

* a critical dependence upon human cognitive abilities (e.g., creativity) to produce effec-

tive solutions

* a critical dependence upon human social abilities (e.g., teamwork) to produce effective

solutions”. [13]

5

Hevner et co. use the term “wicked problem”, but do not explain what it means, appar-

ently assuming it common knowledge. Although the meaning of the term might be intui-

tively obvious, for the benefit of the reader, an explanation will be provided here.

The term “wicked problem” was coined by Horst Rittel and Melvin Webber in their 1973

paper: “Dilemmas in a General Theory of Planning”. The text is long, ponderous and

contains many interesting contemplations on the state of the world in 1973. [32] For the

benefit of the reader, an essential points’ list of the traits of wicked problems is provided

here:

1. “There is no definitive formulation of a wicked problem”

2. “Wicked problems have no stopping rule”

3. “Solutions to wicked problems are not true-or-false, but good-or-bad”

4. “There is no immediate and no ultimate test of a solution to a wicked problem”

5. “Every solution to a wicked problem is a ‘one-shot operation’; because there is

no opportunity to learn by trial-and-error, every attempt counts significantly”

6. “Wicked problems do not have an enumerable (or an exhaustively describable)

set of potential solutions, nor is there a well-described set of permissible opera-

tions that may be incorporated into the plan”

7. “Every wicked problem is essentially unique”

8. “Every wicked problem can be considered to be a symptom of another problem”

9. “The existence of a discrepancy representing a wicked problem can be explained

in numerous ways. The choice of explanation determines the nature of the prob-

lem’s solution”

10. “The planner has not right to be right or wrong”. [32]

To boil the points down: one can never grasp the true form of the problem. One can

never know if one has successfully dealt with the problem or not. One does not get to

practice first. There are no do-overs, and one are stuck with the errors of the solution for

life. This is not unlike how it has been noted that design knowledge holistic, which means

the full character and context of neither the problem nor solution can ever be known, and

unseeable contextual factors are always present [9].

2.2 Guidelines.

In their 2004 paper Hevner et al. provided a description of design science in seven guide-

lines [13]. It provides an outline for design science research, which has from then on

6

gone to influence the application of DS in other fields of technology. A reproduction of

the outline is provided in the form of Table 1.

Table 1. Design-science research guidelines by Hevner et al. [13]

Design-Science Research Guidelines

Guideline Description

Guideline 1: Design as an artifact Design-science research must produce a

viable artifact in the form of a construct, a

model, a method, or an instantiation.

Guideline 2: Problem Relevance The objective of design-science research

is to develop technology-based solutions

to important and relevant business prob-

lems.

Guideline 3: Design Evaluation The utility, quality, and efficacy of a design

artifact must be rigorously demonstrated

via well-executed evaluation methods.

Guideline 4: Research Contributions Effective design-science research must

provide clear and verifiable contributions

in the areas of the design artifact, design

foundations, and/or design methodolo-

gies.

Guideline 5: Research Rigor Design-science research relies upon the

application of rigorous methods in both

the construction and evaluation of the de-

sign artifact.

Guideline 6: Design as a Search Process The search for an effective artifact re-

quires utilizing available means to reach

desired ends while satisfying laws in the

problem environment.

Guideline 7: Communication of Research Design-science research must be pre-

sented effectively both to technology-ori-

ented as well as management-oriented

audiences.

7

Of these seven, Engström et al. considered relevance, rigor, and novelty as the most

important for assessing DS in SE [9]. In the sections below, the guidelines are described

in further detail, each under their own heading.

2.2.1 Design as an Artifact
Design science must produce an artifact. The artifact must tackle a specific, clearly de-

fined problem. The artifact must be documented extensively, succinctly but unambigu-

ously. Without sufficient description it will not be possible to make use of it in practical

applications. [9][13]

Artifacts themselves are rarely complete products. Rather, they are innovations on ideas,

practices, etc. History is replete with examples of artifacts enabling further innovations

or completely unprecedented paths of development. [13]

Do other, comparable rules exist that ought to be considered in a similar situation? This

refers to the aspect of novelty, which important for DS applied to software engineering.

Artifact instantiation can demonstrate that a novel path for innovation exists, where be-

fore such could only have been a matter of speculation. [9][13]

2.2.2 Problem Relevance
For the research, the goal is to solve business problems by seeking out knowledge and

information that make solving said problems possible. This goal is prosecuted by means

of attempting to solve the problems by means of inventing new artifacts. Problems could

well be defined in a formalized manner as the difference between the initial situation and

the desired end state. [13]

The prosecution of design science research is relevant chiefly to a community of con-

cerned parties. The research must necessarily concern itself with the problems and op-

portunities afforded by the interaction of people, organizations, and IT. [13] In SE, the

relevance ought to be determined from the perspective of the intended user of the artifact

and from the perspective of the research community. [9]

2.2.3 Design Evaluation
The efficacy, utility and quality of an artifact must be evaluated rigorously, and the means

of evaluation must be performed well [13]. No product, no design, no idea is worth any

faith unless its value can be demonstrated. A demonstration is only as good as its rigor.

Not all means of evaluation are made equal. Good evaluation methods are well thought-

out, and their execution is carried out with discipline. Only good evaluation can discern

true quality.

8

Evaluation is the process of ascertaining a thing's importance, quality, or value [25]. Eval-

uation must be based on needs imposed by the business environment. The appropriate

metrics need to be defined well. The appropriate data may also need to be collected and

analyzed. Design is an iterative process, where the different phases of design and de-

velopment feed into each other. [13]

Mijač proposed a set of 7 guidelines for selecting a means of evaluating artifact instan-

tions. The guidelines were synthesized from DS literature:

1. Use established frameworks for design science research.

2. Use existing frameworks for design of evaluation.

3. Consider evaluating commonly evaluated artifact properties when designing eval-
uation.

4. Consider commonly used evaluation methods when designing evaluation.

5. Consider commonly used evaluation compositional styles when designing evalu-
ation.

6. Use appropriate frameworks for performing particular evaluation methods.

7. Consider using established software quality models and metrics to evaluate in-
stantiations. [25]

The means usable for evaluation must inevitably be drawn from what is known. These

are summarized in Table 2. Despite a rigorous methodology existing, style and artistic

expression are inevitably a part of design. The assessment of the quality of style is how-

ever a subjective matter. [13]

Table 2: Design evaluation methods by Hevner et al. [13]

Design Evaluation Methods

1. Observational Case study: Study artifact in depth in busi-

ness environment.

Field study: Monitor use of artifact in mul-

tiple projects.

2. Analytical Static Analysis: Examine structure of arti-

fact for static qualities (e.g., complexity).

Architecture Analysis: Study fit of artifact

into technical IS structure.

Optimization: Demonstrate inherent opti-

mal properties of artifact or provide opti-

mality bounds on artifact behaviour.

9

Dynamic Analysis: Study artifact in use for

dynamic qualities (e.g., performance).

3. Experimental Controlled Experiment: Study artifact in

controlled environment for qualities (e.g.,

usability).

Simulation – Execute artifact with artificial

data.

4. Testing Functional (Black Box) Testing: Execute

artificial interfaces to discover failures and

identify defects.

Functional (White Box) Testing: Perform

coverage testing of some metric (e.g., ex-

ecution paths) in the artifact implementa-

tion.

5. Descriptive Informed Argument: Use information from

the knowledge base (e.g., relevant

search) to build a convincing argument for

the artifact’s utility.

Scenarios: Construct detailed scenarios

around the artifact to demonstrate its util-

ity.

2.2.4 Research Contributions
The research conducted must provide new value to the discipline of design science. One

would think the fruit of the research need not strictly be a novel innovation. While review

of the existing body of knowledge is another important linchpin of science, the accent in

design science should be on innovation. [9][13]

The broad categories of innovations in design science are of three varieties:

• Design Artifacts, solutions to previously unsolved problems. Examples include

prototype systems.

• Foundations, which refers to more abstract artifacts, such as constructs. Exam-

ples include modeling formalisms.

