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Abstract
Genomic selection (GS) is a predictive methodology that is changing plant breeding.

Genomic selection trains a statistical machine-learning model using available phe-

notypic and genotypic data with which predictions are performed for individuals that

were only genotyped. For this reason, some statistical machine-learning methods are

being implemented in GS, but in order to improve the selection of new genotypes

early in the prediction process, the exploration of new statistical machine-learning

algorithms must continue. In this paper, we performed a benchmarking study between

the Bayesian threshold genomic best linear unbiased predictor model (TGBLUP;

popular in GS) and the gradient boosting machine (GBM). This comparison was done

using four real wheat (Triticum aestivum L.) data sets with categorical traits measured

in terms of two metrics: the proportion of cases correctly classified (PCCC) and the

Kappa coefficient in the testing set. Under 10 random partitions with four different

Abbreviations: Bed2IR, bed planting with two irrigation levels; Bed5IR, bed planting with five irrigations; DL, deep learning; DTHD, days to heading;
EHT, early heat; EYT, elite yield trial; Flat5IR, flat planting and five irrigations; FlatDrip, flat planting with drip irrigation; GBM, gradient boosting machine;
GS, genomic selection; LHT, late heat; PCCC, proportion of cases correctly classified; SVM, support vector machine; TGBLUP, threshold genomic best
linear unbiased predictor model.
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sizes of testing proportions (20, 40, 60, and 80%), we compared the two algorithms

and found that in three of the four data sets, the GBM outperformed the TGBLUP

model in terms of both metrics (PCCC and Kappa coefficient). In the larger data sets

(Data Sets 3 and 4), the gain in terms of prediction accuracy of the GBM was con-

siderably significant. For this reason, we encourage more research using the GBM in

GS to evaluate its virtues in terms of prediction performance in the context of GS.

1 INTRODUCTION

Genomic selection (GS), the methodology proposed by
Meuwissen et al. (2001), is a novel approach for predicting
complex traits that exploits genetic markers and consists of
developing a training population (with phenotypic and geno-
typic information) with which a statistical machine-learning
algorithm is trained and then used for making predictions for
a testing breeding population (with only genotypic informa-
tion). Finally, the selection of candidate individuals in the test-
ing breeding population is made based on the predicted phe-
notypic values or breeding values. In plant breeding, GS offers
ample opportunities to increase the genetic gain of complex
traits per unit time and cost (Bhat et al., 2016) when it is cor-
rectly applied (Zhong et al., 2009, Heffner et al., 2010).

Genomic selection is very attractive with regard to pheno-
typic selection since in complex traits (yield, quality, biotic
and abiotic stress, etc.) it provides (a) high selection accu-
racy, (b) reduced cycle time, (c) greater gain per unit time, (d)
precision and accuracy, and (e) expected results (Bhat et al.,
2016). In this way, GS avoids the long period (5–12 yr) needed
to develop a crop cultivar based only on phenotypic selec-
tion, which is less effective for complex and low heritable
traits (Tuberosa, 2012). For this reason, GS is revolutionizing
plant breeding and has been implemented in many crops like
wheat (Triticum aestivum L.), maize (Zea mays L.), cassava
(Manihot esculenta Crantz), chickpea (Cicer arietinum L.),
and rice (Oryza sativa L.), among others (Crossa et al., 2013,
2017; Huang et al., 2019; Meuwissen et al., 2013; Môro et al.,
2019; Roorkiwal et al., 2016; Salam & Smith, 2016; Small-
wood et al., 2019; Vivek et al., 2017; Wolfe et al., 2017). In
this vein, many more new breeding programs are moving from
conventional breeding to GS.

However, the successful implementation of GS must take
several factors into consideration such as (a) selecting a rep-
resentative (training) set (Guo et al., 2019), (b) guaranteeing
the quality of genotypic and phenotypic data in the training
set (Edwards et al., 2019), (c) having a representative sample
(good coverage) of the markers in the complete genome, and
(d) selecting the best statistical machine-learning method. The
selection of the optimal statistical machine-learning method
is not an easy task because of the ‘no-free-lunch’ theorem
that states that there is no best single machine-learning algo-

rithm across all possible prediction problems (Wolpert, 1996;
Wolpert & Macready, 2005). For this reason, the development
of new statistical machine-learning methods, as well as the
adoption and exploration in GS of existing statistical machine-
learning algorithms, is an important field of research.

The two most popular linear methods used in genomic
prediction are mixed models (linear models with fixed
and random effects) and Bayesian methods (Bayesian ridge
regression, BayesA, BayesB, BayesC, and Bayesian lasso).
However, recently, many popular statistical machine-learning
models, like support vector machine (SVM) (Montesinos-
López, et al., 2019), deep learning (DL) (Montesinos-López,
et al., 2021a, 2021b), and random forest (Sarkar et al., 2015)
have also been explored in the context of GS. Some of these
methods have been successfully applied in many other fields
since they are powerful at capturing complex nonlinear pat-
terns like those found in the context of GS.

