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A comprehensive evaluation 
of polygenic score and genotype 
imputation performances of human 
SNP arrays in diverse populations
Dat Thanh Nguyen 1,5*, Trang T. H. Tran1,2, Mai Hoang Tran1,2, Khai Tran1, Duy Pham3, 
Nguyen Thuy Duong1,2,4, Quan Nguyen3* & Nam S. Vo1,2*

Regardless of the overwhelming use of next-generation sequencing technologies, microarray-based 
genotyping combined with the imputation of untyped variants remains a cost-effective means to 
interrogate genetic variations across the human genome. This technology is widely used in genome-
wide association studies (GWAS) at bio-bank scales, and more recently, in polygenic score (PGS) 
analysis to predict and stratify disease risk. Over the last decade, human genotyping arrays have 
undergone a tremendous growth in both number and content making a comprehensive evaluation 
of their performances became more important. Here, we performed a comprehensive performance 
assessment for 23 available human genotyping arrays in 6 ancestry groups using diverse public and 
in-house datasets. The analyses focus on performance estimation of derived imputation (in terms 
of accuracy and coverage) and PGS (in terms of concordance to PGS estimated from whole-genome 
sequencing data) in three different traits and diseases. We found that the arrays with a higher number 
of SNPs are not necessarily the ones with higher imputation performance, but the arrays that are well-
optimized for the targeted population could provide very good imputation performance. In addition, 
PGS estimated by imputed SNP array data is highly correlated to PGS estimated by whole-genome 
sequencing data in most cases. When optimal arrays are used, the correlations of PGS between two 
types of data are higher than 0.97, but interestingly, arrays with high density can result in lower PGS 
performance. Our results suggest the importance of properly selecting a suitable genotyping array 
for PGS applications. Finally, we developed a web tool that provides interactive analyses of tag SNP 
contents and imputation performance based on population and genomic regions of interest. This 
study would act as a practical guide for researchers to design their genotyping arrays-based studies. 
The tool is available at: https:// genome. vinbi gdata. org/ tools/ saa/.

Over the last decade, low-cost, robust genotyping platforms and large-scale genome variation projects such as 
the 1000 Genomes  Project1 have facilitated genome-wide association studies (GWAS) on numerous human 
phenotypes, ranging from height to  diseases2. To date, thousands of DNA loci that are significantly associated 
with complex traits and diseases have been  discovered3. Among numerous possible applications of GWAS results, 
disease risk prediction is rapidly gaining broad interest  recently4–6. A polygenic score (PGS) or polygenic risk 
score (PRS) is an estimate of an individual’s genetic liability to a trait or disease, calculated based on their geno-
type profile and relevant GWAS  data7. In its most common form, a PGS is computed as the sum of allele count 
of risk alleles (0, 1, or 2) that are weighted by its effect size (i.e. log odd ratio or beta coefficient) of hundreds to 
thousands of associated SNPs. The outcome is a single score that aggregates each individual’s genetic loading 
proportional to the risk of a given disease or a quantitative  trait6. Although the clinical utility of PGS has yet to 
be established, recent works have suggested that PGS may be used for disease risk stratification that potentially 
facilitates early disease detection, assists in diagnosis, or informs treatment  choices4,5. For example, PGS of 
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coronary artery disease, type 2 diabetes, and breast cancer at the top 8, 3.5, and 1.5% are risks equivalent to a 
monogenic mutation risk that confers an odds ratio of  38.

Similar to GWAS analysis, PGS can be derived from various types of genotyping data such as those obtained 
by single-nucleotide polymorphism (SNP) microarrays or whole-genome sequencing (WGS). While WGS is 
attractive of the ability to interrogate variations across the entire human genome, SNP arrays are the dominant 
assays to obtain genetic data for PGS calculation. They come up with several advantages such as cost-effectiveness 
and light computational requirement which are preferable for population-scale screening, where PGS would be 
most  useful9. Because the coverage of SNP arrays is typically limited to lower than a million SNPs, a procedure 
involving haplotype phasing and genotype imputing of missing sites is usually employed to add more genotyping 
information that can increase the power of these genetic  studies7,10,11. The imputation performance is affected by 
three main factors, including algorithms of  choice12, imputation reference  panels13,14, and the SNP array  designs15.

In principle, genotyping SNP arrays are designed by selecting a set of SNPs, commonly referred to as “tag 
SNPs”, which maximize coverage of ungenotyped DNA variants through associations between these alleles in the 
population (known as linkage disequilibrium, LD)16,17. Based on the target population, human genotyping SNP 
arrays can be classified into three categories optimized for global, super population, or specific to targeted popu-
lations. In the early phase of development, genotyping SNP arrays were focused on common genetic variations 
of the whole world population (minor allele frequency, MAF, of 0.10 or greater) based on the HapMap  catalog18. 
The second generation of SNP arrays was designed to cover variants with MAF as low as 0.01 by providing SNP 
arrays specifically for European, East Asian, African American, and Latino race/ethnicity populations based on 
the 1000 Genomes Project (1KGP)  catalog19,20. However, the fact that the majority of human genetic variants 
are rare and population-specific demands customizing SNP arrays to improve over those designed for global or 
super  populations21,22. Indeed, population-specific genotyping arrays such as the UK Biobank Axiom  Array2, the 
Axiom-NL  Array23, the Japonica and Japonica NEO  Arrays24,25, and the Axiom  KoreanChip26 have been devel-
oped on top of the many existing commercial arrays. These arrays are not only optimized for genomic coverage 
based on their unique variant catalogs but also include a large number of functional variants. For example, the 
Axiom KoreanChip contains more than 200,000 nonsynonymous loci and the new Japonica NEO Arrays were 
designed with abundant disease risk  variants25,26.

