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Summary 
 

The thesis explores how the Nord Pool power market prices forward-looking information. 

Specifically, the thesis investigates the efficiency, or the biasedness, of the derivatives side 

of the power market, how temperature is priced by the market, and how to account for 

uncertainty in future information. The thesis consists of an introductory chapter which 

comprises the context and background for the three studies, including a summary. Using 

data on current and future-looking information from futures prices, the thesis brings new 

evidence on how the efficiency of the futures market at Nord Pool has developed. 

Furthermore, the thesis investigates relationship between the relationship between 

temperature and power prices and the price forecasting information implied in weather 

forecasts.  

 

The first essay, co-authored with Ole Gjølberg, investigates whether the Nordic power 

futures market is efficient. Several studies have found electricity futures prices to be 

overshooting subsequent spot prices. This could be a result of long hedging pressure, or it 

could come about because of an immature and inefficient market. Considering seasonality 

and structural breaks, we test the forecasting performance of Nordic power futures. The 

paper’s main conclusion is that the forecasting of power futures has experienced a 

structural break around 2008. After this period, power futures have provided unbiased 

forecasts of electricity spot prices. Prior to 2008, a persistent futures forecasting error 

appeared to be too large to be explained by a risk premium only.  Our suggestion is that the 

opening of the Nor-Ned cable between Norway and the Netherlands played a central role in 

making the market more efficient. 

 

The second essay analyses the effect of temperature on electricity spot prices. It proposes a 

new econometric model which accounts for seasonality in this effect. Using data on prices 

and realized temperatures on Nord Pool and the five Norwegian price zones the study 

shows that the temperature effect on price varies across season, price area and price 

quantile. This suggests that pricing models based on constant coefficients for temperature 

may be misleading, "averaging out" seasonal effects. Consequently, one must carefully take 



this into account when modelling the electricity price process, as has been done in the third 

essay. 

 

The third essay is an empirical study which investigate how the information content in 

weather forecasts affects prices. As there is more uncertainty in longer term forecasts than 

shorter term forecasts, a method for adjusting the models according to this uncertainty  is 

proposed. The study shows that by utilizing the forward-looking information available in 

temperature forecasts, improvements in the accuracy of daily forecasts up to nine days 

ahead can be achieved. Also, because of the horizon dependent uncertainty of temperature 

forecasts, one should not use the same estimated coefficients for all time horizons. Rather, 

a separate set of coefficients should be estimated depending on the forecasting horizon, 

thereby mixing incremental and direct forecasts. 

 

The thesis provides new insight into the effect of future looking information on the 

electricity spot prices. The findings indicate that futures on the Nord Pool spot price has 

been unbiased estimates of the future spot price since 2008. Furthermore, the effect of 

temperature on price were investigated and were found to be seasonally dependent, 

different across Norwegian price zones, and different across price quantiles. Also, the 

information from temperature forecasts is beneficial to use in price forecasts for up to 9 

days ahead, but the uncertainty in temperature forecasts has to be accounted for. 

 

  



Sammendrag 
 

Avhandlingen utforsker hvordan kraftmarkedet Nord Pool priser fremtidsrettet informasjon. 

Nærmere bestemt undersøker avhandlingen markedseffisiensen, eller 

forventningsskjevheten, til derivatsiden av kraftmarkedet, hvordan foventet temperatur 

prises av markedet, og hvordan man skal ta hensyn til usikkerheten til fremtidig 

informasjon. Avhandlingen består av et innledende kapittel som inneholder konteksten og 

bakgrunnen for de tre studiene, inkludert en oppsummering. Ved hjelp av markedsdata og 

fremtidsrettet informasjon fra terminpriser gir avhandlingen nye bevis på hvordan 

effisiensen i futuresmarkedet på Nord Pool har utviklet seg. Videre undersøker 

avhandlingen sammenhengen mellom temperatur og kraftpriser og hvordan 

temperaturprognoser er priset inn i kraftprisene.  

 

Det første essayet, som ble skrevet sammen med Ole Gjølberg, undersøker om det nordiske 

fremtidsmarkedet for kraft er effisient. Flere studier har funnet at terminprisene for 

elektrisitet i gjennomsnitt er høyere enn påfølgende spotpriser. Dette kan være et resultat 

av at det er flere kjøpere som ønsker å sikre posisjonene sine eller det kan komme av et 

umodent og ineffektivt marked. Etter å ha tatt høyde for sesongvariasjon og strukturelle 

endringer tester vi prognoseresultatene for fremtidskontrakter på det nordiske markedet. 

Essayets hovedkonklusjon er at fremtidskontraktenes evne til å forutsi fremtidige kraftpriser 

har hatt et strukturelt brudd rundt 2008. Etter denne perioden har fremtidskontraktene gitt 

forventningsrette prognoser for spotprisene på elektrisitet. Fremtidskontraktenes 

forventningsskjevhet som ble observert før 2008 var for stor til å kunne forklares av 

risikopremie alene.  Vårt forslag er at åpningen av Nor-Ned-kabelen mellom Norge og 

Nederland spilte en sentral rolle i å gjøre markedet mer effisient. 

 

Det andre essayet analyserer effekten av temperatur på spotprisene på elektrisitet. Her 

presenteres en ny økonometrisk modell som justerer for sesongmessighet i denne effekten. 

Ved hjelp av prisdata og realiserte temperaturer på Nord Pool og de fem norske prissonene 

viser studien at temperatureffekten på pris varierer over sesong, prisområde og priskvantil. 



Dette antyder at prismodeller basert på konstante koeffisienter for temperatur kan være 

villedende og utjevne denne sesongbaserte effekten. Følgelig må man ta hensyn til dette når 

man modellerer strømprisprosessen, slik det er gjort i det tredje essayet. 

 

Det tredje essayet er en empirisk studie som undersøker hvordan informasjonsinnholdet i 

værmeldingene påvirker spotprisene. Siden det er mer usikkerhet i langsiktige prognoser 

enn kortsiktige prognoser, foreslås det en metode for å justere modellene i henhold til 

denne usikkerheten. Studien viser at ved å bruke den fremtidsrettede informasjonen som er 

tilgjengelig i temperaturprognoser, kan forbedringer i nøyaktigheten av daglige 

prisprognoser opptil ni dager fremover oppnås. På grunn av den horisontavhengige 

usikkerheten i temperaturprognosene bør man heller ikke bruke de samme estimerte 

koeffisientene for alle tidshorisonter. Snarere bør et eget sett med koeffisienter estimeres 

avhengig av prognosehorisonten, og dermed blande trinnvise og direkte prognoser. 

Avhandlingen gir ny innsikt i effekten av fremtidsrettet informasjon om spotprisene på 

elektrisitet. Funnene tyder på at futures for spotprisen på Nord Pool har vært 

forventningsrette anslag over den fremtidige spotprisen siden 2008. Videre ble effekten av 

temperatur på pris undersøkt og funnet å være sesongavhengig, forskjellig på tvers av 

norske prissoner og forskjellig på tvers av priskvantiler. Informasjonen fra 

temperaturprognosene er også gunstig å bruke i prisprognoser i inntil 9 dager fremover, 

men usikkerheten i temperaturprognosene må tas høyde for. 

  



Power markets and pricing 
 
As a backdrop for my econometric studies of price relationships in the Nordic power market, 

I will start out by presenting some issues and facts related to electricity as a commodity and  

challenges in power markets. This is to put the subsequent econometric analyses in a 

broader context and to provide some basic insights into issues for readers not familiar with 

electricity markets. In the first section, I will dwell on what makes electricity different from 

other energy commodities. Then in the next section I will present some challenges that the 

liberalization of electricity markets are confronted with, Thereafter, I will briefly outline the 

roles of the two power exchanges serving the Nordic market, i.e., Nord Pool (physical 

electricity) and NASDAQ Nordic (power derivatives). This is followed by some reflections on 

the pricing of power futures within the established theory for commodity futures before I 

briefly discuss some topics on temperature and power prices. A summary of the three 

empirical studies concludes.  

 

Electricity – a different commodity 

The transformation of electricity power markets into commodity markets, with a bidding 

process for suppliers and consumers, paved the way for introducing financial instruments 

and models for risk management and forecasting.  Commodity finance delves into the 

pricing and transfer of risk. The main goal of this thesis is to contribute to the understanding 

of the pricing of risk and improving price forecasting, especially by including temperature 

information and temperature forecasts. 

As pointed out by several analysts (e.g., Biggar and Hesamzadeh, 2014) the electricity 

market is different from most other commodity markets given by the idiosyncratic nature of 

electricity itself. The very nature of electricity requires that production and consumption 

take place simultaneously. Electricity is a “flow commodity”, as the electric energy “flows” in 

the direction of the least resistance through power lines, as expressed by Ohm's law. These 

power lines have limited capacity, a so-called thermal limit, where no more electricity can 

flow without inducing damage to the line itself. There is also an efficiency loss when 

electricity is transported over great distances.  

 



These transmission constraints often cause regional markets to form with large and variable 

price differentials between markets due to bottle necks in the grid. While other energy 

commodities like oil and natural gas also display geographical price differences for physically 

identical goods due to transportation costs, these differences are typically smaller, and less 

variable compared to those found in power markets.  

 

Electricity’s limited possibility for storing is another characteristic not shared with other 

energy carriers like oil and gas. This contributes to geographical price differences and, more 

importantly, a very much higher price volatility compared to almost all other commodities. 

Electric power can be stored directly in batteries, but this is an expensive option. Potential 

electric power can be stored as water in hydro power plants, as nuclear rods in nuclear 

power plants, and as coal and natural gas for fossil-fuel based power plants. The mode for 

extracting electric power from these sources are then the available installed production 

capacity, which again is limited.  

 

Most modes of production have a certain flexibility when it comes to production planning. 

Renewable sources less so. Wind power is a growing source of electricity generation, and 

the challenge of production planning caused by unexpected wind “supply” often cause 

production to deviate substantially from what was planned or expected. In a power system 

heavily dependent upon wind, this can in itself cause large price variations. Combining this 

with limited transmission capacity, days with affluent wind supplies can cause prices to fall 

to very low level. Sometimes below zero! 

 

Price variations due to demand shifts also depend on where on the supply curve the 

equilibrium between supply and demand occurs. The so-called merit order curve implies 

that supply is very flat (elastic) up to a certain point where it becomes highly inelastic. At 

this part of the curve, even relatively small demand shifts may cause significant price 

changes.  

 

Liberalized electricity markets 

Historically, the power market was organized in several quite disjoint markets, where one 

company had vertical control over generation, long distance transmission, and finer grid 



distribution. These markets were tightly regulated monopolies, where prices were regulated 

to reduce economic deadweight loss. In addition to vertical integration, long-term contracts, 

which reduce the ability of the company to set prices, are also common in markets with a 

monopoly provider. This reduces the price sensitivity even further of the demand to 

changes in supply. A consequence of the highly inelastic demand in markets with long-term 

contracts, were that companies had to install excess capacity to be able to secure supply, 

even at peak demand. Another negative consequence of monopoly power was the lack of 

incentives for investment in long distance transmission lines between markets. This further 

exacerbated the need for local capacity at peak demand.  

 

One solution to the problems inherit in monopoly markets is market liberalization, where 

generation, transmission, and distribution are allocated based on economic bidding, and not 

based on an engineering viewpoint. There are still natural monopolies in these markets, 

notably the market for transmission, which need to be regulated. 

 

For a liberalized market to function, several issues must be sorted out. It is not possible in 

electricity markets to separate the market for generation and consumption of power from 

the market for transportation of power. The problem of balancing generation and 

consumption, taking into the transmission constraints, is a constrained optimization 

problem performed by a central body which is the market operator. For each hour the next 

day, every seller submits their supply function, which is an offer function stating the volume 

they are willing to produce at specified prices. For the same hours, every purchaser submits 

their demand function, which is a bid function that states the volume they are willing to buy 

at specified prices. In economic theory, all economic actors are assumed to be maximisers of 

an objective function, often assumed to be the profit function. The market operator then 

does the calculations to find the prices which balance the market, given the transmission 

constraints. One price per price zone is set. These price zones are assumed to be free of 

transmission congestion, such that one price balances the market. When the balancing 

prices has been set, the market operator informs the individual sellers and buyers at which 

rate they can generate and consume electricity, for each hour the next day, at the market 

price. 

 



In the absence of market power, a liberalized market solves the problem of efficiently 

allocating a given rate of consumption of electricity among customers with different needs 

and preferences. The customer buys electricity until the marginal utility of one unit of 

electricity equals the market price. The producer sells electricity until the marginal cost of 

producing one unit of electricity is equal to the market price. This mechanism, in a well-

functioning market, yields the welfare-maximizing price. 

 

The shift from monopoly markets to liberalized electricity markets indicated a shift from 

secure long-term contracts to short term price uncertainty for both sellers and buyers of 

electricity. To enable the market actors to manage and price this risk, a power derivatives 

market is usually created. Here, contracts for delivery of power from one day to several 

years ahead are traded. 

 

Nord Pool and NASDAQ Nordic 
 

The fundament for the liberalization of the Nordic power market was laid by the "New 

Energy Act" in Norway in 1991. The market itself was established in 1993, which makes it 

the world's oldest electricity wholesale market. It quickly became a success story of market 

liberalization. During the next 20 years, this market expanded to include not only Norway, 

but also Sweden, Denmark, Finland, and the Baltic states, for a total population of 33 

million. 



 

Countries either adhere to 

a single price zone, or they 

are split into multiple. The 

price within each zone is 

assumed to be uniform, 

which means there is no 

congestion. As such, area 

prices are calculated based 

on supply and demand, 

given the transmission 

constraints to and from 

the other price zones. In 

addition, a theoretical 

price is calculated, 

assuming no transmission 

constraints. This is then 

called the system price, 

which is important for 

power derivatives. 

 

At Nord Pool, sellers and 

buyers submit their bids 

for all hours the next day no later than noon at the day before delivery. This Elspot market is 

the day-ahead market. Bidders cannot always foresee the supply and demand every hour 

the next day. In case of deviations, Nord Pool also runs an intra-day market called Elbas, 

which ensures balance in the grid at any time by rapidly removing or adding power to the 

grid.  

 

The modes of production differ among the countries in the Nord Pool pricing area, with a 

total generation of 409 TWh (see Table 1). Norway and Northern Sweden has mainly hydro 

power, which can be exported to other areas in years with normal and above normal 

Figure 1. Overview of the Nordic power market. Several countries are 
split into price zones. Interconnections between price zones are shown 
by arrows. 



precipitation. The wind power in Denmark and Sweden will only be available when the wind 

is blowing, so customers must rely on other sources when it is not. Thermal power from 

fossil and nuclear fuels can be produced regardless of the amount of wind and precipitation 

and is a source of baseload energy. In sum, these sources of electric power are 

complements, and they enable the countries to support each other in different market 

situations.  