While machine-learning methods focus on prediction with-
out using a pre-existing model, statistical approaches formal-
ize relations between variables in the form of explicit math-
ematical models with parameters that are estimated. In GS,
or any other research area, one approach is to build the model
from theory and estimate its parameters based on the available
data. However, in practical situations, models are not easy to
develop, and thus, machine-learning applications are used for
building supervised nonparametric models (for regression and
classification) like DL, SVM, or any other algorithm. Conse-
quently, the model is created from the data.

As suggested by Freund and Schapire (1997), boosting is
a general framework for constructing an extremely accurate
prediction with various roughly accurate predictions. Under-
taken by Friedman (2001) and Natekin and Knoll (2013),
the gradient boosting machine (GBM) investigates how to
build predictive models through back fittings and nonpara-
metric regressions. Rather than building a single model, the
GBM starts by developing an initial model and constantly
fits new models through loss function minimization to pro-
duce the most precise model (Natekin & Knoll, 2013). Within
machine-learning techniques, GBM is a family of powerful
methods that have shown success in several practical applica-
tions. In a specific machine-learning task, a simple model can
first be created, or an ensemble of models can be developed
for some particular learning tasks. Ensembles are created by
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linking multiple simple models in the best possible manner to
produce a complex model. In practice, the ensemble approach
combines several simple models to attempt to build a stronger
ensemble prediction.

Random forest and GBM are examples of machine-learning
ensemble techniques. Random forest and GBM are models
that may account for non-additive effects using fast algorithms
that account for a large number of covariates and interactions
and can be used in both classification and regression prob-
lems. Random forest and GBM are ensemble learning meth-
ods that make predictions (regression or classification) by
combining the outputs from individual trees. They differ in the
way the trees are built and the way the results are combined.
A random forest is created using a process called ‘bagging’
in which each decision tree is used as a parallel estimator.
Each decision tree is fit to a subsample taken from the whole
data set. Decision trees in GBM are linked sequentially (i.e., in
series) to achieve a strong learner, but they are not fitted to the
entire data set. The target is to minimize the errors of the pre-
vious tree. Thus, each tree fits to the residuals from the previ-
ous one, reducing the need to have correlated trees (Friedman,
2001; Hastie et al., 2009). As a result, the global accuracy
and robustness of the model regularly increase. Additionally,
GBM does not use or need bootstrapping.

Gradient boosting machine, as any supervised machine-
learning algorithm, works for regression and classification
that produces a prediction model with reduced variance and
bias in the form of an ensemble of simple prediction models
(Friedman, 2001; Hastie et al., 2009). The algorithm helps in
the conversion of weak learners into strong learners by com-
bining many weak learners, as the weak learners are sequen-
tially corrected by their predecessors, and, in the process, they
are converted into strong learners. As an ensemble model,
GBM comes with an easy-to-read and easily interpretable
algorithm, making its prediction interpretations easy to han-
dle. Gradient boosting machine is not new in the context of
GS since Li et al. (2018) used it to identify a subset of single-
nucleotide polymorphism makers for the genomic prediction
of breeding values, while Perez et al. (2022) used it for the
prediction on complex phenotypes in outbred mice. Gradi-
ent boosting machine was also used for genomic prediction of
continuous maize phenotypic traits by Westhues et al. (2021).

Recently, threshold models, a type of generalized linear
mixed models with probit link function (Stroup, 2012), have
been considered in GS for plant breeding. Montesinos-Lopez
et al. (2015) introduced a threshold GS model that is an exten-
sion of the genomic best linear unbiased prediction of Jar-
quín et al. (2014) that incorporates genotype × environment
interaction; this model is denoted as TGBLUP. These authors’
results highlighted the importance of including genotype ×
environment interaction (capturing at least 49.42% of the total
variability); when this interaction was included, the total vari-
ability explained by these models was increased in addition to

Core Ideas
∙ Genomic-enabled prediction was used for categor-

ical traits to capture data patterns in different envi-
ronments.

∙ Two different genome-based models were used for
predicting categorical traits.

∙ Genome-based prediction with genotype × envi-
ronment interaction was used.

the prediction accuracy, which was shown between 8 and 19%
relative to models based on main effects only.

The TGBLUP model proposed by Montesinos-López et al.
(2015) is a Bayesian version of classic probit models and
is very competitive in terms of prediction performance, as
was shown by Montesinos-López et al. (2019) who compared
this method to DL and SVM. However, because of the fact
that the TGBLUP model was built under a Bayesian frame-
work (that uses Gibbs sampling), it requires sizeable com-
putational resources because convergence requires consider-
able time when used with large data sets. Montesinos-López
et al. (2020) also proposed a maximum a posteriori threshold
genomic prediction (MAPT) model for ordinal traits that is
more efficient than the TGBLUP with regard to implemen-
tation time; however, it is less efficient than the TGBLUP
method in terms of prediction performance.

