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Abstract
Although state-of-the-art deep neural network models are known to be robust to random perturbations, it was verified that
these architectures are indeed quite vulnerable to deliberately crafted perturbations, albeit being quasi-imperceptible. These
vulnerabilities make it challenging to deploy deep neural network models in the areas where security is a critical concern.
In recent years, many research studies have been conducted to develop new attack methods and come up with new defense
techniques that enablemore robust and reliablemodels. In this study,we use the quantified epistemic uncertainty obtained from
themodel’s final probability outputs, alongwith themodel’s own loss function, to generate more effective adversarial samples.
And we propose a novel defense approach against attacks like Deepfool which result in adversarial samples located near the
model’s decision boundary. We have verified the effectiveness of our attack method onMNIST (Digit), MNIST (Fashion) and
CIFAR-10 datasets. In our experiments, we showed that our proposed uncertainty-based reversal method achieved a worst
case success rate of around 95% without compromising clean accuracy.

Keywords Adversarial Machine Learning · Uncertainty · Security · Deep Learning

Introduction

In the last few years, deep learning models began to
exceed human-level performances. For instance, in 2015,
a deep learning model called ResNet [1] beat the human
performance in ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) and the record was beaten by more
advanced architectures later on. Similarly, Goodfellow et
al. [2] proposed a system which outperforms human oper-
ators for the problem of reading address information from
Google Street View imagery or solving CAPTCHAS. In the
domain of game playing, an AI software named AlphaGo
defeated the world Go champion in 2016 [3]. Today, we
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observe that many advanced systems are being built upon
deep learning models, offering a very high degree of suc-
cess in various domains including medical diagnosis [4,5],
autonomous vehicles [6,7], game playing [8] and machine
translation [9,10]. However, during the rise of deep neural
network (DNN), the researchers’ main focus was to build
more and more accurate models, and nearly no particular
attention was paid to the robustness and reliability of these
models. Deep learningmodels indeed require amore detailed
evaluation since these models have some intrinsic vulnera-
bilities that let intruders easily exploit them.

By the end of 2013, researchers have brought to light
that existing DNNmodels are vulnerable to carefully crafted
attacks. Szegedy et al. [11] were among the first who
observed the presence of adversarial examples in the image
classification domain. The authors have shown that it is pos-
sible to perturb an image by a miniscule amount to change
the decision of a deep learner. It turns out that a very small
and quasi-imperceptible perturbation of input is sufficient
to fool the most advanced classifiers and results in wrong
classification. Since then, a great number of studies have
been conducted in this new research field called Adversarial
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Machine Learning and these studies were not limited only
to the image classification domain. For instance, in the NLP
domain, Sato et al. [12] showed that it is possible to fool a
sentiment analysis model which is trained on textual data by
just changing only oneword from the input sentence.Another
example is in the audio domain [13], in which the authors
constructed targeted adversarial audio samples in automatic
speech recognition task by adding a very small perturbation
to the original waveform. This study demonstrated that the
target model can easily bemanipulated to transcribe the input
as any chosen phrase.

Adversarial machine learning attacks are based on pertur-
bation of the input instances in a direction that maximizes
the chances of wrong decision making, resulting in false
predictions. These attacks can lead to a loss of the model’s
prediction performance as the algorithm can not predict the
real output of the input instances correctly. Thus, attacks uti-
lizing the vulnerability of DNNs can seriously undermine
the security of these machine learning (ML) based systems,
sometimes with devastating consequences. In medical appli-
cations, the perturbation attack might lead to an incorrect
diagnosis of a disease. Consequently, it can cause severe
harm to the patient’s health and also damage the health-
care economy [14]. Likewise, autonomous cars use ML to
drive in trafficwithout human intervention.Awrong decision
based on an adversarial attack for the autonomous vehi-
cle could cause a fatal accident [15,16]. Hence, defending
against adversarial attempts and increasing the robustness of
ML models without compromising clean accuracy is of cru-
cial importance. Assuming that these ML models will serve
in critical areas, we should pay the greatest attention to not
onlyMLmodels’ performance but also the security concerns
of these architectures.

In this study, we concentrate on adversarial attack and
defense strategies based on epistemic uncertainty instead of
traditional approaches which are solely based on the model’s
loss function. Up until now, the most prominent approach in
adversarial attack studies is based on the maximization of
model loss and aims to create carefully crafted adversarial
counterparts of the given input. However as shown in Ref.
[17], directions pointed by the model’s loss gradient may
not be accurate due to the inherent and unavoidable approx-
imation error of the trained model. For this reason authors
needed to validate them with the information obtained from
the uncertainty’s gradient. The new approach combines the
traditional approach’s strengths with the measure of uncer-
tainty to produce more effective attacks.

On the defense side, we propose a method in which before
feeding any input to theDNNmodel,we try to revert it back to
its original data manifold byminimizing its quantified uncer-
tainty. Traditional approaches like model loss-based metrics
would not successfully push the malicious input to its origi-
nal data manifold. Real label information could not be used

because it is unknown by the model beforehand in inference
time. On the other hand, the predicted label could not be used
since any minimization attempt based on the predicted label
would result in model wrongly classifying adversarial inputs
evenwithmore confidence.However, since uncertainty quan-
tification metrics does not depend on the label information,
by minimizing the uncertainty value, one can revert the input
instance back to its original data manifold. Our codes are
released on GitHub1 for reproduction.

To summarize; our main contributions for this paper are:

– We introduce a novel attack method by utilizing the
model’s epistemic uncertainty, which yields more pow-
erful adversarial impact with less amount of perturbation
at each step.

– We introduce a new adversarial defense technique which
provides a very high degree of robustness against some
of the strongest attacks like Deepfool attack and Carlini
and Wagner attack (under default setting). We tested the
effectiveness of our defensive approach on both clean
and perturbed data and verified that it does not have a
negative effect on legitimate (clean) examples.

This study is organized as follows: “Related work” will
introduce some of the known attack types and defense tech-
niques in the literature. In “Preliminaries”, we will introduce
the concept of uncertainty together with main types and dis-
cuss howwe can quantify epistemic uncertainty. “Approach”
will give the details of our approach. We will present our
experimental results in “Results” and conclude our work in
“Conclusion”.

Related work

Since the discovery of DNN’s vulnerability to adversarial
attacks [11], a vast amount of research has been conducted
in both developing new adversarial attacks and defending
against these attacks with more robust DNN models [18–
21]. We will treat the attack and defense studies separately
and review some of the notable ones in “Adversarial attacks”
to “Adversarial defense”.

Adversarial attacks

Deep learning models contain many vulnerabilities and
weaknesses which make them difficult to defend in the con-
text of adversarial machine learning. For instance, they are
often sensitive to small changes in the input data, resulting
in unexpected results in the model’s final output. Figure 1

1 https://github.com/omerfaruktuna/uncertainty-based-attack-defense.
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Fig. 1 An example of adversarial attack

shows how an adversary would exploit such a vulnerabil-
ity and manipulate the model through the use of carefully
crafted perturbation applied to the input data. The malicious
perturbation is applied upon the original image and it manip-
ulates the model in such a way that a “Chihuahua (Dog)” is
wrongly classified as “Sports Car” with very high degree of
confidence.