The development of customized arrays accompanied by commercial arrays provided by genotyping plat-
form producers results in a large number of genotyping arrays. Each of these arrays has specific properties and 
contents, and thus, there is an urgent demand for a systematic guideline to determine which array best suits 
specific research questions and populations. Although there are SNP array comparative studies, they are either 
not updated with the many recent  arrays15,27, or limited in only testing for a small set of populations, and some 
studies focused on LD  coverage27,28 that may not be relevant to current imputation practice for use in associa-
tion studies and PGS  analysis7,11. Moreover, although PGS is gaining increasing attention, practical evaluation of 
performance for PGS applications by current genotyping arrays is still lacking. Here, we provide a comprehensive 
evaluation of imputation-based genomic  coverage15,29 and PGS performance of 23 human genotyping arrays in 
diverse populations. These analyses are intended to be a practical guide for researchers in selecting the most 
suitable genotyping array for their genetic studies.

Materials and methods
Genotyping arrays. In this study, we benchmarked 23 different human genotyping arrays including 14 
arrays from Illumina and 9 arrays from Affymetrix. The examined arrays contain the numbers of tag SNPs 
(array size) ranging from approximately 300,000 (Infinium HumanCytoSNP-12 v2.1) up to more than 4,300,000 
(Infinium Omni5 v1.2). They can be classified as old arrays such as the Genome-Wide Human SNP Array 
6.0; population-specific optimized arrays such as Axiom UK Biobank Array and Axiom Japonica Array NEO; 
multiple populations optimized arrays such as Infinium Multi-Ethnic Global v1.0 and Infinium Global Diver-
sity Array v1.0; cytogenetics and cancer applications optimized arrays such as Infinium CytoSNP-850K v1.2. 
Recently developed arrays include Infinium Global Screening Array v3.0, Axiom Precision Medicine Research 
Array, and Axiom Precision Medicine Diversity Array. Manifests of the 23 examined arrays were obtained from 
respective manufacturers’ websites. Genomic positions were further harmonized to the UCSC hg38 reference 
genome coordinate with CrossMap v0.2.6 for those requiring lifted  over30. Details and component statistics of 
these arrays are shown in Table 1.

Genomic datasets and pipelines. An overview of our evaluation pipeline is presented in Fig. 1. In brief, 
the phased genomic data of 22 autosomal chromosomes in Variant Call Format (VCF) of 2,504 and 1,008 unre-
lated individuals from the 1000 Genomes Project samples that were re-sequenced by New York Genome Center 
(1KGP)31 and the 1000 Vietnamese Genomes Project (1KVG)32, respectively, were used to estimate imputation-
based coverage and PGS performance of 23 different genotyping arrays by the tenfold cross-validation approach. 
In the 1KGP dataset, 26 populations were grouped into 5 supper-populations according to their continental 
groups including East Asian (EAS), European (EUR), South Asian (SAS), African (AFR), and American (AMR). 
For consistent naming throughout the text, these continental groups are hereafter considered as a population. 
This dataset was randomly divided into 10 batches equally distributed across populations (4 batches with 251 
samples and 6 batches with 250 samples). Similarly, the Vietnamese population (VNP) was processed separately 
with 8 batches of 101 and 2 batches of 100 samples. In each turn, one batch was used as the test set and the 
remaining samples as the reference set. For each array, variants in the test set with the same position as vari-
ants on the array were extracted with vcftools v0.1.1733 and phasing information was removed to generate the 
pseudo SNP array genotyped data, while variants in reference data were used as the pre-phasing and imputa-
tion reference panel. The pre-phasing and imputation were performed with SHAPEIT v4.1.334 and Minimac4 
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v1.0.212 respectively. Finally, the imputed genotyping data of 10 batches were combined to estimate imputation 
and PGS performance according to their populations, including 504, 503, 489, 661, 347, and 1,008 individuals in 
EAS, EUR, SAS, AFR, AMR, and VNP, respectively. This approach is similar to the strategy used previously to 
estimate imputation-based genomic  coverage15,29,35.

Imputation performance evaluation. Both GWAS and PGS often require genotype imputation that 
involves the prediction of untyped variants in the genome. While GWAS benefits from boosting the number of 
imputed SNPs that can be tested for  association11, computation of PGS is conducted by summing the product of 
risk allele count (0, 1, or 2) and its effect size derived from the GWAS. Thus, imputation performance is expected 
to play a key role in PGS derivation. Here, we focus on imputation r2 metric although there are several other 
criteria that can be used to assess imputation performance such as allele  concordance15, imputation  quality28, 
LD  coverage36. We choose imputation r2 as the evaluation metric for the following reasons. First, it is more rel-
evant to the context of GWAS and PGS analysis because the imputation r2 at a given variant is proportional to 
its χ2 statistic that results from an association  test37–40. This leads to the interpretation that an increase in mean 
imputation r2 at genome wide scale directly corresponds to the increase of statistical  power37,40. Second, it is less 
sensitive to allele frequency than  concordance15. Third, it incorporates imputation uncertainty by using expected 
allele dosage rather than the most likely  genotype15. Finally, imputation r2 can be computed on a site-by-site 
basis, which enables a more detailed evaluation than at the allele frequency  level40. In this evaluation setting, we 
treated genotypes derived from WGS datasets as gold standard. Imputation performance is measured as imputa-
tion r2 that is SNP-wise squared Pearson’s correlation between the imputed dosages and the WGS genotypes, and 
imputation coverage is defined as the proportion of SNPs with imputation r2 passing the cut-off of 0.8. These 

Table 1.  Details of 23 human genotyping arrays used in this study. Short name of arrays are used 
interchangeablely with its full names throughout the texts, tables, and figures. No.Assays: number of assays 
included in the array; No.Positions: number of variants included in the array; No.Autosomal: number of 
variants of autosomal chromosomes included in the array; No.X, No.Y, and No.MT: number of variants of X, Y, 
MT chromosomes included in the array respectively.