For the previously described reasons, in this paper, we
benchmarked GBM against the TGBLUP. The comparison
between these two methods was done for categorical traits
using four real data sets (Montesinos-López et al., 2019,
2020). The TGBLUP method was selected for the compari-
son because it is one of the most efficient methods in terms
of prediction performance in the context of GS for binary
traits (Montesinos-López et al., 2019). The GBM was cho-
sen because it is very popular in many fields for producing
very efficient predictions, not just for binary traits. The main
objective of this study was to evaluate the prediction perfor-
mance of the GBM in the context of genomic selection and
compare its prediction ability against the TGBLUP method,
which is popular in GS.

2 MATERIALS AND METHODS

2.1 Phenotypic data

We used four wheat data sets that were used by Montesinos-
López et al. (2019, 2020). These four data sets were collected
by the Global Wheat Program of the International Maize and
Wheat Improvement Center and belong to elite yield trials
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(EYTs) established in four different cropping seasons with
four or five environments in each. The lines involved in each
of the environments of the same year are the same, but those
in different years are different lines. The EYT Data Set 1 was
involved in 2013–2014 and contains 767 lines; EYT Data Set
2 was established in 2014–2015 and contains 775 lines; EYT
Data Set 3 was cultivated in 2015–2016 and contains 964
lines; and EYT Data Set 4 was cultivated in 2016–2017 with
980 lines. The experimental design used was an alpha-lattice
design and the lines were sown in 39 trials each covering 28
lines and two checks in six blocks with three replications. In
each data set, several traits were available for some environ-
ments and lines. In this study we evaluated two traits that were
measured for each line in each environment: days to heading
(DTHD, number of days from germination to 50% spike emer-
gence) and plant height. The DTHD was discretized in four
categories and plant height in two. Details of the discretiza-
tion process can be found in Montesinos-López et al. (2019).
For full details of the experimental design and how the best
linear unbiased estimates were computed, see Juliana et al.
(2018).

In EYT 2013–2014 Data Sets 1 and 4 (EYT 2016–2017),
the lines under study were evaluated in four environments,
while in EYT 2014–2015 Data Set 2 and EYT 2015–2016
Data Set 3, the lines were evaluated in five environments.
For EYT Data Set 1, the environments were bed planting
with five irrigations (Bed5IR), flat planting and five irriga-
tions (Flat5IR), early heat (EHT), and late heat (LHT). For
EYT Data Set 2, the environments were bed planting with two
irrigation levels (Bed2IR), Bed5IR, Flat5IR, EHT, and LHT.
For EYT Data Set 3, the environments were Bed2IR, Bed5IR,
Flat5IR, flat planting with drip irrigation (FlatDrip), and LHT.
Finally, for EYT Data Set 4, the environments were Bed2IR,
EHT, Flat5IR, and FlatDrip.

2.2 Genotypic data

Genome-wide markers for the 3,486 (667 + 775 + 964 + 980)
lines in the four data sets were obtained using genotyping-
by-sequencing (Elshire et al., 2011; Poland et al., 2012) at
Kansas State University with an Illumina HiSeq2500. After
filtering, 2,038 markers were obtained from an initial set of
34,900 markers. The imputation of missing markers data was
carried out using LinkImpute (Money et al., 2015) and imple-
mented in TASSEL v5 (Bradbury et al., 2007). Lines that had
>50% of missing data were removed, and 2,506 lines were
used in this study (767 lines in the first data set, 775 lines in
the second data set, 964 lines in the third data set, and 980 lines
in the fourth data set). It is also important to point out that a
high level of relatedness by pedigree or kinship is expected

between lines within a year of testing and also across years of
testing because of the nature of the lines under study.

3 DATA AVAILABILITY

Details of the phenotypic and genomic data of the
seven data sets used in this study can be downloaded
(https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:
11529/10548140). Note that Data Sets 1–4 used in this article
correspond to Data Sets 1–4 of Montesinos-López et al.
(2019).

3.1 Statistical methods

3.1.1 Bayesian threshold genomic best linear
unbiased prediction

The ordinal probit model assumes that based on environments
(Ei), genotypes (gj), and the genotype × environment interac-
tion (geij), Yij is a random variable that takes values c= 1,. . . ,C
with the following probabilities:

𝑃
(
𝑌𝑖𝑗 = 𝑐

)
= Φ

(
γ𝑐 + 𝐸𝑖 + 𝑔𝑗 + ge𝑖𝑗

)
(1)