The attack strategies are mainly based on perturbing the
input instance to maximize the model’s loss value in the pre-
diction time. Many adversarial attack algorithms have been
proposed in the literature in the past few years. The well-
known adversarial attacks are Fast-Gradient Sign
Method, Iterative Gradient Sign Method,
Projected Gradient Descent,Jacobian Based
Saliency Map, Carlini&Wagner, and DeepFool.
“Fast-gradient sign method” to “Deepfool attack” briefly
describes these six adversarial machine learning attacks.

Fast-gradient sign method

Fast-gradient sign method (FGSM) [22] is one of the earliest
and most popular adversarial attacks in adversarial machine
learning. FGSM utilizes the derivative of the model’s loss
functionwith respect to the input image to determine inwhich
direction the pixel values of the input image should be altered
to minimize the loss function of the model. Once this direc-
tion is extracted, it changes all pixels simultaneously in the
adverse direction to maximize the loss value of the predic-
tion. For a model with classification loss function described
as L(θ, x, y)where θ represents the parameters of themodel,
x is the benign input to the model (sample input image in our
case), ytrue is the actual label of our input, we can generate
adversarial samples using the formula below:

x∗ = x + ε · sign (∇x L(θ, x, ytrue)) . (1)

One last key point about FGSM is that it is not designed to
be optimal but fast. That means it is not designed to produce
the minimum required adversarial perturbation. Besides, this
method’s success ratio is relatively low in small ε values
compared to other attack types.

Iterative gradient sign method

Kurakin et al. [23] proposed a small but effective improve-
ment to the FGSM. In this approach, rather than taking only
one step of size ε in the gradient sign’s direction, the attacker
takes several but smaller steps α, and use the given ε value
to clip the result. This attack type is often referred to as basic
iterative method (BIM), and it is merely FGSM applied to an
input image iteratively. Generating perturbed images under
L inf norm for BIM attack is given by Eq. 2.

x∗ = x

x∗
N+1 = x + Clipx,ε{α · sign (∇xL(x∗

N , ytrue)
)}, (2)

where x is the input sample, x∗ is the produced adversarial
sample at i th iteration, L is the loss function of the model,
ytrue is the actual label for input sample, ε is a tunable parame-
ter, limitingmaximum level of perturbation in given linf norm,
and α is the step size.

The success ratio of BIM attack is higher than the FGSM
[24]. By adjusting the ε parameter, the attacker can have a
chance to manipulate how far an adversarial sample will be
pushed past the decision boundary.

One can group BIM attacks under twomain types, namely
BIM-A and BIM-B. In the former type, we stop iterations as
soon aswe succeed in fooling themodel (passing the decision
boundary), while in the latter, we continue the attack till the
end of the provided number of iterations so that we push the
input further away the decision boundary.

Projected gradient descent

This method, also known as PGD, has been introduced by
Madry et al. [25]. It perturbs a clean image x for several
numbers of i iterations with a small step size in the direc-
tion of the gradient of the model’s loss function. Different
from BIM, after each perturbation step, it projects the result-
ing adversarial sample back onto the ε-ball of input sample,
instead of clipping. Moreover, instead of starting from the
original point (ε = 0, in all dimensions), PGD uses random
start, which can be described as:

x0 = x +U (−ε,+ε) , (3)

where U (−ε,+ε) is the uniform distribution between
(−ε,+ε).

Jacobian-based saliency map attack (JSMA)

This method, also known as JSMA, has been proposed by
Papernot et al. [26]. It is designed to be used under L0 dis-
tance norm which takes total number of altered pixels into
count, thereby restricting the attacker. It is a greedy algorithm
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which selects two pixels at a time. The algorithm utilizes the
gradient ∇Z(x)l to compute a saliency map, which shows
each pixel’s impact on the classification of each class. And
the aim is to enhance the possibility of the target class while
diminishing the possibility of other classes by selecting and
updating two pixels at a time based on the saliency map. The
attack is continued until either a predefined number of pixels
is modified or the model is successfully fooled.

Carlini andWagner attack

This attack type has been introduced by Carlini and Wagner
[27], and it is one of the most powerful attack types to date.
Therefore, it is generally used as a benchmark for the adver-
sarial defense research community that aims to create more
robust DNN architectures resistant to adversarial attempts.
CW attack achieves higher success rates on normally trained
models for most well-known datasets. It can fool defensively
distilled models as well, on which other attack types barely
succeed in crafting adversarial examples.

The authors redefine the adversarial attack as an optimiza-
tion problem which can be solved using gradient descent to
craft more powerful and effective adversarial samples under
different L p norms. The algorithm has a parameter called
con f idence which is used to adjust the gap between the
crafted adversarial example and decision boundary of the
model. If one applies the attack with default settings, confi-
dence parameter will be set to 0 and the algorithm will stop
as soon as it crafts an adversarial sample after passing the
decision boundary. There is a trade-off between producing
more confident adversarial samples and achieving the highest
possible attack success rate.

Deepfool attack

This attack type has been proposed by Moosavi-Dezfooli et
al. [28] and it is one of the powerful untargeted attack types
in literature. It is designed to be used in different distance
norm metrics such as L inf and L2 norms.

Deepfool attack has been designed based on the assump-
tion that neural network models behave as a linear classifier
and the classes are separated by a hyperplane. The algorithm
starts from the initial input point xt and at each iteration,
it calculates the closest hyperplane and the minimum per-
turbation amount, which is the orthogonal projection to the
hyperplane. Then the algorithm calculates xt+1 by adding the
minimal perturbation to the xt and checks whether misclas-
sification is achieved.

There is only a very limited number of studies that
make use of uncertainty to craft adversarial examples to our
knowledge. Liu et al. [29] proposed a universal adversar-
ial perturbation (UAP) method that utilizes a metric called
virtual Epistemic uncertainty obtained from the model’s

structural activation rather than from the final softmax scores.
However, estimating the model’s uncertainty involves aggre-
gating all the neurons’ virtual Epistemic uncertainties, which
is computationally costly. Tuna et al. [17] proposed several
iterative attack variants based on the model’s quantified epis-
temic uncertainty. But, the perturbation introduced at each
iteration in their most effective hybrid approach is larger
than the conventional loss-based BIM attack. Qu et al. [30]
proposed an adversarial attack method against deep rein-
forcement policies using entropy of action distribution to
quantify uncertainty and used it to identify the frames that
were most vulnerable to attack. It is known that DNN mod-
els suffer from over or under-confidence predictions [31,32].
Therefore, quantifying uncertainty based only on entropy
derived from the final softmax score output of the model
might not always be the best option.

Adversarial defense

In this section, we summarize some of the important adver-
sarial defense approaches proposed in recent years.

Defensive distillation

This technique was proposed by Papernot et al. [33]. The
first step of the proposed algorithm is to train a model called
teacher model on the training set using a high tempera-
ture (T ) value in the softmax function. Then, this previously
trained teacher model is used to label each of the samples in
the training set with soft labels computed in prediction time.
Next, the distilled model is trained using the soft labels that
we obtained from the teacher model again using high tem-
perature (T ) value in the softmax. In addition to increasing
clean data accuracy on the test set, the Distillation technique
was also shown to reduce the success rate of JSMA attacks’
ability to craft adversarial examples considerably. However,
later, it was shown that more effective attack types like CW
attack could easily break the defensive distillation technique.

