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The demand for electricity is increasing exponentially day by day, especially with the arrival of electric vehicles.
In the smart community neighborhood project, electricity should be produced at the household or community
level and sold or bought according to the demands. Since the actors can produce, sell, and buy according to the
demands, thus the name prosumers. ICT solutions can contribute to this in several ways, such as machine learning

Had

sz(;:e%uce for analyzing the household data for customer demand and peak hours for the usage of electricity, blockchain as a
Docker trustworthy platform for selling or buying, data hub, and ensuring data security and privacy of prosumers.
PIVT TOTEM: Token for controlled computation is a framework that allows users to analyze the data without moving

the data from the data owner's environment. It also ensures the data security and privacy of the data. Here, in this
article, we will show the importance of the TOTEM architecture in the EnergiX project and how the extended
version of TOTEM can be efficiently merged with the demands of the current and similar projects.

1. Introduction

The electricity infrastructure nowadays lacks mechanisms to handle
mass and concentrated power consumption. It is especially with the
arrival of electric vehicles (EVs), the charging demands, and the peak
overconsumption. To handle such peak hour issues without changing the
existing structure of the grid, the integration of renewable microenergy
sources at household or neighborhood levels can be implemented.
Therefore, it is quite necessary to control and make use of potential
prosumers and develop tools to efficiently manage household or neigh-
borhood energy production and consumption. Proper mechanisms are
essential to collect the combined microenergy sources, integrate com-
munity level power storage units, predict production and consumption,
and allow the sharing/trading of energy between households, neigh-
borhoods, and communities. In order to address these kinds of chal-
lenges, ICT-based smart solutions can be used. A data-driven
decentralized energy system can efficiently contribute to the supply-
demand market relationship between prosumers (consumers and
producers).

In the smart community neighborhood project, the conventional end
prosumers will produce the energy locally using environmentally
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friendly energy production and storage technologies and allow them to
meet their own requirements or can sell it back to the grid. EV batteries
can also play an important role in a way that they can be used as an
additional resource to the local energy storage system. These resources
are capable of participating in balancing consumption during peak hours
or fluctuations and also solving congestion problems. Upstream suppliers
such as distribution system operators (DSO) and transmission system
operators (TSO) require data about the power consumption and demands
to manage the power distribution, transmission, and integration of
community level resources to guarantee reliable operation. The resources
and the data streams from homes will be exponentially large. Therefore,
to maintain such large and diverse data, there should be a highly
information-intensive data hub. Blockchain-based technologies can be
used for recording energy generated, shared/traded, and stored in the
storage level by prosumers. Each transaction in the blockchain will be
transparent and secure [1]. In order to protect privacy and user assets,
blockchain uses cryptography [2]. Due to the openness of blockchain,
every node in the network is transparent to the complete ledger, which
may cause privacy leakage. In addition, digital assets cannot prove their
ownership as easily as physical currency, and crypto-techniques are
required to prove the ownership of digital assets. Asymmetric encryption
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and hash functions are the two techniques mainly used in blockchain.
Finally, to predict the peak hour consumption and production of energy
from each household, neighborhood, and community, machine learning
techniques are effective and essential. A self-organizing and
self-optimizing, secure, and privacy-preserving community energy
management system by utilizing the information-intensive data hub,
blockchain, and machine learning is the aim of the smart community
neighborhood project.

By obtaining energy usage patterns such as peak hour consumption,
production from each household/neighborhood, and energy demands,
the prosumers will get a better understanding of the current trend. It
shows that the analysis of data will improve the efficiency of the energy
infrastructure. The analysis of data through conventional methods de-
mands that the data be transferred across the network, which is highly
network intensive, and due to security breaches, data owners may be
cautious about providing their data. TOTEM [3,27], which stands for
Token for controlled computation, is a patented framework (US11121
874B2) that provides a decentralized solution for these concerns about
the data transfer and analyses. This framework combines both blockchain
technologies and big data systems. Each transaction through blockchain
is secured and tamperproof but has limitations in handling large data and
parallel computations. Big data technologies provide solutions for the
computation of large data through parallel computing. These properties
of both blockchain and big data technologies complement and open a
new direction for computing large data sets without moving the data
across the network. The TOTEM project ensures data security by allowing
organizations to open their data centers and allow disruptive business
models. This framework can be used in the smart community neighbor-
hood (EnergiX project) as well for enabling data hubs from different
communities to open up their databases to allow data analysis from
different communities or users without moving their data. In this article,
a detailed explanation of how to utilize TOTEM for the EnergiX project is
given and also shows the scope of an extended version of TOTEM which
deals with the multi-provider architecture.

The structure of this paper is arranged as follows: Section 2 contains
the related or relevant works, and Section 3 shows the background for the
present paper and a detailed explanation of TOTEM architecture. Section
4 shows how the TOTEM can be incorporated with the infrastructure. A
description of the extended TOTEM architecture and its implementation
is presented in Sections 5 and 6, respectively. The conclusion is given in
Section 7.