−Φ
(
γ𝑐−1 + 𝐸𝑖 + 𝑔𝑗 + ge𝑖𝑗

)
, 𝑐 = 1,… , 𝐶

where Ei are the fixed effects of environment i = 1, . . . , I.
For this reason, the beta coefficients were estimated for envi-
ronments, where gj, j = 1, . . . , J, are the random effects
of lines distributed as 𝑁(0,𝐆σ2g), and G is the genomic
relationship matrix computed as suggested by VanRaden
(2008); σ2g is the genetic variance component, geij is the geno-
type × environment interaction term distributed as 𝑁(0, 𝐈𝐈 ⊗
𝐆σ2ge), σ

2
ge is the corresponding variance component for the

genotype × environment interaction term, and −∞ = γ0 <
γ1 < ⋯ < γ𝐶 = ∞ are threshold parameters. A Bayesian for-
mulation of this model assumes the following independent
priors for the parameters: a flat prior distribution for γ =
(γ1,⋯, γ𝐶−1)[𝑓 (γ) ∝ 1], a normal distribution for beta coef-
ficients of fixed effects 𝐸𝑖 ∼ 𝑁(0, 1010), 𝑖 = 1,⋯, 𝐼 − 1, and
a scale inverse chi-squared distribution for σ2𝑔(σ

2
𝑔 ∼ χ−2

𝑣𝑔,𝑆𝑔
)

and σ2ge(σ
2
ge ∼ χ−2

𝑣ge,𝑆ge
) (Montesinos-López et al., 2015; Pérez-

Rodríguez & de los Campos, 2014).
This threshold model assumes that the process that gives

rise to the observed categories is an underlying or latent con-
tinuous normal random variable 𝑙𝑖𝑗 = −𝐸𝑖 − 𝑔𝑗 − ge𝑖𝑗 + ε𝑖
where εi is a normal random variable with mean 0 and vari-
ance 1, and the values of li are called ‘liabilities’ (Gianola,
1982; Sorensen et al., 1995). The ordinal categorical phe-
notypes in Equation 1 (Model 1) are generated from the
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underlying phenotypic values, li, as follows: 𝑌ij = 1if − ∞ <

𝑙ij < γ1, 𝑌ij = 2 if γ1 < 𝑙ij < γ2,⋯, and𝑌ij = 𝐶ifγ𝐶−1 < 𝑙ij <

∞. The TGBLUP model can be implemented in the BGLR
package of Pérez-Rodríguez and de los Campos (2014) in the
R statistical software (R Core Team, 2021).

3.1.2 Gradient boosting machine

The GBM is a powerful machine-learning algorithm that has
been used in a wide range of data driven applications in fields
such as ecology, computer science, biology, and genomic
prediction problems. Friedman (2001) proposed a modifica-
tion to the original gradient boosting algorithm. The author
observed improvement in gradient boosting’s accuracy by
proposing fitting a base learner on a subsample of the train-
ing set drawn at random without replacement at each itera-
tion of the algorithm. Friedman (2001) developed the boost-
ing paradigm based on various fitting criteria and named this
regression technique GBM. The author concluded that this
approach is competitive and robust for interpreting regression
of nonclean data.

We implemented the following GBM algorithm proposed
by Friedman (2001):

Inputs:

input data (yi, xi), for i = 1, 2, . . . , n
number of iterations M
choice of the loss-function φ(y, f)
choice of the base-learner model h(x, θ)

Algorithm:

Step 1: initialize f0 with a constant
Step 2: for t = 1 to M repeat Steps 3–6:
Step 3: compute the negative gradient of φ(yi, f) with

respect to f: gt(xi)
Step 4: fit a new base-learner function h(x, θt) for predict-

ing gt(xi) from the covariables xi
Step 5: find the best gradient descent step-size ρt:

ρ𝑡 = argmin
ρ

𝑛∑
𝑖=1

φ
[
𝑦𝑖, 𝑓𝑡−1

(
𝐱𝑖
)
+ ρℎ

(
𝐱𝑖, θ𝑡

)]

Step 6: update the function estimate: 𝑓𝑡 ← 𝑓𝑡−1 +
ρ𝑡ℎ(𝑥𝑖, θ𝑡)

Step 7: final predictions:𝑓 (𝑥) = 𝑓𝑀 (𝑥)

The GBM method was implemented using the Bernoulli
loss functions (based on Bernoulli distribution), where the

decision trees with interaction depth equal to three were used
as a base-learner model h(x, θt). Three thousand trees were
grown, the value of shrinkage used was 0.1 and the minimum
number of observations in the terminal nodes of the tree was
set to 5. We used the GBM library to implement it in this study
(Greenwell et al., 2020). Similarly, as in the TGBLUP method,
the information used as independent variables contains infor-
mation from environments plus the information of the geno-
types with markers and the information of the genotype by
environment interaction. However, in the TGBLUP method,
the information from environments, genotypes, and genotype
× environment interactions are introduced as separate blocks
of information (see Equation 1). Contrarily, under the gradi-
ent boosting machine, this information is concatenated and
included in only a matrix of inputs𝐗 = [𝐗𝐄,𝐗𝐆,𝐗𝐆𝐄], where
XE denotes the design matrix of environments, XG denotes
the design matrix of genotype postmultiplied by the square
root of the genomic relationship matrix, and XGE denotes the
design matrix of the genotype × environment interaction that
also takes into account the square root of the genomic rela-
tionship matrix. This implied that each row (xi for i = 1, 2,
. . . , n) of the input matrix X was used in the GBM method.
For more specific details of GBM, see Friedman (2001).