 

Country Norway Sweden Finland Denmark Estonia Latvia Lithuania 

Production (TWh) 132 165 67 29 7 6 3 

Per capita (MWh) 24 16 12 5 5 3 1 
Production mode (TWh)        

Nuclear 0 64 23 0 0 0 0 
Fossil fuels 2 2 12 5 5 3 1 
Hydro 124 64 12 0 0 2 0 
Solar 0 0 0 1 0 0 0 
Wind 6 20 6 16 1 0 2 
Biomass and waste 0 14 14 7 1 1 1 

 

Table 1. Production of electricity for year 2019. (Halsanæs et al. 2021) 

 

 

Power futures 

 

Financial contracts are used for risk management activities, like hedging and speculation, 

with the futures contract being the most common. These contracts are currently traded on 

NASDAQ Nordic Commodities, with horizons from one day to ten years (although often with 

low liquidity as far as the longest maturities are concerned). The contracts are daily, weekly, 

monthly, quarterly, and yearly with financial settlement and with the system price as the 

reference price. The physical limitations on the interconnections between the price zones 

and the limited ability to store power results in large price, swings compared to other 

commodity markets. In order to be able to manage risk related to the difference between 

the system price and the regional price, NASDAQ also provide so-called EPADs (formerly 

known as contracts for differences, CfD), making it possible to buy/sell contracts written on 

e.g., the difference between the price in the Oslo area and the price for the whole system 

(which would have prevailed with on bottlenecks in the transmission grid). These contracts 



have a payoff equal to the difference between the futures price in a price zone and the 

system price. By combining a futures contract and an EPAD , a market actor can hedge the 

future power price in a price zone (Spodniak et al. (2015).  

 

There are two popular views of commodity futures prices. One is to explain the difference 

between futures prices and corresponding spot prices in terms of interest, insurance, 

warehousing cost, and convenience yield of storing a commodity, the so-called the theory of 

storage. The theory dates back to classic contributions to commodity futures pricing in 

seminal works by Kaldor (1939), Working (1948), Brennan (1958), and Telser (1958). The 

other view splits a futures price into two parts - a spot price expectation and a risk premium. 

This is described by Cootner (1960), Dusak (1973), Breeden (1980), and Hazuka (1984). 

 

The two theories are perspectives on the same economic spot-futures process, but due to 

the problem of storing electricity, the expectation theory is most relevant in our context. 

The expectation theory can either use the futures price to forecast the future spot price, or 

it can use the current basis to forecast the future spot price change. See Eydeland and 

Geman (1999). 

 

Bias in futures prices, with respect to realized or expected spot prices, is also known as the 

risk premium. If there is no hedging pressure, then long and short hedgers cancel each other 

out, and the futures price can be thought of as an unbiased estimate of the future spot 

price. However, if there is more demand for either long or short hedging than the other, 

then there will be a hedging pressure which must be absorbed by other market actors, i.e., 

speculators. The payment, or return, from taking on this risk is the risk premium. This 

payment must be seen in the context of the risk taken on. If the risk premium is of such size 

to be the source of abnormal profits, then the market may be considered immature. 

  

With the possibility to lock in a price in the future, there is also a need to understand the 

pricing of these futures contracts and to make more accurate forecasts of the future power 

price. As demand for power is dependent on, among other things, the temperature, this 

thesis uses temperature information to better understand this future price. Temperature 

forecasts provide market actors with a potentially useful glimpse of the future physical state 



of the market. This motivates more research on the intersection of power prices and 

temperature.  

 

Summary of the three essays 
 

This dissertation consists of three independent essays. They all shed light on important 

topics within electricity price risk management. Whereas the first essay investigates the 

relationship between spot and futures prices, a theme well known from analysis of financial 

markets, the two other essays try to shed more light on the importance of temperature in 

relation to price forecasts. These three papers provide useful and incremental knowledge 

concerning electricity price forecasting.  

The first essay, "The Nordic Futures Market for Power: Finally Mature and Efficient?", deals 

with the risk premium at Nord Pool. After the creation of a power derivatives market at 

Nord Pool in 1995, evidence of bias between futures prices and corresponding spot prices 

has been found by several studies. Gjølberg and Johnsen (2001) found indications of non-

rational pricing behaviour where all available information did not seem to be included in the 

futures price. The futures price was an upwards biased predictor of the spot price level and 

spot price change. The size of the forecast errors was in such a magnitude that they could 

not be interpreted as risk premiums alone. The inclusion of public information like 

seasonality, spot price levels and spot price changes could improve the forecast 

considerably, indicating an inefficient market. Studies of other markets, like Bessembinder 

and Lemmon (2002) which considered the U.S. markets, found the same pattern of the risk 

premium. These markets, along with Nord Pool, were developed during the 1990's. Later 

studies considering Nord Pool, like Botterud et al. (2002, 2010) found the bias to be about 5 

% over a four- to six-week horizon. Lucia and Torró (2008) reported a somewhat smaller risk 

premium for the Nordic market in 1998–2007, averaging some 3–4 % over four-week 

horizons. All these studies use simple econometric models to estimate the risk premium. 

However, Weron and Zator (2014) point out that there are certain pitfalls related to the 

simultaneity problem, correlated measurement errors, and the possible presence of 

seasonality which are associated with these models. In our study, we try to correct for these 



pitfalls by including extra explanatory variables, in addition to the basis. Given the 

commission of the NorNed cable between Norway and Netherlands, we check for a 

structural break in the risk premium. We also do a simulation in which we short the short-

term futures to take advantage of a persistently non-zero risk premium. 

Our conclusion is that up until 2008, Nord Pool futures were biased forecasts of 

corresponding spot prices, whereas after 2008, this was not the case. We do indeed find 

that there was a significant break in the level of the risk premium. This break may come 

about because of a change in hedging pressure, or the change may be due to the market 

getting more efficient. We hypothesise that the physical change to the market infrastructure 

by the commission of the NorNed cable in the spring of 2008 may have induced this break in 

risk premium. 

The first essay used the basis to model the risk premium. Another important strain of 

research uses models of expected prices to estimate the risk premium, as in Lucia and Torro 

(2008). The last two essays contribute to this last strain of research by improving how 

temperature information can improve on price forecasts.  

 

In the Nordic region, electrical appliances are an important heating technology for 

residential and commercial buildings. As the temperature drops, more electricity is used for 

heating which shifts the demand side of the market to form a new price equilibrium, as 

shown by Cancelo, Espasa and Grafe (2008), and Bessec and Fouquau (2008). The second 

essay, "Temperature and Prices in the Nordic Power Market" tries to shed light on how 

changes in temperature are statistically connected to changes in the price of electricity. It 

looks at both the temperature effect on price, and relative importance of temperature as an 

explanatory variable of the electricity price across several dimensions. The common way to 

model the effect of temperature on prices is to include one or more temperature variables 

which have a linear effect on price (Weron and Misiorek (2008), Huurman et al. (2012)).   

 

One of the main contributions of the essay is to account for seasonality in the temperature 

effect on price. Using daily observations from all days of the in-sample years 2010-2018, 



disregarding the time of year, I find that changes in temperature explain about 6 % of price 

changes. However, when differentiating seasonal effects, I find that temperature explains 

between close to 0 % in August and September to over 19 % in December, as measured by 

incremental change in ��. The model with time-varying temperature effect on price is used 

to forecast price data for 2019 on all Norwegian price zones and on the system price. The 

results indicate that to allow for separate coefficients by month for the temperature effect 

yields lower forecast errors than to use the traditional constant coefficient. Also, the 

temperature effect differs between the Norwegian price zones. Quantile regression of 

Koenker and Basset (1978), is often used for either value-at-risk estimation, or for interval 

forecasting. We find that the temperature effect on price varies substantially across the 

price distribution, in general being negative, but sometimes positive. This suggests non-

linearity, which then may be modelled with the fitted quantile regression. In general, 

changes in prices below 19 EUR/MWh are not related to temperature changes, and prices 

above 19 EUR/MWh are negatively related to temperature changes.  

The process of forecasting is a constant battle to unveil future information, often in the 

form of statistical relationships. One such piece of future information come in the form of 

temperature forecasts. Temperature influences both the production, in the long run, and 

especially the demand, in the short run, for electricity, thereby affecting the price process. 

As shown by Smith-Meyer (2022), the Nord Pool system price is positively affected by 

negative changes in temperature, shifting demand upwards for lower temperatures. This 

would consequently put an upward pressure on the price. The idea to use temperature 

forecasts for electricity price forecasting is not a new one. Huurman et al. (2012) used one-

day forecasts to help predict the day-ahead power price. Other studies, like Weron and 

Misiorek (2008) used realized next-day temperatures to predict the power price and found 

that the temperature is as good a predictor as load. 

Temperature forecasts have gotten increasingly accurate over the years, and according to 

Lorenz (1963), the possible useful horizon for weather forecasts is up to two weeks. 

Accordingly, in the third essay, "Electricity Price Forecasting and Weather Forecast", we 

address the question whether forward-looking information from temperature forecasts can 

improve on daily electricity price forecasts up to nine days ahead. An initial study makes 

clear that the uncertainty in the temperature forecast increase with forecast horizon. An 



auto regressive model with several exogenous variables, among them the temperature 

forecast, is used to forecast the spot price at the Norwegian price zone NO1 (Oslo). This AR 

model, with and without regularization, is compared to univariate models without 

temperature and without other exogenous variables. The analysis shows that to use 

information from the temperature forecast yield more precise spot price forecasts for all 

horizons, up to nine days ahead. Another novel result in the paper is that in order to 

account for the increased temperature forecast uncertainty for longer horizon forecasts, 

one model should be estimated per forecast step, thereby combining incremental and direct 

forecasting. The paper also highlights the importance of regularization, where using LASSO 

regularization reduced forecast errors more than Ridge and Elastic Net regularization. 
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Abstract 

A number of studies have found nearby futures prices in the Nordic power market to be 

biased forecasts, overshooting subsequent spot prices. This could be due to a persistent risk 

premium in a market dominated by long hedgers. However, in several studies the size of the 

bias has been taken as evidence of the market being immature and inefficient. In this paper, 

we present the results from an updated study of the forecasting performance of Nordic power 

futures. Using observations from October 2003 through January 2015, we estimate the 

standard models as well as a set of models in which we allow for seasonal variations and 

possible shifts in the risk premium given structural changes in the market. Furthermore, we 

report the results from simulated investments in which we persistently short nearby futures 

and maintain this position through expiration. We find that after 2008 Nordic short-term 

power futures have turned unbiased and more precise forecasts. Consequently, we conclude 

that the Nordic futures market for power has matured and now appears to be at least weak 

form efficient. We suggest that the physical integration of the Nordic and the Dutch markets 

through the opening of the NorNed cable in 2008 may have been a factor contributing to this 

development. 

KEYWORDS. Nordic power prices. Futures bias. Market efficiency. 

 

1 Introduction 

In this article, we study the forecasting performance of nearby Nordic power futures in order 

to see whether the futures bias reported in a number of previous studies still prevails and if 

so, whether this means that the market is inefficient. The paper is organised as follows. First, 

we present some basic facts regarding the Nordic power market. We then survey the literature 

on the performance of power futures. Next, we specify a set of econometric models similar to 

those used in previous studies on power futures performance. However, we expand the 

standard models by allowing for differences in the risk premium and forecasting performance 

depending on whether the market is in contango or in backwardation. We also test out a set of 

models in which we include seasonal explanatory variables. After presenting the results from 

estimating these models, we simulate a simple investment strategy to reveal whether the bias 

is something more than a risk premium, i.e., whether the Nordic market is inefficient in the 

way that there are abnormal profit opportunities. 



 

2 Nordic power market basics 

As of 2015, the Nordic physical power market includes Norway, Sweden, Denmark, Finland, 

Estonia, Latvia, and Lithuania. Spot market trading is organized at Nord Pool Spot where 

roughly 300 TWh or 70 per cent of consumption in the Nordic market is traded in the hourly 

day-ahead-market. The trade in power derivatives, introduced by Nord Pool in 1995, now 

takes place at NASDAQ OMX. During recent years, a wide range of financial contracts 

written on both base and peak load power with maturities ranging from one day to ten years 

have been traded at the exchange.2  In addition, there are contracts written on price 

differences in different regions, so called EPADS (Electricity Price Area Differentials, 

previously known as Contracts for Difference, CfDs). 

 

Given the special physical characteristics of electricity, contracts are settled on a cash basis. 

So-called DS (deferred settlement) futures (previously known as forwards) cover the longer 

maturities (years, quarters, and months). Year contracts are cascaded (split) into quarters, 

while quarters are cascaded into months. For these contracts there is no settlement during the 

trading period prior to expiry date. Mark-to-market is accumulated on a daily basis 

throughout the trading period but not realized until the delivery period. Settlement of shorter 

horizon futures (days and weeks contracts) involves both a daily mark-to-market settlement 

and a final spot price reference cash settlement after expiry date. 

 

In this paper, we analyse the forecasting performance of nearby futures, i.e., DS Month 

futures with four weeks left to expiry. Disregarding technicalities related to mark-to-market 

settlements; contracts held through expiration are settled against the average spot price during 

the delivery period. For the Month contract this amounts to the average Nordic system price 

during the 672 to 744 hours following expiration (number of hours depending on which 

month).  

  

 
2 Details on Nordic power derivatives can be found at 
http://www.nasdaqomx.com/commodities/markets/power/nordic-power 

 



There is a substantial trade in power derivatives in the Nordic market. After the start-up in the 

mid-1990s, traded volumes grew rapidly reaching a top in 2002 of more than 3,000 TWh of 

which some 1,000 TWh were traded at the exchange, while some 2,000 TWh were OTC 

cleared. The collapses of Enron and TXU Europe triggered an exodus of most US power 

companies, causing a drastic reduction in trade in 2003. Still, there is a substantial trade in 

power contracts at NASDAQ OMX. In 2011, traded volume related to Nordic power was 

some 1,028 TWh accumulated over roughly 130,000 transactions. However, while total 

volume is large, liquidity varies substantially across the different contract maturities, some 

contracts being quite illiquid. In general, contracts with long horizons (Quarter and Year 

contracts) make up the by far largest part of traded volumes. The share of short-term 

contracts (Month, Week, and Day contracts) is less than 10 per cent of total trade. 

 

During the 12-year period 2003-15, the nominal power price in the Nordic market has 

averaged some 40 Euro/MWh (Figure 1). However, the fluctuation around this level has been 

substantial as shown in Figure 2. Spot price changes (measured as log returns) 2003-15 had a 

monthly standard deviation of 27%. This represents a volatility significantly higher than that 

found in other commodity markets. The volatility was particularly high between September 

2011 and October 2012.  
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FIGURE 1  

Monthly Nord Pool System Price (Euro/MWh), September 2003–January 2015 

 
 

FIGURE 2  

Monthly per centage change in Nord Pool System Price, September 2003–January 2015 

 

3 Literature on power futures 

Using standard notation, the observed futures price at time t for a contract with maturity at T 

can be written as  
��,� = �[��|Ω�] + π�� 

where  �[��|Ω�] is the spot price expected to prevail at time T given the information set 

available at t while �� is the risk premium over the period till the expiration of the contract. 

In a balanced market, i.e. in a market where long and short hedging demands are equal, the 

futures price is theoretically an unbiased estimator of the spot price. If there is a persistent net 

long or net short hedging demand, the futures price will deviate from the expected spot price 

positively or negatively and therefore appear to be “biased” in statistical terms. 
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Several studies have reported evidence of a statistical bias in electricity futures markets in the 

way that the difference between the futures price and the subsequent spot price has turned out 

as significantly different from zero. In an early study, Gjølberg and Johnsen [2001] 

concluded that the futures price at Nord Pool periodically had been outside its (theoretical) 

arbitrage limits and that the futures price and the basis were biased and poor predictors of 

subsequent spot price levels and changes, respectively. Forecast errors were following a 

systematic pattern and the futures price did not seem to incorporate available information, 

indicating non-rational pricing behavior. Bessembinder and Lemmon [2002] found a risk 

premium in the US power markets, varying in size and direction depending on season.  