Adversarial training

Adversarial training is considered as an intuitive defense
approach in which the robustness of a DNN model is
enhanced by training the model with adversarial data sam-
ples. We can mathematically represent this approach as a
Minimax game as in Eq. 4:

min
θ

max|δ‖≤ε
�(hθ (x + δ), y), (4)

where h is our model, � is the loss function of the model,
θ is the weights of the model and y is the actual label. δ

represents the amount of adversarial perturbation added to
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benign input x and it is limited with some ε value.Maximiza-
tion of the inner objective is accomplished by applying the
strongest attack possible which is generally approximated by
someknownadversarial attack types. The outerminimization
objective is used to train the model to minimize the resulted
loss from the inner maximization step. The outcome of this
process is a model which is expected to be resistant to adver-
sarial attacks used in themodel training phase. Goodfellow et
al. [22] used adversarial samples generated by FGSM attack
for adversarial training, whereas Madry et al. [25] used PGD
attack to produce more robust models but at the cost of more
computational resource consumption. Although adversarial
training is accepted to be one of the most powerful defenses
against adversarial attacks [34,35], models that are adversar-
ially trained are still vulnerable to attacks like CW.

Magnet

Meng et al. [36] proposed a defensemethodwhich consists of
two components: detector and reformer. The former is used
to inspect input samples and determine if they are benign or
not and the latter is used to take inputs classified as benign
by the detector and reform them to remove any remaining
adversarial nature. Although the authors show the effective-
ness of their defense against different adversarial attacks,
later it was shown that their defense method is vulnerable to
the CW attack [37].

Adversarial ML is a highly active research area and we
see new adversarial defense techniques are being proposed
intensely which we could not mention here. Some notable
ones are [38–40].

Preliminaries

Traditionally, predictive models used to be forced to decide
even in ambiguous cases where the model is not sure about
its prediction. The quality of such predictions is expected to
be low. Assuming the model’s prediction is always correct
without any reasoning on the model’s uncertainty may result
in catastrophic results. This fact led the researchers to suggest
abstaining models based on certain conditions like when the
model’s uncertainty is high, thus improving the reliability
[41,42].

In this section, we will first introduce the two types of
uncertainty in machine learning. And then, we will present
how we can quantify Epistemic Uncertainty in the context of
deep learning.

Uncertainty in machine learning

There are two different types of uncertainty inmachine learn-
ing: epistemic uncertainty and aleatoric uncertainty [43–45].

Fig. 2 Different types of epistemic uncertainty

Epistemic uncertainty

Epistemic uncertainty refers to uncertainty caused by a lack
of knowledge and limited data needed for a perfect predictor
[46]. It can be categorized under 2 groups as approximation
uncertainty and model uncertainty as depicted in Fig. 2.

Approximation uncertainty
In a conventional machine learning task, the learner is
given data points from an independent, identically distributed
dataset. Then he/she tries to induce a hypothesis ĥ from the
hypothesis spaceH by picking a proper learningmethodwith
its related hyperparameters andminimizing the expected loss
(risk) with a selected loss function, �. However, what the
learner does is to try to minimize the empirical risk Remp

which is an estimate of real risk R(h). The induced ĥ is an
approximation of the h∗ which is the optimum hypothesis
within H and the real risk minimizer. This fact results in an
approximation uncertainty. Therefore, the induced hypothe-
sis’s quality is not perfect, and the learned model will always
be prone to errors.

Model uncertainty
Suppose the chosen hypothesis spaceH does not include the
perfect predictor. In that case, the learner has no chance to
realize his/her object of discovering a hypothesis function
that can successfully map all possible inputs to outputs. This
drives to an inconsistency between the ground truth f ∗ and
the best possible function h∗ within H, called model uncer-
tainty.

However, Universal Approximation Theorem states that
for any target function f , a neural network can approxi-
mate f [47,48]. The hypothesis space H is huge for deep
neural networks. Hence it will not be wrong to assume that
h∗ = f ∗. One can disregard the model uncertainty for deep
neural networks, and may only care about the approximation
uncertainty. Consequently, in deep learning tasks, the actual
source of epistemic uncertainty is linked to approximation
uncertainty. Epistemic uncertainty points to the confidence a
model has about its prediction [49]. The underlying cause is
the uncertainty about the parameters of the model. This type
of uncertainty is apparent in the regions where we have lim-
ited training data and the model weights are not optimized
correctly.
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Fig. 3 Illustration of the epistemic and aleatoric uncertainty

Aleatoric uncertainty

Aleatoric uncertainty refers to the variability in an experi-
ment’s outcome, which is due to the inherent random effects
[50]. This type of uncertainty can not be reduced albeit
having enough training samples [51]. An outstanding exem-
plification of this phenomenon is the noise observed in the
measurements of a sensor.

Figure 3 shows a simple nonlinear function ( cos(0.5 × x)
where x ∈ [0, 12] ) plot. As shown in the region where data
points are populated at right (9 < x < 12), the noisy sam-
ples are clustered, leading to high aleatoric uncertainty. For
example, these points may represent a faulty sensor mea-
surement; one can conclude that the sensor produces errors
around x = 10.5 for some inherent reason. We can also con-
clude that the middle regions of the figure represent the high
epistemic uncertainty areas. Because there are not enough
training samples for our model to describe the data best.
Moreover, we can claim that the high epistemic uncertainty
area represents the low prediction accuracy area.

Quantifying epistemic uncertainty in deep neural
networks

Using techniques that help us to quantify the uncertainty of
the model is necessary for healthy decision making. Assum-
ing that we, as humanity, will use deep learningmodels in the
areas where safety and reliability is a critical concern, such as
autonomous driving, medical applications, researchers need
to be very careful and pay utmost attention to prediction
uncertainty. This will help us to increase the quality of the
predictions.

In recent years, many research studies have been con-
ducted to quantify uncertainty in deep learning models.
Most of the work was based on Bayesian Neural Networks,
which learn the posterior distribution over weights to quan-
tify predictive uncertainty [52]. However, the Bayesian NN’s
comewith additional computational cost and inference issue.
Therefore, several approximations to Bayesianmethods have
been developedwhichmake use of variational inference [53–
56]. On the other hand, Lakshminarayanan et al. [57] used

the deep ensemble approach as an alternative to Bayesian
NN’s to quantify predictive uncertainty. But this requires
training several NN’s which may not be feasible in prac-
tice. A more efficient and elegant approach was proposed
by Gal et al. [58]. The authors showed that a neural net-
work model with inference time dropout is equivalent to a
Bayesian approximation of the Gaussian process. And the
prediction hypothesis uncertainty can be approximated by
averaging probabilistic feed-forward Monte Carlo dropout
sampling during the prediction time.

Thismethod resembles the ensemble approach inmachine
learning. In each single ensemble model, the system has to
drop out different neurons in each layer according to the
dropout ratio in the prediction time. Let D = (xi , yi )Ni=1 is
the dataset consisting of input samples xi ∈ R

d and one-
hot encoded outputs yi ∈ R

k , θ denotes the model weights
and T is the number of predictions of the MC dropouts, then
the prediction of a model for any test sample x̂ given the
weights of the model is denoted by p(ŷ(k) = 1|x̂, θ ,D),
and it is a vector of output probability scores for k classes.
The predictive mean is the average of the prediction softmax
scores over dropout iterations, T , and the predictive mean is
used as the final output probability distribution, for the input
instance x̂ in the dataset. The overall prediction uncertainty
is approximated by computing the variance of the probabilis-
tic feed-forwardMonte Carlo (MC) dropout sampling during
prediction time. The predictionmean is described as follows:

μ̂pred = 1

T

T∑

t=1

p(ŷ(k) = 1|x̂, θ ,D) (5)

The final label of input instance x can be estimated by
finding the argmax of the mean of MC dropouts predictions,
which will be done T times.