10

• Methodologies. The innovative use and development of means of evaluation. [13]

The criteria for evaluating whether research has contributed to design science depend

on “representational fidelity and implementability”. Artifacts must be faithful representa-

tions of the actual business environments used in the research.

Hevner et co. differentiated design research from routine design. Routine design is when

puts existing knowledge to use in organizational problems. The contrast to DS is that the

latter attempts to solve previously unsolved problems in innovative or unique ways, or

previously solved problems in novel and more efficient ways. One innovates and the

other applies previous innovations. [13]

2.2.5 Research Rigor
Research conducted haphazardly will yield fruit of no value. Only by taking on sufficient

discipline and precision may true findings be uncovered. Likewise, only with sufficient

care can the attained knowledge be appraised. This is the nature of things. [13]

Mathematical formalizations are often depended upon in design science, though the IT

environment does not always lend itself to such. Excessively over-eager as well as un-

der-eager formalization may occur. Research rigor comes from the proper and effective

use of the foundations of the IS knowledge base and research methodologies. [13] For

SE, rigor refers to which extent the research is built on prior, existing design knowledge

and the consideration of alternative solutions. [9]

Metrics are essential for the evaluation of artifacts. The true worth of artifacts in human-

machine interaction needs to be appraised with behavioral science research. Appropri-

ate means must be used for appropriate ends. [13]

2.2.6 Design as a Search Process
Design is typically an iterative process, with trial-and-error involved. As one comes up

with an initial plan, the next natural step is to start implementing it. This is the initial plan

and the initial product. Initial designs are often imprecise and need to be sharpened re-

peatedly to reach a better design. [13][25] It is often easier to improve on an existing

design than to spawn an immaculate design fully formed as though Athena from Zeus’

forehead. To quote Larry Niven:

“Everybody talks first draft.” [23]

11

The repetition of design processes becomes something of a virtuous cycle. As designs

reach an acceptable level of confidence, they can be put to test. Testing will reveal inad-

equacies, which will give direction for further, improved design. This cyclical process of

design is illustrated in Image 2.

Image 2: Test and Generate Cycle, based on Hevner et al. [13]

Design can be characterized as the search for the right means to produce an effective

solution to a problem. Research in design science often start with a simplified subset of

of the pertinent means and ends. The other way is to break the problem down into its

smaller constituent problems. Those means which can achieve the desired end state

make up the set of possible design solutions. [13]

However, design presents many wicked problems for which no definitively correct solu-

tion may possibly be described. Under such circumstances, instead of perfect solutions,

it is adequate and necessary to go for satisfactory solutions. Instead of describing the

complete set of possible designs, describe at least subset of that set. The measure of a

good design solution is not always a given, and several means of evaluating it exist. [13]

2.2.7 Communication of research
The research of design science needs to be presented to both technology-oriented and

management-oriented audiences. Technology-oriented audiences need to be able to im-

12

plement and use the artifact in the appropriate business environment. Management-ori-

ented audiences need information to gauge whether their organization ought to commit

resources to the procurement of the artifact for use. [13]

13

3. TOOLS AND METHODS USED

An assortment of technologies, otherwise known as a ‘tech stack’, was used to realize

Tobamon. These are described in this section.

3.1 Python

Python is a popular and easy-to-use programming language. It is increasingly used as

an educational language to teach students the basics of programming. This in turn has

boosted its prominence in the industry, as so many students come out capable of using

it. Development on Python is frequently very rapid due to its human-intuitive grammar

and features. [30]

There also exists a rich and mature ecosystem of extra modules and libraries for it, ac-

cessible through ‘pip’, Python’s own package manager. Pip can be used to download

non-standard Python libraries from the online repository of Pip. All the standard library

of Python, conversely, comes prepackaged with Python itself. [30]

The reasons Python was chosen as the back-end language of this project are the au-

thor’s own familiarity with the language, and the fact that it was already being used to

some extent in Teleste. The notable maturity and great selection of libraries of the lan-

guage were also factors.

3.2 JavaScript

JavaScript, often shortened to ‘JS’ or ‘js’, has been for the longest time the one and only

programming language of the Internet. It is in JavaScript that the behavior of websites is

programmed in. [15]

This language also has a very robust and mature third-party library ecosystem. Packages

can be imported in several ways, though principally either by a direct call to a hosting

server, such those provided by CDON or Google, or by downloading them using ‘npm’,

a command-line package manager. In the latter means, the developer must serve these

libraries from their own server for their web page. [15][24]

In recent times some of the more performance-intensive tasks of JavaScript have been

taken over by WebAssembly, a likewise browser-based programming language which is

more efficient thanks to the nature of its implementation. It is a compilation target for

languages such as C/C++ and Rust, etc. [38]

14

WebAssembly is largely not yet used in developing Web UIs. There are not many prec-

edents nor examples for this kind of use. JavaScript on the other hand is frequently used

in this way with tutorials and examples aplenty. Therefore the decision to use JavaScript

was easy to make.

A somewhat deserved ill reputation exists for JavaScript, as compared to language like

Python. JavaScript can be much less intuitive. [7] Nonetheless, as it is inevitably the

programming language of choice for web-based user interfaces, it was used for this pro-

ject as well.

3.3 Chart.js

Chart.js is a third-party module for JavaScript. It is a very popular tool for creating and

displaying interactive charts and graphs on a web page. [5] Many alternatives exist, but

this one deemed most convenient and most feasible, hence why it was chosen. A more

detailed account of Chart.js’ choosing for this project can be read in Section 5.4.2.

3.4 GraphQL

GraphQL is a common framework for creating and querying APIs [12]. Such an API was

used for some Teleste projects, which is why it also came to be used in Tobamon. It is a

very handy and intuitive language for constructing queries and returns data in a JSON

format.

The website of GraphQL gives a more detailed description, which will be described here,

but not as direct quote. It is a query language for APIs as well as a runtime for fulfilling

those queries with data from one’s API. Queries resemble the JSON data which they

return. Giving the name of a heading or tag returns the data in the exact part of the JSON

structure. In this way, GraphQL returns multiple resources with a single request. [12]

3.5 Postman

Postman is an application used for sending specific HTTP requests to chosen URLs. It

is frequently used for testing API endpoints during software development. By no means

is it the only tool usable to this end. Alternatives such as cUrl exist as well. However,

Postman provides an intuitive and easy-to-use graphical user interface out of the box.

[28]

Postman is an API platform for building and using APIs. It makes every step of API pro-

duction and maintenance simpler. Postman includes a comprehensive set of API tools

15

which help accelerate the API lifecycle, an API repository for storing and working with all

of one’s API artifacts, workspaces for organizing distinct projects and their APIs, and

intelligent features for improving API operations. [28]

3.6 Programming style

All programmers naturally tend to develop habits and personal preferences about the

form and shape of their code. In a world where every computer program is only ever

used and maintained by its very creator, this would not cause issues.

However, in the real world, projects maintained by a single developer are passed on to

another as the first one either retires, is moved to another project, or moves to work for

another company. Writing code in a very personal - or worse, a haphazard – style makes

it very obtuse to other programmers. This can cause the loss of a significant number of

working hours into interpretation and refactoring. In the worst case, the source code may

have to be scrapped altogether and a new project will have to started to replace it. These

were considerations in the development of Tobamon as well.

The responsible and considerate way to write code is to make use of what are called

“style guides”. It is not something that strictly speaking influences how the code works

during runtime, but rather has everything to do with the human needs of programmers.

Some programming languages have several style guides, recommended by different or-

ganizations. This is the case of the C language. Some programming languages don’t

have an official one, but one or more unofficial ones. This is the case of JavaScript.

Lastly, there are such programming languages for which no style guide exists, official or

unofficial.

A good explanation on the use and purpose of programming style guides is available on

Medium.com [22], written by one Bradley Nice. In the text, he reiterates a lot of what was

said above, but also elaborates further. A point from the text that was not noted here as

exempli gratia: “A particular programming style may be different from coding conven-

tions, or even designed around a specific language or even program.” [22] For a series

of articles that go into further detail about how to design a style guide, a recommendation

must be given for the writings of one Brennan Angel on pullrequest.com [3].