Botterud et al [2002] and [2010], found that the nearby futures prices in the Nordic market 

tended to overshoot the subsequent spot price. In their more recent study covering the period 

1996-2006, they found the bias to be in the range of 4.6 to 5.1 per cent over 4 to 6-week 

horizons. For longer maturities (i.e., Season and Year contracts), Christensen et al. [2007] 

found a significant negative risk premium which they related to abuse of market power. 

Disregarding the issue of market power, the fact that the risk premium over longer horizons 

has an opposite sign of those over shorter horizons may simply be due to different hedge 

demand (short vs. long) across horizons. Shawky et al [2003] analysed the California-Oregon 

border market. They found a risk premium in the range of 4 per cent per month. Although 

very high compared to other commodity markets, they suggested that this large premium was 

due to the unique physical features of electricity as a commodity. Alternatively, they 

suggested that the finding might be caused by “limited industry-outsider participation”, or in 

other words non-competitive markets. Lucia and Torro [2008] reported a somewhat smaller 

risk premium for the Nordic market 1998-2007, averaging some 3-4 per cent over four-week 

horizons.  Furio and Meneu [2010] studied the Spanish power market and reported a one-

month risk premium of some 2.8 per cent for the period 2003-04 and 2006-08.  Diko et al. 

[2006] likewise found a substantial and significant positive risk premium in the German, 

Dutch and French markets. Redl et al. [2009] found that the Nordic one-month futures 2003-

08 had overshot the subsequent spot price by 8 per cent on average and by 9 per cent and 13 

per cent in the German EEX base load and peak load markets, respectively. The authors 

concluded that market inefficiencies cannot be ruled out. Based on observations from the 

Nordic market covering the period 1995-2008 Gjølberg and Brattested [2011] found forecast 

errors over 4-6-week horizons averaging 7.5-9.3 per cent. They concluded that a bias this size 

could not be explained by a risk premium alone, suggesting that the market is inefficient. 



These studies have all in common that they use simple statistical models to estimate the 

forecasting performance of futures prices. As pointed out in a recent study by Weron and 

Zator [2014], there are a number of potential pitfalls when applying such models related to 

the simultaneity problem, correlated measurement errors and the possible presence of 

seasonality. While the present study starts out with the standard approach, we expand the 

model to include explanatory variables that may correct for such factors. In the end, however, 

the issue of market efficiency boils down to whether or not any observed price regularity can 

be utilized in ways that generate abnormal profits. In the futures markets as in the kitchen, 

“the proof of the pudding is in the eating” (Pasour, 1980). Consequently, after having run a 

set of standard econometric models on a data sample covering observations from October 

2003 to January 2015, we simulate a simple investment game based on the assumption that 

the Nordic short-term futures are persistently overshooting subsequent spot (system) prices. 

 

4 Methodological approach 

There are two standard popular models for analysing the forecasting performance of forward 

or futures prices. The first one estimates the spot price level as a function of the previous 

futures price level 

�� ��  = � + � �� ���  +  ��      (1) 

In the second, the spot price change is modelled as a function of the previous futures-spot 

difference (“the basis”),  

 
 

Assuming that the futures price at time t for delivery at time T ( ���) is an unbiased forecast 

of the spot price at T, the estimated � in (1) should not differ significantly from unity, while 

the constant may be taken as an estimate of the risk premium, the rest being unsystematic 

error with zero mean and constant variance. Similarly, the slope parameter in a regression of 

the relative change in the spot price from t to T on the relative basis in t (i.e. the relative 

difference between the futures and the spot price) as in (2) should not differ significantly 

from unity.  

(���� − ����) = � + ��(����� − ����) + �� (2) 



 

However, the risk premium – and consequently the forecasting performance of the futures 

price - may depend on the shape of the forward curve, specifically whether the market is in 

backwardation or in contango, i.e. whether the current futures price is below or above the 

current spot price. The net hedge demand may shift from short to long when the market is 

expected to turn. We allow for this by including a term-structure dummy ����� =
1 whenever (��� − ��) < 0 and 0 otherwise both as a shift in the constant or the risk 

premium (��) as well as a change in the slope (��) allowing for a change in the bias if the 

market is in backwardation. 

 

Botterud et al (2010) found seasonality in the risk premium. Likewise, Flethen et al (2011) 

found significant monthly patterns at Nord Pool using data from 2003 to 2009. Fanone et al 

(2013) used monthly dummies to de-seasonalize their EPEX data from 2007 to 2010 before 

investigating German intra-day electricity pricing. Geman and Roncoroni (2006) used 

trigonometric functions to model seasonality in three US power markets finding clear 

seasonal patterns in spot prices, as did Benth et al (2012). Several studies have found 

seasonality in factors relevant to investors in power markets. A fundamental example is 

seasonality in temperature, which affects both demand and production. Spot price seasonality 

was documented by Weron (2008) and Botterud et al (2010), albeit at a decreasing rate from 

mid-1990’s to mid-2000’s. Using data for the same period, seasonality in futures prices were 

found by Torro (2009) who also found a significant seasonality in the futures-spot spread (i.e. 

the basis). Lucia and Schwarz (2002) found a seasonal pattern in power prices to be crucial in 

explaining the shape of the futures/forward curve as estimated by a sinusoidal function. Lucia 

and Torro (2008) found a seasonal pattern in the risk premium. Weron and Zator (2014) 

found that part of this seasonality in the case of Nord Pool could be explained by seasonal 

variations in reservoir levels. 

 

(ln �� − ln ��) = � + � (ln ��� − ln ��) + �� ����� + �� [����� × (ln ��� − ln ��)]
+ �� 

 

(3) 

  



In order to capture possible seasonal effects on the forecasting performance of Nordic power 

futures, we have augmented models 2 and 3 with monthly dummy variables and with 

trigonometric functions as in 

�� ��  = � + � �� ��� + Σ����� ���    + ��                                      (4) 

where  Σ����� ���  is a vector of monthly dummies for the first 11 months of the year, and 

�� ��  = � + � �� ��� + �� sin(2�) + �! cos(2�) +  ��                                                    

  (5) 

Similarly, model (3) has been expanded with seasonality dummies and a trigonometric 

function, 

ln �� − ln �� = � + � (ln ��� − ln ��) + �� ����� + �� [����� × (ln ��� − ln ��)] +
"����� ��� + ��                                                                    (6) 

and 

ln �� − ln �� = � + � (ln ��� − ln ��) + �� ����� + �� [����� × (ln ��� − ln ��)] +
�� sin(2�) + �! cos(2�) + ��                                          (7)

   

The results from estimating these models are summarized in the next section. 

 
5 Econometric results 

The futures prices used in this study are closing prices for DS Month futures September 2003 

– January 2015. Specifically, we record on the 1st business day of each month the closing 

price for the Month contract that expires the last trading day of this month and hence is 

settled against the average spot price of the subsequent month. The spot price observed at t is 

consequently the average Nordic system price for the day we observe the futures price, while 

the price against which we evaluate the futures forecasting performance is the average Nordic 

system price through the “delivery month”. Considering the futures price as a forecast, this 

implies a forecasting horizon of roughly 1,5 months.  

 

Table 1 reports the results from estimating the standard model (1). Tests for non-stationarity 

(not reported) concluded that both spot and futures prices are stationary in logs. Furthermore, 



residual tests clearly revealed the presence of autocorrelation as well as heteroscedasticity. 

Consequently, robust standard errors (Newey-West) were calculated. For the full period as 

for the three sub-periods, the beta is numerically below unity. However, the robust standard 

errors are so large that one cannot conclude that the betas are significantly below unity. 

(Using non-robust standard errors would have changed this conclusion). The results in table 1 

furthermore indicate that the slope parameter has been numerically approaching 1 towards the 

most recent years (after 2008). The explained variance, however, remains relatively low 

(0.60) throughout the period. 

 Period α β Adj R2 
2003 Oct -  0,47 0,86 0,61 
2015 Jan (0,31) (0.09)   
2003 Oct -  0,66 0,80 0,62 
2008 Jul (0,43) (0,12)   
2008 Aug - 0,26 0,92 0,60 
2015 Jan (0,42) (0,12)   

 

TABLE 1. ESTIMATION RESULTS MODEL (1).  ROBUST STANDARD ERRORS (HECSE) IN 

PARENTHESES. 

These results are supported by the estimations of model 2, reported in table 2. The estimated 

slope parameter is not significantly different from unity, and its numerical value is very close 

to one for the most recent period, during which a relatively large part of the system price 

changes are explained by the previous month’s basis. As regards the constant term, which 

may be interpreted as a risk premium (or a systematic forecast error), it is significant for the 

full sample October 2003 – January 2015. However, it is no longer significant after 2008. 

Thus, something appears to have happened after 2008.  

 

 Period α β Adj R2 
2003 Oct -  -0,05 0,92 0,42 
2015 Jan (0,02) (0,09)   
2003 Oct -  -0,06 0,74 0,20 
2008 Jul (0,03) (0,27)   
2008 Aug - -0,04 1,01 0,55 
2015 Jan (0,03) (0,07)   

   
 
TABLE 2. ESTIMATION RESULTS MODEL (2).  ROBUST STANDARD ERRORS (HECSE) IN 
PARENTHESES. 
 



Table 3 reports the results from estimating model 3, in which we include a shift and an 

interaction dummy for those months that the market has been in backwardation. The 

estimated risk premium and the slope parameter remain very much the same as for model (2). 

Prior to 2008, the constant is significant, after 2008 it is not, the slope remains not 

significantly different from unity.    

 
 
 Period α β δ1 δ2 Adj R2 
2003 Oct -  -0,07 0,96 0,06 0,00 0,42 
2015 Jan (0,04) (0,12) (0,05) (0,01)   
2003 Oct -  -0,12 1,07 0,06 -0,01 0,20 
2008 Jul (0,07) (0,41) (0,08) (0,02)   
2008 Aug - -0,03 0,94 0,02 0,01 0,55 
2015 Jan (0,06) (0,10) (0,06) (0,01)   

 
TABLE 3. ESTIMATION RESULTS MODEL (3).  ROBUST STANDARD ERRORS (HECSE) IN 
PARENTHESES. 
 
Including calendar dummies as well as other ways of taking seasonalities into account as in 

models (4) – (7) do not change the conclusions above. As can be seen from table 4, reporting 

the result from estimating on the basis of the full sample, the slope is very close to unity 

while the seasonal variables are generally insignificant in terms of forecasting spot price 

changes. In other words, the futures price already incorporates seasonal information, which is 

to be expected in a market populated by rational and informed agents. 

  

 
 

  Dummies Trig functions Dummies Trig functions Dummies Trig functions 
  Coeff S.E. Coeff S.E. Coeff S.E. Coeff S.E. Coeff S.E. Coeff S.E. 
α 0,34 (0,26) 0,40 (0,27) -0,12 (0,08) -0,05 (0,02) -0,12 (0,08) -0,06 (0,04) 
β 0,88 (0.08) 0,87 (0,08) 0,97 (0,11) 1,00 (0,10) 0,97 (0,12) 1,00 (0,12) 
δ1                 0,04 (0,05) 0,03 (0,04) 
δ2                 0,00 (0,01) 0,00 (0,01) 

DJan 0,00 (0,05)     0,00 (0,06)     0,00 (0,06)     
DFeb 0,08 (0,08)     0,09 (0,10)     0,08 (0,10)     
DMar 0,08 (0,09)     0,09 (0,09)     0,08 (0,10)     
DApr 0,13 (0,08)     0,14 (0,10)     0,12 (0,10)     
DMay 0,05 (0,08)     0,08 (0,09)     0,06 (0,09)     
DJun 0,09 (0,08)     0,12 (0,09)     0,11 (0,09)     
DJul 0,02 (0,09)     0,05 (0,10)     0,02 (0,10)     
DAug 0,05 (0,09)     0,07 (0,10)     0,06 (0,10)     
DSep 0,06 (0,09)     0,08 (0,08)     0,08 (0,08)     
DOct 0,03 (0,08)     0,03 (0,07)     0,02 (0,08)     
DNov 0,05 (0,07)     0,07 (0,07)     0,06 (0,07)     



��     0,02 (0,03)     0,02 (0,03)     0,02 (0,03) 
�!     0,02 (0,03)     -0,04 (0,03)     -0,03 (0,03) 

Adj 
R2 

0,59   0,61   0,40   0,42   0,39   0,42   

 
 
TABLE 4. ESTIMATION RESULTS MODEL (4) – (7).  ROBUST STANDARD ERRORS (HECSE) IN 
PARENTHESES. 
 
 
Thus, the econometric results are easily summarized. While there for a long time was a 

significant risk premium (or forecast error), this seems to have vanished during recent years. 

More accurately, it seems that after 2008-09, the futures price and the basis now appears to be 

unbiased forecasts of the subsequent spot price and spot price change, respectively. In 

addition to being unbiased, the futures price and the basis after 2008 have become more 

precise forecasts.  

  
6 Profits from simulated investments 

While unbiased futures prices may suggest that the market is efficient, unbiasedness 

obviously is not proof of efficiency, just as statistical bias may prevail even in an efficient 

market. Statistical regularities must be of a magnitude and strength that outweigh transaction 

costs and risk. 

 

In order to see whether biased futures prices can be utilized in order to make profits beyond a 

risk premium, we follow a uniform mechanical trading strategy of merely shorting nearby 

power futures. We hold the short position through the expiration date, after which the 

contract is settled against the average spot price (the system price) during the delivery period. 

We take a monthly position in the nearby month contract. This contract is quite liquid with an 

average volume of some 1,200 contracts traded a day. The investment (for simplicity 

assumed to be 1 MWh) is repeated during 136 months. Each month generates a loss or a 

profit. Thus, each investment is an independent bet and the proceeds from each investment 

are set aside in a separate account. Consequently, we can take a substantial loss in a given 

month without eroding our capital base. When calculating the outcomes of our investments, 

we disregard capital costs on base collateral as well as broker fees. We assume that we sell 

futures at closing price at the day of the investment. As bid–ask spreads are typically quite 

small this assumption has little effect on the calculated results.  



During the period October 2003 – January 2015, the mean settlement turned out to be lower 

than the previous month’s futures price in 85 of the 136 months, generating a positive result

for 62.5% of the trades. There are, however, periods with a far lower success frequency, and 

there are variations in the magnitude of profits or losses. Figure 3 visualizes the results month 

by month, while Table 5 summarizes the mean profits (in Euros per MWh) for the full sample 

and the two sub- periods 2003-08 and 2008-15.

FIGURE 3. MONTHLY PROFITS IN EUROS

Period Mean 
profit
(Euros)

Skewness Kurtosis Mean 
profit
(per cent)

Skewness Kurtosis

Oct 03-Jan 
15

1.90
(2.75)

-0.44 2.89 3.5
(2.34)

-0.62 1.52

Oct 03-Jul 
08

2.53
(2.54)

0.46 0.78 5.3
(2.18)

-0.22 -0.18

Aug 08-
Jan 15

1.57
(1.65)

-0.97 4.17 2.6
(1.24)

-0.95 2.85
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TABLE 5. PROFITS IN EUROS AND PER CENT FROM TRADING STRATEGY  
 

The returns from shorting a month contract every month 2003-15 were on the average 3.5 per 

cent (monthly) or 1.90 Euro/MWh. While the variation as measured by standard deviation is 

large, the mean is significantly greater than zero at the 0.01 level. There are also fat tails and 

left-skewed distributions, and there have been months with substantial losses. While the 

simple trading strategy generated substantial profits up till mid-2008, the mean profit during 

the most recent seven years (2008-15) is not significantly different from zero. As can be seen 

from figure 4, the trading strategy generated losses for almost two years 2009-10. Even if the 

losses turned into profits 2011, the strong upward trend seems to have been broken around 

2008/09. Thus, pursuing a strategy based on the assumption that futures overshoot subsequent 

spot prices, no longer seems to generate profit. In other words, some sort of a structural break 

seems to have occurred around 2009. 