2. Related works

Blockchain and big data technologies have been combined for various
purposes. The possibilities of using blockchain on big data systems, such
as decentralized management for private data, [oT communication, res-
olution of digital property, and public institutions were discussed in
Ref. [28]. For reinforcing the security of big data platforms, a
blockchain-based access control framework is proposed in Ref. [29]. This
framework achieved objectives such as user-driven, transparency, fine
granularity, pseudonymity, and unlink ability. However, while adopting
blockchain technology to handle access control functions, additional
critical issues emerged in the framework. A blockchain access control
ecosystem that ensures a better way to manage access control of large
data sets and how to avoid data breaches is proposed in Ref. [30]. The
architecture built on a private and permissioned blockchain for a
decentralized security system. Blockchain technology provides a solution
to the challenges associated with traditional and centralized access
control because it ensures data transparency, traceability, secure data
sharing, auditability, and data self-sovereignty for the owner. A scalable
blockchain-based big data storage for distributed computing is proposed
in HBasechainDB [31]. HBasechainDB makes it easy for organizations
that have Hadoop ecosystem-based business logic to accommodate
blockchain. HBasechainDB, which is built on the Hadoop ecosystem, also
inherits efficient big data processing. In Ref. [32] Bandara et al. proposed
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“Mystiko”, a new blockchain storage that is built over the Apache Cas-
sandra distributed database to incorporate big data. Mystiko ensures high
scalability, transaction throughput, and availability.

So far, we have discussed the available integration of blockchain and
big data technologies. The TOTEM architecture is a patented novel ar-
chitecture that combines both blockchain and big data and enables
secure handling of the data without moving the data over the network.
The data user uses TOTEM SDK to create a MapReduce code for
computation, which will be executed within the data owner's environ-
ment. This computational system prevents the execution of any malicious
functions in the user code by putting constraints on computational op-
erations. A pre-defined TOTEM will be assigned to authorized users
based on their computational needs. A smart contract performs pre-
checks on user submitted code and associated TOTEM value by using a
TOTEM estimator to determine the required TOTEM for executing the
given code. A TOTEM manager and an updater are introduced to coor-
dinate the computation of the user code until it exits gracefully, or the
assigned TOTEM gets exhausted. In Ref. [4], it deals with the
proof-of-concept of the new components, such as TOTEM managers and
updaters introduced in the TOTEM framework.

Machine learning is a part of artificial intelligence that deals with the
study of algorithms that allow the system to learn by itself and improve
the results with experience [20]. Machine learning plays an important
role in load balancing and the prediction of electricity usage. This will
help in the efficient and effective working of the infrastructure when it
comes to the prosumers' demand, production, supply, or storage man-
agement. Some of the examples that show the necessity are as follows
[51; deals with the application of feature selection methods for the pur-
pose of predicting household energy consumption. In this paper, they
followed a two-stage framework for identifying candidate features based
on literature studies and data characteristics of a load profile, and then it
selects a subset of relevant features using the feature selection methods.
Another one [6] deals with short term load forecasting using smart meter
data, which is a generalization analysis. An application of machine
learning for the energy management of loads and sources in smart grid
networks is employed in Ref. [21]. Rudin et al. [22] proposed a frame-
work where machine learning can be used for the prediction of failures of
the system components. In some other works [23,24], with the advantage
of machine learning techniques, malicious activity prediction and
intrusion detection problems are analyzed at the network layer of the
smart grid communication system. Also in Ref. [25], by using the
distributed spare attacks model, which is proposed in Ref. [26], and the
machine learning algorithm, they worked on the detection of false data
injection attacks. These papers show the relevance of data analysis in the
infrastructure with the available data set from smart meter data or
household data, which is not secure and is not privacy preserved. The
relevance of blockchain technology comes here because it guarantees
secured transactions. A recent survey suggests that Decentralized appli-
cations (DApps) with blockchains promise no trust in authorities and
overcome the key challenges of security and privacy problems [33].
Thus, blockchain in the EnergiX project acts as a platform for trading
electricity according to the demand of prosumers, in a secured manner.
Since big data plays a vital role in decision making for prosumers and
blockchain acts as a trading platform, it is relevant to integrate both
technologies for better and more efficient working in a secure environ-
ment. The properties of these two technologies can complement each
other, which would enable a new way of computing upon large data sets
in a secure manner.

3. Background

In this section, we will discuss the background technologies used in
the TOTEM architecture to get a clear picture while explaining the con-
cepts in the upcoming sections. Big data systems and blockchain tech-
nologies are the two main components of the TOTEM framework.
Blockchain allows authorized users to perform their required analyses on
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the data owner's data without moving the data across the network. An
overview of the technologies used in the framework is given below.

3.1. Big data analytics

Big data is the term that represents the data sets that are too large to
be efficiently interpreted, collected, managed, and processed using
traditional methods or mechanisms [7]. Some of the main features of big
data, such as volume, variety, velocity, and veracity [8], are quite good
enough to describe the properties. These formerly mentioned features
will denote the size of generated data, the types and nature of the given
data, how often the data are generated or the speed of the data generation
and processing, and the data quality or value, respectively [9]. The
proper method or strategy of analyzing such large volumes of data is
known as big data analytics. Apache Hadoop, Spark, MongoDB, Cas-
sandra, and Neo4j are some of the popular frameworks commonly used
for big data analytics. Hadoop is one of the leading open source frame-
works on the list which can run on premises or in the cloud. However,
each framework has its own advantages and drawbacks.