3.2 Evaluation of prediction performance

We used 30 random partitions to evaluate the prediction per-
formance in each data set. Random partitions are a type of
cross-validation where the data are divided into training and
testing at random, and the user specifies the proportion of
data assigned to training and testing. In our case, we used,
in each partition, 20, 40, 60, and 80% for training and their
corresponding complements for testing (80, 60, 40, and 20%).
The model was fitted with the training set, and we evaluated
the prediction performance with the testing set. Each parti-
tion (for example, with training = 80% of the data and testing
= 20% of the data) was repeated 30 times and the average pre-
diction performance of the 30 random partitions was reported
as prediction performance. In half of the training–testing par-
titions used; the training set is smaller than the testing set.
The evaluation was carried out in this way because, in real
applications, we are interested in only using a small training
set to predict a large testing set. While these scenarios may
seem extreme, the only restriction from a statistical point of
view is that we frequently have too little data to estimate the
required parameters with enough precision. With the infor-
mation from each testing set (observed and predicted), we
computed the proportion of cases correctly classified, which
is also known as ‘accuracy’, PCCC = (tp + tn)∕𝑛𝑇 , where
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tp denotes the true positives, tn denotes the true negatives,
and 𝑛𝑇 = (tp + tn + fp + fn) is the total of individuals in
the testing sets, where fp denotes the false positives, and fn
denotes the false negatives (Fielding & Bell, 1997; González-
Camacho et al., 2018; ISO 5725–6, 1994; Montesinos-López,
et al., 2019; Montesinos-López, et al., 2020). The true pos-
itives or true negatives are outcomes where the model cor-
rectly predicts them. Similarly, false positives are outcomes
where the model incorrectly predicts the positives, and the
false negatives are outcomes where the model incorrectly pre-
dicts the negatives. All components for computing the propor-
tion of cases correctly classified (PCCC) are obtained from a
confusion matrix obtained between observed and pre-
dicted values (Fielding & Bell, 1997; González-Camacho,
2018) and the Kappa coefficient proposed by Cohen
(1960) for the agreement for nominal scales, Kappa =
(𝑃𝐶𝐶𝐶 − 𝑃𝑒)∕(1 − 𝑃𝑒); Pe is the probability of agreement
calculated as 𝑃𝑒 =

tp+fn
𝑛𝑇

× tp+fp
𝑛𝑇

× fp+tn
𝑛𝑇

× fn+tn
𝑛𝑇

. These are
two popular metrics used to evaluate prediction performance
in binary and categorical traits (Fielding & Bell, 1997;
González-Camacho, 2018).

Under both metrics, the closer to one, the better the predic-
tions. In the case of the Kappa coefficient, the interpretation
is as follows: values < 0.00 as indicating no agreement, 0.0–
0.20 as none to slight, 0.21–0.40 as fair, 0.41– 0.60 as moder-
ate, 0.61–0.80 as substantial, and 0.81–1.00 as almost perfect
agreement. Finally, the average of the 30 partitions of both
metrics was reported as the prediction performance for each
environment in each data set under study. We used the R statis-
tical software for the implementation of both prediction mod-
els (R Core Team, 2021). For the categorical response variable
(DTHD), we also computed the PCCC and the Kappa coeffi-
cient; however, the Kappa coefficient was computed using the
one vs. all approach (James et al., 2013). This means that it
was computed for each of the four categories vs. the aggrega-
tion of the remaining categories, and the average of four scores
of Kappa coefficient was reported as prediction performance.

4 RESULTS

The most important findings are provided in the following
three sections. The first two sections show results for Data
Sets 3 and 4, while the third section provides a meta-picture
of the prediction performance of the four data sets averaged
across environments. We have first included the results from
Data Sets 3 and 4, which represent the two largest data sets
with 964 lines (Data Set 3) and 980 wheat lines (Data Set
4). Note that the results obtained from Data Sets 1 and 2 fol-
lowed similar patterns as those from Data Sets 3 and 4 but are
presented separately in Supplemental Figures S1–S12 for the
purpose of simplifying the description of the results.