 

 

FIGURE 4. CUMULATIVE GAINS SEPTEMBER 2003 – JANUARY 2015 FROM MONTHLY 
SHORTING 1 MWH  
 

The hypothesis of a structural break 2008-09 is supported by running a set of Chow tests on 

the futures-spot spread (the basis). The tests clearly indicate a break point during the Fall of 
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2008. This is visualized in figure 5 showing a strong change in the term structure towards the 

end of 2008, sending the basis from a long period of backwardation into contango. A number 

of factors may explain this development. However, one event stands out as the factor that 

would contribute to making the market more efficient, namely the opening of the NorNed in 

the spring of 2008. This 580-kilometre long HVDC link with a voltage of some 450 kV and 

capacity of 700MW or some 6 TWh per year contributed to the integration of the Nord Pool 

area with Holland and the continent.  This integration of areas with different production 

technologies as well as different risk exposures most likely shifted net hedge demand, as 

reflected in figure 5. Furthermore, a larger and more heterogeneous market generally tends to 

make the derivative market more efficient.  

 

  

 

FIGURE 5. BASIS CALCULATED AS 3 YEARS ROLLING AVERAGE FOR 

MONTHLY CONTRACTS. 

 

7 Conclusion 

Nord Pool futures prices were for a long time, biased forecasts of subsequent spot prices. 

After 2008 this no longer seems to be the case. Both the futures price (over one-month 

horizons) and the basis have increasingly become unbiased and more precise forecasts of the 

subsequent system price and system price change, respectively. While biased futures prices 
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simply may reflect a risk premium, previous studies have suggested that the size of the bias in 

the Nordic futures market has been too large to be defined as a risk premium only. The fact 

that the bias has disappeared during recent years may reflect changes in the risk premium. 

Alternatively, the change may be due to the market getting more efficient. The econometric 

results and the results from a simple trading simulation presented in this study support the 

latter explanation. The observed development may be interpreted as the market having 

become more mature and efficient after 2008. There may be several reasons for this. One 

may be the opening up of the NorNed cable in the spring of 2008, physically integrating the 

Nordic and the Dutch markets and thus including buyers and sellers with different risk 

exposures. 
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Abstract 

Several authors have found temperature to be an important determinant of power prices. 

Even so, most of the research that incorporate temperature when modelling electricity prices 

assume a single, constant coefficient to explain price variations over seasons, across regional 

markets, and price quantiles. Most research account for seasonality by adjusting the 

intercept, keeping the slopes constant. This article focuses on the daily spot price 

characteristics on the Nordic day-ahead market for electricity and at the five Norwegian price 

zones, with an emphasis on temperature as an explanatory factor. A new model, which takes 

into account seasonality in the coefficients is proposed. Using daily observations from all days 

of the in-sample years 2010-2018, disregarding the time of year, I find that changes in 

temperature explain about 6 % of price changes. However, when differentiating seasonal 

effects, I find that temperature explains between close to 0 % in August and September to 

over 19 % in December, as measured by incremental change in ��. I also find that the 

temperature effect differs across the Norwegian price zones, NO4 being less sensitive to 

temperature. Furthermore, the temperature effect is more than twice as strong in the highest 

than in the lowest price decile.  This suggests that pricing models based on constant 

coefficients for temperature may be misleading, "averaging out" seasonal effects. An �� of 

more than 0.9 implies that most of the variation in price changes is explained by a 

parsimonious AR model, which would be easy to implement by producers and large 

consumers. A forecasting exercise shows that using a time varying temperature effect on price 

for day-ahead spot price forecasting is still a challenging exercise. 

  



1. Introduction  
 
This article analyzes how temperature changes affect the spot prices at Nord Pool, both the 

Nordic System Price and the Norwegian area prices. Market actors like producers and 

consumers focus on the price of electricity, and especially what the system price and the area 

prices will be in the future.  As temperature is regarded as an important price driver, it is of 

interest to analyze the relationship between changes in temperature and prices. This article 

will therefore present estimates on temperature effects on prices. 

 

The contribution of this paper is to propose a new model for day-ahead electricity price 

forecasting, where seasonality in coefficients is allowed. I estimate an autoregressive model 

with exogenous variables, including temperature, to assess the effect of temperature changes 

on electricity spot price changes. The model quantifies the effects of temperature on prices 

across seasons, price zones and quantiles at Nord Pool. A forecasting exercise is performed 

to show the value of including this information in the bidding process. Previous literature 

(Huurman et al (2012) and Weron and Misiorek (2008)) has mainly focused on the system 

price and only two price zones (Oslo and Eastern Denmark). Furthermore, they assume a fixed 

coefficient for the entire year.  Several factors might influence the temperature elasticity on 

price. My model will assume the effect of temperature on price is relatively high where there 

is a large population compared to the production capacity. Also, the model assumes that the 

effect differs across seasons, with the strongest effect occurring during the coldest months of 

the year, as electricity to a great extent is used for heating in the Nordic Countries, and where 

the price equilibrium is far to the right on the merit order curve. 

 

This paper presents estimates of an auto regressive model with exogenous variables, 

including temperature, to assess the effect of temperature changes on electricity spot price 

changes. Previous studies have adjusted the intercept and not the slopes on explanatory 

variables to account for seasonality. A forecasting exercise is performed to demonstrate the 

value of including this information in the bidding process.  

 

Results from my analysis offer insight into the price formation process at Nord Pool and the 

Norwegian price zones. Especially, how much of the variation in prices can statistically be 



explained by variation in temperature? Also, how does the effect of temperature on price 

develop during the year, adjusted for seasonality in the effect from the other exogenous 

variables? Answers to these questions will enable sellers and buyers to understand how 

temperature information is valued in the market. Given new temperature information, they 

can adjust their bids according to estimated effects from temperature to prices. Assuming 

that a bidder receives private information on temperature deviations from expected levels, 

they may possibly try to trade on this using information about the relationship between 

temperature forecast and realized prices. 

 

The remainder of this paper is organized as follows: Section 2 surveys the literature most 

closely related to the temperature effect on prices. In section 3, I describe the Nordic power 

market structure and discuss the data employed in this study. Section 4 presents econometric 

models for modelling power prices with emphasis on how temperature may affect the price. 

Section 5 discusses the econometric results, while concluding remarks are given in section 6.  

 

2. Literature 

As a consequence of the liberalization of the electricity markets starting in the 1990's, several 

approaches have been put forth to model electricity prices. Notable examples are parameter 

rich fundamental models as presented by Johnsen (2001) and Vahviläinen and Pyykkönen 

(2005), reduced-form continuous-time models as presented by Geman and Roncoroni (2006) 

and Cartea and Figuera (2005), and regime switching models as used by Huisman and Mahieu 

(2001), and Paraschiv et al. (2015). Reduced-form models are extensively used for derivatives 

valuation and risk analytics. For electricity price forecasts, these models do not provide an 

advantage over statistical time-series models, like the auto-regressive family of models 

according to Weron (2014).  

 

This paper is not the first to investigate the effect that temperature has on electricity demand 

or prices. There are several possible approaches, and this paper uses a statistical method in 

the form of an autoregressive time series model. There are several reasons why such a model 

is suitable for modeling electricity prices. It can capture the weekly seasonality which is often 

found in electricity markets. It is also a model which can be augmented with exogenous 



factors, in this case temperature. Additionally, the AR model has shown itself to be a robust 

framework which is used both in forecasting and modeling of the electricity price process, see 

Weron (2014) for an extensive overview. The use of a univariate framework is also motivated 

by the fact that univariate AR models compare well with multivariate models in forecasting 

day-ahead electricity prices, according to Ziel and Weron (2018). 

 

Auto-regressive (AR) models facilitate the inclusion of exogenous variables. Temperature is a 

major determinant of electricity load, which in turn is a determinant of price, as shown by 

Cancelo, Espasa and Grafe (2008) and Bessec and Fouquau (2008). Earlier papers have 

estimated temperature's effect on load, but not price, e.g., Pardo et al. (2002), Valor et al 

(2001), and Gaillard et al (2016). Auffhammer, Baylis, and Hausman (2017) model the impact 

of temperature on average load and peak load, and they find that climate change is projected 

to have severe impacts on the frequency and intensity of peak electricity demand across the 

United States. In their model, demand is a piecewise linear function of temperature to capture 

temperatures effect on demand along the temperature scale, daily and monthly dummies to 

capture seasonality, and a polynomial term to capture intra-day patterns. 

 

Other studies have investigated the link between price and temperature. Knittel and Roberts 

(2005) use a data set from the Californian market to find that all temperature variables 

investigated explain a significant portion of the variation in electricity prices. Their models, 

which include temperature variables with constant coefficients during the year, outperform 

models which do not include these variables when forecasting hourly day-ahead prices. They 

use an ARMAX model with the temperature, squared temperature, and cubed temperature 

as explanatory variables. Huisman (2008) uses a Markov switching model augmented with 

realized temperature. He finds that, in the Dutch power market, higher temperatures in 

summer increase the probability of price spikes. Also, deviations from average temperature 

help explain the price level.  Weron and Misiorek (2008) use a number of autoregressive 

models to forecast day-ahead electricity prices. These models are defined with and without 

load forecast or realized temperature, and with and without normally distributed or semi-

parametric error terms. They find that models including information from realized 

temperature or load forecast make more accurate predictions, as measured by root mean 

squared error, than pure autoregressive price models, and that there is only a marginal 



difference between information from realized temperature, and load forecast. In addition, 

Huurman et al (2012) found that an ARIMA model extended with power transformations of 

next-day weather forecasts yield better point forecasting results in terms of root mean square 

prediction error for predicting day-ahead prices at Nord Pool's Oslo and Eastern Denmark 

price zones. Using weather forecasts instead of realized temperature only marginally lowered 

the forecast errors. Bigerna (2016) generated temperature forecasts which were used to 

explain power prices in six Italian price zones. Including temperature forecasts reduced root 

mean squared percentage forecast error for day-ahead price forecasts. 

 

At Nord Pool, the electricity prices for the price zones are set at the day before delivery as 

sellers and buyers of electricity has to submit their price/volume bids before noon on the day 

before delivery. These bids are then aggregated into supply and demand functions where the 

resulting hourly prices and loads is given by their intersection. Due to transmission 

constraints, the prices might differ between the price zones. As temperature has been found 

to have an effect on price, the price reflect the previous day expected temperature conditions 

for the day of delivery. 

 

If weather systems across adjacent price zones are correlated, leading to correlated shocks to 

temperature, then the electricity price in different price zones might have similar error 

structures. If this is the case, then the estimation of the electricity price for the price zones 

may involve non-zero covariances between the error terms in nearby price zones. If the error 

terms are correlated, then the seemingly unrelated regressions approach of Zellner (1962) is 

appropriate. In this framework, the coefficients are equal to those estimated by OLS but with 

the seemingly unrelated regression one can test for differences in coefficient values across 

models while taking into account for correlated errors. Different from my study, Huisman et 

al. (2007) used seemingly unrelated regression to get information on the correlated error 

structures between hourly power prices on the Central European power market.  

 

AR models can also be used to estimate the distribution of the dependent variable via quantile 

regression. It has been used in several papers investigating the electricity markets. Quantile 

regression (QR) of Koenker and Bassett (1978), is a regression technique where one can 

estimate a given quantile of the dependent variable conditioned on the independent 



variables. It enables us to estimate possibly skewed distributions relative to the dependent 

variable, giving information about the drivers behind different quantiles of the price 

distribution.

3. Data

This article analyzes daily spot prices in five regional markets as well as the system price March

15th, 2010 - December 31st, 2019. Data prior to March 15th, 2010, were not considered, as 

there have been several geographical changes to the Nord Pool area and the Norwegian price 

zones prior to this date. The geographical location of the price zones can be seen in Figure 1. 

Figure 1. Geographical location of price zones at Nord Pool.

Both spot price and temperature data are daily averages. The data set was split into a training 

set and a test set, with a cutoff on December 31st, 2018, leaving 2019 for the test set. I analyze 

the data from the price zones NO1 (East), NO2 (South), NO3 (Central), NO4 (North), and NO5 

(West), as well as the system price. Over this time period, the system price has averaged at

35.4 EUR/MWh. However, Figure 2 shows that there has been significant price variation with 

substantial volatility in the log-returns. The high standard deviation of the daily log-price 

changes of 3.8 %, equivalent to a yearly standard deviation of 72 %, is higher than in most 

commodity markets. This represents risks which is important to model for market 

participants. The evolution of the system price and the differences between the area prices 

and the system price can be found in Figure 3. As shown in the figure, the area prices almost 

always differ from the system price.



 

Figure 2. Daily percent price changes, Nord Pool system price 2010-2019. 

 

 

Figure 3. System price (EUR/MWh) and differences between area price and system price, 2010-2019. 

Another issue with the data regards the estimation of daily temperature. The overall daily 

average temperature for Nord Pool has been proxied by a population weighted average of 

temperatures in Oslo, Stockholm, Helsinki, and Copenhagen, to construct a population 

adjusted temperature index, which we call the Nord Pool temperature. Ideally, one weather 



station per city is used and the data has been provided by the Norwegian Meteorological 

Institute4, Swedish Meteorological and Hydrological Institute5, and Danish Meteorological 

Institute6. For each price zone, a population weighted average of the temperature for the 

three largest cities is taken as a proxy for the relevant temperature in the price zone. This 

introduces measurement error in the calculations, but on the other side, one must keep in 

mind that the fourth largest city in either price zone is small. For zone NO5 (East), Bergen is 

the only major city and is thus assigned a weight of 100 %7. 

 

Figure 4. Temperature index for the Nord Pool area, population weighted 

The Nord Pool temperature over the period from 2010 to 2019 can be seen in Figure 4, which 

shows the substantial variation of daily temperatures over the course of a season. If the 

 
4 http://met.no/English/ 

5  https://www.smhi.se/en/about-smhi  

6  https://www.dmi.dk/ 

7 The populations used in calculations are (in 1000’s): Nord Pool (Copenhagen – 1,308, Stockholm 1,539 - , Oslo – 
925, Helsinki 1,268), NO1 (Oslo - 925, Drammen -110, Fredrikstad - 106), NO2 (Kristiansand - 58, Stavanger - 203, Skien - 
90), NO3 (Trondheim - 169, Ålesund - 49, Molde - 20), NO4 (Tromsø - 32, Bodø - 38, Harstad – 20’), NO5 (Bergen -247). NO5 
only use observations from one city as the next largest city in this zone is Voss with population 6’. 



relative change of temperature on price varies with the season, then this could be accounted 

for in an econometric model. 

Temperature forecasts are getting increasingly more accurate, Haiden et al. (2018). In 

practice, market actors in the power market place their bids to sell or purchase electricity 

before noon on the day prior to delivery. While bidding, they could thus have information 

about the forecast for the next day, which means 12 to 36 hours ahead. On this basis, the 

realized temperature at day t may be treated as a relevant day-ahead forecast which is known 

at the time of bidding, day t-1, (Bigerna (2018), Weron and Misiorek (2008)). This assumed 

temperature forecast is then used in the day-ahead spot price modeling. 