The style guide for Python is known as “PEP 8” [35]. It is an exhaustive compilation of

good style rules for orderly and aesthetic Python code and includes a few small text

paragraphs discussing the principles of the style decisions as well. PEP 8 is perpetually

open for amendments, though the whole has largely been set for some time.

16

As the name implies, it is a part of a collection of articles which include suggestions for

the language itself or for the style conventions, as well general articles about the design

of the Python language. Among these texts, PEP 20 “The Zen of Python” [27] deserves

mention. It is very short and is here quoted in whole:

“Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!” [27]

The rules and suggestions given in the above quote largely boil down to not making the

code any more complex than it must be, to not leave things unambiguous. Readability is

strongly recommended, even though what one finds readable is a subjective experience.

17

4. PLANS AND DEVELOPMENT

Before starting out on the project, a broad concept outline was sketched for the product:

A program for monitoring and simulating, altering the state of devices on a train. More

deliberation would be needed however, as well as additional input for the requirements.

4.1 Initial meetings and provisional designs

At the outset, there was some deliberation to properly assess what it would be necessary

for the application to do. A few of ideas were concocted. One such idea was to make use

of a Python module called “pycomm3”. It is a library for communicating with Allen-Bradley

PLCs using Ethernet/IP. Pycomm3 is a continuation of ‘pycomm’, which was a library for

Python 2. [26]

For a long time, using pycomm3 was considered for Tobamon, but the idea was eventu-

ally scrapped. It would have been used to communicate with devices that use the CIP

protocol. CIP stands for “Common Industrial Protocol”. It is an object-oriented, that is

widely used in many industries. [6] Due to time constraints and other concerns, it was

decided to limit this project to only make use of GraphQL.

Another, more significant suggestion was to containerize the program, using Docker or

perhaps some alternative technology. Containerizing software is frequently a good way

to greatly boost the portability of a program, though it is not a cure-all by any means.

Eventually this too had to be discarded for time concerns.

4.2 Full concept

With the task was set, it was surmised that initial concept was much too specific and

narrow in its scope. It was envisioned as being exclusive to a certain project. It was only

upon further deliberation, that the final concept of the product was conceived. The soft-

ware was to be much more generalized and highly configurable.

From there on, designing, and implementing Tobamon in more detail was very straight-

forward. What was needed was a modular system, where components could be switched

out, recycled, and maintained separately.

The first, full concept of the program was quite extensive in its scope. It included two

principal components: a monitor and a simulator, as well as an interface for both to allow

18

using both through Robot Framework (shortened to RF). RF is a popular testing auto-

mation framework for the Python programming language [33]. Configuration files would

be used to adapt Tobamon to whichever project. This initial design is illustrated in Image

3.

Image 3: Initial Plan of Tobamon

The monitor element would observe any, and all devices described in the configuration

file. As the devices under surveillance typically have a myriad of different variables at

run-time of which only a small fraction is ever of interest to the tester, the configuration

file includes a section for specifying which items are to be actively monitored. The initial

design of the monitor element is given in Image 4.

Image 4: Initial Plan of the Monitor element.

19

Such was the initial concept. During development it would continue to change its shape

somewhat. The principal components of the Monitor came to be as follows:

• Monitor Core, which is the heart of the application and brings the other compo-

nents together. This corresponds to the “Monitor core / live log” box in Image 4.

The live log functionality was moved to the DataHolder component.

• The DataHolder, the task of which is to store and curate the data. This component

corresponds mostly to the ”Log/ Cold storage?” item in Image 4, but with the live

log functionality combined into it as well.

• The Visualizer, which would serve an API for displaying the data. It would also

serve a web page which displays the data in a line chart form. This component

corresponds to the “Visualization generator” and “Visual representation / UI mod-

ule” items in Image 4. The “CLI UI (Command Line User Interface)” and “GUI

(Graphical User Interface)” items were replaced by a browser-based UI which

was rolled into the Visualizer.

• The Listener, which opens a connection to a server on a train and queries it reg-

ularly. Alternatively, it subscribes, if such a functionality is available. This item

corresponds to “Input Interface” and “Interpretation process” items in Image 4.

• The “Project configuration files” came to be integrated as they were conceived in

Image 4.

• The “Robot Framework Interface” eventually had to be scrapped due to time con-

straints.

These are of course only the briefest descriptions of the components. A more detailed

description is available in Section 5.

The simulator component would connect to the device and manipulate specific variables

on it. Like the monitor element, it would be configured to only alter variables which are

specifically allowed by the simulator component’s own configuration file. Image 5 pre-

sents an initial design sketch of the simulator component.

20

Image 5: Initial Plan of the Simulator element.

The third envisioned major feature was the interface to use Tobamon through Robot

Framework, enabling scripting for the product. Using the simulator component, Robot

Framework manipulate the devices’ state, and through the monitor component, it would

observe the consequences. This functionality existed only as a very rough sketch, which

is illustrated by Image 6.

Image 6: Initial Plan of a Scripting System

As progress on the project proceeded, it became clear which intended features would be

included in the final product. First to go was the Robot Framework interface, second was

the Simulator element itself. Certain technical difficulties in the implementation also took

up disproportionate lengths of time.

21

4.3 Automated testing

Testing is important and automated tests make everything a lot easier. It is instrumental

in creating a routine of maintenance for code and contributes to the transferability of

code. Writing automated tests saves time and it enables a programmer to keep working

more effectively. [17] Towards this end, automated testing was implemented in To-

bamon. Unit tests were developed for each of the components of the Monitor.

What is a unit test? It’s an automated test that verifies some limited unit of code, does it

fast, and does it in an isolated manner. There are different schools of thought as to what

should constitute an isolatable unit, but in Tobamon the components of the Monitor were

treated as just such units. Unit tests are divided into test cases. Test cases which pertain

to the same unit are collected into test suites. [14][17]

A test case is a set of inputs, the conditions under which the code is run, and the ex-

pected results of the run. If the actual results match the expected results, the test case

has been run successfully. [14][17]

In this project, a hybrid strategy of equivalence partitioning and fuzzing was pursued

where possible. Equivalence partitioning, also called equivalence class partitioning, is a

type of testing where the unit is given input from the one end of its range of acceptable

values, then something from the opposite end, and something in the appropriate range

[14][21].

Equivalence partitioning was supplemented by a limited implementation of fuzz testing.

Fuzz testing, or fuzzing, is a testing technique which gives random and inappropriate

data as an input to the unit being tested [20]. For functions with no parameters, a single

unit test would be created as a bare minimum. This hybrid strategy was conceived to

force the creation of a sufficient number of basic tests.

The general idea was to give as input something that ought to be too little, something

that ought to be too much, something to represent typical, valid input, i.e., “just right”.

Lastly, one function test with parameter input where its data type or its content would be

totally invalid for the function. In this way, the function would be covered from a few broad

vectors of error as well as to check for normal behavior. This strategy is illustrated in

Image 7.

22

Image 7: A testing strategy combining equivalence partitioning and fuzz testing.

4.4 Auxiliary code

During the project it was necessary to create several smaller programs to test out certain

ideas for Tobamon or to generate test data. In the former category, there are many ex-

amples, with the most prominent one being the attempts at implementing communication

with an OBA server.

The latter group was developed to generate a set of data to use for testing while devel-

oping the components, and to determine the proper format of the data. Before it was

possible to implement the Listener, which would have provided data to work with, it was

necessary to have some data to test out the DataHolder and the Visualizer.