Hadoop is a framework that is capable of distributed processing of
large data sets with clusters of computers and it is an open source
implementation based on a programming model called MapReduce [10].
The Hadoop framework mainly consists of two layers, the Hadoop
Distributed File System (HDFS) [11] and the previously mentioned
distributed processing mechanism, MapReduce. The HDFS consists of a
master-slave architecture, where the master node or the Name Node
maintains the file systems metadata. The files are divided into fixed-size
blocks and are stored in the slave node or Data Nodes. The mapping of
blocks to a particular Data Node is determined by the Name Node ac-
cording to some of the features, such as ease of access and free slot. Data
Nodes are responsible for read-write operations in the file system. Data
Nodes are also responsible for the creation, deletion, and replication of
blocks, but all these operations are based on the instructions given by the
Name Node. It will also send heartbeats to the Name Node periodically to
indicate that the corresponding Data Node is currently active. The sec-
ondary Name Node is the node that keeps checkpoints of the file system
metadata on the Name Node in the HDFS. Functions such as Map and
Reduce are the two tasks performed in the distributed processing
framework. Receiving the input data and converting it into granular
structure is done by the map function, and the output of this function will
be tuples with key-value pairs. These results from the map function will
be taken as the input for the reduce function. In the reduce function, the
inputs combine and group those tuples according to a unique key value.
The results from the functions are stored in the distributed file system.
The MapReduce framework has a Job Tracker [12], which is responsible
for monitoring the availability of the resources and allocating resources.
It is also responsible for scheduling tasks for Task Trackers. Task trackers
will compute the tasks and provide the status information back to the
master or the job tracker at regular intervals of time. If a task tracker goes
down, the job tracker will immediately reschedule the corresponding
failed task to the next available task tracker, and if a job tracker goes
down, the entire process will halt.

3.2. Blockchain technology

The blockchain is an open distributed ledger that can record each
transaction through it in a very efficient manner [13]. All the transactions
recorded in the blockchain are transparent to all users in the corre-
sponding blockchain network, and these transactions are tamperproof,
which means they cannot be modified. There is no central node to control
the entire network as in a centralized system, but it has peer-to-peer
communication between nodes; therefore, it is called a decentralized
system. Secure hash functions are used in the blockchain for storing the
transactions. The nodes can individually verify the transactions. To
timestamp digital documents, secure hash functions were used in 1991
by Haber and Stornetta [14]. After that, in 1992, Merkle tree was used for
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time-stamping several documents into one block. Later in 2009, it got
more attention when Nakamoto introduced Bitcoin [15]. Bitcoin can be
described as a peer-to-peer permissionless blockchain, which means it is
completely decentralized. An example of a public blockchain is Ether-
eum. The public blockchain is also known as a permissionless blockchain
because the participants in the network are anonymous and there are no
restrictions on joining the network for the verification process [16].
Another type of blockchain is private or permissioned blockchain, which
requires permission to join the network. It is only restricted to users
within a particular organization or group of organizations, and only
selected nodes by the blockchain consortium can participate in the
verification process. Hyperledger Fabric and Ripple are examples of
permissioned or private blockchain. Adding transactions to a block after
verification and appending them to the existing chain can be done by any
of the nodes in the network depending on the type of blockchain. To
avoid conflict between nodes on adding the same transaction, an
agreement should be made between the nodes. It can be done with the
consensus algorithm, which chooses the right node to append the new
block. In general, these consensus algorithms can be proof-based or
voting-based algorithms [17]. Blockchain can enable smart contacts,
which were proposed by Szabo [18]. Blockchain-based smart contracts
are computer programs that can be executed in a decentralized manner.
The transactions will occur only when the requirements or conditions in
the smart contract are satisfied. The computational complexity of the
program plays an important role in efficient execution, for instance,
Ethereum introduced the ‘gas’ concept to tie up with the execution
complexity of smart contracts to financial limitations [19].

1) Hyperledger Fabric

Hyperledger is an open source project created to enhance blockchain
for enterprises. The project started in 2015, hosted by the Linux Foun-
dation, and is a collaborative effort between many different companies. It
comprises over 230 organizations and several projects, including IBM's
Hyperledger Fabric. Hyperledger Fabric! is an enterprise-grade permis-
sioned distributed ledger framework created by IBM. It focuses on a
modular and configurable architecture, allowing it to meet the re-
quirements of many different use cases, such as banking, insurance,
healthcare, and energy trading. Fabric supports smart contracts written
in general purpose programming languages including Java, Go, and
Node.js, which means users do not need to learn a domain-specific lan-
guage to write them.