4.1 Data Set 3

4.1.1 Binary trait (height)

Figure 1 shows that the GBM outperformed the TGBLUP
method in terms of PCCC only in two out of the five envi-
ronments for two proportions of the testing sets (0.8 and 0.6).
Specifically, when the proportion of the testing set was 0.8,
the GBM outperformed the TGBLUP method in the Bed2IR
and FlatDrip environments by 0.57 and 15.29%, respectively.
The TGBLUP method outperformed the GBM in the three
remaining environments (Bed5IR, Flat5IR, and LHT by 0.27,
3.60, and 2.18%, respectively). Likewise, when the proportion
of the testing set was 0.6, the GBM outperformed TGBLUP in
the Bed2IR and FlatDrip environments by 2.73 and 17.76%,
respectively. The TGBLUP method outperformed the GBM
in the three remaining environments (Bed5IR, Flat5IR, and
LHT by 0.75, 1.10, and 1.03%, respectively).

The GBM performance improved for the proportions of
testing sets 0.4 and 0.2, in which the GBM outperformed the
TGBLUP method in four out of the five environments. When
the proportion of the testing set was 0.4, the GBM outper-
formed the TGBLUP method in the Bed2IR, Bed5IR, Flat5IR,
and FlatDrip environments by 2.83, 1.43, 0.01, and 18.28%,
respectively, while the TGBLUP method only outperformed
the GBM in the LHT environment by 0.05%. When the pro-
portion of the testing set was 0.2, the GBM outperformed
the TGBLUP method in the Bed2IR, Bed5IR, FlatDrip, and
LHT environments by 3.68, 3.24, 16.51, and 1.131%; the
TGBLUP method only outperformed the GBM in the Flat5IR
environment by 0.30%. Furthermore, the GBM outperformed
the TGBLUP method in all of the proportions of testing sets
across all environments (by 2.24, 3.61, 4.86, and 5.05% when
the proportion of the testing set was 0.8, 0.6, 0.4, and 0.2,
respectively).

In Figure 2, in terms of the Kappa coefficient, we observed
behavior similar to that described above. When the propor-
tion of the testing set was 0.8, the GBM outperformed the
TGBLUP method in the Bed2IR and FlatDrip environments
by 2.74 and 162.44%, respectively. The TGBLUP method
outperformed the GBM in the three remaining environments
(Bed5IR, Flat5IR, and LHT by 2.11, 19.27, and 12.29%,
respectively). Likewise, when the proportion of the testing set
was 0.6, the GBM outperformed TGBLUP in the Bed2IR and
FlatDrip environments by 14.89 and 134.08%, respectively.
The TGBLUP method outperformed the GBM method in the
three remaining environments (Bed5IR, Flat5IR, and LHT by
4.3, 5, and 7.21%, respectively).

The GBM performance improved for the proportions of
testing sets 0.4 and 0.2, in which the GBM outperformed the
TGBLUP method in three and four out of the five environ-
ments, correspondingly. When the proportion of the testing
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MONTESINOS-LOPEZ ET AL. 7 of 17The Plant Genome

F I G U R E 1 Data Set 3. Prediction performance of the height (binary) trait under the threshold genomic best linear unbiased predictor model
(TGBLUP) and gradient boosting machine (GBM) for four proportions of testing sets (0.2, 0.4, 0.6, and 0.8) for each environment in terms of the
proportion of cases correctly classified (PCCC). Five environments: Bed2IR (bed planting system under two irrigations), Bed5IR (bed planting
system under five irrigations), Flat5IR (flat planting system under five irrigations), FlatDrip (flat planting system under drought), and LHT (late heat
planting). The whisker plots indicate the standard errors

set was 0.4, the GBM outperformed the TGBLUP method in
the Bed2IR, Bed5IR, and FlatDrip environments by 15.03,
5.69, and 109.28%, respectively. The TGBLUP method out-
performed the GBM in the Flat5IR and LHT environments by
1.34 and 2.57, respectively. When the proportion of the test-
ing set was 0.2, the GBM outperformed the TGBLUP method
in the Bed2IR, Bed5IR, FlatDrip, and LHT environments by
20.11, 14.89, 79.55, and 3.29%, respectively; the TGBLUP
method only outperformed the GBM in the Flat5IR environ-
ment by 3.98%.

4.1.2 Categorical trait (DTHD)

In the categorical trait DTHD, Table 1 shows that the GBM
outperformed the TGBLUP method in terms of PCCC in
all five environments (Bed2IR, Bed5IR, Flat5IR, FlatDrip,
and LHT) for all the proportions of testing sets. When the
proportion of the testing set was 0.8, we observed that the
GBM outperformed the TGBLUP method by 6.57, 1.92, 3.66,
6.45, and 22.53% in environments Bed2IR, Bed5IR, Flat5IR,
FlatDrip, and LHT, respectively. When the proportion of the

testing set was 0.6, the GBM outperformed the TGBLUP
method by 7.19, 3.83, 12.6, 7.82, and 37.97% in environments
Bed2IR, Bed5IR, Flat5IR, FlatDrip, and LHT, respectively.
When the proportion of the testing set was 0.4, the GBM
outperformed the TGBLUP method by 8.38, 12.12, 18.22,
8.77, and 56.05% in environments Bed2IR, Bed5IR, Flat5IR,
FlatDrip, and LHT, respectively. When the proportion of the
testing set was 0.2, the GBM outperformed the TGBLUP
method by 11.74, 16.73, 21.78, 8.34, and 57.49 in environ-
ments Bed2IR, Bed5IR, Flat5IR, FlatDrip, and LHT, respec-
tively.