The first data generator that was created gives out a JSON file, which contains an array

of coordinates. Both the X and the Y coordinates are floating point numbers. The code

below code was called “BigTestFileCreator”. It proved to be a good stress test for the

system, as well.

import random
import json

from sys import getsizeof

23

def create_entry(x_base = 0):
 return {"x": round(x_base + float(random.randint(1, 99)) / 100, 3),
 "y": round(random.random() * random.randint(1, 100), 3)}

if __name__ == '__main__':
 my_dict = {}
 length_of_tables = 100
 # Generate labels
 for i in range(0, 10):
 my_dict["item" + str(i)] = []

 # Generate random contents to each
 for key in my_dict:
 new_item = {"x": 1.0, "y": 2.0}
 for i in range(1, length_of_tables):
 new_item = create_entry(new_item["x"])
 my_dict[key].append(new_item)
 print("Done with key " + key)

 with open("BIG_TESTING_FILE.json", encoding='utf-8', mode='w') as out-

put_file:
 json.dump(my_dict, output_file, ensure_ascii=False, indent=4)

 print(getsizeof(my_dict))

First, the code instantiates a Python Dictionary (typically referred to as “dict”) and an

integer variable called “length_of_tables”, which can be any positive integer. It then in-

serts ten keywords into the dict, with names spanning from “item1, item2… item10”. The

value behind each keyword is an empty Python List (typically merely called “list”).

For each of those keywords, it creates as many entries into the corresponding list as has

been configured into the variable “length_of_tables”. Each entry is an (x,y)-coordinate,

and each entry is derived from the previous one by multiplication with random integers.

The first entry is derived from a seed value of “{"x": 1.0, "y": 2.0}”.

At the end of its run, BigTestFileCreator writes all its data to a JSON file. In the above

example, this is given as “"BIG_TESTING_FILE.json"”.

Apart from the test file generators, a great number of very small files were created to

prototype certain features of Tobamon. Some small files were created to try out certain

Python features to make sure their behavior was correctly understood by the author.

4.5 Communicating with device server

There was initially some confusion about which protocol the Listener should initially be

built for. One alternative that was considered was the CIP protocol. It was left out due to

concerns about it being rather complicated. The second choice was GraphQL, a popular

query language for APIs.

24

To make use of GraphQL in Python, it was necessary to choose a client for it. The Python

PIP package catalogue contains several modules for making use of GraphQL, some

more mature and robust than others.

The maturity of the Python ecosystem provides for some pitfalls as well. Because there

had been a messy move from Python 2 to 3 [18], there are libraries and implementations

of various things separately for the two versions of Python. Many a promising library was

in fact built for the outdated Python 2, and thus not usable for this project.

A helpful little tutorial by one Melvynn Fernandez provided one alternative. It guides the

reader into communicating with GraphQL using the Python module ‘requests’ [31]. An

initial attempt was prototyped using this tutorial as an example. This method was straight-

forward, and it could successfully perform queries and mutations. The former means a

singular one-time request of selected data from the server, the latter denotes an attempt

to alter data on the server [10].

However, the idea of using the ‘requests’ module eventually had to be scrapped. This

was due to concerns about ‘requests’ not being able to make use of the subscription

feature of GraphQL. The search had to continue.

For a preferable alternative, the website of GraphQL [12] itself was perused. There a

catalogue of sundry libraries and modules for several programming languages found.

Under Python itself, there were several entries.

There are many modules for implementing servers and many again to use as GraphQL

clients. First on the latter list was GQL, which seemed rather prominent and mature. It

was also apparent that it was being actively maintained. The latest release (time of writ-

ing: 3.11.2021) was only four days old. [39].

4.6 API endpoints

One of the requirements of the monitor element of Tobamon was a system for represent-

ing data visually to a user. At the very beginning, a few options were considered: creating

a terminal program for printing out the data, creating a native desktop graphical user

interface (shortened to GUI), or to develop a browser-based graphical user interface

(shortened to Web GUI). After a little deliberation with coworkers, the browser-based

solution turned out to be the most preferred option.

To develop the visualization, a means of reading the data would be needed. For a self-

hosted web page to be able to read the data, an API would have to be created for it.

Towards implementing an API, the Flask web development framework was chosen.

25

Using Flask, creating API endpoints was easy. For testing the API endpoints, much use

was made of an application known as Postman. Postman is introduced in more detail in

Section 3. The set-up of Postman testing calls used in this project can be seen in Image

8.

In the created set of API calls for testing, there was a division into two groups: calls for

the value of a variable at a given index and calls for the values of a variable from a given

index onwards. During the development and design, certain test files wound up getting

a few test calls specifically for themselves. More on the functionality of the finalized API

in Section 5.4.

26

Image 8: Screenshot of the Postman setup.

27

4.7 Problems in generating a visualization

A browser-based solution was chosen as the means of viewing data, as it was the most

modern and most intuitive solution. The choice of which library to use for that was not

easy. There are many JavaScript libraries for generating chart representation of data,

and many of them were tried.

4.7.1 The search for a library
Initial scouting revealed a few potential libraries for developing visualization. All of them

had official tutorials, and these were made use of to measure their usability for the To-

bamon project. Some of them were of completely original origin, but one was a wrapper

written around an existing framework. All except one failed to produce a working software

when the official tutorial was followed. The libraries are briefly summarized in Table 3.

Table 3: Chart drawing libraries for Javascript compared.

Library name Licence Nature of im-

plementation

Dependen-

cies

Tutorial

done suc-

cessfully?

Chart.js MIT Licence Direct imple-

mentation

None. Yes.

Vue-Chartjs MIT Licence Wrapper Chart.js No.

Vue3Charts MIT Licence Direct Imple-

mentation

None. No

ApexCharts MIT Licence Direct Imple-

mentation

None. No

The first choice was a library called Chart.js [5]. It is the most obvious, most intuitive, and

most largely used library for visualizing information in JavaScript. Each library was tried,

but eventually Chart.js would prove to be the chart library of choice. Following its tutorial

produced a working program, but despite this, Chart.js was initially dismissed due to a

misunderstanding by the author. The misunderstanding was that Chart.js did not seem

to support real-time changes to the data. This was eventually found not to be the case.

Several wrappers for Chart.js had been produced in Vue, itself a very common and po-

tent visualization library, mostly intended for single-page applications. Vue allows binding

values in the JavaScript engine to elements in the DOM and from then on, it makes

28

possible the real-time manipulation of these values. The changes are updated immedi-

ately to the bound element in the DOM. [37]

First on the list of Vue wrappers for Chartjs was “Vue-Chartjs”. The home page and tu-

torial are generally very high quality. [16] It was even more peculiar, that following the

tutorial did not produce a working program. It is not plainly obvious, for which version of

Vue this library is built for. The version of Chart.js used in the tutorial is Chart.js 2.7.

The second candidate for generating data visualization with Vue was “Vue3Charts”. It is

built with Vue 3. The tutorial and documentation on Vue3Charts are a lot sparser than

Vue-Chartjs, implying that it might not be as mature a product. The version number at

the time of writing (25.10.2021) is “1.0.18”, implying some degree of maturity. [2] Follow-

ing and trying to implement the tutorial code for this library did not produce a successful

prototype.

The third option was a library called ApexCharts. Based on the navigation bar on the

website, ApexCharts includes embedded analytics, possibly making it much more potent

and useful than the others. [4] Following the tutorial did not produce a working product.

Despite the official tutorials and examples being followed to the greatest possible degree

of accuracy, none of the Vue-based charting libraries seemed to work. Some tutorials

however were obviously written for an older iteration of Vue and/or Chart.js.

Many tutorials were written with the assumption of developing in a Linux-based environ-

ment. Development of Tobamon was conducted in a Windows environment. The Linux

ecosystem remains the OS of choice for programmers.

Why did following so many of the tutorials fail? It could well be, that the fault was entirely

with the author and not the libraries themselves. On the other hand, the project was being

pressed against time. An inordinate amount of time had already been spent on the chart

libraries. It was simply not sensible to spend much more.

It was after these other libraries were dismissed one after another that Chart.js was given

another view. It was then found that real-time manipulation of the chart was in fact sup-

ported. Development on the visualization could finally commence.