Figure 4 presents the general overview of the Monte
Carlo dropout-based classification algorithm. In the predic-
tion time, random neurons in each layer are dropped out
(based on the dropout ratio p) from the base neural network
model to create a newmodel. As a result, T different classifi-
cationmodels can be used to predict the input instance’s class
label and uncertainty of the overall prediction. The predicted
output score is assigned with the highest of the prediction
mean for each testing input sample x. The variance of the
p(ŷ) is used to quantify epistemic uncertainty.

Wehave chosen theMCdropoutmethod due to its simplic-
ity and effectiveness. Although it requires a certain number
of feed-forward queries, it is still more efficient than using
Bayesian networks or variational inference techniques which
compute or approximate the posterior distribution of weights
to quantify predictive uncertainty. The approach needs only a
single trained model to measure the prediction’s uncertainty,
while other techniques such as deep ensemble need multiple
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Fig. 4 Illustration of the Monte
Carlo dropout-based Bayesian
prediction

models. Secondly, since the function used to calculate the
variance is convex and smooth [29], one can take the back-
ward derivative of the computed variance term for each input
instance and use it to craft adversarial examples to evade the
model.

Approach

Model uncertainty is higher in the regions where there is a
limited number of training instances. Since we lack ground
truth in these regions, we cannot obtain a perfect model to
predict every possible test data accurately. Figure 5 shows
a regression model’s prediction outputs trained on a lim-
ited number of data points constrained on some interval. In
this simple example, we trained a single hidden layer neu-
ral network with fifteen neurons to learn a linear function
y = −2× x + 1. As can be seen from the figure, in the areas
where we do not have any training examples, the uncertainty
values obtained fromMC dropout estimates of the model are
high, which can be interpreted as the quality of the predic-
tion is low, and themodel is having difficulties in deciding the
correct output values. Harmoniously, we observe high loss
values in these areas. For this reason, one can conclude that
the high epistemic uncertainty area represents the low predic-
tion accuracy area. Consequently, pushing the model’s limits
by testing it in extreme conditions with input that the model
has never seen before will result in failure of model predic-
tion output [17]. Likewise, pulling the input instances back
to the regions where the model has been trained on will result
in more accurate predictions.

The aim of adversarial attacks is to find the least pertur-
bation amount (δ) constrained to some interval (ε), resulting
in maximum loss, thus fooling the classifier. We can express
this mathematically as in Eq. 6, where hθ (x) is our neural
network model.

arg max
‖δ‖≤ε

�(hθ (x + δ), y) (6)

In most attack types, the attackers perturb the input
instances in a direction that maximizes the loss, and this

Fig. 5 Uncertainty values obtained from a regression model

direction is calculated using the gradient of the loss function.
However, it was shown that instead of using the model’s loss
function, a practical approach would be to use the model’s
epistemic uncertainty [17].We propose an attackmethod that
combines the model’s epistemic uncertainty and its loss as
tools for creating successfully manipulated adversarial input
instances.

Proposed epistemic uncertainty-based attack and
defense

Existing attacks have been designed to exploit the model
loss and aimed at maximizing the model loss value within
a constrained neighbourhood of the input data points. How-
ever, one possible drawback for these kinds of attacks is that
they solely rely on the trained ML model, which inevitably
suffers from the approximation error. We can overcome this
problem by utilizing an additional metric, namely epistemic
uncertainty of the model. This additional uncertainty infor-
mation has a correcting effect and sometimes points to the
directions which yield higher loss values [17]. At each itera-
tion step of adversarial sample generation, we will make use
of the gradient of quantified epistemic uncertainty as in Eq.
7 in addition to model loss as in Eq. 8.

Example of simple uncertainty-based attack:

x∗ = x + ε · sign(∇xU (x, h, p, T )). (7)
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Example of simple loss-based attack:

x∗ = x + ε · sign (∇x�(h(x, y)))) , (8)

where x is the input (benign) instance, x∗ is the per-
turbed instance, U is the uncertainty metric (mean variance)
obtained from T different MC dropout estimates, h is the
prediction model, p is the dropout ratio used in the dropout
layers and T is the number of MC dropout samples in model
training mode.

Consistent with [59], calculation steps for our Uncertainty
metric U (mean variance of T predictions) is as follows:

Step 1: For any input image x, T different predictions is
obtained Pt (x) byMCDropout samplingwhere each
prediction is a vector of output probability scores for
C classes.

Pt (x) = h(x, p, T )

where h is the prediction model in training mode, p
is the dropout ratio used in the dropout layers, T is
the number ofMCdropout samples inmodel training
mode

Step 2: The next step is to compute mean prediction score
for the T different outputs:

PT (x) = 1

T

∑

t∈T
Pt (x)

Step 3: Then, we compute the variance of the T predictions
for each class.

σ 2(PT (x)) = 1

T

∑

t∈T
(Pt (x) − PT (x))2

Step 4: As a final step, we compute the expected value of
variance over all classes by taking their average.

U (x, h, p, T ) = E(σ 2(PT (x)))

However, we will be using only a subset of directions
based on some defined logic. We name our proposed attack
algorithm as rectified basic iterative attack (rectified-BIM).
Because the direction pointed out by the gradient of the loss
function is updated using the reference information obtained
from the quantified epistemic uncertainty.

Rectified basic iterative attack

Algorithm 1 shows the traditional Loss-Based BIM attack’s
pseudocode. Algorithm 2 shows our proposed uncertainty-
based Rectified BIM attack. The algorithm is designed under
L∞ norm.

Algorithm 1: Algorithm for BIM attack x is the benign
image, ytrue is the actual label for x, h is the hypothesis
function learnt during training, N is the number of iter-
ations, ε is the maximum allowed perturbation, α is the
step size.
Input: x ∈ R

m , ytrue, h, N , ε, α

Output: xt+1
1 x0 ← x
2 while n < N do

// update x using below formula, h in
evaluation mode

3 x(t+1) = clipx,ε(xt + α · sign(∇x�(h(xt , ytrue))))

4 return xt+1

Algorithm 2: Algorithm for Rectified-BIM attack: x is
the benign image, ytrue is the actual label for x, h is
the hypothesis function learnt during training, p is the
dropout ratio used in dropout layers, T is the number of
MC dropout samples in model training mode, N is the
number of iterations, ε is the maximum allowed pertur-
bation, α is the step size,
Input: x ∈ R

m , h, p, T , N , ε, α

Output: xt+1
1 x0 ← x
2 condition ← False
3 while n < N do
4 Compute ∇x�(h(xt , ytrue)) while h in evaluation mode
5 Compute ∇xU (xt , h, p, T ) while h in training mode
6 if arg max(h(xt+1)) 	= ytrue then
7 condition = True

8 if condition = False then
9 Update all elements of ∇x�(h(xt , ytrue)) to 0 where

∇x�(h(xt , ytrue)) != ∇xU (xt , h, p, T )