Array full name Array short name No. assays No. positions No. autosomal No.X No.Y No.MT

Infinium HumanCy-
toSNP-12 v2.1 CytoSNP-12 293,552 293,467 276,248 15,082 1444 0

Infinium Core-24 v1.2 Infinium_Core 304,151 304,111 293,850 8097 2003 161

Infinium OncoArray-500K 
v1.0 Infinium_OncoArray 497,191 496,203 481,495 14,276 312 120

Infinium PsychArray v1.3 PsychArray 592,414 584,233 567,619 14,221 2051 342

Axiom Genome-Wide ASI Axiom_GW_ASI 629,494 629,492 609,774 17,263 2222 233

Infinium Global Screening 
Array v3.0 Infinium_GSA 654,027 648,380 616,080 26,635 3822 987

Axiom Genome-Wide CHB Axiom_GW_CHB 656,638 656,625 631,283 24,267 980 95

Axiom Japonica Array NEO Axiom_JAPONICA 671,123 666,782 652,237 13,336 779 409

Axiom Genome-Wide EUR Axiom_GW_EUR 674,287 673,449 659,956 13,104 290 99

Infinium Chinese Genotyp-
ing Array v1.0 Infinium_Chinese 695,116 682,199 647,335 27,668 6210 986

Infinium Japanese Screening 
Array v1.0 Infinium_JSA 719,938 707,559 675,012 26,223 4686 948

Axiom UK Biobank Array Axiom_UKB 843,755 820,407 798,493 20,827 813 274

Infinium CytoSNP-850K 
v1.2 CytoSNP-850K 845,050 842,682 811,217 29,666 1097 0

Axiom Precision Medicine 
Research Array Axiom_PMRA 919,099 900,406 864,096 36,132 8 170

Axiom Precision Medicine 
Diversity Array Axiom_PMDA 921,664 900,770 837,511 62,039 448 714

Genome-Wide Human SNP 
Array 6.0 Affymetrix_6.0 931,991 929,011 889,847 37,894 859 411

Infinium OmniZhongHua 
v1.4 OmniZhongHua 1,170,268 1,165,100 1,134,324 28,444 2220 112

Infinium Multi-Ethnic EUR/
EAS/SAS v1.0

Multi-Ethnic_EUR_EAS_
SAS 1,471,475 1,471,475 1,429,754 39,479 1598 644

Infinium Multi-Ethnic 
Global v1.0 Multi-Ethnic_Global 1,748,250 1,733,356 1,673,788 50,914 3569 776

Infinium Global Diversity 
Array v1.0 Infinium_GDA 1,904,599 1,825,277 1,752,897 60,512 5744 1115

Axiom Genome-Wide 
PanAFR Axiom_GW_PanAFR 2,264,666 2,264,432 2,195,556 65,949 2647 280

Infinium Omni2.5 v1.5 Infinium_Omni2.5 2,373,357 2,363,610 2,311,073 50,841 1515 181

Infinium Omni5 v1.2 Infinium_Omni5 4,327,108 4,245,106 4,131,134 106,418 2396 207
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metrics were stratified into three minor allele frequency (MAF) bins, including (0–0.01], (0.01–0.05], (0.05–0.5]. 
To reduce the data noise, multiallelic sites were not considered, and variants with allele count less than 2 were 
excluded in the bin of (0–0.01]. Of note, the MAF bin of (0.01–0.5], which is the most common cutoff for GWAS 
and PGS analysis, was also considered in the  analysis7,41.

PGS performance assessment. Instead of using pre-tuned PGS models as in other  studies9,40, PGS was 
computed with a standard P+T (Prunning and Thresholding) approach implemented in PRSice-242 in this study. 
The main reason for using this approach is that we tried to mimic the real-life practice of PGS analysis that 
involves running a PGS computational method with multiple parameters and selecting the best  one7. Another 
reason is that using pre-built PGS models may introduce a potential bias for some specific arrays as they were 
used in tuning in these established PGS model, i.e., we tried to avoid training using the same array twice. Using 
summary statistics for three phenotypes, namely height, body mass index (BMI), and type 2 diabetes (T2D), 
obtained from previous GWAS meta  analyses43,44, a PGS for an individual i was calculated as:

where PT is the p-value threshold values (5e−08, 1e−07, 1e−06, 1e−05, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.5, and 
1); M is number of SNPs after clumping with “–clump-kb 250kb” and “–clump-r2 0.1”; xij and β̂j is the allele count 
and the marginal effect size derived from GWAS summary statistics of SNPj.

(1)PGSi(PT ) =

M∑

j=1

1{Pj<PT }xijβ̂j ,

(i) Input WGS data
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Figure 1.  Overview of evaluation pipeline. (i) Two input genetic datasets, including the 1KGP and 1KVG 
were randomly divided into 10 batches that are equally distributed by populations. (ii) tenfold cross-validation 
procedure. In each turn, variants of 10% samples were extracted based on arrays’ manifest to generate simulated 
array genotyping data (arrow a) as input for phasing and imputation with the remaining 90% samples used 
as the reference set to generate the imputed SNP array data (arrow c). (iii) SNP array data after imputation. 
Imputed SNP array data of 10 batches were merged according to populations after tenfold cross-validation and 
were then benchmarked by treating the input WGS data as the golden standard.
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Similar to imputation performance evaluation, we treated PGS derived from WGS as the “gold standard”. 
PGS derived from 23 different SNP arrays were evaluated using Pearson’s correlation to PGS derived from WGS 
data under the same PRSice-2 parameter settings. In addition, absolute differences in PGS percentile ranking 
generated by array-imputed and the WGS data were also evaluated.