4.7.2 Chart.js for development
Chart.js came to be the library of choice, but it was not without its faults. It seemed initially

that in Chart.js it is not in fact possible to set the labels on horizontal nor vertical lines

with arbitrary steps. It is thus also not possible to add new values between such steps.

It seemed all new steps were necessarily also the lines on which each step of the chart

29

is divided into. This all makes it impractical, or at least not ideal, to add visualization for

several different variables into the same chart.

A solution was found after a little searching: it appeared that someone else had had the

same misunderstanding about the features of this library. An issue about this had been

posted on the Github repository of Chart.js [34]. Reading the post, it turns out it was a

duplicate issue. Someone else still had misunderstood the workings of the labels [29].

The basic line chart in Chart.js, presented in the tutorial, did necessarily place the points

X-coordinate on top of the X-axis labels. However, this is not necessary for scatter dia-

grams. A scatter diagram and a line diagram are not necessarily mutually exclusive in

Chart.js. While a line diagram could not be converted to a scatter diagram, the latter

could easily be configured to draw connecting lines between the points. With scatter

diagrams, it became possible to create the intended kind of chart.

There were points during development, that access to the company test bench was not

available. In its place, another means of testing the Visualizer was needed. A test file

generator was described in Section 4.5. It was adequate to allow developing the coop-

eration of the Core, the DataHolder and the Visualizer.

However, because the generator merely generated floating point numbers, it was not a

sufficient representation of the kind of data Tobamon would be receiving. Neither was it

the form in which Tobamon would be storing them. For each value received from the

connected device, the time at which that value came about would be important as well.

It was necessary to develop another test data generator, one which would give a

datetime value as the x-coordinate. This then provoked another question: “What format

of datetime should it use?” There are a number of different time, date, and datetime

formats. Examples include the ISO format, the Python format, among others. After some

experimentation, the Python format for datetime notation was chosen for use.

The datetime generator was called “DatetimeListGenerator”, and its code was thus:

import json
import random
from datetime import datetime, timedelta

def generate_list(number_of_entries: int, now) -> list:
 output_list = []
 for i in range(1, number_of_entries + 1):
 new_value = round(random.random(), 3) + random.randint(0, 100)
 new_time = now + timedelta(seconds=i)
 new_time = new_time.strftime("%Y-%m-%d %H:%M:%S.%f")
 new_time = new_time[:-3]
 new_entry = {
 "x": new_time,

30

 "y": new_value
 }
 output_list.append(new_entry)
 return output_list

if __name__ == '__main__':
 now = datetime.now()
 number_of_entries = 10

 my_object = {}
 for i in range(1, number_of_entries + 1):
 my_object["item" + str(i)] = generate_list(number_of_entries, now)

 with open('datetime_test_file_0.json', 'w', encoding='utf-8') as out-

put_file:
 json.dump(my_object, output_file, ensure_ascii=False, indent=4)

The code is somewhat alike the earlier generator. Once again, a “number_of_entries” is

configured. This time, the datetime value of the very moment of running is also instanti-

ated, along with a dict called “my_object”. Then, for as many times as is the value of

”number_of_entries”, an entry is created into “my_object”. The keywords are once again

“item1, item2… item10” and for each, a list is generated using the “generate_list()” func-

tion.

The function takes “number_of_entries” and “now” as its input arguments. Within, It enter

a for-loop which iterates as many times as is the value of “number_of_entries”. At each

iteration, it increments the value of now, and saves the new value into a variable called

“new_time”. It generates a random value for y. and for x it assigns the “new_time” value.

After the iteration is done, it returns the generated list of values.

Back in main, the loop therein will generate lists for each of the keywords in the manner

described above. It then writes the generated values into a JSON file, in this case called

“'datetime_test_file_0.json'”. Image 9 shows Tobamon Visualizer component running on

generated test data.

In Image 9, there are ten sets of data from a programmatically generated test file: “item1”

to “item9” and “Booleans”. Data sets prefixed with “item” contain floating point values as

their Y-coordinates. The X-coordinate is a time value with an accuracy up to a hundredth

of a second. It includes the date to ensure that if a test is left running past midnight, the

later values do not start appearing before earlier ones in the chart. The dataset labeled

“Boolean” is otherwise similar, but the Y-coordinate is of the Boolean data type. That is,

it can have one of two potential values: “True” or “False”. The charting library represents

these as 0 and 1.

31

Image 9: Visualizer running with test data.

32

5. IMPLEMENTATION

‘The application, which is known as Tobamon, is a software program used for monitoring

the states of devices on a train or a test bench substituting for a train. The latter is the

more typical use. The devices and their variables which are to be monitored can be set

with the configuration file of the program.

In a typical testing setting involving a test bench, a computer is connected to the test

bench using an Ethernet cable. Other connections can be used if they are available. An

abstract representation of a typical testing environment is provided in Image 10. Testing

environments are further illustrated by Image 12.

Image 10: Typical use environment for Tobamon.

The application is made up of three separate components in addition to a core compo-

nent, which connects all the others. Some of the components run within their own dedi-

cated process, while the others run in the same one as the core. Some of the compo-

nents run within their own threads inside the core process. The three components apart

from the core are: the Listener, the DataHolder and the Visualizer. All come together to

perform the intended actions of Tobamon. The class structure of Tobamon is presented

in Image 11.

33

Image 11: Tobamon Class Diagram.

34

Image 12: A 3D render representing a generic test bench setup.

5.1 Tobamon Core

At the heart of Tobamon is the component simply called the “Core”. This component

brings together all the other components of Tobamon and coordinates their behaviour.

For example, when the Visualizer needs data, it cannot access the Dataholder directly,

but does so through an interface provided by the core. Thereby, Tobamon is designed

according to a design pattern known as the “Mediator” [19]. The shape of Tobamon is

illustrated in Image 13.

What is the Mediator pattern? The Mediator pattern is means to allow sets of objects to

communicate data in some way, when they are otherwise self-contained and mutually

separate wholes. Certain mutually related functions and functionalities are packaged into

objects, which represent such wholes. Those objects are solely responsible for their

given task. Communication is given as the task of a separate object. [19] In Tobamon,

that object handling the communication is referred to as the Core.

35

Image 13: The Core sits in the center and coordinates the other components.

The Core runs in the main process of the program, but it initiates a few other processes

and threads. For each Listener configured for running, the Core initiates a separate, ded-

icated process. For getting data from the Listeners, it instantiates a data structure of

shared memory called “Queue”, which is part of the Python ‘multiprocessing’ library. Note

that the implementation described in this paper only uses one Listener instance at a time.

This is only so to keep the scale of the program manageable for a thesis work, but in real

usage this limit would not be necessary. The Core also creates a separate thread for

retrieving data from the Queue and gives it onwards to the DataHolder.

The configuration file of Tobamon is read by the Core, and it provides the appropriate

sections to the other components. The file is parsed using Python standard library’s ‘con-

figparser’ module. Thus, the format of the configuration closely resembles that of Mi-

crosoft Windows INI files. An example of the contents of the file is given here as thus:

[DEFAULT]
DevelopmentMode=True

[VISUALIZER]
PortNumber=3000

[DATAHOLDER]
ReadTestingFile=True
TestFileName=datetime_test_file_4.json

[OBA]

36

; Listener
IpAddress=http://10.59.1.136:8888
CheckingInterval=100
Tags=tag1,tag2,tag3,tag4
Command: ”””subscription {
 tag1
 tag2
 tag3
 tag4
 }
 ”””

The first section is the “default”, into which general configurations of Tobamon in general

and Core specifically are to be given. There is a separate section for the Visualizer, which

must contain an entry for the port on which the Visualizer is supposed to run. 3000 is a

good default value. Then there’s the section for the DataHolder. It can be set to read a

testing file, which can be specifically designated. This is also useful for taking records of

previous test runs and visualizing them.

Past these are the sections for the devices which Tobamon is to connect to and which it

is supposed to monitor for the tags. Configuration includes the IP address of the target

device. “CheckingInterval” designates the interval period in milliseconds, between which

the Listener is supposed to query the target device, if subscriptions are not available.