In terms of the Kappa coefficient, Table 1 indicates that,
in the categorical trait DTHD, the GBM outperformed the
TGBLUP method in three and four out of the five envi-
ronments for the proportions of testing sets 0.2, 0.6, 0.4,
and 0.8, respectively. When the proportion of the testing
set was 0.6, we observed that the GBM outperformed the
TGBLUP method by 12.47, 4.77, and 15.39% in environ-
ments Bed5IR, Flat5IR, and LHT, respectively. The TGBLUP
method outperformed the GBM in the two remaining envi-
ronments (Bed2IR and FlatDrip by 8.25 and 5.83%, respec-
tively). When the proportion of the testing set was 0.2, the
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8 of 17 MONTESINOS-LOPEZ ET AL.The Plant Genome

T A B L E 1 Prediction performance for each environment at different proportions of the testing sets (PropTesting that is predicted 0.8–0.2) in
terms of the proportion of cases correctly classified (PCCC) and the Kappa coefficient (Kappa) for Data Sets 3 and 4 for the categorical trait days to
heading

PCCC Kappa
Data Set PropTesting Environment TGBLUP ± SE GBM ± SE TGBLUP ± SE GBM ± SE
3 0.8 Bed2IR 0.268 ± 0.003 0.285 ± 0.002 0.117 ± 0.007 0.100 ± 0.008