Descriptive statistics for the Nord Pool area and five Norwegian price zones for spot price and 

temperature is presented in Table 1. 

Table 1. Descriptive statistics for Nord Pool and Norwegian price zones. Daily observations prices and population 
weighted temperatures, 2010-2019. 

 

Variable Zone Mean Median Min Max SD 

Spot 
(EUR/MWh) 

Nord Pool 35.4 33.7 3.9 103.3 12.7 
NO1 (East) 34.7 32.7 3.0 95.8 13.4 

NO2 (South) 34.3 32.4 3.0 95.8 12.8 
NO3 (Central) 36.1 34.4 4.1 145.5 13.1 
NO4 (North) 35.1 33.3 4.1 145.5 13.3 
NO5 (West) 34.3 32.4 2.6 95.8 13.4 

Temperature 
(°C) 

Nord Pool 8.1 7.6 -15.0 25.2 7.7 
NO1 (East) 7.6 7.4 -14.6 25.8 7.7 

NO2 (South) 7.6 7.6 -13.0 23.4 5.7 
NO3 (Central) 6.2 5.4 -17.0 24.4 6.4 
NO4 (North) 5.1 4.6 -13.7 24.3 6.2 
NO5 (West) 8.5 8.3 -9.0 26.3 5.6 

 

Obviously, there are differences both in prices and temperatures between the price zones. 

However, the differences are not large, apart from the spot price has spiked higher for the 

area prices in NO3 (Central) and NO4 (North), than for the system price. As seen from the 

table, the variation in temperature is lower for NO2 (South), and NO5 (West) because of the 

more stable coastal climate due to the proximity to the ocean of the cities in these zones. On 



the other hand, NO1 (East) has a more continental climate with greater variation in 

temperature between cold and warm seasons. Figure 5 shows the monthly average 

temperature for zones NO1 (East) and NO4 (North), compared to the Nord Pool temperature. 

As expected, the temperature in NO4 (North) is lower than the temperature in NO1 (East) 

during the entire year, except during wintertime when the ocean warms the coastal areas in 

NO4 (North). These differences might translate into seasonality of temperature on price. 

 

Figure 5. Mean monthly temperatures (°C) for zones NO1 (East) and NO4 (North) compared to Nord Pool (a weighted 
mean of temperatures for Oslo, Stockholm, and Copenhagen). 

4. Method 

I transform both temperatures and prices to logarithms to stabilize volatility and thus treat 

all coefficients as elasticities. During the period in question, electricity prices have been 

uniformly positive in the Norwegian market and a logarithmic transformation is 

straightforward. However, in the Nordic market, it is natural for negative temperatures to 

occur during wintertime. A solution to this problem is to measure temperature as degrees 

Kelvin, and not as degrees Celsius. An advantage of the Kelvin scale is that it has equal 

increments to the Celsius scale and is thus easy to interpret for practitioners as zero degrees 

Celsius equals 273.15 degrees Kelvin. Also, various specifications of the ADF and Phillips-

Perron tests are used to check for stationarity in the logarithm of the time series. The results 

clearly indicate that the time series are stationary, and no differencing is needed. 

 

Several studies, among them Kristiansen (2012), have shown that an auto regressive model 

could be considered due to short term seasonality in spot prices. Based on Bayesian 



information criteria (BIC), seven lags would suffice to describe my data, following Huurman 

et al (2012). Lags two through six are set to zero, as there is no theoretical reason to expect 

them to be otherwise significant. They also contribute to multicollinearity as measured by 

variance inflation factors. Empirically, these lagged values of the spot price have a small, but 

significant, effect on the spot price. These effects do not translate into a different effect of 

changes in temperature on changes in spot price, and as such they are not needed in the 

equation for my purposes. A dummy variable is added to account for the fact that more 

electricity is used during workdays than during holidays, as in Weron and Misiorek (2008). 

However, my model differs from Weron and Misiorek (2008) in that I do not include a 

minimum hourly price from the day before. What is new in my model is the interactions where 

I take into account that the effect of temperature and other variables on price can change 

during the season. The reduced form model investigated is thus: 

ln(��) = �# + $ ��
��

���
+ �� ln(��%�) + $ ��1�

��

���
+ �� ln(��%&) + $ ��7�

��

���

+ �' ln(*�) + $ �*�
��

���
+ �-.�� + $ �.�

��

���
+ �� 

(1) 

where �#is the intercept, ��(��%�) and ��(��%&)are the 1-day and 7-day AR lags of the spot 

price, ��(*�)is the logarithm of temperature and .��is a dummy variable which equals one if 

the day is a working day and zero otherwise.  Dummy variables are included to be able to test 

for seasonal differences in the effect of temperature on prices, adjusted for seasonality in the 

other coefficients, including the intercept, with January as the base case. ��  captures the 

seasonality in the slope, whereas the interaction terms ��1�, ��7�, �*�, and �.� capture the 

seasonality in the slopes. The model defined in (1) is estimated in-sample on the system price, 

and on the different area prices before it is used on out-of-sample data to create day-ahead 

forecasts. The hypothesis I am set to test is the one of no difference in forecast error metrics 

between a model which is estimated with a constant slope on temperature and one which is 

estimated with time varying slope on temperature. The error metrics considered in this study 

is RMSE (Root mean squared error) and MAPE (Mean absolute percentage error), as used in 

Huurman et al (2012), Weron and Misiorek (2008), and Ziel and Weron (2018). RMSE has the 

benefit of sharing units with the original series, in this case EUR/MWh which makes 

interpretation of the average size of the error intuitive. MAPE has the benefit of giving an 

average relative error but might be misleading in the presence of close to zero prices, Weron 



(2014), and Sing and Mohanty (2015). In my data set, no prices were close to zero, as seen in 

Table 1. 

To investigate the effect of temperature change along the distribution of the spot price, I use 

the following quantile regression model: 

where / ∈ (0,1) are the quantiles for which the parameters of the equation are estimated. If 

the 0.5 quantile were to be estimated, I would minimize the absolute residuals: 

where ln(��)4 = ln5�60
/ + �61

/ ln(��−1) + �62
/ ln(��−7) + �63

/ln(*�) + �64
/.��: is the estimated value. 

This can also be expressed as follows: 

which implies that sign is changed to positive for negative residuals. In addition, the residuals 

have weight according to their modulus. For other quantiles, I minimize the following 

expression for specific values of q: 

Here, the residuals are weighted according to the sign of ln(��) − ln ��4, i.e., negative residuals 

will have a weight of 1-q, whereas positive residuals will have a weight of q. This provides the 

coefficients for the qth quantile regression. 

There are more factors that have been found by other studies to have an influence on the 

spot price. This includes reservoir levels, which are the water levels in the reservoirs of hydro 

power plants, and variables concerning higher moments of the spot price. In my setup, these 

were found to be insignificant, and the related results are not reported.   
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5. Results 

To estimate how much of the changes in the spot price is caused by temperature variation, 

all subsets of equation (1) where one variable at the time is added, and the incremental 

increase in �� is recorded, according to Lindeman, Merenda and Gold (1980). Among all 4! 
combinations, the average marginal increase in �� from inclusion of the variable was 

recorded and shows that temperature has a relative importance of explaining about 6 % of 

the variation in the spot price. The spot price one and seven days ago explain 52 % and 42 %, 

respectively. One can also take note of the low importance of working days, which explain 1 

%. However, all variables, including the working day variable, are statistically significant, in 

the base case. 

Second, I investigate if parameter values, and importance, on temperature differ during the 

year for the individual months. A table of coefficients from the model estimated on the 

system price can be found in Appendix 1. The base case is January, and all dummies are 

deviations from this base case. From the table it is apparent that there is seasonal variation 

in the temperature effect on price, even if seasonality in the other variables and the intercept 

has been taken account for. 

The results for the temperature effect on price for all months and all price zones can be found 

in Table 2. There is a clear pattern regarding the seasonal temperature sensitivity. During 

wintertime, the value is negative for all zones. This implies that a negative temperature 

change is connected with a positive price change. For example, the temperature sensitivity of 

the system price is -3.21 in January. For the Nord Pool area, the temperature index is hovering 

around -1 degrees Celsius, which is around 272 degrees Kelvin, during this month. If the 

temperature index drops by 1 %, or from -1 to -4 degrees Celsius, it would on average lead to 

a 3.14 % increase in the power price. However, in summertime this relationship breaks down 

and one cannot say that temperature has an effect on the electricity price. A surprising 

observation is the relatively high sensitivity during May. Apart from a possible spurious 

relationship, one factor which outweighs the warmer weather during this month is the fact 

that reservoir levels are usually at its lowest in April and May. On average, the reservoir levels 

during this month are at 30 % in Norway and at just above 20 % in Sweden. This means that 

several reservoirs cannot be utilized as they would fall below the minimum regulated level, 



implying less supply side flexibility. Colder weather in May would also affect the inflow, as the 

temperatures can easily drop below zero in the mountains where most of the water is stored 

as snow, adversely affecting supply. This is especially true for run-of-water power plants 

which do not have reservoirs, thereby putting an upward pressure on the price. On the other 

hand, warmer weather would increase supply from the same power plants due to snow 

melting, thus lowering the price. Due to the insignificant effect of temperature on price during 

summer months, only data consisting of the months from October to May will be considered 

in the following analysis.  

Table 2. Monthly coefficient values for logarithm of temperature and across price zones, March 2010 - December 2018. 

 

 

 

Third, the model is estimated for Nord Pool and the five price zones in Norway on in-sample 

data for months October to May. For all regressions, autocorrelation is a problem as 

measured by the Ljung-Box Q test, and T# of homoscedastic residuals are rejected by Breusch 

Pagan test. This problem is circumvented by using HAC standard errors. However, the models 

were specified as seemingly unrelated regression models, which allow for non-zero 

correlation of errors among models. Results from the estimation can be found in Table 3. The 

most important detail to notice is that the coefficient for the temperature effect on price is 

Zone jan feb mar apr may jun jul aug sep oct nov dec Average

β3 -2.49 -3.26 -1.52 -1.86 -1.38 -0.35 0.62 -1.30 -1.31 -2.46 -2.33 -4.09 -1.81

p-value 0.00 0.00 0.01 0.00 0.01 0.68 0.38 0.01 0.07 0.00 0.00 0.00

T explains 7.7% 18.7% 9.9% 0.5% 1.0% 3.5% 10.3% 0.0% 0.1% 5.7% 10.7% 19.9%

β3 -3.58 -2.61 -2.29 -1.65 -0.90 0.45 1.43 -0.34 -1.51 -3.20 -1.76 -2.76 -1.56

p-value 0.00 0.00 0.06 0.00 0.06 0.47 0.06 0.49 0.10 0.00 0.00 0.00

T explains 8.8% 11.8% 10.8% 0.4% 0.8% 1.2% 8.9% 0.1% 0.1% 6.5% 9.3% 15.8%

β3 -2.88 -3.03 -2.00 -1.96 -1.45 -0.07 -0.45 -0.12 -1.93 -3.51 -1.85 -2.85 -1.84

p-value 0.00 0.00 0.00 0.00 0.02 0.91 0.21 0.73 0.08 0.00 0.00 0.00

T explains 6.9% 9.7% 8.2% 0.5% 1.6% 0.0% 0.2% 1.0% 1.1% 5.9% 10.6% 14.9%

β3 -1.18 -2.11 -2.03 -1.89 -1.62 -0.76 0.06 -0.05 -0.18 -2.61 -1.90 -1.89 -1.35

p-value 0.03 0.00 0.03 0.00 0.00 0.13 0.82 0.90 0.79 0.01 0.00 0.00

T explains 2.3% 7.0% 9.5% 0.4% 0.6% 0.0% 1.0% 4.3% 2.8% 5.5% 10.6% 11.2%

β3 -1.79 -2.39 -0.48 -1.69 -1.44 -0.73 0.68 0.27 -0.10 -1.26 -1.32 -2.12 -1.03

p-value 0.04 0.01 0.35 0.00 0.00 0.23 0.20 0.61 0.88 0.03 0.00 0.00

T explains 1.9% 5.0% 5.8% 0.2% 0.5% 0.2% 1.5% 0.2% 0.0% 1.4% 2.0% 5.1%

β3 -2.20 -3.06 -1.77 -1.58 -0.87 0.17 0.37 -0.45 -1.28 -1.96 -1.45 -2.82 -1.41

p-value 0.00 0.00 0.00 0.00 0.07 0.80 0.53 0.33 0.35 0.01 0.00 0.00

T explains 2.7% 5.0% 7.6% 0.2% 0.8% 0.1% 3.7% 0.2% 0.1% 1.9% 6.9% 11.4%

NO5

Nord Pool

NO1

NO2

NO3

NO4



negative, which indicates that an increase in temperature is accompanied by a decrease in 

spot price.  

 Table 3. Results from seemingly unrelated regressions. March 2010 - February 2018. Bold font indicates statistical 
significance at 5 % level. 

 

Zone   Const ln(St-1) ln(St-7) ln(Tt) WD R2-adj 
Temp. 

explains N 

Nord Pool 
β 6.72 0.79 0.15 -1.17 0.07 0.91 5.6% 2109 

p-value 0.00 0.00 0.00 0.00 0.00       

NO1 
β 5.21 0.82 0.12 -0.90 0.06 0.92 5.9% 2109 

p-value 0.00 0.00 0.00 0.00 0.00       

NO2 
β 6.72 0.85 0.10 -1.17 0.05 0.93 5.8% 2109 

p-value 0.00 0.00 0.00 0.00 0.00       

NO3 
β 5.78 0.81 0.13 -1.00 0.07 0.91 4.1% 2109 

p-value 0.00 0.00 0.00 0.00 0.00       

NO4 
β 4.14 0.85 0.12 -0.72 0.06 0.93 1.6% 2109 

p-value 0.00 0.00 0.00 0.00 0.00       

NO5 
β 6.03 0.89 0.06 -1.05 0.06 0.93 4.1% 2109 

p-value 0.00 0.00 0.10 0.00 0.00       
 

For Nord Pool, the temperature coefficient is -1.17, which means that if temperature moves 

by 1 %, then on average the spot price moves by 1.17 % in the opposite direction during 

wintertime. If mean values are used, then a 1 degree drop in temperature would increase the 

spot price by almost 0.20 Euros per MWh. One can see that there is substantial variation 

between the different zones. Prices in NO4 (North) are least affected by changes in 

temperature with a coefficient of negative 0.72. This means that a 1 % decrease (increase) in 

temperature is accompanied by a 0.72 % increase (decrease) in the spot price. The coefficient 

for Nord Pool is the highest with a value of negative 1.17, so the temperature effect is over 

50% as large as in NO4. To test whether or not the sensitivities fitted on area prices are 

statistically different compared to the temperature effect found on the system price, I can 

use an F-test, taking into account the correlation structure among errors in different models. 

It turns out that the difference between the temperature effect at Nord Pool and at NO4 is 

statistically different with a p-value of 0.016 None of the other differences were significant. 

Statistically, this will motivate the use of separate sets of coefficients per price zone if one 

were to model the price/temperature dynamics in NO4. The correlation structure of errors 



among the model estimations can be found in Table 4. For all correlation pairs, T# of no 

correlation were rejected. 