The tags designate those variables on the device, which the tester wants to monitor.

“Command” contains that command which is sent to the target device and is used to

either query or subscribe for the tags.

5.2 Listener

The Listener, as its name implies, listens constantly to that device which is configured in

the configuration file. The specific configuration of a Listener instance is given as a sec-

tion of the main configuration file. Any section apart from “DEFAULT”, “DATAHOLDER”

and “VISUALIZER” will be instantiated as a Listener process.

The Listener class is implanted as inheriting Process class from the Python library “mul-

tiprocessing”. Therefore, the Listener can be called Listener processes or Listener ob-

jects interchangeably. The Listener also inherits the abstract ListenerInterface class. The

class diagram of the Listener is provided in Image 14.

37

Image 14: Listener Class Diagram.

All Listeners are initiated from the core component process. The number of Listener in-

stances can be set by creating new sections for connections to be listened to. That ver-

sion of Tobamon which is described in this paper only supports one Listener connection

at a time. Listeners are given their section from the configuration file as their configuration

settings. This includes an IP address, possibly also a port number, a list of tags and a

query string. The tags in the list are the labels of the devices and variables which Listener

is set to listen for.

The query string contains a command which the Listener gives to its target connection.

The command in the query instructs the connected device on which data to send to the

Listener. The Listener has list of tags which is used to parse the desired data from the

reply to this query.

Active connections are not the only alternative, as some connection types support sub-

scriptions. The implementation of Tobamon described in this paper exclusively uses

GraphQL connections over TCP/IP to its set devices. GraphQL supports subscription

queries. Subscription is preferred instead of active pinging, as it can reduce unnecessary

network traffic. In a subscription, the GraphQL server sends data to the subscribing ser-

vice whenever a change occurs in the tag which is being subscribed for.

38

Upon receiving data, the Listener parses it, adds a timestamp, and sends the product to

the DataHolder. This data transfer is sent by means of a special data structure called

“Queue”, provided by the ‘multiprocessing’ library of Python. This is necessary, because

the Listener instances run within their own processes with their own self-contained

memory, which is not shared with the core process, which too has its own memory space.

A Queue object provides a means of sharing memory across processes. This process is

illustrated in Image 15.

Image 15: Listener workflow.

39

As a means for the core process to control Listener processes, these share a common

flag called the “end_all_processes_flag”. This is implemented by means of another spe-

cial data structure from the “multiprocessing” library called “Value”. A Value can be in-

stantiated as any primitive data structure. In this case, it is set to be a Boolean value.

5.3 DataHolder

The DataHolder acts as the curator and archivist of the data collected by the application

through the Listener processes. Tobamon only ever has one DataHolder instance, and

it is contained within the core process. The DataHolder gets a section all for itself from

the Tobamon configuration file passed unto it as its configuration settings.

The DataHolder also receives certain information from the sections for the devices to be

monitored. For each device to be connected, a list of tags is included. These tags are

also given to the DataHolder, which generates an entry for each of them. Note again,

that within the implementation of Tobamon described in this paper, only one device is

included.

Data is organized into entries, which are implemented as Python dict datatypes, com-

monly also called “dictionaries”. A Python dictionary is a kind of data structure which is

organized as key-value pairs. Each tag that Tobamon is set to monitor for is given as a

keyword in the dictionary. Each entry then contains a list, which is an array-like data

structure in Python. This arrangement is illustrated in Image 16.

40

Image 16: DataHolder saving data.

The DataHolder is fed new values from the core object, which receives them from Lis-

tener processes as described in Section 5.2. The DataHolder does not do any formatting

or mutation to the data, but only checks that they are of the same data type as previous

values for that variable.

The DataHolder can then retrieve any parcels of data stored within it, if requested. This

is for the benefit of the Visualizer which will be described in more detail in 5.4. The data

which is put out will be given to the Core, which will deliver it wherever it is needed.

If so desired, the DataHolder can be set to export its contents in JSON format. This

created file can later be used as input for the DataHolder when not connected to a lis-

tenable device and not doing monitoring. In this way, it is possible for Tobamon to gen-

erate a visualization of past testing runs.

41

5.4 Visualizer

The Visualizer takes the data from DataHolder via the Core, provides an API to retrieve

them and can be used to generate a visual representation of it. Tobamon only ever has

one Visualizer instance. This component serves an API for reading the data, but no

means for putting data in.

5.4.1 API implementation
The API provides four endpoints. They are presented in Table 4.

Table 4: API endpoints for the Visualizer.

 Method URI Path Description

1 GET / Get web page with chart. Use with brow-

ser.

2 GET /api/variables Get a list of all the variables Tobamon is

configured to monitor for.

3 GET /api/{variable

name}/starting/{index}

Get all values of the variable designated

in the URL, from that index onward

which is designated in the URL.

4 GET /api/{variable

name}/at/{index}

Get the particular value of the variable

designated in the URL, from that index

which is designated in the URL.

This component is implemented with a combination of Python and JavaScript. The for-

mer provides the back end, the latter the front-end. The Python back end is implemented

using a framework called Flask. The front-end makes use of certain JavaScript libraries

provided by npm. These technologies were introduced in more detail in Section 3.

In its typical state of operation, Tobamon has the Visualizer serve an API. This API pro-

vides not only the endpoints for querying the data, but by requesting the root URL, ‘/’, it

serves a web page which provides a graphical representation of the values stored by the

DataHolder. The chart is provided by means of a JavaScript library known as Chart.js.

More on this and other dependencies was explained in Section 4.

The API provides an endpoint for getting a list of the tags which Tobamon is set to mon-

itor for. This is made use of in the web page visualization, but more on that in Section

5.4.2.

42

The third endpoint of the API, and the most frequently used one, is “/api/{variable

name}/starting/{index}”. It returns all values for a given tag starting from the given index

all the to the latest value in the correspond list. The “{variable name}” in the URL desig-

nates which tag is being queried for. The “{index}” designates the index.

The last API endpoint is “/api/{variable name}/at/{index}”. This is rather like the third end-

point, with the difference being that this one returns only one value for the tag which is

found at the given index.

5.4.2 The web page view

There is a web page view provided with the Tobamon Visualizer component. It is avail-

able from the API at endpoint “/”, the base endpoint. The web page is implemented using

HTML and various JavaScript libraries.

The working order of the web page is thus: first the page itself is loaded with all necessary

static files. Then, the script of the page requests the API for all tags which are being

monitored. The call is implemented using the Fetch API and is sent to the endpoint:

“/api/variables”. The script will wait for the tags to be retrieved. For each tag, it will create

a dataset which it will insert into the Chart object. The name of the tag is given as the

label of the dataset. This process is represented in Image 17.

43

Image 17: Web page view script flow visual representation.

After the datasets have been initialized, the script enters a infinite loop, where at each

iteration it sends a request to the API for each tag that is being monitored for. This call

is implemented using the Fetch API. This call is sent to the endpoint: “/api/{variable

name}/starting/{index}”. An asynchronous Promise is collected towards each request,

and at the end of the loop iteration, the code waits for each of them to resolve or reject.

The request for the values of a variable is packaged with an integer value called “index”.

When the web page view is making this request, it gives the size of the array within the

dataset as that index. Thus, the web page view will only receive the latest values since

it was last updated during the previous iteration of the loop. In this way, the code of the

web page view avoids asking for duplicates of those values it has already received from

the API.

For each dataset, there is a Boolean flag called ‘underUpdate’. When a dataset receives

data from the API, the value of its ‘underUpdate’ flag is set as ‘true’. Hence, when the

update loop encounters this dataset, it will not send another request for data. This too

avoids duplication. After the update procedure for a dataset is complete, the ‘un-

derUpdate’ flag is set back to ‘false’. From thereon again, the main loop will enter update

procedures for the dataset upon encountering it.

44

In Image 18 and Image 19, there are demonstrations of the complete Tobamon running

on data from actual test devices. The X-axis represents a date and a time, with the latter

being accurate to a hundredth of a second. The Y-axis represents numerical values from

the queried devices on the test bench. Frequently these are floating point numbers, but

integers and Boolean values are also possible.