2) Channels

As previously mentioned, permissioned blockchains force users to be
authorized before joining the network. Hyperledger Fabric allows for
privacy and confidentiality through channels. A channel is formed by a
consortium of organizations, which share a separate channel ledger and
are free to transact as long as they conform to the policies defined on the
channel. This allows for transparency among the members of the con-
sortium while still keeping their transactions private from outsiders. Note
that the channel we describe here is known as an application channel.
This differs from the system channel, which controls the configuration of
the Fabric network. In this present work, we refer to application channels
when mentioning channels. A channel ledger will comprise a world state
and a transaction log. The world state represents the current state of the
channel ledger, while the transaction log is the history of transactions
that have lead to the current world state, i.e., the transaction log is the
blockchain. A channel will also logically host smart contracts, which in
Fabric are written in chaincode and may be invoked by applications that
wish to interact with the ledger.

! https://www.hyperledger.org/use/fabric.
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3) Peers and Orderers

The nodes that comprise a Hyperledger Fabric network are primarily
peer nodes and orderer nodes, which cooperate to ensure that only
proper transactions are committed to the ledger. Peers may take on
different roles in the network, however, for now it is enough to know that
some peers act as endorsing peers, which will endorse a transaction
before sending it to the orderer. The following steps are taken to commit
a transaction to the ledger.

i. A transaction proposal is sent to each endorsing peer, which will
run and subsequently endorse the transaction before sending it to
an orderer.

ii. The orderer will ensure that the transaction is endorsed by the
necessary peers. Then it will add the transaction to the next block
and distribute it to all the peers in the channel.

iii. Each peer will then inspect the block to validate that every peer
has received the same result. Upon successful validation, the peers
will commit the block to the ledger.

Every peer will additionally host a ledger instance for each channel in
which it is participating.

3.3. Private data collections

When a transaction is committed to the channel ledger, it is broadcast
to all peers and orderers participating in the channel. As previously
mentioned, every peer holds a copy of the channel ledger. This means that
any organization may access all data that are transacted on the channel if
they are a member. Hyperledger Fabric utilizes channels to keep trans-
actions transparent between a subset of organizations while keeping them
private from the rest of the network. However, consider the case where
another subset of organizations on a channel needs to keep their trans-
actions private. One possible solution would be to create separate channels
for each of these cases, although this would surely clutter the network,
increasing complexity and introducing unnecessary configurations.
Hyperledger Fabric introduced private data collections® to aid such cases.
When using private data collection, there are two types of data being
transmitted: actual private data and a hash of the data. The actual data are
only sent to peers from organizations that are authorized to see it, using a
gossip protocol®. The private data are stored in a separate private database
on the authorized peers and are accessible from chain codes on these peers.
The orderer is not involved in this process, keeping it private from orderer
organizations as well. The hash of the data is treated as a normal trans-
action, meaning that it is endorsed by peers, sent to the orderer for vali-
dation, and broadcast to every peer on the channel. Note that we are
required to set up anchor peers for this communication to work. Anchor
peers are used for cross-organization communication. This is essential
when using private data collections since the gossip protocol communi-
cates private data peer-to-peer between authorized organizations.

4. TOTEM architecture with two scenarios

TOTEM, Token for controlled computation, is an architecture that
integrates blockchain technologies and big data systems to take advan-
tage of both the technologies for secure and privacy-preserved data an-
alytics. It is a three-layer architecture, as shown in Fig. 1, with a
blockchain consortium, computation layer, and storage layer.

a. The blockchain consortium deals with the blockchain network that
connects the data user and the data provider. Through an SDK, the

2 https://hyperledger-fabric.read the docs.io/en/release-1.4/private-data/p
rivate-data.html.
3 https://hyperledger-fabric.readthedocs.io/en/release-1.4/gossip.html.
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data user will submit the computational code for analysis, and the
smart contract will decide whether to continue or stop the execution
depending on the TOTEM value. The entity that continuously moni-
tors and controls the computational complexity of the code given to
the system for data analysis is also known as TOTEM. For each
authorized actor in the system, a pre-defined TOTEM value will be
assigned according to the computational needs.

b. The computational layer is where the actual computation takes place
and is in the data owner's environment. At the time of code execution,
depending upon the computational complexity, the TOTEM value
assigned will get reduced in each step of execution, and will continue
until the final step of the code or when the TOTEM value exhausts. We
have demonstrated a Hadoop master-slave in the figure, and in order
to monitor and update the live TOTEM value, there is a TOTEM
manager at the master level and TOTEM updaters in each slave node.

c. The storage layer contains the actual data collected from households,
electric car consumption, wind farms, and other prosumer sources. It
can be a file system such as HDFS and IPFS (InterPlanetary File Sys-
tem) or any database.

In the TOTEM architecture, the blockchain consortium has two main
actors: a data provider, which can be an organization or group of organi-
zations together, and a data customer, which can be a single user or orga-
nizations. Authorized data customers can execute their own opcodes in the
currently available data sets without accessing the data but by sending the
code across the network toward where the actual data resides. The data
provider is the one who provides the metadata of their own data to the
blockchain, and it will provide the required resources for the computation of
the opcode given by the authorized users for analyzing the data set present
in the data provider environment. Data providers are also responsible for
deploying the necessary smart contracts. The smart contract will do a pre-
check on the code before sending it into the data provider's environment
for actual execution. It monitors the infinite loops for malicious functions in
the code submitted by the data customer for execution. The monitoring
pattern should be in a standardized format, and as a blockchain consists of
multiple data providers, the smart contract must be a collective effort of all
the data providers in the network. The computational layer and storage
layer will be in the data provider's environment. The computational layer
consists of a master-slaves architecture, and TOTEM value monitoring and
updating according to the computation complexity is done with the com-
ponents: TOTEM manager and updaters.