Table 4. Correlation structure of errors. 

  sys no1 no2 no3 no4 no5 

sys 1.00 0.85 0.82 0.87 0.80 0.68 

no1 0.85 1.00 0.88 0.71 0.64 0.75 

no2 0.82 0.88 1.00 0.64 0.55 0.80 

no3 0.87 0.71 0.64 1.00 0.88 0.51 

no4 0.80 0.64 0.55 0.88 1.00 0.47 

no5 0.68 0.75 0.80 0.51 0.47 1.00 

 

The question is now whether or not the time varying temperature effects on price translates 

into a more tangible difference. If the observed temperature is treated as a one-day forecast 

as done in Weron and Misiorek (2008) and Bigerna (2018), the model can be used to create a 

forecast of the five area spot price series. The "Naïve" forecast assumes that the price at time 

� is equal to that of time � − 1. What I call the "Constant effect" forecast is made with 

coefficients estimated from the in-sample system price and temperature. Here, the 

temperature coefficient is held constant, not varying among the months. The "Time varying 

effect" forecast is made with coefficients estimated from the in-sample system price and 

temperature but with different coefficient sets by month.  

As can be seen from Tables 5 and 6, for all price zones, RMSE and MAPE for the "Time varying 

effect" model is higher than that from using a model assuming a constant temperature effect 

on price, indicating that there might be overfitting when using the full model specification. 

Table 5. RMSE from day-ahead forecast of area prices by use of the naïve model, a model estimated with 
a constant temperature effect and a model estimated with time-varying temperature effect. Based on out-
of-sample data from 2019 

Naive Constant effect Time varying effect

Nord Pool 4.09 3.67 3.85

NO1 4.88 4.47 4.42

NO2 3.69 3.38 3.41

NO3 4.29 3.91 4.02

NO4 3.85 3.55 3.48

NO5 3.80 3.59 3.65  

 



Table 6. MAPE from day-ahead forecast of area prices by use of the naïve model, a model estimated with 
a constant temperature effect and a model estimated with time-varying temperature effect. Based on out-
of-sample data from 2019. Numbers in percentage points. 

Naive Constant effect Time varying effect

Nord Pool 7.03 6.57 6.87

NO1 6.31 6.16 6.20

NO2 5.97 5.72 5.78

NO3 6.14 5.94 6.39

NO4 5.05 4.83 4.78

NO5 6.27 6.21 6.27  

 

Fourth, an electricity producer or consumer armed with a temperature forecast would be 

interested in knowing the effect of a temperature change on the electricity price during the 

colder months of the year, given the electricity price level. If the consumer or producer has 

information about the next-day temperature before noon, what should the bid be? To 

measure this effect, one can use quantile regression to get the effect of the independent 

variables on the dependent variable, given the level of the dependent variable. A quantile 

regression version of equation (1) is estimated, and the results can be found in Table 5. 

 

As �� has no meaning for quantile regression, the relative importance of temperature on 

price has not been calculated. The sensitivity of temperature changes on price changes are 

mostly negative for all price zones, but it varies substantially across the price distribution. As 

can be seen from Table 7, the effect of temperature changes on the system price can be 

relevant for price forecasts, given that the price level is at or above the first quantile. 

Coefficients on the other variables in the regression equation also exhibit variation across the 

quantiles. This means that anyone trying to forecast electricity prices at Nord Pool for the 

months from October to May could consider the negative effect of temperature changes on 

price changes for all but the lowest price levels.  

 

 

 

 

 

 

 



Table 7. Coefficient values for logarithm of temperature per quantile and per price zone from March 2010 to February 
2018. Bold font indicates statistical significance at 5 % level. 

 

 

  
  Quantiles 

    Q0.1 Q0.2 Q0.3 Q0.4 Q0.5 Q0.6 Q0.7 Q0.8 Q0.9 
Systems Price Given 

Quantile   23.2 26.4 28.9 31.0 33.5 36.6 40.2 46.3 53.5 

Nord Pool β3 -0.39 -0.76 -0.80 -0.86 -0.90 -0.86 -0.74 -0.93 -1.10 

  p-value 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NO1 β3 -0.19 -0.42 -0.44 -0.50 -0.49 -0.54 -0.57 -0.62 -0.88 

  p-value 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NO2 β3 -0.76 -0.78 -0.69 -0.71 -0.68 -0.68 -0.77 -0.85 -1.13 

  p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NO3 β3 -0.93 -0.86 -0.75 -0.72 -0.66 -0.61 -0.57 -0.68 -0.85 

  p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NO4 β3 -0.45 -0.37 -0.31 -0.30 -0.35 -0.41 -0.45 -0.61 -0.91 

  p-value 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NO5 β3 -0.68 -0.66 -0.69 -0.66 -0.68 -0.65 -0.68 -0.78 -0.93 

  p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 

Figure 6 provides a more detailed picture of the evolution of the coefficient on logarithm of 

temperature at Nord Pool for quantiles in the interval [0.02,0.98]. The corresponding OLS 

estimate using all observations is marked with a red line, with 95 % confidence intervals 

marked with dashed lines. What is clear from the graph, is that for almost all quantiles the 

quantile regression estimate is different from the OLS estimate. For all but the largest price 

quantiles, the OLS estimate overestimates the negative effect temperature changes has on 

price changes. It is important to notice the large confidence interval bands for high and low 

quantiles, which is a coefficient uncertainty often seen in quantile regression. 

 



 
Figure 6. Coefficient values for the logarithm of temperature for Nord Pool system price. Gray area indicates 95 % 
confidence interval around quantile regression coefficient estimate. Red line indicates OLS regression estimate with 
dashed lines indicating the corresponding 95 % confidence interval.  

 

6. Concluding remarks 

This article examines the time-varying relationship between temperature and spot price at 

Nord Pool and the five price zones of the Norwegian power market. The market price for 

electricity in Northern Europe is affected by temperature, especially by cold temperatures, 

which causes a need for residential and commercial heating. Most previous studies have 

treated the effect of temperature changes on power prices as a constant across price zones, 

seasons, and price quantiles (Weron and Misiorek (2008), Huurman (2012)). I question this 

assumption. By estimating time varying effects from temperature on power prices I test the 

validity of the standard assumption. The main results of this paper are summarized in the 

following. 

 

A seasonal pattern between relative changes in temperature and in spot prices was found for 

both the Nord Pool market and all five price zones in Norway, with this relationship being 

negative for the months from October to May, controlled for seasonality in the intercept and 

the other slopes. Specifically, if mean values are used for the Nord Pool system price for these 

months, then a 1 degree drop in temperature would increase the spot price by almost 0.20 

Euros per MWh, on average. This implies that a lower temperature is linked to a higher price. 



During summertime, this relationship breaks down and even reverses for Nord Pool, Eastern 

Norway, and Southern Norway. A surprising observation is the relatively high sensitivity 

during May. Spurious correlation is always a possibility, but one factor which outweighs the 

warmer weather during this month is the fact that reservoir levels are usually at its lowest in 

April and May. This means that some reservoirs cannot be utilized as they would fall below 

the minimum regulated level, thereby putting an upwards pressure on prices during periods 

of low temperature. A large variation in the sensitivity between price and temperature across 

different price zones and months implies that it would be advantageous to account for these 

in spot price modelling.  

The relative importance of temperature in explaining the variation in electricity prices, in my 

framework, ranges from 1.6 % in price zone NO4 (North), to 5.9 % in NO1 (East), with the 

relative importance at 5.6 % for the Nord Pool system price overall. The temperature effect 

of temperature on prices also changes due to season, even if controlled for seasonality in the 

other coefficients in our model. Also, the temperature effect on prices varies substantially 

across the price distribution, in general being negative, but sometimes positive. This suggests 

non-linearity, where changes in prices below 19 EUR/MWh are not related to temperature 

changes, and prices above 19 EUR/MWh are negatively related to temperature changes.  

The challenges of utilizing time-varying temperature effects on electricity prices is 

demonstrated through a day-ahead forecasting exercise. To use a time-varying model would 

not reduce RMSE or MAPE. However, one might use regularization to deal with 

dimensionality. 

 

  



Appendix 1 

Table 8. Model summary for the estimation of model (1) based on in-sample data for Nord Pool system price. "D" 
identifies dummy variables where January is base case. Bold font indicates significance on the 5% significance level.  

  
Coeff p-val   Coeff p-val   Coeff p-val   Coeff p-val   Coeff p-val 

Intercept 18.71 0.00 s1 0.73 0.00 s7 0.16 0.00 T -3.27 0.00 DW 0.08 0.00 

Dfeb 3.88 0.44 DS1feb -0.03 0.54 DS7feb 0.04 0.35 DTfeb -0.70 0.43 DWDfeb 0.00 0.90 

Dmar -7.81 0.12 DS1mar -0.11 0.15 DS7mar 0.18 0.01 DTmar 1.35 0.13 DWDmar -0.04 0.07 

Dapr -7.39 0.13 DS1apr -0.01 0.89 DS7apr 0.08 0.16 DTapr 1.28 0.14 DWDapr -0.03 0.10 

Dmay -10.05 0.02 DS1may -0.13 0.01 DS7may 0.21 0.00 DTmay 1.74 0.02 DWDmay 0.03 0.16 

Djun -18.83 0.00 DS1jun -0.10 0.03 DS7jun 0.19 0.00 DTjun 3.30 0.00 DWDjun -0.01 0.50 

Djul -22.43 0.00 DS1jul 0.10 0.03 DS7jul 0.03 0.51 DTjul 3.91 0.00 DWDjul -0.02 0.28 

Daug -11.85 0.05 DS1aug 0.09 0.09 DS7aug -0.03 0.52 DTaug 2.09 0.05 DWDaug -0.01 0.69 

Dsep -14.16 0.01 DS1sep 0.09 0.06 DS7sep -0.01 0.76 DTsep 2.48 0.01 DWDsep -0.03 0.17 

Doct 0.49 0.92 DS1oct 0.15 0.00 DS7oct -0.13 0.00 DToct -0.09 0.92 DWDoct 0.00 0.89 

Dnov -2.60 0.56 DS1nov -0.07 0.25 DS7nov 0.11 0.07 DTnov 0.45 0.57 DWDnov -0.03 0.12 

Ddec 8.21 0.07 DS1dec -0.03 0.55 DS7dec 0.04 0.35 DTdec -1.47 0.06 DWDdec -0.02 0.32 
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Abstract 
 

This paper investigates whether using forward-looking information from the weather service 

can improve short-term price forecasts of Nordic and Norwegian power prices. A dataset from 

Nord Pool spanning five years (2010-2015) is used to test the 1 to 9-day forecasting 

performance of auto regressive models with temperature forecasts as one of the exogenous 

variables. The results indicate that including forward looking information from the weather 

service in the model brings significant forecast improvements for all forecast horizons 

considered.  Also, including other exogenous variables which may have an effect on the 

electricity price provides more accurate forecasts. Furthermore, the results indicate that 

regularization techniques should be used to reduce dimensionality. Also, since longer horizon 

temperature forecasts exhibit larger uncertainty, price forecasts should be made by a model 

which mixes direct and incremental forecasts.  

 

  



 
 
 
1. Introduction 
 

As a result of the liberalization of the electricity markets with large price fluctuations and 

consequently a greater need for risk management, electricity price forecasting has become 

more important during the last two decades.  

In a previous article I have studied the relationship between temperature and power prices 

over different seasons and market regions. In this paper, I will analyze to what extent weather 

forecasts can improve upon price forecasts from models that do not include information on 

future weather conditions. Furthermore, I present results from including uncertainty about 

future weather forecasts in the forecasting model.  In that way this article adds to the existing 

power price forecasting literature. 

In the event of changes in power demand, some generators, like hydro power plants with 

water reservoirs, are quite flexible whereas nuclear and coal fired power plants are among 

the least flexible. Due to multi-level seasonality and temperature changes, peaks are formed 

in the demand for electricity. This increased demand pushes up the bidding price for 

electricity as more expensive sources of power must step in to join the relatively inexpensive 

baseload power supply. As a result, the supply curve becomes steeper for high demand levels 

because technologies with higher marginal cost are introduced. This is referred to as the merit 

order curve. As regards the demand curve, it is generally steep (low price elasticity). As a 

consequence, shifts in demand cause large price changes when the price equilibrium occurs 

in the inelastic part of the supply curve. Conversely, shifts in demand result in marginal price 

changes when equilibrium occurs at the flat part of the supply curve. Short term shifts in 

demand are often caused by colder weather, as electricity is an important energy source of 

residential heating in the Nordic market.  

As a consequence of steep supply and demand curves, electricity prices usually exhibit higher 

volatility than other energy products, which implies a significant price risk for market actors, 

both on the buy and sell side. Other characteristics include seasonality on both a yearly, 

weekly, and daily level, with price spikes and the possibility of negative prices. Derivatives 



contracts on electricity prices makes it possible to transfer risk across time periods and across 

market actors.   

A market actor can place bids in the day-ahead spot market or in the several days-ahead 

futures market. If a market actor can estimate how temperature information is priced by the 

market, she can place bids which contain more information than those of market actors which 

do not yet have this information. 

Introducing an econometric model for the hourly time series of electricity prices of the 

European Power Exchange, Ziel, Steinert and Husmann (2015) forecast electricity prices up to 

a four-week horizon. They used a VAR model with hourly price, load, and renewable 

production and compare it with several multi- and univariate benchmarks. Their multivariate 

model without regularization has the same forecast performance as measured by MAE as the 

univariate model but if the multivariate model is regularized, then the multivariate model 

provides more accurate forecasts. Steinert and Ziel (2019) incorporate forward-looking 

information from futures contracts to make electricity price forecasts up to four weeks ahead. 

Including forward-looking information improved on the forecast performance as measured 

by a lower MAE compared with several benchmark models, even if futures prices were not 

quoted during weekends and holidays. Weron and Misiorek (2008) forecast day-ahead spot 

electricity prices at Nord Pool, including information from realized temperature as an 

exogenous factor and found that models with temperature information provides lower 

forecast errors than models without such information. Huurman et al (2012) use one day 

temperature forecasts to improve on the day-ahead price forecasting on Nord Pool (Oslo and 

Eastern Denmark price zones). By applying univariate AR models, they find that weather 

forecasts can price the weather premium on electricity prices.  

In this study I will follow up on these studies by including temperature forecasts up to 9 days 

ahead. As temperature forecasts are made every six hours, every day, it provides a stream of 

forward looking information. This contrasts with the futures markets, which do not quote 

prices during week-ends and holidays. More knowledge about the future and how the market 

reacts to future information can enable market actors to post more accurate bids.  

This paper addresses the question whether forward-looking information from temperature 

forecasts can improve on daily electricity price forecasts up to nine days ahead. I will also 



examine the value of adding additional exogenous variables and regularization, and compare 

three different regularization methods, namely Ridge regression, LASSO regression and Elastic 

Net regression. In addition, two different methodologies of multi-period forecasting are 

compared. In this respect, I bring several innovations to the electricity forecasting literature. 

The article proceeds as follows. The next section presents the data and descriptive statistics. 

Section 4 describes the method and models I will use to answer my research questions. In-

sample analysis is presented in section 5. Section 6 gives a detailed view of the out-of-sample 

results, and section 7 concludes.  