Ethics approval and consent to participate. The study did not generated new dataset. Ethics approval 
and consent to participate were applied according to corresponding orginal works. In the 1KVG study, sub-
jects provided informed consent and the study was approved by the Vinmec International Hospital Institutional 
Review Board with number 543/2019/QD-VMEC in accordance with the relevant guidelines and regulations 
(e.g. Helsinki Declaration). In the 1KGP-NYGC study, genetic data are publicly available according to the origi-
nal ethics approval.

Results
Imputation performance. Overall, we found two main factors affecting the imputation accuracy and 
imputation coverage that are array sizes and population optimization. The two densest arrays that are the Infin-
ium Omni2.5 v1.5 and Infinium Omni5 v1.2 with approximately 2.4 and 4.3 minion tag SNPs yielded the highest 
imputation performance. In contrast, the two sparsest SNP arrays with approximately 300,000 tag SNPs that are 
Infinium HumanCytoSNP-12 v2.1 and Infinium Core-24 v1.2 obtained the poorest imputation performance in 
all six examined populations. At the MAF bin of (0.01–0.5], the Infinium Omni5 v1.2 yielded the mean imputa-
tion accuracy r2 of 0.9032, 0.9144, 0.8644, 0.9176, 0.8873, 0.9499 and the imputation coverage of 0.8721, 0.8813, 
0.8019, 0.8885, 0.8344, 0.9207 while the Infinium HumanCytoSNP-12 v2.1 obtained 0.6682, 0.7708 0.7112, 
0.7608 0.7218, 0.8635 for mean imputation accuracy r2 and 0.4031, 0.6265, 0.5879, 0.6297, 0.5731, 0.7655 for 
imputation coverage in six populations AFR, AMR, EAS, EUR, SAS, and VNP respectively. Details are reported 
in Fig. 2 and Tables 2, 3.

Regarding population optimization, imputation performance is generally better for those arrays optimized 
specifically for the targeted populations. For example, the Axiom UK Biobank Array, which was optimized for the 
British population, performed superiorly in the EUR than most other arrays (except for the ultra-high-density 
arrays Infinium Omni2.5 v1.5 and Infinium Omni5 v1.2). In detail, at the MAF bin of (0.01–0.5], The Axiom UK 
Biobank Array with the size of 844k SNPs obtained the mean imputation coverage of 0.8389 which was higher 
than globally optimized, higher density arrays such as Axiom Precision Medicine Research Array (919k), Axiom 
Precision Medicine Diversity Array (922k), Genome-Wide Human SNP Array 6.0 (932k), Infinium Multi-Ethnic 
Global v1.0 (1784k), and Infinium Global Diversity Array v1.0 (1905k), with imputation coverage of 0.7814, 
0.8078, 0.7513, 0.8228, 0.8277, respectively and lower 0.8409, and 0.8885 that were obtained by Infinium Omni2.5 
v1.5 and Infinium Omni5 v1.2 arrays with 2373k and 4327k SNPs. Similarly, the Axiom Japonica Array NEO 
(671k) which was designed for the Japanese population also performed well against global optimized, higher-
density arrays. These two arrays yielded mean imputation accuracy of 0.831, 0.9333; and imputation coverage 
of 0.7642, 0.9024 in EAS and VNP populations. These performances were higher than those of multi-ethics SNP 
arrays, even with higher density including Axiom Precision Medicine Research Array (919k), Axiom Precision 
Medicine Diversity Array (922k), Genome-Wide Human SNP Array 6.0 (932k) as showed in Fig. 2 and Tables 2, 
3. Notably, the Infinium OmniZhongHua v1.4 (Chinese optimized array) also outperformed other arrays in 
EAS and VNP populations. Regarding the AFR population, an array optimized for this population is Axiom 
Genome-Wide PanAFR with 2265k SNPs performed nearly equivalent the Infinium Omni5 v1.2 array with 
4327k SNPs (0.9002 versus 0.9032 for mean imputation accuracy, and 0.8700 versus 0.8721 interns of imputa-
tion coverage). There were no SNP arrays with superior performances in the two remaining populations (AMR 
and SAS), although the Axiom UK Biobank Array and the Axiom Genome-Wide ASI obtained slightly better 
performance than other arrays with the same sizes when applied for the AMR and SAS populations. In this case, 
we focused on the MAF bin of (0.01–0.5] as this is the most common cutoff allele frequency in both GWAS and 
PGS  analysis7,45. However, the results were also generalized for other bins as shown in Fig. S.1 and Table S.1–6.

PGS performance. We evaluated PGS performance of these arrays based on two criteria: (i) Pearson’s cor-
relation of PGS estimated by using imputed SNP array data compared to the PGS estimated by using WGS 
data—hereafter we refer as PGS correlation for short, (ii) absolute difference of percentile ranking (ADPR) 
between PGS generated by array-imputed and gold standard WGS. Both comparisons are set under various 
p-value cutoffs that allow us unbiased evaluate PGS performance of these arrays. In general, we found that PGS 
performance was highly concordant with imputation performance, i.e. SNP arrays with better imputation per-
formance showed higher PGS correlation and less ADPR than the arrays with poor imputation performances.