In the blockchain network, for a user to join, proper authorization is
required. All the users can join. In Hyperledger Fabric, we have a mem-
bership service provider for membership. As we mentioned before, data
providers will publish the metadata of the data set they own, and data
consumers can view that information and send requests to analyze that
particular data set with data consumers' particular code to the data provider.
It is required to have enough TOTEM value in the data consumer. The
workflow of the TOTEM architecture, which involves a single data provider
and data consumer, is explained in the following subsection: Scenario 1.

1) Scenario 1: With single data provider

Consider that we have a Community neighborhood_1 with a Data Hub
(C1DH) and a researcher (R), who would like to analyze the data avail-
able in the Data Hub for a better understanding of the power generation
and usage in this particular community. According to the TOTEM ar-
chitecture, the two actors in the blockchain consortium are C1DH (data
provider) and R (data consumer). Assume that both authorized users
have registered and have proper certification from a certificate authority
(CA) in the blockchain network. C1DH collects and stores all the infor-
mation from the community smart home, EVs, and other resources that
produce or consume electricity. It contains information related to the
electricity generation, usage, and storage of excess electricity by each
household or resource. It may contain sensitive data from household
smart meters, which need to be handled with privacy-preserving
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Fig. 1. Three layers of the TOTEM architecture HDFS: Hadoop Distributed File System, IPFS: InterPlanetary File System..

mechanisms, such as filtering those data fields accordingly before pro-
ceeding for analysis. Data Hub contains the data related to peak hour
consumption of each household or entire community, excess power that
can be utilized later by selling to the required consumer, who all are the
potential prosumers in the community, etc.

Assume that the researcher wants to know about the peak hour
consumption of an entire community for a particular time period for the
research purpose. The TOTEM architecture contains a TOTEM-defined
SDK, where the data consumer can write their particular code through
the SDK. The TOTEM-defined SDK contains a set of rules and formats to
follow for writing the code. The researcher will write the query S1 and
submit it for analysis. The query, S1, will go through the smart contract
where a preliminary check for the required TOTEM value for analyzing
the particular code for the particular data set is enough or not. Once the
preliminary check is done and has enough TOTEM value to proceed, it
will be given to the community Data Hub, C1DH, for the actual execution
of the code on the required data set. After each step of opcode execution,
the TOTEM value will be reduced according to the complexity of that
particular opcode, and the available balance will be updated. Also, after a
set of opcodes, the available TOTEM value will be again checked and
confirmed with the smart contract and recorded as transactions. This
execution will continue until the final result is produced or exists
immediately if the TOTEM value is exhausted in between the execution.
Fig. 2 given below shows the workflow of this scenario.

2) Scenario 2: With multiple data provider

The second scenario is to assume that the researcher R wants to know
about the combined peak hour consumption of both the communities C1

and C2. The information related to the first community, such as house-
hold data, electricity prosumers data, and electric car energy data, is
available in C1DH and the second community is available in Community
neighborhood_2 with a Data Hub (C2DH). Since the data are not sent
across any of the networks, and we aim for a secured and privacy-
preserved driven data analysis, we need to solve this situation without
sharing the actual data from one community to the other. Resemble
scenario 1 for scenario 2 also with the TOTEM-defined SDK. The query S2
will be submitted by the researcher R and it will go through a preliminary
check for the TOTEM value status. If the researcher is authorized to
analyze the data set available in both C1DH and C2DH, then the S2 will
be given to those Data Hubs. Both Data Hubs will simultaneously monitor
and update the TOTEM value, and the value will be recorded as trans-
actions in the blockchain network. Here, the entire execution will stop
immediately if the TOTEM value gets exhausted in between the execu-
tion. Otherwise, the final result of both C1DH and C2DH will be com-
bined with proper communication between the Community Data Hubs,
and the result will be published to the researcher. Fig. 3 given below
shows the workflow of the scenario with multiple data providers. Dealing
with multiple providers is not discussed in the original TOTEM: Token for
controlled computation framework. Thus, an extended version of the
TOTEM architecture shows how to deal with multiple data providers in
the TOTEM architecture in the following section.

5. Extended architecture with multiple data providers
As mentioned earlier, we need to assume that an opcode has already

been submitted to both C1DH and C2DH through the TOTEM architec-
ture network by the data consumer R. Our goal is to retrieve the
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combined result of the submitted opcode without sharing the data
occurring between the data providers. Our proposed solution will consist
of allowing each individual data provider to execute its given code, and
then storing the respective result in Hyperledger Fabric. We achieve this
by provisioning computational infrastructure in the form of Docker
containers at the location of the data providers. These containers will
form the Hadoop cluster on which we will run our computational code
and will be provisioned with the help of Ansible.