2. Literature 
 
Research on electricity price forecasting has taken different approaches to price modeling, 

see Weron (2014) for an overview. To this end, the auto regressive (AR) family of time series 

models has been shown to produce particularly robust forecasts as exemplified by Raviv et al 

(2015), who forecast day-ahead prices with vector autoregressive (VAR) models. They use lags 

of hourly electricity prices and dummy variables for weekly and yearly seasonality as the only 

exogenous variables, where the VAR structure consists of the 24 hourly time series of 

electricity prices. In their setup, multivariate models have better predictive ability than 

univariate models, as measured as a reduction of root mean squared error (RMSE). However, 

Ziel, Steinert and Husmann (2015) show that if exogenous information from variables which 

may affect the price of electricity are included, AR models which model daily data tend to 

have better predictive ability for short horizons of less than 12 days than the corresponding 

hourly VAR model considered in the study. If the VAR model were regularized, it provided 

forecasts with lower MAE than the un-regularized univariate model. However, they did not 

regularize the coefficient estimates in the univariate model for comparison.  

Within electricity price forecasting, usually the one day-ahead price has been the focus of 

attention. There are some studies which apply a longer forecast horizon. Maciejowska & 

Weron (2013) forecast prices for short-term (one through seven days) and medium-term (30 

and 60 days). Autoregressive models augmented with exogenous variables (ARX) are used for 

all hours of the day to make forecasts of hourly prices, which then are aggregated to forecasts 

of daily prices. Maciejowska and Weron (2016) use autoregressive models to forecast the UK 

electricity price for up to 45 days. They find that models including hourly price information 



are well suited for short-term forecasting, whereas models including daily price information 

are well suited for medium-term forecasting. Interestingly, the inclusion of CO2 emissions 

allowances did not improve on the forecast accuracy. 

A number of studies have utilized the potential information in futures prices. As shown in 

Smith-Meyer & Gjølberg (2016), electricity price futures contracts on Nord Pool/Nasdaq have 

provided unbiased estimates of the spot price one month later. Paraschiv et al (2015) also 

forecast electricity prices, for one-week and one-month horizons. Their results indicate more 

accurate forecasts for their regime-switching model, with forward-looking information from 

futures contracts, than the benchmark time-series model without such forward-looking 

information. Steinert & Ziel (2019) use a VAR model augmented with futures prices to forecast 

prices at EPEX Spot for up to four weeks, which shows promising results compared to 

benchmark ARX and VARX models without this forward looking information. The problem 

with futures prices is the discontinuous information flow they provide as prices are often not 

provided during weekends or holidays, creating an information gap. Daily futures are often 

traded at larger volumes for shorter maturities, whereas the volume for longer maturities 

drops off exponentially. The longer maturity contracts thus yield less accurate and weaker 

price signals than shorter maturity contracts.  

Another source of forward-looking information can come from the weather. Temperature 

influences both the production and especially the demand for electricity, thereby affecting 

the price process. As shown by Smith-Meyer (2022), the Nord Pool system price is positively 

affected by negative changes in temperature, indicating that demand for electricity increases 

with lower temperatures. This effect is most pronounced for all seasons, other than the 

summer months between April and September. Knittel and Roberts (2005) find that price 

models which include seasonal and temperature variables significantly outperform models 

which do not include these variables, in terms of forecasting hourly day-ahead electricity 

prices obtained from the California market. Huurman et al (2012) found that an ARIMA model 

extended with power transformations of next-day weather forecasts yields better point 

forecasting results, in terms of RMSE for predicting day-ahead prices at Nord Pool. 

Temperature forecasts are created every day for up to two weeks ahead, thereby providing a 

valuable source of continuous forward-looking information for short-term electricity price 



forecasting. Weron and Misiorek (2008) found that the inclusion of realized temperature in 

their ARX model rendered the inclusion of load insignificant for a study with Nord Pool data.

The number of parameters to be estimated in an AR model increases with the number of 

explanatory variables and with the number of lags. As such, the problem of overfitting must 

be considered. As a means to lessen the probability of overfitting, and to make the forecasting 

model robust, regularization has been considered by several studies on the power markets. 

Among those, Ziel & Weron (2018) use VAR models with hourly prices and seasonal dummies 

to estimate day-ahead power prices. Their models are regularized with the LASSO procedure,

and they find that multivariate and regularized models estimate day-ahead prices more 

accurately than univariate models.

3. Data
As visualized in Figure 1, Nord Pool is divided into price zones which sometimes encompass 

whole countries. In this paper I study the forecasting information in weather forecasts

regarding future power prices. As found in Smith-Meyer (2022), temperature affect the 

electricity spot price for the months from and including October, to and including May. These 

months are thus of interest for this study, and data for the other months are disregarded, 

apart from in the descriptive statistics. I model electricity prices at zone NO1 which is situated 

around Oslo. The data spans the period from March 15th, 2010, to May 11th, 2015, with the 

first out-of-sample data point being on May 13th, 2014, in order to test the models for a 

whole season.



Figure 1. Nord Pool bidding area with price zones.  

Realized temperatures and temperature forecasts are collected for the city of Oslo, which is 

the largest city in price zone NO1. The one through nine-day temperature forecast is made by 

European Centre for Medium-Range Weather Forecasts (ECMWF) and the data were acquired 

through Norwegian Meteorological Institute. One important feature of temperature forecasts 

is the increasing uncertainty of the forecast as the forecast horizon increases, as can be seen 

in Table 1, with uncertainty measured by the standard deviation of forecast errors. A total of 

six instances of temperature forecasts are missing, all non-adjacent. Missing forecasts made 

at time t for h days ahead have been filled with the forecast made at t-1 for h+1 days ahead. 

This is not possible for the 9-day forecast, which have been filled with the 9-day forecast of 

the previous day. Removing the rows with missing temperature forecasts did not alter the 

end-result. 

 

Table 1. Standard deviation of temperature (Centigrade) forecast errors (daily averages).  

To test the forecast performance of models without temperature and other exogenous 

variables, I need to include in my models several variables which are expected to influence 

the electricity price. 

Nuclear power production in Sweden is included in the model, as price zone NO1 is connected 

to the Swedish SE3 price zone by a power line with a capacity of over 2GW in either direction. 

This enables nuclear power from Sweden to affect the market in Eastern Norway. There are 

currently three nuclear power plants in Sweden, with a total of eight reactors which are 

between 45 and 30 years old. Two currently decommissioned reactors at Oskarshamn were 

still active during the years 2010 to 2015, from which I have data. Total production capacity 

for this period was 8,2 GW, but as can be seen from Figure 2, the actual production usually 

varies between 50 and 100 % of capacity. Theoretical production is therefore just above 200 

GWh per day, which is only achieved for some periods of the year, which is mainly during 

wintertime. There are several reasons why the production varies. Scheduled and unscheduled 

maintenance take up a sizeable portion of the year. Another reason is that not all reactors are 

of the same size and efficiency. The two now decommissioned reactors at Oskarshamn were 

Days ahead 1 2 3 4 5 6 7 8 9

Sandard Deviation 1.45 1.59 1.76 2.04 2.25 2.63 3.10 3.55 3.75



among the smaller reactors and were only profitable when prices seemed to be high enough 

over time, for instance during wintertime, placing themselves on the right-hand side of the 

merit order curve. Data for nuclear production were acquired from www.svk.se 

  Mean Median Min Max SD 

Spot price (EUR/MWh) 37.1 34.4 3.0 95.8 14.4 

Nuclear (GWh/day) 166.2 169.6 78.5 219.7 33.3 

Coal (EUR/Tonne) 57.4 55.3 38.1 83.9 11.7 

Natural Gas (EUR/100 therms) 67.0 68.7 32.0 89.2 11.3 

Wind Denmark (GWh/day) 29.7 24.5 0.7 103.7 21.5 

Wind Sweden (GWh/day) 23.0 18.4 0.3 100.7 17.6 

Reservoir (%) 60.2 65.3 18.1 92.0 20.0 

Temperature (°C) 7.1 7.0 -16.1 25.8 8.1 

 

Table 2. Descriptive statistics, daily observations, price zone NO1  

The coal prices which are used in this study are the Rotterdam coal futures, continuous 

contract #1, which is the front month contract. For natural gas, the prices for UK natural gas 

front month continuous contract have been used. As I do not model the currency risk in this 

study, the prices of coal and natural gas have been transformed to Euros. When no prices 

have been quoted because of weekends and holidays, the last known price has been used.  

As 95 % of electricity production in Norway comes from hydropower, reservoir levels might 

have an influence on the electricity price. If water is scarce, the price usually increases 

because power plants cannot produce electricity without getting close to the minimum 

required water level. If this level is breached, the power plant is fined. The reservoir level is 

published by www.nve.no every Wednesday at 13:00. Total reservoir capacity in Norway is 

enough to produce 86 TWh, which is most of the yearly consumption. Melting of snow usually 

fills the reservoirs during early summers when demand is lower, and the reservoirs are 

depleted during wintertime when demand is highest, and precipitation falls as snow. 

Reservoir levels have been used in other studies like Kristiansen (2014) and Botterud et al 

(2010). 

  



 

Figure 2. Time series used in AR models as measured in levels. Dotted vertical line indicates border between in-
sample data and out-of-sample data. For the analysis, data is logarithmically transformed, and only data for months 
from and including October to and including May are used. 

During the last two decades, wind power capacity has been built, first in Denmark and later 

in Sweden. During 2015, the two countries produced 14 TWh and 16 TWh from this power 

source, respectively. As the marginal cost of wind power is close to zero, this production 

places itself on the left of the merit order curve thereby lowering prices. The production is 



measured in GWh per day. As can be seen from Figure 1, the wind production is highly volatile, 

often dropping close to zero. 

4. Method 

The models which are used to test the different hypotheses in this paper is reduced-form AR 

models with exogenous variables. AR models on daily prices have been used by Weron and 

Misiorek (2008), Kristiansen (2012), and Nowotarski and Weron (2016), whereas VAR models 

on hourly prices  have been used by Raviv et al (2015), Huisman et al (2007) and He et al 

(2015). The model I propose is 
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where the spot price (U) is explained by � lags of the spot price, nuclear production (�), coal 

price (X), natural gas price (Y), wind power in Sweden (ws), wind power in Denmark (Z\), 

in addition to the reservoir level in Norway (^�). I also include the normal temperature for 

Oslo (��) and the temperature forecast made at time � − ℎ for time �, (�_�,f). The normal 

temperature deals with seasonality and seasonal dummies were rendered insignificant by the 

inclusion of the normal temperature, which provides for a more parsimonious model. The 

temperature forecast which is used in the model is made by subtracting the deterministic 

normal temperature (seasonal component) from the original temperature forecast. This will 

then model the stochastic part of the temperature process. Nuclear power and wind 

generation is expected to have a negative effect on the spot price as increased generation will 

shift the supply curve to the right. Increased coal and gas prices increases the cost of 

generation from coal and gas fired power plants and are thought to have a positive correlation 

with the spot price. Also, when the reservoir levels are lower, the water value is higher and 

hydro power plants with reservoirs will submit their bids at a higher price.  



The data, except temperatures, are transformed logarithmically to model any exponential 

non-linearities in the data. Logarithms also ensure the model returns positive forecasted 

production and prices. Negative prices have not been observed in this market as they have in 

other markets with larger prevalence of wind and solar power.  

The number of lags considered in the model were chosen based on in-sample analysis of final 

prediction error (FPE) criteria, which theoretically minimizes the mean squared error, see 

Lütkepohl (2006) and Akaike (1969, 1971). This information criteria yields the same result as 

the more known Akaike information criteria (AIC) for large samples, see Akaike (1974).  Based 

on these criteria, an AR structure with eight lags, � = 8, minimizes the theoretical one-step 

mean squared forecast error.  

In order to generate forecasts for the spot price for more than one  period ahead, an AR 

structure with eight lags is used to create forecasts for nuclear production, wind production, 

coal and gas prices, and reservoir levels.  

Most forecasting of time series is iterative, see Pesaran et al (2011), meaning that first the 

one-period forecast is made, and the coefficient set from this estimation is used to make the 

multi-period forecasts. Another way to forecast is to make a direct forecast, where one model 

per forecasting horizon is estimated and used, without iteration. When the model includes 

forward-looking information, like a temperature estimate or a spot price estimate from a 

futures price, the iterative process might disregard the uncertainty of longer-period 

estimates. There might be less uncertainty around the coefficients making a forecast from t 

to t+1, than from t+8 to t+9. My framework enables us to test whether one set of coefficients 

should be used for all forecast horizons, or one set of coefficients per forecast horizon should 

be used.  

Coefficients are estimated based on the in-sample data up until time �. Out-of-sample 

forecasts are then made for a one day to a nine-day horizon. The in-sample data is then 

augmented with the next day to reflect the additional information a forecaster would have at 

time � + 1 before making the next one to nine-day forecasts. 

Ordinary least squares seek to minimize the sum of squared residuals: 

‖km − k‖�� = pq�u − kp�
�
 



where ‖⋅‖� is the Euclidan norm, X is the matrix of independent variable values, �u  is the 

coefficient vector, and y is a vector containing values of the dependent variable. The OLS 

estimator returns unbiased coefficient estimates under certain assumptions. However, the 

uncertainty of the coefficients is xy^z�u{ = }�(q~q)%�, where the unknown error variance 

can be estimated as }m� = �~�
V%�, where e is the residual vector, n is the number of observations, 

and m is the number of coefficients to be estimated. This variance is often high under 

multicollinearity or when there are many predictor variables. Sometimes it can be beneficial 

to reduce this variance at the cost of an increased bias. This is the idea behind regularization, 

and some of the more known methods include Ridge regression, LASSO regression, and Elastic 

Net regression. 

Ridge regression, which was put forth by Hoerl and Kennard (1970), improves prediction error 

by shrinking large regression coefficients in order to reduce overfitting. It does so by 

penalizing the sum of squares by adding the sum of square coefficients and is often called �� 

regularization: 

pq�u − kp�
� + �p�up�

�
 

� is chosen to minimize this sum for a set of different values of � ∈ [0, ∞⟩. If � is set to zero, 

then there is no shrinkage of the parameters, and the OLS coefficient vector is returned. As � 

increases, the coefficients are pulled towards, but not entirely to zero. The randomly shuffled 

in-sample data is split into ten sections where iteratively, nine sections are used to estimate 

the parameters, and the last section is used to compute the sum of forecast errors. This means 

that each sample is given the opportunity to be used in the hold out set one time and used to 

train the model nine times. The ten sets of forecast errors are then averaged, and the � which 

minimizes this sum is kept being used for forecasting out-of-sample. This leave-ten-out 

procedure is used by all regularization methods considered in this paper. 

The LASSO estimation of Tibshirani (1996), which among others has been used by Ziel (2016), 

differs from ridge regression in penalizing the sum of squared residuals by the sum of absolute 

coefficients values. It is often called �� regularization: 

pq�u − kp�
� + �p�up�  



In LASSO regression, less important coefficients are often set to zero, which is why LASSO 

regression often is used in covariate selection. As in Ridge regression, the � which minimizes 

the penalized sum of squares is kept and used for forecasting. 

The last regularization method considered in this paper is the Elastic Net regression. This is a 

linear combination of the �� and  �� regularizations: 

pq�u − kp�
� + � � �p�up� + (1 − �)p�up�

�� 

where � ∈ [0,1]. Now there are two hyperparameters to be estimated, � and �. 

To answer my research questions, several models and their modes of estimation will be 

considered. The naïve approach, where the forecast for all future time periods is equal to the 

last known value is a popular benchmark. The only model without temperature information 

is a univariate autoregressive model (AR no temperature). Forecasts from this model will be 

compared to those form a univariate autoregressive model with temperature forecast (ARX). 