The summary results of Pearson’s correlation values of PGS from 23 genotyping SNP arrays for three different 
phenotypes are shown in Fig. 3 and in Tables S.7–9. In general, all examined arrays yielded high PGS correlations. 
Notably, the vast of majority PGS correlations ranged from 0.90 to 0.99, except for the two lowest density arrays 
(Infinium HumanCytoSNP-12 v2.1 and Infinium Core-24 v1.2) which had the lowest values. Interestingly, when 
optimal arrays for populations were used (the Axiom UK Biobank Array was used for the EUR population; and 
the Axiom Japonica Array NEO, Infinium OmniZhongHua v1.4 were used for EAS and VNP populations), the 
PGS correlations were higher than 0.97. The PGS correlation patterns were also highly concordant in all three 
evaluated traits with comparable performances. As expected, SNP arrays with larger sizes showed higher PGS 
correlations. The lowest performer was the Infinium HumanCytoSNP-12 v2.1 with a correlation of 0.8731 in the 
height phenotype in the AFR population while the highest performance was obtained by the Infinium Omni5 v1.2 
with PGS correlation higher than 0.99 in all examined populations and traits. We also examined the deviation of 
PGS correlation in various p-value settings. The results showed that SNP array with lower PGS correlation had 
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higher PGS correlation standard deviation than the high-performance arrays. A possible explanation for this 
observation is the PGS estimated from low imputation performance are more vulnerable to the random pruning 
process than the high imputation performance  arrays42. Notably, we also observed higher standard deviations 
of PGS correlation in EAS than in other populations.

In agreement with imputation performance, SNP arrays optimized specifically for targeted populations 
showed superior PGS correlation in the targeted/closely related populations. For instance, Axiom Japonica 
Array NEO and Infinium OmniZhongHua v1.4 which were optimized for Japanese, and Chinese showed clear 
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Figure 2.  (A) Mean imputation r2 , and (B) Imputation coverage across 22 autosomes of 23 SNP arrays in 
the MAF bin of (0.01–0.5]. The dots and the vertical lines present the mean and the standard deviation of 
imputation accuracy, and imputation coverage values in 22 autosomes respectively.
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Table 2.  Mean and the standard deviation of imputation accuracy r2 measured in 22 autosomes at the MAF 
bin of (0.01–0.5].

Array name AFR AMR EAS EUR SAS VNP

CytoSNP-12 0.668 ± 0.050 0.771 ± 0.043 0.711 ± 0.045 0.761 ± 0.045 0.722 ± 0.046 0.863 ± 0.030

Infinium_Core 0.707 ± 0.061 0.791 ± 0.047 0.728 ± 0.049 0.776 ± 0.049 0.739 ± 0.051 0.871 ± 0.032

Infinium_OncoArray 0.747 ± 0.050 0.822 ± 0.039 0.755 ± 0.043 0.813 ± 0.040 0.775 ± 0.042 0.888 ± 0.028

PsychArray 0.739 ± 0.050 0.813 ± 0.040 0.747 ± 0.044 0.801 ± 0.041 0.763 ± 0.044 0.883 ± 0.028

Axiom_GW_ASI 0.771 ± 0.078 0.822 ± 0.064 0.775 ± 0.068 0.808 ± 0.067 0.783 ± 0.069 0.893 ± 0.048

Infinium_GSA 0.736 ± 0.049 0.828 ± 0.039 0.774 ± 0.042 0.834 ± 0.039 0.783 ± 0.041 0.903 ± 0.024

Axiom_GW_CHB 0.782 ± 0.037 0.835 ± 0.029 0.801 ± 0.028 0.819 ± 0.030 0.793 ± 0.030 0.915 ± 0.015

Axiom_JAPONICA 0.780 ± 0.039 0.848 ± 0.031 0.831 ± 0.032 0.838 ± 0.031 0.815 ± 0.032 0.933 ± 0.016

Axiom_GW_EUR 0.749 ± 0.087 0.823 ± 0.070 0.758 ± 0.075 0.826 ± 0.071 0.786 ± 0.075 0.881 ± 0.055

Infinium_Chinese 0.795 ± 0.038 0.850 ± 0.032 0.811 ± 0.036 0.841 ± 0.033 0.814 ± 0.035 0.921 ± 0.021

Infinium_JSA 0.748 ± 0.043 0.825 ± 0.033 0.799 ± 0.035 0.811 ± 0.034 0.783 ± 0.035 0.917 ± 0.018

Axiom_UKB 0.773 ± 0.032 0.864 ± 0.027 0.791 ± 0.030 0.880 ± 0.028 0.828 ± 0.029 0.913 ± 0.017

CytoSNP-850K 0.836 ± 0.037 0.865 ± 0.031 0.809 ± 0.035 0.855 ± 0.032 0.828 ± 0.034 0.920 ± 0.021

Axiom_PMRA 0.830 ± 0.030 0.860 ± 0.029 0.814 ± 0.033 0.849 ± 0.031 0.813 ± 0.031 0.922 ± 0.018

Axiom_PMDA 0.844 ± 0.022 0.874 ± 0.019 0.803 ± 0.021 0.867 ± 0.020 0.828 ± 0.023 0.919 ± 0.010

Affymetrix_6.0 0.831 ± 0.049 0.854 ± 0.038 0.793 ± 0.044 0.838 ± 0.041 0.813 ± 0.044 0.909 ± 0.027

OmniZhongHua 0.861 ± 0.033 0.882 ± 0.028 0.839 ± 0.033 0.872 ± 0.029 0.850 ± 0.031 0.935 ± 0.018

Multi-Ethnic_EUR_EAS_SAS 0.845 ± 0.039 0.880 ± 0.032 0.839 ± 0.038 0.874 ± 0.034 0.851 ± 0.036 0.934 ± 0.022

Multi-Ethnic_Global 0.861 ± 0.036 0.886 ± 0.031 0.843 ± 0.036 0.878 ± 0.032 0.855 ± 0.034 0.936 ± 0.021

Infinium_GDA 0.865 ± 0.033 0.889 ± 0.028 0.846 ± 0.033 0.882 ± 0.029 0.859 ± 0.031 0.938 ± 0.018