Ansible* is open source software that automates the process of IT
infrastructure and application deployment. An Ansible managed infra-
structure will consist of one or several control nodes, which will have
Ansible installed on them, and managed nodes that will receive in-
structions from the control nodes. The system allows us to construct
playbooks, which essentially are recipes for tasks that need to be per-
formed at a remote location. By using a push configuration, Ansible does
not require any client-side installation, meaning that the data providers
do not require any additional software to perform the given tasks. Rather,
Ansible uses SSH with public key authentication and requires the data
provider to grant access to the data consumer before any commands can
be pushed. Our system utilizes Hyperledger Fabric's permissioned
blockchain to govern and grant access to data providers' resources.

An illustration of our system for governing access between a data
consumer and a data provider is shown in Fig. 4. Authorized data con-
sumers will have to obtain a one-time code (OTC) from the blockchain
and send this along with their public key to the data providers' resources
to authenticate themselves and gain access. The data provider will query
the blockchain to make sure that the data consumer's one-time code is
legitimate, and subsequently add their public key to their list of autho-
rized keys. Once this is done, the data consumer will be allowed to push
Ansible commands to deploy the necessary infrastructure needed for
running the opcode. Our playbooks will provision the infrastructure, run
the remote computational code, and store each respective result in
Hyperledger Fabric. However, simply putting the result in a state on the
ledger will expose the data to all participating peers and orderers, which
is undesirable in scenarios where the data providers require total privacy
of their data. Therefore, we propose the usage of private data collections
(PDCs) for storing the results. An illustration of our proposed architecture
for using private data collections is shown in Fig. 5.

In Fig. 5, we observe 1) two data providers who put the results in their
respective private data collections once they complete the required
computation. Hence, the results residing in their own collections, the
data consumer can 2) invoke the accessResults chaincode, which is

* https://www.ansible.com/overview/it-automation.

shown as pseudocode in the figure. In short, the chaincode will 3) fetch
results from the private data collections and then perform the necessary
operations to combine the results. For example, in our scenario, we have
results from a word count job, meaning the function will transform the
results to JSON objects, sum values with matching keys, and add key-
value pairs that are unique to an object. When the results are com-
bined, the chaincode will 4) return the final JSON object as a binary data
stream. We will demonstrate an implementation of this system by
deploying Hyperledger Fabric on the Microsoft Azure cloud using both a
single Kubernetes cluster and a distributed multicluster environment.

6. Implementation and result

To illustrate a scenario in which we can demonstrate the aforemen-
tioned system in a truly distributed way, consider the following: Data
consumer R residing in Stavanger wants to obtain a combined statistical
result from two community data hubs, C1IDH and C2DH, residing in Spain
and the Netherlands, respectively. In this case, the system will have to
work despite a massive regional difference while permitting each data
provider absolute privacy and control of their own data. The difference in
rules and regulations pertaining to data management for these different
regions may be vast; however, this system will allow any participant to
comply with their respective region's rules and provide authorized data
consumers an opportunity to compute their own code. First, we set up the
system on a single cluster residing in one region, followed by a demon-
stration of a distributed multi-cluster environment spanning two
different regions. Azure® is a cloud service created by Microsoft. It offers
a plethora of services, including the Azure Kubernetes Service (AKS). AKS
offers a fully managed Kubernetes service and allows users to easily scale
their infrastructure when needed. In this section, we utilize AKS to pro-
vide a multi-node Kubernetes cluster.

6.1. Method 1: deploying Hyperledger Fabric on a single Kubernetes cluster

Provisioning a Kubernetes cluster in Azure using the Azure portal is a
simple eventuality. In the portal, first create a resource and choose
Kubernetes Service. Here, we specify some basic settings, such as which
subscription to use, a resource group, a cluster name, and a region. Later,
we experiment with regions to create a multicluster distributed Hyper-
ledger Fabric network.

After basic configurations, we specify the size of our node pool. The
node pool will contain the nodes that will host the Hyperledger Fabric

5 https://azure.microsoft.com/en-us/.
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result1 = stub.getPrivateData(PDC1')
result2 = stub.getPrivateData('PDC2')

finalResult = combineResults(result1, result2)
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Data Provider 2

Fig. 5. Scenario 2: Access result with multiple data providers. PDC: private data collection.

infrastructure. Here, it is essential that we first consider the number of
nodes it takes to run our Hyperledger Fabric network. Our network
comprises three peer organizations with one peer each and one orderer
organization. This results in three peers, three certificate organizations,
and one orderer; each requiring one node, i.e., we required seven nodes
in our node pool to launch the network. Furthermore, AKS allows us to
choose the size of each node. There are different specifications for each
choice, allowing the user to consider their needs for the number of CPUs,
size of RAM, number of disks, etc. We consider that the peer node must
contain at least two disks since we need one disk for the peer and one disk
for holding copies of ledgers. It is sufficient for us to use the smallest
virtual machine (VM) size, which contains four disks.