// update x
10 x(t+1) = clipx,ε(xt + α · sign(∇x�(h(xt , ytrue))))

11 else
12 Update all elements of ∇x�(h(xt ), ytrue) to 0 where

∇x�(h(xt , ytrue) == ∇xU (xt , h, p, T )

// update x
13 x(t+1) = clipx,ε(xt + α · sign(∇x�(h(xt , ytrue))))

14 return xt+1

At each iteration of the Rectified-BIM algorithm, we
calculate ∇x�(h(xt , ytrue)) and ∇xU (xt , h, p, T ). We then
get the sign of these gradient vectors which show the sub-
directions for each input dimension. If the sign of the gradient
for any input pixel is positive, it means that we can increase
loss or uncertainty by increasing the value of that pixel.
For any input sample fed to the attack algorithm, we start
perturbing the input image by first using the intersection
of the sub-directions pointed by the derivative of loss and
uncertainty information. This is valid until the input sam-
ple is pushed off of the decision boundary. Once the input
sample passes the decision boundary, this time we use the
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Fig. 6 Sub-directions (sign of the gradients) used in attack and defence
purposes

sub-directions of loss’ gradient which are not shared by the
uncertainty’s gradient. This idea can be understood better by
looking at Fig. 6a, b. In the first part of the proposed attack:
instead of trusting only loss or only uncertainty, we trust the
information provided by both. This way, we only use a sub-
set of sub-directions. Thus, at each iteration, the amount of
perturbation applied to the input sample is being decreased
without compromising the adversarial attacking strength.

In the low confidence regions where the input sample is
close to the model’s decision boundary, the uncertainty has
a friction effect against loss. It is known that the quantified
uncertainty is higher near the decision boundaries [42]. Thus,
for adversarial attack purposes, perturbing the input sample
in the direction of uncertainty’s gradient is not a good idea
after passing the decision boundary. This is because the direc-
tion in which the gradient of uncertainty points will keep the
sample near the boundary regions and prevent the perturbed
sample frombeing pushed far away. Therefore, for the second
part of our Rectified-BIM Attack, we consciously decided
not to use the common sub-directions which are shared by
both loss’ and uncertainty’s gradients, instead we used the
sub-directions which are left from the loss’ gradient after
discarding the common sub-directions as in Fig. 6b. By gra-
dients, here we mean the sign of the gradient vectors.

Figure 7 shows some examples of adversarial samples
crafted using different methods mentioned in this study,
including our proposed Rectified-BIM attack.

The idea that we have used for our rectified-BIM attack
can be easily applied to other loss-based attacks as well. In
our proposed attack (Algorithm 2), if we set the number of
iterations as 1 and α equals to ε, we can simply switch to
Rectified-FGSMattack.And, ifweuse randomrestart instead
of starting from the original point, we can simulate Rectified-

Fig. 7 Some example images from MNIST (Digit), MNIST (Fashion)
and CIFAR-10. The original image is shown in the left-most column
and adversarial samples crafted based on different methods are on the
other columns

PGD attack under L∞ norm. Therefore, we shared the results
of all possible attack variants together with their original
counterparts (BIM, FGSM, PGD) in the experiment section.

Uncertainty-based reversal operation

In this section, we first provide the pseudo-code for our
uncertainty-based reversal operation as in Algorithm 3. As
in the case of our attack algorithm, our proposed reversal
method is also designed under L∞ norm.

At each iteration of the uncertainty-based reversal algo-
rithm, we calculate ∇x�(h(xt , ypred)) and ∇xU (xt , h, p, T ).
Then, we simply perturb the input image using the sub-
directions of uncertainty’s gradient which are not shared by
the loss’ gradient. This idea can be understood better by look-
ing at Fig. 6c.

In a typical production environment where an ML model
is used for any classification problem, the input is fed to the
model, and the final decision is observed after the input is
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Fig. 8 Deployment options of
the ML model—with and
without uncertainty-based
reversal step

Algorithm 3: Algorithm for uncertainty-based reversal
operation: x is the input image, ypred is the initial pre-
dicted label for x, h is the hypothesis function learnt
during training, p is the dropout ratio used in dropout lay-
ers, T is the number of MC dropout samples in model
training mode, N is the number of iterations, ε is the
maximum allowed perturbation, α is the step size,
Input: x ∈ R

m , h, p, T , N , ε, α

Output: xt+1
1 x0 ← x
2 condition ← False
3 while n < N do
4 Compute ∇x�(h(xt , ypred )) while h in evaluation mode
5 Compute ∇xU (xt , h, p, T ) while h in training mode
6 if arg max(h(xt+1)) 	= ypred then
7 condition = True
8 break

9 if condition = False then
10 Update all elements of ∇xU (xt , h, p, T ) to 0 where

∇xU (xt , h, p, T ) == ∇x�(h(xt , ypred ))
/* update X using below formula */

11 x(t+1) = clipx,ε(xt − α · sign(∇xU (xt , h, p, T ))

12 return xt+1

processed and mapped to an output, as shown in the upper
example of Fig. 8. During this prediction time, the model
does not have any information about the actual label for the
input, yet it certainly has an opinion about the predicted label.
And this predicted label can be used to quantify the loss.
Suppose the prediction of the ML model is correct. In that
case, the derivative of the loss against the predicted label
gives us an idea about the possible direction by which we can
decrease the predicted loss. However, if the initial prediction
is wrong, in that case, the model’s prediction will be even
more erroneous.

This fact is related to the inherent relation of the loss func-
tion to the label information. Inevitably, the calculation of
loss requires a reference information. One of the important
benefits of using uncertainty information is that the quantified
uncertainty calculation does not require a reference informa-

tion. Coming back to the ideal case of using an ML model in
a production environment, this time, we will be using both
the loss and uncertainty’s gradient. This time we will only
take the sub-directions from the uncertainty’s gradient which
are not shared by the loss’ gradient. Since, for the perturbed
images that are pushed away from the decision boundary, the
gradient of the loss based on the predicted label will point to
the target class datamanifold. Therefore, these sub-directions
should not be taken into account if we wish to revert the input
sample back to its own data manifold. After discarding some
portion of the sub-directions, the resulting sub-directions left
in the uncertainty’s gradient can be safely used to revert the
input back to its original data manifold.

Our proposed uncertainty-based reversal algorithm can be
implemented as a preprocessing module prior to any classi-
fication model in production. For an input x that is planned
to be fed to the ML model, it is first processed within this
module as depicted in the bottom part of Fig. 8. This pre-
processing aims to carefully perturb the input image in a
direction thatminimizes the quantified epistemic uncertainty.
Then, the resulting reversed image x̂ will be used as an input
to theMLmodel. The uncertainty-based reversal operation is
depicted in Fig. 9. The key point for a successful reverse oper-
ation is that the point where the input image resides should
not be far away (on the wrong side) from the model’s deci-
sion boundary. The attack types that we used to show our
approach’s effectiveness are chosen based on this fact.