Axiom_GW_PanAFR 0.900 ± 0.027 0.885 ± 0.026 0.831 ± 0.029 0.869 ± 0.027 0.851 ± 0.028 0.932 ± 0.016

Infinium_Omni2.5 0.892 ± 0.031 0.897 ± 0.027 0.850 ± 0.031 0.891 ± 0.029 0.868 ± 0.029 0.941 ± 0.017

Infinium_Omni5 0.903 ± 0.028 0.914 ± 0.024 0.864 ± 0.028 0.918 ± 0.025 0.887 ± 0.026 0.950 ± 0.015

Table 3.  Mean and standard deviation of imputation coverage (defined by the proportion of variants with 
r2 ≥ 0.8 over total number of variants in each chromosome) measured in 22 autosomes at the MAF bin of 
(0.01–0.5].

Array name AFR AMR EAS EUR SAS VNP

CytoSNP-12 0.403 ± 0.058 0.627 ± 0.062 0.588 ± 0.055 0.630 ± 0.060 0.573 ± 0.058 0.766 ± 0.051

Infinium_Core 0.478 ± 0.088 0.665 ± 0.069 0.616 ± 0.060 0.656 ± 0.064 0.604 ± 0.066 0.780 ± 0.049

Infinium_OncoArray 0.553 ± 0.076 0.721 ± 0.056 0.653 ± 0.052 0.714 ± 0.053 0.658 ± 0.055 0.812 ± 0.042

PsychArray 0.536 ± 0.074 0.701 ± 0.058 0.640 ± 0.053 0.691 ± 0.054 0.636 ± 0.056 0.801 ± 0.043

Axiom_GW_ASI 0.639 ± 0.115 0.734 ± 0.091 0.688 ± 0.083 0.716 ± 0.086 0.682 ± 0.087 0.827 ± 0.075

Infinium_GSA 0.514 ± 0.080 0.737 ± 0.059 0.672 ± 0.055 0.754 ± 0.056 0.669 ± 0.058 0.848 ± 0.040

Axiom_GW_CHB 0.626 ± 0.057 0.743 ± 0.038 0.710 ± 0.031 0.720 ± 0.035 0.683 ± 0.036 0.863 ± 0.021

Axiom_JAPONICA 0.617 ± 0.065 0.769 ± 0.044 0.764 ± 0.040 0.755 ± 0.042 0.722 ± 0.043 0.902 ± 0.027

Axiom_GW_EUR 0.596 ± 0.121 0.739 ± 0.099 0.665 ± 0.089 0.749 ± 0.094 0.689 ± 0.095 0.810 ± 0.084

Infinium_Chinese 0.652 ± 0.061 0.774 ± 0.043 0.732 ± 0.043 0.761 ± 0.042 0.722 ± 0.043 0.875 ± 0.032

Infinium_JSA 0.532 ± 0.067 0.721 ± 0.049 0.702 ± 0.046 0.703 ± 0.047 0.660 ± 0.048 0.874 ± 0.032

Axiom_UKB 0.587 ± 0.048 0.807 ± 0.035 0.706 ± 0.035 0.839 ± 0.034 0.750 ± 0.035 0.865 ± 0.025

CytoSNP-850K 0.746 ± 0.057 0.798 ± 0.040 0.728 ± 0.042 0.780 ± 0.039 0.741 ± 0.042 0.867 ± 0.031

Axiom_PMRA 0.734 ± 0.042 0.797 ± 0.037 0.743 ± 0.039 0.781 ± 0.038 0.725 ± 0.038 0.884 ± 0.027

Axiom_PMDA 0.772 ± 0.029 0.823 ± 0.023 0.724 ± 0.026 0.808 ± 0.024 0.746 ± 0.029 0.872 ± 0.018

Affymetrix_6.0 0.736 ± 0.082 0.777 ± 0.057 0.704 ± 0.056 0.751 ± 0.056 0.717 ± 0.059 0.845 ± 0.045

OmniZhongHua 0.802 ± 0.046 0.827 ± 0.035 0.770 ± 0.037 0.809 ± 0.035 0.777 ± 0.036 0.899 ± 0.027

Multi-Ethnic_EUR_EAS_SAS 0.769 ± 0.061 0.831 ± 0.041 0.774 ± 0.045 0.819 ± 0.042 0.785 ± 0.044 0.903 ± 0.032

Multi-Ethnic_Global 0.800 ± 0.056 0.838 ± 0.040 0.778 ± 0.043 0.823 ± 0.040 0.789 ± 0.043 0.906 ± 0.031

Infinium_GDA 0.807 ± 0.051 0.843 ± 0.036 0.783 ± 0.040 0.828 ± 0.037 0.794 ± 0.039 0.909 ± 0.028

Axiom_GW_PanAFR 0.870 ± 0.033 0.828 ± 0.030 0.759 ± 0.031 0.800 ± 0.031 0.776 ± 0.032 0.886 ± 0.023

Infinium_Omni2.5 0.856 ± 0.039 0.853 ± 0.033 0.784 ± 0.034 0.841 ± 0.034 0.803 ± 0.034 0.907 ± 0.025

Infinium_Omni5 0.872 ± 0.035 0.881 ± 0.029 0.802 ± 0.031 0.889 ± 0.029 0.834 ± 0.031 0.921 ± 0.022
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advantages in the populations of EAS, and VNP while Axiom UK Biobank Array yielded higher PGS correla-
tion in the EUR population than the other size-comparable genotyping arrays. Taking height as a typical trait of 
interest, PGS correlations of the Japonica Array NEO were 0.9760, and 0.9847, while the Infinium OmniZhon-
gHua v1.4 had 0.9879, and 0.9914 in EAS and VNP respectively. Interestingly, we observed that the Infinium 
CytoSNP-850K v1.2 was the array with superior PGS correlations in all populations, for all the three evaluated 
traits. For example, the PGS correlation for this array for height phenotype in AFR, AMR, EAS, EUR, SAS and 
VNP were 0.9679, 0.9876, 0.9789, 0.9908, 0.9844, 0.988, respectively.