To facilitate a comparison between the forecast performance of models with and without 

regularization, an autoregressive model with all explanatory variables is estimated (ARX 

FULL). This model is also estimated using regularization (ARX RIDGE, ARX LASSO, and ARX 

ELASTIC NET). The forecasts from abovementioned models are estimated using one separate 

set of coefficients per forecast horizon. To find the value of the use of separate sets of 

coefficients, forecasts from restricted models are made. These restricted models, which use 

only the one-step-ahead set of coefficients are identified with a "C" term (ARX C, ARX C, ARX 

RIDGE C, ARX LASSO C, and ARX ELASTIC NET C). 

5. In-sample results 

One of the questions to be answered in this paper is whether one set of coefficients should 

be used across all forecast iterations from forecast day one to forecast day nine. To this end, 

one must look at how the coefficients differ between the horizons. The coefficients from the 

ARX model are presented in Table 3. The specification is a such 
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One can see that the importance of temperature forecast is shrinking towards zero as older 

forecasts are used. This coincides with the greater uncertainty of longer horizon temperature 

forecasts, indicating that to use the coefficient set from one-period forecasts could overstate 

the importance of the temperature forecast at longer horizons. For example, a one unit 

change in temperature forecast is related to a 0.46% change in the spot price in the opposite 

direction according to the one-day forecast model whereas according to the nine-day forecast 

model this relationship is only 0.22%. 

Horizon Intercept βs1 βs2 βs3 βs4 βs5 βs6 βs7 βs8 βnt βtf R2 

1 0.19 0.87 0.00 -0.01 -0.04 0.10 0.05 0.29 -0.31 -0.0005 -0.0046 0.9537 

(0.05) (0.08) (0.10) (0.10) (0.07) (0.07) (0.08) (0.08) (0.06) (0.0006) (0.0008)   

2 
0.20 0.87 0.00 -0.01 -0.04 0.10 0.05 0.29 -0.31 -0.0005 -0.0047 0.9538 

(0.05) (0.08) (0.10) (0.10) (0.07) (0.07) (0.08) (0.08) (0.06) (0.0006) (0.0008)   

3 
0.19 0.87 0.01 -0.01 -0.04 0.10 0.05 0.29 -0.31 -0.0004 -0.0044 0.9535 

(0.05) (0.08) (0.10) (0.10) (0.07) (0.07) (0.08) (0.08) (0.06) (0.0006) (0.0008)   

4 
0.19 0.88 0.01 -0.01 -0.05 0.10 0.05 0.30 -0.32 -0.0003 -0.0043 0.9534 

(0.05) (0.08) (0.10) (0.10) (0.07) (0.07) (0.08) (0.08) (0.06) (0.0006) (0.0008)   

5 
0.18 0.88 0.01 -0.01 -0.05 0.09 0.05 0.29 -0.31 -0.0003 -0.0044 0.9535 

(0.05) (0.08) (0.10) (0.10) (0.07) (0.07) (0.08) (0.08) (0.06) (0.0006) (0.0008)   

6 
0.17 0.89 0.00 -0.01 -0.05 0.09 0.05 0.29 -0.31 -0.0003 -0.0037 0.9529 

(0.05) (0.08) (0.10) (0.10) (0.07) (0.07) (0.08) (0.08) (0.06) (0.0006) (0.0008)   

7 
0.16 0.90 0.00 -0.01 -0.05 0.10 0.05 0.29 -0.31 -0.0004 -0.0032 0.9525 

(0.05) (0.08) (0.10) (0.10) (0.07) (0.07) (0.08) (0.08) (0.06) (0.0006) (0.0008)   

8 
0.16 0.91 0.00 -0.02 -0.05 0.09 0.05 0.29 -0.32 -0.0004 -0.0027 0.9522 

(0.05) (0.08) (0.10) (0.10) (0.07) (0.07) (0.08) (0.08) (0.06) (0.0006) (0.0008)   

9 
0.15 0.91 0.00 -0.01 -0.06 0.09 0.05 0.29 -0.31 -0.0003 -0.0022 0.9519 

(0.05) (0.08) (0.10) (0.10) (0.07) (0.07) (0.08) (0.08) (0.06) (0.0006) (0.0008)   

 

Table 3. Coefficients per temperature forecast horizon for the ARX model. Estimated from in-sample data, March 15th, 
2010, to May 12th, 2014, for months Jan-May and Oct-Dec. Numbers in parenthesis are standard errors. 

In the "ARX FULL" model with all explanatory variables, eight endogenous variables with eight 

lags and two exogenous variables implies 67 coefficient estimates per regression, for each of 

the nine horizons. Table 4 shows the coefficient for temperature forecast in the equation for 

the spot price. Even in this multivariate framework, the importance of temperature forecast 

is shrinking towards zero when older temperature forecasts are used. This indicates that also 



in the multivariate case, a separate set of coefficients per forecast step could be used to 

reduce forecast errors. Also, there are no significant autocorrelated lags in the residuals of 

the multivariate equation for the spot price.  

Horizon 1 2 3 4 5 6 7 8 9

Coefficient on temperature forecast -0.0048 -0.0049 -0.0045 -0.0045 -0.0045 -0.0037 -0.0032 -0.0026 -0.0025  

Table 4. Coefficients for the impact of temperature forecast on the spot price in the VARX model. Estimated from in-
sample data.  

As can be seen from figure 3, the weekly seasonality is captured by the lag structure in both 

the univariate and the multivariate models. If only seven lags had been used, it would have 

been necessary to include a weekly dummy to capture the short-term seasonality like in 

Nowotarski and Weron (2016) and Weron and Misiorek (2008). The ACF and PACF functions 

of the other variables resemble those corresponding to the spot price. 

 

 

Figure 3. Autocorrelation function (ACF) to the left and Partial autocorrelation function (PACF) to the right for spot 
price in-sample residuals from ARX model with 8 lags. 

There are some ARCH effects in the residuals, with the ACF coefficient for lag one of squared 

residuals equalling 0.4. This is not accounted for in this study, as an initial analysis indicated 

that the conclusions to my three hypotheses would not change.  

 

One important characteristic of an AR process is its ability to generate stable forecasts. In our 

case, several variables have to be forecasted to make a forecast more than one day ahead. 

This stability of the system can be investigated by looking at the characteristic polynomial of 

the coefficient matrixes in the corresponding VAR model. To test this, I include all variables in 

the VAR model, the temperature variables are exogenous, and estimate the coefficients but 

with all non-diagonal coefficients set to zero. This will yield the same coefficient set as in the 

AR models above, but it is easier to find the characteristic polynomial of the system.  



VARX

Intercept 0.02 Normal temperature -0.0003 Temperature forecast -0.0048

Spot Nuclear Coal Gas Wind DK Wind SE Reservoir

t-1 0.86 -0.14 0.13 -0.21 0.01 0.00 -0.04

t-2 0.00 0.23 -0.18 0.29 0.00 0.00 -0.10

t-3 0.02 -0.21 0.01 0.30 0.00 0.00 0.12

t-4 -0.08 0.17 0.56 -0.59 -0.01 0.01 0.07

t-5 0.11 -0.18 -0.13 0.49 0.00 0.00 0.07

t-6 0.07 0.22 -0.50 -0.33 0.01 -0.01 -0.38

t-7 0.29 -0.06 -0.39 0.52 0.00 0.02 0.33

t-8 -0.34 -0.03 0.59 -0.47 0.00 -0.02 -0.07

VARX RIDGE

Intercept 0.02 Normal temperature -0.0010 Temperature forecast -0.0080

Spot Nuclear Coal Gas Wind DK Wind SE Reservoir

t-1 0.41 -0.02 0.02 -0.01 0.00 0.00 -0.01

t-2 0.00 0.02 0.02 0.01 0.00 0.00 0.08

t-3 0.03 0.03 0.00 0.00 0.00 0.05 0.00

t-4 0.00 0.00 0.01 0.00 0.06 0.00 0.01

t-5 0.00 0.00 0.00 0.08 0.02 0.00 -0.02

t-6 0.00 -0.01 0.07 0.01 0.00 -0.02 0.00

t-7 0.00 -0.06 -0.01 0.01 -0.03 0.00 -0.01

t-8 0.00 -0.01 0.00 0.00 0.00 0.00 0.00

VARX LASSO

Intercept -0.05 Normal temperature 0.0000 Temperature forecast -0.0051

Spot Nuclear Coal Gas Wind DK Wind SE Reservoir

t-1 0.84 0.00 0.00 0.00 0.01 0.00 -0.01

t-2 0.00 0.02 0.00 0.00 0.00 0.00 0.00

t-3 0.06 0.00 0.00 0.00 0.00 0.00 0.00

t-4 0.00 0.00 0.00 0.00 0.05 0.00 0.00

t-5 0.00 0.00 0.00 0.07 0.00 0.00 0.00

t-6 0.00 0.00 0.22 0.00 0.00 0.00 0.00

t-7 0.00 -0.25 0.00 0.00 -0.01 0.00 -0.01

t-8 0.00 -0.01 0.00 0.00 0.00 0.00 0.00  

Table 4. Coefficient values for the electricity spot price of VARX, VARX RIDGE and VARX LASSO. Estimated from in-
sample data. 

In my case, all the roots of the characteristic polynomial of the VAR setup have modulus 

greater than one, which implies that the system of AR models describe a stable process which 

will create stationary forecasts with time invariant means, variances, and covariance 

structure. 

 



Regularization works by reducing the variance of the forecasts, but at a cost of higher bias. It 

achieves this goal by adjusting the coefficients in the model, selecting the optimal coefficients 

which are penalized by the size of the coefficients. The in-sample estimated coefficients of 

the one-step ahead ARX FULL model estimated by OLS, Ridge and LASSO regression can be 

found in Table 4. From the table, one can see that the coefficients from the three estimation 

methods differ, sometimes substantially. As expected, the LASSO estimation sometimes sets 

coefficients to zero, selecting a more parsimonious model.  

6. Out-of-sample results and discussion 

As the number of lags in the model were chosen based on FPE and AIC which minimizes the 

mean squared error, root mean squared error (RMSE) is chosen to assess the forecasts. RMSE 

also has the benefit of representing the uncertainty in units of the underlying variable. Using 

MAE or MAPE did not change the conclusion. The results for all investigated models per 

horizon are found in Table 5. MSE and RMSE yield the same answers as the square root is a 

strictly monotonic function.  

Models  \  Horizon 1 2 3 4 5 6 7 8 9 

Naive 2.63 3.70 4.28 4.55 4.82 5.03 5.23 5.68 6.02 

ARX no temperature 2.52 3.51 4.04 4.39 4.71 5.06 5.40 5.80 6.11 

ARX 2.39 3.29 3.76 4.12 4.40 4.75 5.07 5.46 5.78 

ARX C 2.39 3.29 3.77 4.13 4.43 4.79 5.10 5.50 5.84 

ARX FULL 2.25 2.33 2.48 2.66 2.72 2.70 2.64 2.82 2.97 

ARX FULL C 2.25 2.32 2.47 2.63 2.68 2.69 2.68 2.92 3.09 

ARX RIDGE 2.23 2.30 2.41 2.51 2.51 2.53 2.53 2.65 2.69 

ARX RIDGE C 2.23 2.30 2.40 2.49 2.49 2.54 2.57 2.76 2.82 

ARX LASSO 2.07 2.10 2.23 2.37 2.45 2.48 2.43 2.53 2.64 

ARX LASSO C 2.07 2.10 2.22 2.34 2.41 2.46 2.45 2.62 2.77 

ARX ELASTIC NET 2.06 2.11 2.24 2.38 2.46 2.49 2.45 2.56 2.68 

ARX ELASTIC NET C 2.06 2.11 2.24 2.38 2.45 2.50 2.48 2.65 2.80 

 

Table 5. Root mean squared error (RMSE) per model and forecast horizon for the period from 2014-05-21 to 2015-05-
11. 

The results enable us to make several comparisons. The AR model without temperature 

creates forecasts with smaller forecast errors than the Naïve approach, but only up to 5 days 

ahead. After this horizon, the Naïve approach provides more accurate forecasts. 



The model "ARX no temperature" is an autoregressive model with spot price as the 

dependent variable and its corresponding lags as independent variables. The ARX model 

contains, additionally, the normal temperature and a de-normalized temperature forecast as 

exogenous variables. The value of including temperature in the model can be seen from the 

more precise forecast made by the ARX model, as measured by a lower RMSE for all forecast 

horizons considered. This indicates that the temperature forecast contains relevant 

information for electricity price forecasting even up to 9 days into the future.  

One can see that the ARX model which uses one set of coefficients per horizon, considering 

the increasing uncertainty of the temperature forecast for longer horizons, returns slightly 

more accurate forecasts for day three until day nine. The ARX CONST model, which uses the 

set of coefficients which optimizes the one-day forecast, performs just as well for the first two 

iterations.  

For the full model, the benefit of making one set of coefficients per horizon show itself from 

the sixth iteration onwards, reflecting the development in the coefficient on the temperature 

forecast as seen in table 4. Consequently, if the forecast horizon is short, then one set of 

coefficients seem to suffice.  

What is the benefit of including so many variables? If I compare the ARX model with the 

multivariate ARX FULL model, what first catches the eye is the relatively large RMSE for 

forecasts made by the ARX model for longer horizons. Even at shorter horizons, the ARX FULL 

model produce more accurate forecasts, suggesting the included variables do contain some 

relevant statistical information which can be used to forecast the electricity spot price. 

One solution to improve the forecasting performance of the multivariate model could be to 

use regularization. Compared to the OLS ARX FULL model, the ARX RIDGE model produce 

forecasts which have slightly lower RMSE than the non-regularized model. However, the 

benefit of regularization is evident if I look at the ARX LASSO model. Ridge regularization is 

characterized by the inclusion of all coefficients whereas LASSO regularization often sets 

some coefficient values to zero. The benefit can be seen already from the one-day ahead 

forecast, as the forecast from the VARX LASSO model exhibit lower RMSE than the forecasts 

from all the other models considered in this study, even the linear combination of Ridge and 

LASSO  in the ARX ELASTIC NET model.  



7. Conclusion 

As a result of the peculiarities of electricity prices and the opportunity to transfer risk, 

electricity price forecasting has increased in importance during the last two decades. 

Information from futures is sometimes non-existent, often not continuously available, and 

often thinly traded. Hence, temperature forecasts may provide a useful source of forward-

looking information for electricity price forecasting.  

Some studies have used information from temperature forecasts to improve on day-ahead 

price forecasts. Other studies have forecasted power prices for horizons of more than one 

day, but without using information from the weather. This study use a dataset from Nord Pool 

spanning five years (2010-2015) to test the one to nine-day forecasting performance of auto 

regressive models with exogenous variables, herein the temperature forecast.  

In this study, inclusion of information from temperature forecasts reduce the forecast errors, 

as measured by RMSE, compared to models which do not include this information. The first 

contribution of the paper is to show that this result holds for all horizons up to and including 

9 days, which is the longest horizon considered in this study. Furthermore, I find that it is 

beneficial to consider that uncertainty is an increasing function of the temperature forecasts' 

horizon. The second contribution is to show how to account for this increased uncertainty by 

proposing a forecasting method which mixes direct and incremental forecasts. In this 

framework, one function is estimated for each forecasting horizon like in direct forecasting, 

but the forecasting itself is iterative. In this way, the uncertainty in the temperature forecasts 

are accounted for by the 9 differing coefficient sets. Additionally, I show that for AR models it 

is beneficial to  include several exogenous variables which contain information which is 

beneficial when forecasting power prices. Lastly, I show that there is a reduction in the 

forecasting errors, as measured by RMSE, if regularization is applied on the coefficient sets. 
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