It was shown that no matter what kind of defensive
approaches are utilized like adversarial training or defensive
distillation technique, strong attack types, such as Carlini and
Wagner (CW), orDeepfool attacks, can break these defensive
methods and successfully fool the MLmodel [27]. However,
whenwe analyze the softmax scores of the perturbed samples
which are crafted using Deepfool attack and CW attack with
default setting (confidence parameter set to 0), we see that the
resulting confidence level for the wrong class is only slightly
larger than the original class. Thatmeans the perturbed image
is actually not pushed far away from the decision boundary.
Consequently, by applying our uncertainty-based reversal
operation, one can actually revert the perturbed sample back
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Fig. 9 Reverting perturbed image back to its original class data mani-
fold

to the original class data manifold. We have picked ran-
dom samples from the MNIST Digit dataset to illustrate
this phenomenon, then applied CW and Deepfool attacks
on them to craft adversarial samples and finally applied our
uncertainty-based reversal operation on these perturbed sam-
ples. For each of the original, perturbed and reversed samples,
we have also depicted the output softmax scores of the ML
model used as in Fig. 10. We observe that although these
attacks are successful, the wrong classes’ output softmax
scores are not large enough in favor of the wrong class, and
the difference between the softmax scores of the correct and
wrong classes is considerably small. As a result, by applying
our uncertainty-based reversal operation on these perturbed
samples,we could successfully revert themback to their orig-
inal class manifold so that the ML model will predict these
reversed samples correctly, and therefore will not be fooled.
And as a natural consequence of a successful reversal oper-
ation, the adversarial inputs can be detected as well. Line 6
of Algorithm 3 checks whether the predicted label for the
input has changed from the initial prediction. If this is the
case, one can use this as a possible sign of adversarial detec-
tion. Therefore, our approach can be used for both detecting
adversarial samples and defending against them.

Obviously, a key point that should be considered for any
kind of preprocessing operation on the input samples of an
ML model is that the preprocessing operation should not
negatively affect the “clean data” performance of the model.
Any kind of intervention to the ML model’s deployment
which will decrease the prediction performance higher than
an acceptable level, simply can not be tolerated no matter
how much robustness it provides. We have performed a test
to measure the effect of our uncertainty-based reversal oper-
ation on the clean data performance of themodel and verified
that the accuracy rate does not decrease as presented in the
experiments section. The results prove that one can safely
use our approach to increase the robustness against malicious
attempts to the deployed ML model.

Adversarial assumptions

In this study, we presume that the attacker’s primary motiva-
tion is to harvest the desired behavior for an ML model, and
the success criteria for the adversary is directly related to any
labeling error. In the literature, this type of attack strategy is
categorized as untargeted attack in which the adversary is
counted as successful if, for instance, a dog image is pre-
dicted as anything other than a dog. We assumed that the
adversary has complete knowledge about the model archi-
tecture and model parameters for the attack part as in the
case whitebox setting. And the adversary uses the gradi-
ents obtained from the model to craft adversarial samples.
Another important assumption is related to the limitations of
the adversary. Obviously, for an attack to be indistinguish-
able to the human eye, the adversary should be restricted to
apply a perturbation with L p norm up to some ε. To make
this manipulation quasi-imperceptible to the human eye, the
attackermust search for an approximate solution to a complex
optimization problem and decides which regions in the input
data should be changed. Using any of the available attack
methods [22,23,25,60], the attacker tries to reduce the classi-
fication performance of the target model as much as possible.
Throughout the study, to limit the maximum allowed per-
turbation for the attacker, we used L∞ norm, which is the
maximum pixel difference limit between the original and
adversarial image.

For our proposed defense method, we employed a proac-
tive strategy. We anticipate the potential threat of adversarial
activity throughout the deployment life cycle of the ML
model regardless of whether an attack attempt exists or not.
The same preprocessing operation is being applied to every
input that is planned to be fed to the ML model regardless of
being an adversarial or benign sample. The amount of pertur-
bation applied during the uncertainty-based reversal step is
configurable. If the primary concern is to revert more poten-
tially perturbed samples, the model owner can opt to use a
relatively larger ε value despite the risk of slightly lowering
clean accuracy. Our defense method is evaluated in terms of
the error rate across a maliciously perturbed version of the
chosen test set. This error rate metric is proposed by Good-
fellow et al. [22] and is still suggested by Carlini et al. [61].

Results

Experimental setup

We trained our CNN models for the MNIST (Digit) [62],
MNIST (Fashion) [63] and CIFAR10 [64] datasets, and we
achieved accuracy rates of 99.26%, 92.63% and 83.91%
respectively. Themodel architectures are given in Table 1 and
the hyperparameters selected in Table 2. For the CIFAR10
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Fig. 10 Effect of adversarial
attack and reversal operation on
model prediction

dataset we applied a normalization procedure by normaliz-
ing all the pixels with mean = [0.485, 0.456, 0.406] and
std = [0.229, 0.224, 0.225]. The adversarial settings that
have been used throughout of our experiments is provided
in Table 3. Finally, we used T = 50 as the number of MC
dropout samples when quantifying epistemic uncertainty.

Experimental results

We only perturbed the test samples during our experiments
on testing the performances of adversarial attack methods,
whichwere already correctly classified by ourmodels in their
original states. Obviously, an intruder would have no reason
to perturb samples that are already classified wrongly.

The results in Table 5 show that our Rectified-BIM algo-
rithm and other two attack variants (Rectified-FGSM and
Rectified-PGD)which leverage both the quantified epistemic
uncertainty and the model’s loss value result into better per-
formances than their originals. Once we verified the success

of our attack variants on our comparably small models with
different epsilon (ε) values, we tried to test their perfor-
mances on larger models. For this purpose, we first trained
VGG-19 [65] (with batch normalization) and ResNet (with
custom dropout layers) models on CIFAR-10 dataset and
achieved accuracy rates of % 85.79 and % 86.24. Then, we
have applied all our attack variants and compared the attack
success rates with their originals. The results available in
Table 6 reveal once again the effectiveness of our proposed
attackmethod.After verifying the efficacy of our approach on
various model architectures, we conducted a separate exper-
iment to observe the effect of chosen number of iterations
parameter on the performance of our proposed iterative attack
variant. The results available in Table 7 show that our PGD
attack variant outperforms its original counterpart in each
attempt (PGD5, PGD10, PGD20).

Unlike known loss-based attacks, our proposed attack
variants perturb less number of pixels at each iteration and
still can reach a higher degree of adversarial attack success
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Table 1 CNN model
architectures

Dataset Layer type Layer information

MNIST (Digit) Convolution (padding:1) + ReLU 3 × 3 × 16

Max pooling 2 × 2

Convolution (padding:1) + ReLU 3 × 3 × 16

Max pooling 2 × 2

Convolution (padding:1) + ReLU 3 × 3 × 32

Dropout p : 0.2

Convolution (padding:1) + ReLU 3 × 3 × 32

Dropout p : 0.2

Fully connected + ReLU 1568 × 100

Fully connected + ReLU 100 × 10

MNIST (Fashion) Convolution (Padding = 1) + ReLU 3 × 3 × 32

Max pooling 2 × 2

Convolution (Padding = 1) + ReLU 3 × 3 × 32

Max pooling 2 × 2

Convolution (Padding = 1) + ReLU 3 × 3 × 64

Dropout p : 0.2

Convolution (Padding = 1) + ReLU 3 × 3 × 64

Dropout p : 0.2

Fully connected + ReLU 3136 × 600

Fully connected + ReLU 600 × 120

Fully connected + ReLU 120 × 10

CIFAR10 Convolution (Padding = 1) + ReLU 3 × 3 × 32

Convolution (Padding = 1) + ReLU 3 × 3 × 64

Max pooling (Stride 2) 2 × 2

Convolution (Padding = 1) + ReLU 3 × 3 × 128

Convolution (Padding = 1) + ReLU 3 × 3 × 128

Max pooling (Stride 2) 2 × 2

Dropout p : 0.1

Convolution (Padding = 1) + ReLU 3 × 3 × 256

Convolution (Padding = 1) + ReLU 3 × 3 × 256

Max pooling (Stride 2) 2 × 2

Fully connected + ReLU 4096 × 512

Dropout p : 0.5

Fully connected + ReLU 512 × 512

Dropout p : 0.5

Fully connected + ReLU 512 × 10

Table 2 CNN model
parameters

Parameter MNIST (Digit) MNIST (Fashion) CIFAR10

Optimizer SGD SGD SGD

Learning rate 0.01 × ( 12
epoch//10

) 0.01 × ( 12
epoch//10

) 0.005 × ( 12
epoch//20

)