In the authentication tab, we turn off role-based access control for a
smoother and easier way for us to connect to the cluster. For networking,
integrations, and tags, we use the default values. We are now ready to
review and create our cluster. During setup, we observe that Azure restricts
the number of CPUs one can have in a single region. In order to have a
sufficient number of CPUs, we choose the pay as you go plan, which allows
us to have up to ten CPUs running in each region. Once the cluster has been
successfully reviewed, we can create it and subsequently connect to it from
the Azure Cloud Shell. This shell has the kubectl client preinstalled,
which is the client used for interacting with a Kubernetes cluster. However,
we must first configure kubect1 to connect to our cluster. We do this with
the az aks get-credentials command and specify the name and
resource group pertaining to our cluster. To deploy and operate the
Hyperledger Fabric network, we use a tool called PIVT®. PIVT provides
Helm charts to facilitate launching a Fabric network as well as interacting
with it. Helm’ is a package manager for Kubernetes, which manages
charts. The charts provided by PIVT can be used for:

e Configuring and launching a Hyperledger Fabric network.

e Populating the network declaratively with channels, peers, and
chaincode.

e Adding new peers to run networks and updating channel configura-
tions declaratively.

e Backing up and restoring the state of the network.

Before we are able to use any of PIVT's functionalities, we must
install the prerequisites. We first use the wget command to download
all the binaries and subsequently add them to our path. When all the
prerequisites are added, the next step is to launch the network from
the Azure Cloud Shell. Then create the channel and install chaincode

8 https://github.com/hyfen-nl/PIVT.
7 https://helm.sh/.

using PIVT's helm charts. However, when deploying our network in the
cloud, it is essential that we use a proper load balancer to activate
external IP addresses for our services, i.e., we need external IP ad-
dresses for our peers, certificate authorities, and orderers such that
users may interact with them. Using PIVT, we may activate this
behavior by passing the peer.externalService.enabled and
orderer.externalService.enabled flags and setting them to
true. This tells PIVT to include the definitions of external services.

In Fig. 6, observe the External IP column. Here, we see our external
services obtaining IP addresses for external access. In the figure, we also
observe that the status of the external orderer's IP is pending. This is
because Azure is working to assign a proper IP address, which may take a
few minutes. Once all external services have received an IP address, we
can access the network by updating our connection profile with the
external IP addresses. For example, we can access the Stavanger peer
using 51.104.146.139:7051.

After completing these steps, we deployed a functional Hyperledger
Fabric network across several nodes in Azure using AKS. However, we
are only utilizing one cluster. In a real-world scenario, organizations
might need to host their infrastructure (peers, certificate authorities,
etc.) in the cloud provider of their choice or on their own premises.
This would require multiple clusters, possibly hosted in different parts
of the world, communicating with each other to form a single
Hyperledger Fabric network. To demonstrate this, we use PIVT to
deploy our Hyperledger Fabric network on two AKS clusters, residing
in different regions.

6.2. Method 2: deploying a Hyperledger Fabric network in a distributed
cross-cluster environment

In order for us to separate our Hyperledger Fabric infrastructure, we
first need to create another cluster in AKS. We use the same configura-
tions described in Section 6.1, except we now have to consider a different
number of nodes. We divide our network as shown in Table 1.

From Table 1, we observe that cluster 1 requires four nodes, while
cluster 2 requires three. This is because a peer organization requires one
node per peer and one node per certificate authority, while an orderer
organization only requires one node per orderer. Thus, we need four
nodes for the two peer organizations in cluster 1 and three nodes for the
peer and orderer organizations in cluster 2.

After we have created our clusters, we take inspiration from PIVT's
“Cross-cluster Raft network” example®. Following this example, we first
create two separate PIVT projects for each cluster by simply copying the

8 https://github.com/APGGroeiFabriek/PIVT#cross-cluster-raft-network.
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CLUSTER-IP EXTERNAL-IP PORT(S)

10.0.146.235 <none> 7054:31701/TCP

10.0.139.33 <none> 7054:31702/TCP

10.0.11.54 <none> 7054:31700/TCP

10.0.56.248 <none> 5984/TCP

10.0.59.101 <none> 5984/TCP

10.0.218.208 <none> 5984/TCP

10.0.237.155 <none> 7050/TCP

10.0.174.59 <none> 7050:32700/TCP

10.0.58.13 <pending> 7050:31417/TCP

10.0.41.193 <none> 7050/TCP

10.0.160.198  <none> 7051/TCP,7052/TCP

10.0.62.27 <none> 7051/TCP,7052/TCP
10.0.210.152  <none> 7051/TCP,7052/TCP

10.0.9.218 <none> 7051:30001/TCP,7052:30179/TCP
10.0.210.56 <none> 7051:30002/TCP,7052:31846/TCP
10.0.55.52 <none> 7051:30000/TCP,7052:31229/TCP
10.0.24.220 20.191.49.205 7051:30486/TCP