Regarding the ADPR metric, the performance of arrays was in an agreement with the trend from comparing 
PGS correlation i.e. ADPRs were also affected by array sizes and optimization population. ADPR measurements 
in different PRSice-2 p-values settings are shown in Figs. 4, S.2–12; and reported in Tables S.10–21. Most of the 
arrays yielded mean ADPR less than 10 in all three traits. Exceptions were the AFR population with low-density 
arrays. The highest density array, i.e. Infinium Omni5 v1.2, had the highest performance with ADPR less than 
4. Notably, ADPR varied by populations. Under-represented populations like AFR, and EAS tended to exhibit 
higher ADPRs than the others. Taking the p-value cutoff at 5e−8 for the height phenotype as an example (Fig. 4), 
Infinium Omni5 v1.2 obtained ADPR means of 3.8600, 2.4774, 2.8884, 1.9758, 2.8391, and 2.3699 in AFR, AMR, 
EAS, EUR, SAS and, VNP respectively. A consistent trend was also observed in other traits, with the lowest 
performance in AFR and the highest performance in EUR with ADPR means of 3.5974 and 1.8489 in BMI, and 
of 3.7206 and 1.6592 in type 2 diabetes. Similar to the other experiments, population specific arrays and the 
Infinium CytoSNP-850K v1.2 also illustrated their advantages when comparing the ADPR metric. The Axiom 
UK Biobank Array obtained good performance for the EUR population with ADPR means of 3.0584, 3.1714, 
and 2.2734 in height, BMI, and type 2 diabetes respectively. This trend was also observed in the cases of Axiom 
Japonica Array NEO, and Infinium OmniZhongHua v1.4 applied for the EAS and VNP populations. Regarding 
the Infinium CytoSNP-850K v1.2 array, good performances in all traits and populations were observed. Spe-
cifically, ADPR means of the height phenotype were 5.7141, 3.4914, 4.3753, 3.2501, 3.7638, 3.0267; for BMI at 
4.9872, 2.5463, 4.1560, 2.6272, 3.5409, 3.1523; and for type 2 diabetes at 5.2000, 2.5762, 3.7687, 2.6066, 2.4707, 
2.3812 in AFR, AMR, EAS, EUR, SAS and, VNP, respectively, all at the same p-value cutoff.
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Comparative analysis of real SNP array genotyping data and simulated genotyping data. We 
further utilized the availability of real genotyping data in the 1KVG dataset with 24 out of the 1008 samples also 
genotyped by the Axiom Precision Medicine Research Array and the Infinium Global Screening Array v3.0 to 
investigate how our simulated array data performed relative to the real array data. In brief, we generated pseudo 
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Figure 4.  The absolute difference of percentile ranking between PGS estimated from imputed genotyping data 
of 23 SNP arrays and PGS estimated from WGS in six different populations. The figure shows results of three 
phenotypes including height, BMI, and type two diabetes with PRsice p-value setting of 5e−08.
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genotyping data (termed simulated data) of 24 samples by extracting variants from WGS data that matched with 
the Axiom Precision Medicine Research Array and the Infinium Global Screening Array v3.0 manifests before 
excluding phasing information. Regarding real genotyping data, processed VCF (individual calling rate filtering 
at 97% and Hardy-Weinberg test filtering of 1e−6) files of 24 out of 1008 samples were obtained from https:// 
genome. vinbi gdata. org/ with no further filtering and quality control applied. We then applied the same pipeline 
to compare the imputation performance of the simulated genotyping data against the results obtained from the 
real genotyping data. In details, both simulated and real genotyping data were phased with SHAPEIT v4.1.334, 
and imputed with Minimac4 v1.0.212. Reference data for both phasing and imputation were the remaining 984 
WGS samples. Finally, imputation performance of both simulated and real arrays were estimated as described 
in the “Imputation performance evaluation” section. As expected, the imputation accuracies of simulated and 
real data were highly concordant in both the two examined arrays as shown in Fig. 5 and Table 4. For example, 
mean and standard deviation of imputation accuracies of simulated Axiom Precision Medicine Research Array 
were 0.8144 ± 0.0359, 0.8971 ± 0.0273, 0.9459 ± 0.016, 0.9542 ± 0.014; and real data were 0.8173 ± 0.0379, 
0.9013 ± 0.0285, 0.9492 ± 0.0158, 0.9573 ± 0.0135 in four MAF bins of (0–0.01], (0.01–0.05], (0.01–0.5], and 
(0.05–0.5], respectively. Furthermore, relative performances between the Axiom Precision Medicine Research 
Array and the Infinium Global Screening Array v3.0 were equivalent in simulated and real data. These results 
indicated the robustness of our simulation approach in imputation performance evaluation of genotyping arrays 
in reality.
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Figure 5.  Mean imputation accuracy comparisons of simulated and real data of the Axiom Precision Medicine 
Research Array (PMRA) and the Infinium Global Screening Array v3.0 (GSA) genotyped of 24 VNP samples at 
various MAF bins measured in 22 autosomes.

Table 4.  Mean and the standard deviation of imputation accuracies of simulated and real data of the Axiom 
Precision Medicine Research Array (PMRA) and the Infinium Global Screening Array v3.0 (GSA) of 24 VNP 
samples at various MAF bins measured in 22 autosomes.