Momentum 0.9 0.9 0.9

Batch size 64 64 64

Dropout ratio 0.2 0.2 0.5

Number of epochs 30 50 50
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Table 3 Adversarial settings of our experiments: α, i respectively rep-
resent the step-size and the number of attack steps for a perturbation
budget ε, r denotes the number of restarts

Attack Parameters l p norm

FGSM i = 1 l∞
BIM α = ε · 0.2, i = 10 l∞
PGD α = ε · 0.2, i = 10, r = 5 l∞

Table 4 Parameters that are used in uncertainty reversal operation: α,
i respectively represent the step-size and the number of reversal steps
for a perturbation budget ε

Dataset Parameters l p norm

MNIST digit ε = 0.02, α = ε · 0.2, i = 10 l∞
MNIST fashion ε = 0.001, α = ε · 0.2, i = 10 l∞
CIFAR10 ε = 0.1/255, α = ε · 0.2, i = 10 l∞

rate. To verify this, we have conducted an additional exper-
iment to compare the resulting perturbation amounts of our
attack variants with their originals (FGSM, BIM, PGD). We
have used a batch of input from each dataset and computed

the resulting perturbation amounts based on both L1 and L2

norms. The results that are shown in Table 8 support our
claim. We know that any trained MLmodel is not the perfect
predictor and is just an approximation to the oracle function.
The model itself has an inevitable inherent approximation
uncertainty which sometimes induce to sub-optimal solu-
tions. Consequently, any method which only relies on the
trained model will result in less effective performance. By
double-checking the sub-directions pointed by the derivative
of the model’s loss with the ones available in the quantified
epistemic uncertainty derivative, we could discard the sub-
directions, which are suspected to be unreliable. The attack
success rates are inline with this fact.

As a last experiment for the attack part, we have measured
the time spent by each attack method for a batch of input of
size 64 from the MNIST (Digit) Dataset. The results avail-
able in Table 9 show the measured execution time of our
attack variants together with their originals (FGSM, BIM,
PGD). As expected, the execution time of our attack variants
is longer than their originals due to additional uncertainty
quantification steps. However, this can be tolerated thanks to
the higher success rate and smaller perturbation need of our
attack variants.

Table 5 Attack success rates on different datasets

MNIST (Digit) MNIST (Fashion) CIFAR10

ε = 0.12 (%) ε = 0.16 (%) ε = 0.04 (%) ε = 0.06 (%) ε = 2/255 (%) ε = 3/255 (%)

FGSM 23.76 37.79 53.86 61.56 41.71 45.98

Rectified-FGSM 24.64 40.33 55.86 66.62 45.11 52.88

BIM 53.40 81.40 76.24 89.65 59.42 70.21

Rectified-BIM 56.93 85.97 80.86 96.09 69.14 83.13

PGD 54.26 84.01 76.69 91.23 59.38 70.62

Rectified-PGD 55.41 86.58 79.71 95.22 67.14 81.63

Deepfool 40.05 72.10 75.67 92.38 64.09 81.81

Table 6 Attack success rates
under l∞ norm against VGG-19
and ResNet models

CIFAR10 dataset VGG19bn (%) ResNet (%)

FGSM (ε = 3/255) 56.78 74.33

Rectified-FGSM (ε = 3/255) 59.18 78.11

BIM (ε = 3/255, α = ε · 0.4, i = 5) 73.45 94.99

Rectified-BIM (ε = 3/255, α = ε · 0.4, i = 5) 84.67 96.42

PGD (ε = 3/255, α = ε · 0.4, i , r = 5) 74.95 95.06

Rectified-PGD (ε = 3/255, α = ε · 0.4, i , r = 5) 83.97 96.17

Table 7 Results under PGD
attack with various number of
iterations

VGG19bn on CIFAR10 dataset PGD (%) Rectified-PGD (%)

Number of iterations = 5, ε = 3/255 73.25 83.01

Number of iterations = 10, ε = 3/255 82.13 91.30

Number of iterations = 20, ε = 3/255 83.60 92.24
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Table 8 Mean perturbation amount comparison

MNIST Digit (ε = 0.16) MNIST Fashion (ε = 0.06) CIFAR10 (ε = 3/255)

L2 norm L1 norm L2 norm L1 norm L2 norm L1 norm

FGSM 3.36 71.57 1.44 35.19 0.64 35.90

Rectified-FGSM 3.06 59.53 1.29 28.56 0.56 27.48

BIM 2.75 53.41 1.21 27.40 0.55 28.27

Rectified-BIM 2.69 52.09 1.16 25.99 0.54 27.70

PGD 2.79 54.79 1.22 27.96 0.55 28.39

Rectified-PGD 2.74 53.70 1.19 26.92 0.54 28.02

Table 9 Execution time
comparison (in seconds) FGSM 0.0104

Rectified-FGSM 0.4613

BIM 0.0444

Rectified-BIM 6.4161

PGD 0.4695

Rectified-PGD 31.3377

For the defense part, the results in Table 10 show that
our proposed uncertainty-based reversal method does not
decrease the classification performance of the deployedmod-
els on clean data. While some minor portion of data samples
were wrongly classified even if they were previously classi-
fied correctly, there is an almost similar amount of samples
that happened to be predicted correctly after the reversal pro-
cess. Therefore, we can conclude that on average, there is no
negative effect of deploying our uncertainty-based reversal
method as a preprocessing module prior to feeding any input
to an ML model in production.

We then tested our proposed defense technique against
two powerful attack types, namely Deepfool attack and
Carlini and Wagner attack (with confidence = 0). For the
implementations of these attacks, we used a Python tool-
box called Foolbox [66]. The results in Table 11 prove our
uncertainty-based reversal method’s effectiveness. For the
MNIST datasets, our proposed defense method provides per-

fect robustness and almost totally revert all the perturbed
samples crafted by these strong attacks.And for theCIFAR10
dataset, we achieved reversal success rates of around % 96
for Deepfool attack and almost % 98 for CW attack. The
settings used in the uncertainty-based reversal operation are
given in Table 4. Thanks to our defense method, we could
lower the final attack success rates of these attacks to very
low levels as shown in Table 12.