The data in images 18 and 19 is retrieved from actual test devices, but they were induced

by means of auxiliary code. The devices and variables given to use for testing Tobamon

did not change frequently enough, a separate script was written to change their values

arbitrarily, at arbitrary intervals. Nevertheless, the images demonstrate Tobamon running

successfully on test devices.

45

Image 18: Tobamon running with data from the device.

46

Image 19: Tobamon running with more dense data from an actual test device.

47

6. CONCLUSION

The Tobamon project is complete. Was it successful or not? This needs to be considered

from a couple of angles: adherence to design science principles (laid out in Section 2)

and success at fulfilling the initial plans.

6.1 Design Science Assessment

The relevance of this work to its own framework of DS can be reviewed by its adherence

to the seven guidelines of design science.

The first guideline, “Design as an Artifact”, has been satisfied. An instantiation has been

produced in the form of Tobamon. The second guideline “Problem Relevance” is met, as

the project has been created as a commission by Teleste. The third guideline “Design

Evaluation” is satisfied by the extensive testing and experimentation Tobamon went

through in its development, as well as reviews with the employer.

The fourth guideline “Research Contributions” is met through the fact that an instantiation

was produced. The fifth guideline, “Research Rigor”, was satisfied with the frequent con-

sultation of best practices, documentation, and review with the supervisor. The sixth

guideline, “Design as a Search Process”, came true, as the design of Tobamon started

from the broadest descriptions and iteratively got more precise. The final guideline,

“Communication of Research”, is met with the submission of this paper to Tampere Uni-

versity.

6.2 Design and Implementation Assessment

The final version of Tobamon described in this thesis, came to fulfill the Monitor element

of the initial design described in Section 4.1 very closely. Much of the design of the com-

plete Tobamon was left unimplemented, which is unfortunate. There is much potential in

it.

It is the feeling of the author that the project not only took much more time to prosecute

than was initially anticipated, but it also exceeded reasonable demands. It must however

be acknowledged that in the software industry, projects notoriously have tendency to go

past time estimations. Not only this, planned features often must be dropped to meet

time demands.

48

As noted earlier, the selection and implementation of the chart drawing library took a

particularly egregious and disproportionate amount of time. This was because the library

and many of the concepts and terminology of chart visualization were at best only

vaguely familiar to the author. It goes to show, that for a developer to adopt a new tool

or framework, such as chart visualization, an extra amount of is going to be taken up by

getting familiar.

Development on Windows and development on Linux come with differing obstacles and

possibilities. It was found that the for the multiprocessing library of Python implementa-

tion of Windows, only one instruction for starting a new process is supported: spawn().

This is likely related to a peculiar behavior which was observed, whenever a process

was started for the web framework Flask. The printing output of the main process be-

came duplicated, if this was not deliberately prevented somehow.

6.3 Future Ideas

There are many possibilities for the further refinement of Tobamon. Many features envi-

sioned in the initial design of the complete system had to be scrapped for time con-

straints. An obvious way to develop the product further would be to start implementing

these missing features. The modular design of Tobamon was intended to facilitate

maintenance and the addition of new features.

Further, implementations could be included for interfacing with devices using protocols

other than the GraphQL. As noted earlier in this thesis, an implementation for interfacing

with devices using the CIP protocol was originally considered. It could be added by cre-

ating a CIP-based implementation of the Listener component.

In this work, Tobamon was implemented using the Python language, which is a very

convenient language that allows fast development. As a high-level scripting language, it

might not be most ideal for software tool that is meant to be utilized and maintained for

years or even decades. It is not necessarily the fastest performing language either. It

might be a good idea to completely reimplement Tobamon in C/C++ or even Rust or

Java at some future point in time.

6.4 Concluding Words

The Tobamon project has been a tremendous learning experience for the author. This

has not only been an exercise in commissioned software development, but also a pos-

sibility to significantly develop one’s programming skills.

49

REFERENCES

[1] About Teleste, Teleste, (referenced 2.11.2021). Available: https://www.te-

leste.com/about-teleste

[2] G. Alexandru, Vue3-Charts, vue3charts.org, 2021, (referenced 28.10.2021).

Available: https://vue3charts.org

[3] B. Angel, Programming Style Guides, the Blueprint of Clean Code, Pullrequest,

14.9.2018, (referenced 4.11.2021). Available: https://www.pullrequest.com/blog/pro-

gramming-style-guides-blueprint-of-clean-code/

[4] APEXCHARTS.JS Modern & Interactive Open-source Charts, apexcharts.com,

2021, (referenced 28.10.2021). Available: https://apexcharts.com

[5] Chart.js, Chartjs.org, 2021, (referenced 28.10.2021). Available:

https://www.chartjs.org

[6] Common Industrial Protocol (CIP™), ODVA, 2022, (Referenced 27.1.2022). Avai-

lable: https://www.odva.org/technology-standards/key-technologies/common-industrial-

protocol-cip/

[7] D. Crockford, JavaScript has Good Parts – presentation, deliciouspops, YouTube,

11.6.2017. (Referenced 13.1.2022). Available: https://www.youtube.com/watch?v=Dog-

GMNBZZvg

[8] J. Daintith, E. Wright, A Dictionary of Computing. 6th edition. Oxford: Oxford Un

iversity Press, 2008. Print. Referenced (26.1.2022). Available: https://www-oxfordrefer-

ence-com.libproxy.tuni.fi/view/10.1093/acref/9780199234004.001.0001/acref-

9780199234004

[9] E. Engström, M. Storey, P. Runeson, M. Höst, M. T. Baldassarre, How software

engineering research aligns with design science: a review, Empirical Software Engineer-

ing (2020) 25:2630–2660, 18.4.2020.

[10] M. Fernandez, Using Python to Connect to a GraphQL API, Towards Data Sci-

ence, 14.11.2019, (referenced 30.10.2021). Available : https://towardsdatas-

cience.com/connecting-to-a-graphql-api-using-python-246dda927840

[11] R.B. Fuller, A Comprehensive Anticipatory Design Science, Dalhouse University,

Royal Architectural Institute of Canada Journal. v.34:no.9(1957), 1957. Available:

https://dalspace.library.dal.ca//handle/10222/74680

https://www.teleste.com/about-teleste
https://www.teleste.com/about-teleste
https://vue3charts.org/
https://www.pullrequest.com/blog/programming-style-guides-blueprint-of-clean-code/
https://www.pullrequest.com/blog/programming-style-guides-blueprint-of-clean-code/
https://apexcharts.com/
https://www.chartjs.org/
https://www.odva.org/technology-standards/key-technologies/common-industrial-protocol-cip/
https://www.odva.org/technology-standards/key-technologies/common-industrial-protocol-cip/
https://www.youtube.com/watch?v=DogGMNBZZvg
https://www.youtube.com/watch?v=DogGMNBZZvg
https://www-oxfordreference-com.libproxy.tuni.fi/view/10.1093/acref/9780199234004.001.0001/acref-9780199234004
https://www-oxfordreference-com.libproxy.tuni.fi/view/10.1093/acref/9780199234004.001.0001/acref-9780199234004
https://www-oxfordreference-com.libproxy.tuni.fi/view/10.1093/acref/9780199234004.001.0001/acref-9780199234004
https://towardsdatascience.com/connecting-to-a-graphql-api-using-python-246dda927840
https://towardsdatascience.com/connecting-to-a-graphql-api-using-python-246dda927840
https://dalspace.library.dal.ca/handle/10222/74680

50

[12] GraphQL A query language for your API, The GraphQL Foundation, 2021, (refer-

enced 30.10.2021). Available: https://graphql.org

[13] A.R. Hevner et al., DESIGN SCIENCE IN INFORMATION SYSTEMS RE-

SEARCH 1. MIS quarterly 28.1 (2004): 75–. Print. (Referenced 2.11.2021). Available:

https://www.proquest.com/docview/218119584?accountid=14242&parentSessio-

nId=kDIYhyjZ8kCTo72w2lqxwY%2BiR1UV0DdJ7VXZsidE5TU%3D&pq-origsite=primo

[14] ISO/IEC/IEEE International Standard - Systems and software engineering—Vo-

cabulary, IEEE, ISO/IEC/IEEE 24765:2017(E), 2017, p.1-541, 2017.