10.0.247.116 51.104.146.119 7051:32465/TCP

10.0.4.183 51.104.146.139  7051:32353/TCP

10.0.0.1 <none> 443/TCP

Fig. 6. External IP addresses from our services.
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NAME TYPE
hlf-ca--netherlands NodePort
hlf-ca--spain NodePort
hlf-ca--stavanger NodePort
hlf-couchdb--netherlands- -peer® ClusterIP
h1f-couchdb--spain--peer0® ClusterIP
hlf-couchdb--stavanger--peer0® ClusterIP
hlf-orderer--ordererorg ClusterIP
hlf-orderer--ordererorg--orderer® NodePort
hlf-orderer-external--ordererorg--orderer®@ LoadBalancer
hlf-orderer-1b ClusterIP
hlf-org-peer--netherlands ClusterIP
hlf-org-peer--spain ClusterIP
hlf-org-peer--stavanger ClusterIP
hlf-peer--netherlands--peer0 NodePort
hlf-peer--spain--peer@ NodePort
hlf-peer--stavanger- -peer0® NodePort
hlf-peer-external--netherlands- -peer0® LoadBalancer
hlf-peer-external--spain--peer0 LoadBalancer
hlf-peer-external--stavanger--peer0 LoadBalancer
kubernetes ClusterIP

Table 1

Overview of clusters in a cross-cluster environment.
Cluster ~ Region Members Number of

nodes
1 North Europe Spain (C1DH) and Nether- lands 4
(C2DH)
2 South-East Stavanger (R) and Orderer 3
Asia

files. Next, we alter the network.yaml and crypto-config.yaml
files. In crypto-config.yaml, we have to specify external peer orga-
nizations for cluster 2, as well as an external orderer organization for
cluster 1. Note that as opposed to PIVT's example, we do not enable TLS
for our example. This is to simplify network communication for our
proof-of-concept. However, it should be enabled in a production
environment.

Another important difference when launching our cross-cluster
network is the use of host aliases and external host aliases. Host aliases
are simply domain names along with their respective cluster IP, while
external host aliases are domain names along with their external IP.
These are needed in order for the two clusters to be aware of each other's
external services. To collect these host aliases, we first launch the
network in a broken state, which means to launch the network without
starting the peer and orderer pods. Before these are started, we will
collect host aliases and external host aliases using shell scripts provided
by PIVT. For each cluster, it needs to be handled separately. Furthermore,
we need to copy the external host aliases of cluster 2 into the host aliases
of cluster 1, and vice versa. Now, each cluster has the proper addresses
for communicating with its external resources. Note that we are again
using LoadBalancer for granting external IP addresses to our services.
Therefore, it is important that we wait until all services have obtained an
external IP before collecting external host aliases.

Afterward, upgrade the network with the host aliases using a helm
chart provided by PIVT. The setup of this cross-cluster example requires a
number of operations to be performed on each cluster separately and in
the right order. To facilitate the process and make it less error-prone, we
wrote two shell scripts to automatically launch the network. When each
component is running on both clusters, we can create channels and install
chaincode using the same helm charts as before, and subsequently
instantiate the chaincode using our Node.js script. Once these operations
are done, we have a fully functioning multi-cluster Hyperledger Fabric
network, with infrastructure residing in different parts of the world.

Note that this is a proof-of-concept implementation. For simplicity's
sake, we only deploy two clusters in two different regions on Azure AKS.
However, even though both data providers are residing in the same

region, it would be fully possible for them to reside separately anywhere
in the world.

7. Conclusion

In this paper, we have shown how the TOTEM architecture environ-
ment can be adapted into a smart community neighborhood project
(EnergiX project) for data analysis in a secured manner. An extended
version of the TOTEM architecture is also proposed as a solution if the
data consumer demands a combined result from data providers as a part
of data analysis. We have implemented the architecture as a part of the
proof-of-concept. In the implementation, chaincode in the Hyperledger
Fabric is used to manage access to a remote resource and to the provi-
sional computational resources as Docker containers that form the
Hadoop cluster by using Ansible. The Hadoop cluster will perform the
required computation in an isolated environment with remote resources.
Enrolled users in the network obtain the OTC for authentication by
invoking the chaincode. Private data collections in Hyperledger Fabric
are used to ensure data privacy in a multi-provider scenario. Eventually,
we demonstrated the system by deploying it using PIVT and Kubernetes
in Azure using AKS on a single cluster and also across two clusters
residing in different regions of the world. This system also allows orga-
nizations with common interests to collaborate without the need for
complete trust. All activity is kept private from the rest of the network,
while all data are kept private between the data providers on the channel.

Some of the improvements that can be made in the current imple-
mentation are regarding the proper mechanism for securely transporting
the OTC/Public Key and also extending the computational possibilities of
the system as we use only a dummy computation in this present work. In
future work, we will consider this into account and will execute the
necessary steps. For example, a relevant use of our system would help
train machine learning models across several remote data sets. This
would require a different approach for combining results or private data
sets. Possibly, a multi-party computation (MPC) protocol could be used to
realize this functionality. An obvious future direction would be to inte-
grate this solution with the rest of TOTEM's proposed architecture, its
performance analysis, and platform efficiency. Our system tackles the
issues in TOTEM regarding data and resource governance, running
computations at remote locations, as well as safely returning combined
results in a multi-provider scenario. Furthermore, the computational
code would have to be transacted on the blockchain. One way to solve
this problem would be to install and instantiate some chaincode that
would evaluate the submitted computational code. If the code is deemed
non-malicious, the chaincode will estimate a TOTEM value, produce an
OTC, and return them both to the user.
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