Discussions and further results

We have tested and verified our approach’s effectiveness in
three different datasets, which are heavily used by the adver-
sarial research community. Experimental results show that
our proposed methods generalize well across datasets. Our
defense method is not concerned with the internal dynam-
ics of the attack. Instead, it is concerned with the eventual
result of the attack,which is the perturbed sample. The under-
lying factor for our approach’s success can be understood
better by analyzing the resulting final probability scores of
the perturbed samples. Since the gap between the predicted
probability scores of original and target classes is not high for
Deepfool attack and CW attack (when confidence parameter
is set to 0), we could successfully revert almost all perturbed
images with a reasonably small perturbation because the per-
turbed images are not pushed far away from the decision
boundary of themodel for these attacks. Other known attacks

Table 10 Performance of
uncertainty-based reversal
operation on clean data

Number of successful reversal Number of unsuccessful reversal

MNIST (Digit)

On corrects 9901 25

On wrongs 14 60

MNIST (Fashion)

On corrects 9185 78

On wrongs 62 675

CIFAR10

On corrects 8080 241

On wrongs 214 1465
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Table 11 Performance of uncertainty-based reversal operation on different attack types

Successful reversal Unsuccessful reversal Reversal success rate (%)

MNIST (Digit)

Deepfool (L∞, ε = 0.1) 2505 0 100

Deepfool (L2, ε = 1.35) 2935 27 99.09

CW (L2, ε = 1.35) 5161 0 100

MNIST (Fashion)

Deepfool (L∞, ε = 0.05) 7940 19 99.76

Deepfool (L2, ε = 0.67) 7268 25 99.66

CW (L2, ε = 0.67) 7898 19 99.76

CIFAR10

Deepfool (L∞, ε = 2/255) 5078 255 95.22

Deepfool (L2, ε = 53/255) 4081 117 97.21

CW (L2, ε = 53/255) 4904 102 97.96

Table 12 Effect of
uncertainty-based reversal on
attack success rates

Attack success rates

Without reversal (%) With (%)

MNIST (Digit)

Deepfool (L∞, ε = 0.1) 25.24 0.00

Deepfool (L2, ε = 1.35) 29.84 0.27

CW (L2, ε = 1.35) 51.99 0.00

MNIST (Fashion)

Deepfool (L∞, ε = 0.05) 85.92 0.21

Deepfool (L2, ε = 0.67) 78.73 0.27

CW (L2, ε = 0.67) 85.47 0.21

CIFAR10

Deepfool (L∞, ε = 2/255) 63.56 3.04

Deepfool (L2, ε = 53/255) 50.03 1.39

CW (L2, ε = 53/255) 59.66 1.22

like FGSM, BIM or PGDmight not result in such a small gap
in the final softmax scores. This is also valid if one applies
CW attack with a high confidence value as a parameter as
well. Thus, our reversal process’s success rate will not be so
high as in the case of the previously mentioned attack imple-
mentations. However, we have empirically verified tools like
adversarial training to defend against those attacks (FGSM,
BIM, PGD), and the success rate of those attacks can be
lowered to an acceptable level (Table 15).

To verify this, we have used two other models, which
are naturally and adversarially trained for the MNIST Digit
classification task. We used a slightly different architecture
this time and applied the dropout in the first convolutional
layer as in Table 13.We then checked the attack success rates
of FGSM, BIM, Deepfool and CW attacks against these two
trained models. As expected, the success rates for FGSM
and BIM were significantly lowered via adversarial training.
Additional implementation of our uncertainty-based reversal

approach decreased the attack success rates even further, as
shown in Table 14.

Regarding the most powerful attack in our experiments,
our defense method provides excellent robustness if the
attacker applies CW attack with confidence set to 0. The
attacker can try to avoid our defense using a high confidence
value as a parameter. However, trying to craft high confident
adversaries will eventually decrease the attack success rate.
And if our method is used in front of an adversarially trained
model, the CW attack’s success rate will decrease even fur-
ther.

Finally, when we check if our uncertainty-based reversal
operation negatively affect themodel’s performance for legit-
imate inputs as shown in Table 15, we once again confirm
that the accuracy of themodel does not decrease considerably
at all. Hence, our approach can be safely used in produc-
tion when there is no security threat. Suppose that the model
owner is worried about any suspicious activity and thinks that
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Table 13 CNN model
architecture for adversarially
trained MNIST model

Dataset Layer type Layer information

MNIST (Digit) Convolution (padding:1) + ReLU 3 × 3 × 16

Dropout p : 0.2

Convolution (padding:1) + ReLU 3 × 3 × 16

Dropout p : 0.2

Convolution (padding:1) + ReLU 3 × 3 × 32

Max pooling 2 × 2

Convolution (padding:1) + ReLU 3 × 3 × 32

Max pooling 2 × 2

Fully connected + ReLU 1568 × 100

Fully connected + ReLU 100 × 10

Table 14 Effect of adversarial
training and uncertainty-based
reversal on attack success rates

Attack success rates

Without reversal With reversal

Normal model

FGSM (ε = 0.1) % 11.82 % 9.01

BIM (L∞, ε = 0.1) %32.02 % 22.13

Deepfool (L∞, ε = 0.1) % 17.28 % 0.02

Deepfool (L2, ε = 1.35) % 22.79 % 0.30

CW (L2, ε = 1.35, confidence = 0) % 50.42 % 0

CW (L2, ε = 1.35, confidence = 10) % 40.42 % 30.38

Robust model

FGSM (eps = 0.1) % 1.32 % 1.02

BIM (L∞, ε = 0.1) % 1.43 % 1.11

Deepfool (L∞, ε = 0.1) % 1.34 % 0.01

Deepfool (L2, ε = 1.35) % 4.14 % 0.20

CW (L2, ε = 1.35, confidence = 0) % 7.78 % 0.03

CW (L2, ε = 1.35, confidence = 10) % 4.82 % 4.04

Table 15 Effect of
uncertainty-based reversal on
clean performance for normal
and adversarially trained model

# of successful reversal # of unsuccessful reversal

Normal model

On corrects 9916 17

On wrongs 19 48

Robust model

On corrects 9921 13

On wrongs 4 62

the model is under attack. In that case, he/she can tune the
ε parameter for the reversal operation to increase the power
of defense at the cost of slightly lowering clean data perfor-
mance.

Conclusion

This study proposed new attack and defense ideas based on
the combined usage of the model’s epistemic uncertainty

and the model’s loss function. We experimentally showed
that our rectified attack algorithms outperform some of the
well known adversarial attack methods which rely solely on
the model loss function. On the adversarial defense side, we
showed that our uncertainty-based reversal operation could
be used as a preprocessing module prior to feeding any input
to the model in production. Our approach provides a very
high degree of adversarial robustness without compromising
clean data performance.
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As future work, we plan to investigate the possible usage
of our uncertainty-based reversal operation to build dynamic
models that train themselves during production by updat-
ing model parameters after the detection of any adversarial
input at the reversal process. We believe that enabling such
a self-training in the production life cycle of a model will
help to improve adversarial robustness as in the case of
any adversarial training approach. Another advantage of this
implementation is that model’s owner will not have to be
involved in crafting those adversarial samples beforehand
and turn a negative situation of being under attack into a
benefit. Another future study is to use the uncertainty-based
reversal approach to craft Universal Robustness Perturba-
tion instead of the previous studies of Universal Adversarial
Perturbation.Weencourage the research community to inves-
tigate further opportunities which our uncertainty-based
reversal approach presents.
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