[15] JavaScript, 29.7.2021, Mozilla Corporation. (Referenced 12.1.2022). Available:

https://developer.mozilla.org/en-US/docs/Web/javascript

[16] J. Juszczak, vue-chartjs, vue-chartjs.org, 2021, (referenced 28.10.2021). Availa-

ble: https://vue-chartjs.org

[17] V. Khorikov, Unit Testing Principles, Practices, and Patterns, Manning Publica-

tions, 2020. (Referenced 14.6.2022). Available: https://learning.oreilly.com/li-

brary/view/unit-test-frameworks/0596006896/

[18] R. Koubbi, A 2020 Guide to Python 2 vs Python 3, careerkarma.com, 13.7.2020,

(referenced 12.1.2020). Available: https://careerkarma.com/blog/python-2-vs-python-3/

[19] C. G. Lasater, Design patterns. 1st edition, Wordware Pub., 2007, (referenced

16.1. 2022).

[20] H. Liang, X. Pei, X. Jia, W. Shen, J. Zhang, Fuzzing: State of the Art, New York:

IEEE, IEEE transactions on reliability, 2018, Vol.67 (3), p.1199-1218, 2018.

[21] T. Linz, A. Spillner, Software Testing Foundations, 5th Edition, 5th Edition, Rocky

Nook, 2021.

[22] B. Nice, What is a Programming Style Guide and why should you care, Me-

dium.com, 25.7.2019, (referenced 4.11.2021). Available: https://medium.com/level-up-

web/what-is-a-programming-style-guide-and-why-should-you-care-9019e51bb7ad

[23] L. Niven, Niven’s Laws, N-Space, Tor Books, 1990 (referenced 15.11.2021).

[24] NPM Docs, npmjs.com, npm, Inc.. (Referenced 12.1.2022). Available:

https://docs.npmjs.com

[25] M. Mijač, Evaluation of Design Science Instantiation Artifacts in Software Engi-

neering Research, Varazdin: Faculty of Organization and Informatics Varazdin, Confer-

ence proceedings, 313–321, 2019

https://graphql.org/
https://www.proquest.com/docview/218119584?accountid=14242&parentSessionId=kDIYhyjZ8kCTo72w2lqxwY%2BiR1UV0DdJ7VXZsidE5TU%3D&pq-origsite=primo
https://www.proquest.com/docview/218119584?accountid=14242&parentSessionId=kDIYhyjZ8kCTo72w2lqxwY%2BiR1UV0DdJ7VXZsidE5TU%3D&pq-origsite=primo
https://developer.mozilla.org/en-US/docs/Web/javascript
https://vue-chartjs.org/
https://learning.oreilly.com/library/view/unit-test-frameworks/0596006896/
https://learning.oreilly.com/library/view/unit-test-frameworks/0596006896/
https://medium.com/level-up-web/what-is-a-programming-style-guide-and-why-should-you-care-9019e51bb7ad
https://medium.com/level-up-web/what-is-a-programming-style-guide-and-why-should-you-care-9019e51bb7ad
https://docs.npmjs.com/

51

[26] I. Ottoway, Pycomm3 A Python Ethernet/IP library for communicating with Allen-

Bradley PLCs, docs.pycomm3.dev, 2021, (Referenced 3.11.2021). Available:

https://docs.pycomm3.dev/en/latest/

[27] T. Peters, PEP 20 – The Zen of Python, Python.org, 22.8.2004, (referenced

4.11.2021). Available: https://www.python.org/dev/peps/pep-0020/

[28] Postman API Platform, (referenced 5.1.2022). Available: https://www.post-

man.com

[29] S. Potter, Fewer Labels than Points #769, Github, 20.11.2014. (Referenced

2.11.2021). Available: https://github.com/chartjs/Chart.js/issues/769

[30] Python. (Referenced 10.1.2022). Available: https://www.python.org

[31] Requests: HTTP for Humans™. (Referenced 6.1.2022). Available:

https://docs.python-requests.org/en/latest/

[32] H.W.J. Rittel, M.M. Webber, “Dilemmas in a General Theory of Planning.” Policy

sciences 4.2 (1973): 155–169. Web, (referenced 2.1.2022).

[33] Robot Framework, Robot Framework ry. Available: https://robotframework.org

[34] B. Ross, Potential Decoupling Series Data from Labels #389, Github, 30.6.2014,

(referenced 2.11.2021). Available: https://github.com/chartjs/Chart.js/issues/389

[35] G. van Rossum, B. Warsaw, N. Coghlan, PEP 8 – Style Guide for Python Code,

Python.org, 1.8.2013, (referenced 4.11.2021). Available: https://www.py-

thon.org/dev/peps/pep-0008/

[36] Teleste Description of the Problem and the commissioned software solution, Ap-

pendix.

[37] Vue.js – The Progressive JavaScript Framework. Available: https://vuejs.org

[38] WebAssembly, MDN Web Docs, (referenced 14.1.2022). Available: https://deve-

loper.mozilla.org/en-US/docs/WebAssembly

[39] Welcome to GQL 3 documentation!, (referenced 17.1.2022). Available:

https://gql.readthedocs.io/en/stable/

https://docs.pycomm3.dev/en/latest/
https://www.python.org/dev/peps/pep-0020/
https://www.postman.com/
https://www.postman.com/
https://github.com/chartjs/Chart.js/issues/769
https://www.python.org/
https://docs.python-requests.org/en/latest/
https://robotframework.org/
https://github.com/chartjs/Chart.js/issues/389
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://vuejs.org/
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly
https://gql.readthedocs.io/en/stable/

52

APPENDIX 1: TELESTE DESCRIPTION OF THE
PROBLEM AND THE COMMISSIONED
SOFTWARE SOLUTION

”Junajärjestelmiä kehitettäessä käytössä ei ole koko järjestelmää. Matkustajainformaa-

tiojärjestelmä integroituu junan muihin järjestelmiin erilaisten rajapintojen kautta. Tämän

osajärjestelmän kehittämistä ja testaamista varten täytyy pystyä monitoroimaan ja kont-

rolloimaan kyseisiä rajapintoja. Nyt käytössä on hajanaisesti erilaisia työkaluja. Tässä on

tarkoitus toteuttaa yksi monitorointi- ja simulointityökalu joka täyttää useiden projektien

vaatimukset. Lisäksi tuodaan uusia ominaisuuksia erityisesti rajapinnan monitorointiin.”

	1. Introduction
	2. Theoretical Framework
	2.1 Design Science
	2.2 Guidelines.
	2.2.1 Design as an Artifact
	2.2.2 Problem Relevance
	2.2.3 Design Evaluation
	2.2.4 Research Contributions
	2.2.5 Research Rigor
	2.2.6 Design as a Search Process
	2.2.7 Communication of research

	3. Tools and Methods Used
	3.1 Python
	3.2 JavaScript
	3.3 Chart.js
	3.4 GraphQL
	3.5 Postman
	3.6 Programming style

	4. Plans and Development
	4.1 Initial meetings and provisional designs
	4.2 Full concept
	4.3 Automated testing
	4.4 Auxiliary code
	4.5 Communicating with device server
	4.6 API endpoints
	4.7 Problems in generating a visualization
	4.7.1 The search for a library
	4.7.2 Chart.js for development

	5. Implementation
	5.1 Tobamon Core
	5.2 Listener
	5.3 DataHolder
	5.4 Visualizer
	5.4.1 API implementation
	5.4.2 The web page view

	6. Conclusion
	6.1 Design Science Assessment
	6.2 Design and Implementation Assessment
	6.3 Future Ideas
	6.4 Concluding Words

	References