MAF range Simulated PMRA Real PMRA Simulated GSA Real GSA

(0–0.01] 0.814 ± 0.036 0.817 ± 0.038 0.786 ± 0.049 0.785 ± 0.049

(0.01–0.05] 0.897 ± 0.027 0.901 ± 0.029 0.877 ± 0.035 0.875 ± 0.035

(0.01–0.5] 0.946 ± 0.016 0.949 ± 0.016 0.929 ± 0.023 0.928 ± 0.023

(0.05–0.5] 0.954 ± 0.014 0.957 ± 0.014 0.938 ± 0.021 0.937 ± 0.021

https://genome.vinbigdata.org/
https://genome.vinbigdata.org/
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Discussions and conclusions
Even in a booming time of next-generation sequencing technologies, current big genotyping projects are still 
using SNP arrays as the work-horse for generating valuable data, especially for bio-bank scale  projects2,25,26. 
Moreover, genotyping by SNP arrays produce the exact information typically required for PGS analysis, which 
is based on summarizing effect sizes from individual SNPs. A promising application of genomic research that is 
gaining increasing interest recently across the healthcare system, and direct-to-consumer genomic services based 
on polygenic scoring like  23andMe5,46. SNP arrays are clearly economical in data generation and analysis, an 
important factor in designing projects with large sample sizes and/or limited budget. Given that there are many 
available human genotyping arrays optimized for various purposes, a comprehensive guideline for choosing the 
most suitable SNP arrays in multiple ancestry groups is still lacking. To address this gap, we have introduced a 
systematic approach to assess a large range of SNP arrays across multiple datasets. We performed imputation 
and PGS performance assessments for 23 human available genotyping arrays in six ancestry groups using both 
public and in-house datasets by various metrics. By comparing the relative performance of SNP arrays to WGS 
with 4 metrics including imputation accuracy, imputation coverage, PGS correlation, and ADPR, we discovered 
important insights that can be used to suggest suitable arrays for genotyping-based studies on a specific popula-
tion, especially under-represented populations.

Overall, we found that all 23 assessed arrays had high performances in both imputation and PGS. These com-
mercial arrays differ markedly in designs, i.e. the number of markers on the arrays and targeted ancestry groups 
that would cause performance deviations. An important finding in our analysis was that in order to obtain high 
imputation performances, the choice of an array is not necessarily about getting higher density, but small to 
moderately-sized arrays (approximately 650k–850k tag SNPs), accompanied by well optimization for the targeted 
population could also produce high imputation and PGS performances. For example, the Japonica Array NEO, 
and the UK Biobank Array showed the highest performance when compared with other arrays with the same 
sizes for EAS, and EUR populations respectively. This indicates that using customized, small-size SNP arrays at 
the population-specific level can be a cost-effective genotyping solution without losing PGS  performance22,47. We 
also observed that there were no specific arrays with moderate sizes that had superior imputation performances 
in AFR, and SAS, suggesting the need for genotyping arrays optimized for these populations. PGS performances 
were concordant to imputation performances in general. However, CytoSNP-850K v1.2 was an interesting array 
that showed superior PGS performances in all populations. This superior performance may be explained by 
the enrichment of cytogenetic regions in the design of the Infinium CytoSNP-850K v1.2  array48. The analyses 
also showed that underrepresented populations such as AFR, and SAS exhibited lower PGS performances (and 
ADPRs tended to be higher in AFR, and SAS) than other well-studied populations regardless of sample sizes 
were not significantly different in these populations. A possible explanation for these lower performances is due 
to the use of meta-analysis GWAS summary statistics in the current study. The strong bias in GWAS participants 
toward populations of European descent could be a reason for lower PGS in other populations as described 
 previously43,44,49,50. In addition, PGS performances of small-sized arrays were significant lower in AFR which 
was possibly due to the higher number of genetic variations in this  population1.

Notably, PGS constructed from imputed genotypes were very high in comparison with the original WGS 
PGS. The majority PGS correlations ranged from 0.90 to 0.99. In cases of optimal arrays for targeted populations 
in used (UK Biobank Array was used for the EUR population, Japonica Array NEO was used for EAS and VNP 
populations), the PGS correlation to WGS was higher than 0.97. In addition, PGS ranking differences between 
WGS and imputed array genotypes were not high with the majority of differences were under 5 percentile when 
optimal arrays were used. The possible reason for this observation was that current GWAS summary statistics 
were mostly generated by imputed array  genotypes43,44 that were limited to detect rare associated markers. This 
indicates that using WGS for PGS analysis does not provide significant improvement in term of disease risk 
stratification at this time although this trend can change in the future when GWAS summary statistics at higher 
resolution become widely  available51.

Finally, to make this analysis capability available to broad audiences, we have developed a web tool that 
provides interactive analyses of SNP array contents and performances. As researchers may be interested in 
specific variants or regions, the tool aimed to support researchers to analyze SNP array contents and imputation 
performance based on population and genomic regions of interest. We hope this tool could facilitate researchers 
in designing their SNP array-based studies.

Data availability
The 1KGP-NYGC datasets are freely available at IGSR data portal (https:// www. inter natio nalge nome. org). The 
1KVG WGS and genotyping datasets are available under agreement at MASH data portal (https:// genome. vinbi 
gdata. org/). Data and source codes to generate figures of this study are available at: https:// github. com/ datngu/ 
SNP_ array_ compa rison. SNP array analyzing tool is available online at: https:// genome. vinbi gdata. org/ tools/ 
saa/. SNP-wise imputation performance estimation based on 1KGP-NYGC data are freely available at: https:// 
zenodo. org/ record/ 65480 98. SNP-wise imputation performance estimation based on 1KVG data are available 
and can be supplied under ethical policy agreement.
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