Bed5IR 0.296 ± 0.003 0.302 ± 0.003 0.129 ± 0.006 0.145 ± 0.007

Flat5IR 0.281 ± 0.003 0.291 ± 0.003 0.064 ± 0.007 0.072 ± 0.007

FlatDrip 0.267 ± 0.003 0.285 ± 0.003 0.097 ± 0.008 0.104 ± 0.008

LHT 0.378 ± 0.006 0.463 ± 0.003 0.142 ± 0.009 0.164 ± 0.007

Average 0.298 ± 0.004 0.325 ± 0.003 0.110 ± 0.008 0.117 ± 0.007

0.6 Bed2IR 0.289 ± 0.002 0.310 ± 0.003 0.153 ± 0.007 0.140 ± 0.007

Bed5IR 0.319 ± 0.003 0.331 ± 0.003 0.178 ± 0.007 0.201 ± 0.008

Flat5IR 0.277 ± 0.004 0.312 ± 0.003 0.092 ± 0.007 0.097 ± 0.009

FlatDrip 0.290 ± 0.004 0.313 ± 0.003 0.152 ± 0.006 0.143 ± 0.007

LHT 0.353 ± 0.004 0.487 ± 0.003 0.173 ± 0.007 0.200 ± 0.008

Average 0.306 ± 0.003 0.351 ± 0.003 0.150 ± 0.007 0.156 ± 0.008

0.4 Bed2IR 0.293 ± 0.003 0.318 ± 0.003 0.162 ± 0.008 0.143 ± 0.009

Bed5IR 0.315 ± 0.004 0.353 ± 0.004 0.175 ± 0.006 0.222 ± 0.010

Flat5IR 0.274 ± 0.004 0.324 ± 0.004 0.102 ± 0.010 0.112 ± 0.009

FlatDrip 0.301 ± 0.004 0.327 ± 0.003 0.164 ± 0.008 0.173 ± 0.008

LHT 0.328 ± 0.006 0.512 ± 0.004 0.179 ± 0.009 0.236 ± 0.010

Average 0.302 ± 0.004 0.367 ± 0.004 0.156 ± 0.009 0.177 ± 0.009

0.2 Bed2IR 0.293 ± 0.006 0.327 ± 0.005 0.162 ± 0.013 0.125 ± 0.014

Bed5IR 0.310 ± 0.006 0.362 ± 0.007 0.170 ± 0.013 0.229 ± 0.015

Flat5IR 0.273 ± 0.004 0.332 ± 0.005 0.112 ± 0.013 0.106 ± 0.014

FlatDrip 0.304 ± 0.005 0.329 ± 0.006 0.170 ± 0.012 0.181 ± 0.013

LHT 0.334 ± 0.005 0.526 ± 0.006 0.181 ± 0.011 0.251 ± 0.015

Average 0.303 ± 0.005 0.375 ± 0.006 0.159 ± 0.012 0.178 ± 0.014

4 0.8 Bed5IR 0.296 ± 0.004 0.290 ± 0.002 0.102 ± 0.007 0.096 ± 0.008

EHT 0.299 ± 0.003 0.295 ± 0.003 0.108 ± 0.007 0.089 ± 0.007

Flat5IR 0.278 ± 0.003 0.292 ± 0.004 0.083 ± 0.007 0.091 ± 0.007

FlatDrip 0.300 ± 0.003 0.306 ± 0.003 0.093 ± 0.008 0.101 ± 0.008

Average 0.293 ± 0.003 0.296 ± 0.003 0.097 ± 0.007 0.094 ± 0.008

0.6 Bed5IR 0.310 ± 0.003 0.312 ± 0.004 0.145 ± 0.007 0.122 ± 0.008

EHT 0.319 ± 0.002 0.318 ± 0.003 0.156 ± 0.008 0.123 ± 0.007

Flat5IR 0.302 ± 0.003 0.313 ± 0.003 0.137 ± 0.007 0.127 ± 0.008

FlatDrip 0.322 ± 0.004 0.328 ± 0.003 0.139 ± 0.008 0.135 ± 0.007

Average 0.313 ± 0.003 0.318 ± 0.003 0.144 ± 0.007 0.127 ± 0.008

0.4 Bed5IR 0.317 ± 0.005 0.326 ± 0.003 0.179 ± 0.011 0.133 ± 0.009

EHT 0.326 ± 0.003 0.331 ± 0.004 0.178 ± 0.009 0.135 ± 0.008

Flat5IR 0.299 ± 0.004 0.332 ± 0.004 0.150 ± 0.011 0.149 ± 0.009

FlatDrip 0.331 ± 0.004 0.343 ± 0.004 0.163 ± 0.012 0.155 ± 0.010

Average 0.318 ± 0.004 0.333 ± 0.004 0.168 ± 0.011 0.143 ± 0.009

0.2 Bed5IR 0.313 ± 0.006 0.336 ± 0.006 0.178 ± 0.013 0.140 ± 0.013

EHT 0.339 ± 0.005 0.332 ± 0.006 0.200 ± 0.016 0.131 ± 0.011

Flat5IR 0.299 ± 0.005 0.359 ± 0.005 0.158 ± 0.014 0.200 ± 0.014

FlatDrip 0.326 ± 0.006 0.347 ± 0.005 0.162 ± 0.012 0.158 ± 0.012

Average 0.319 ± 0.006 0.343 ± 0.005 0.175 ± 0.014 0.157 ± 0.013

(Continues)
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MONTESINOS-LOPEZ ET AL. 9 of 17The Plant Genome

T A B L E 1 (Continued)

Note. TGBLUP, threshold genomic best linear unbiased predictor model; GBM, gradient boosting machine; Bed2IR, bed planting system under two irrigations; Bed5IR,
bed planting system under five irrigations; Flat5IR, flat planting system under five irrigations; FlatDrip, flat planting system under drought; LHT, late heat planting. . The
PCCC and Kappa were computed in the testing set as the average of the 30 random partitions; SE denotes the standard error. Average denotes the average performance
across five (Data Set 3) and four environments (Data Set 4)

GBM outperformed the TGBLUP method by 35.05, 6.5, and
38.42% in environments Bed5IR, FlatDrip, and LHT, respec-
tively. The TGBLUP method outperformed the GBM in the
two remaining environments (Bed2IR and Flat5IR by 22.48
and 5.8%, respectively). When the proportion of the testing
set was 0.4, we observed that the GBM outperformed the
TGBLUP method by 26.79, 9.96, 5.53, and 31.85% in envi-
ronments Bed5IR, Flat5IR, FlatDrip, and LHT, respectively.
The TGBLUP method outperformed the GBM only in the
remaining environment (Bed2IR by 11.51%). When the pro-
portion of the testing set was 0.8, we observed that the GBM
outperformed the TGBLUP method by 12.75, 12.51, 6.66, and
15.66% in environments Bed5IR, Flat5IR, FlatDrip, and LHT,

respectively. The TGBLUP method outperformed the GBM
only in the remaining environment (Bed2IR by 14.15%).

4.2 Data Set 4

4.2.1 Binary trait (Height)

Figure 3 shows that the GBM outperformed the TGBLUP
method in three of the four environments (EHT, Bed5IR, and
FlatDrip) for all the proportions of testing sets in terms of
PCCC. In the Flat5IR environment, the TGBLUP method out-
performed the GBM only by 0.30, 2.84, 1.98, and 1.61% when

F I G U R E 2 Data Set 3. Prediction performance of the height (binary) trait under the threshold genomic best linear unbiased predictor model
(TGBLUP) and gradient boosting machine (GBM) for four proportions of testing sets (0.2, 0.4, 0.6, and 0.8) for each environment in terms of the
Kappa coefficient (Kappa). Five environments: Bed2IR (bed planting system under two irrigations), Bed5IR (bed planting system under five
irrigations), Flat5IR (flat planting system under five irrigations), FlatDrip (flat planting system under drought), and LHT (late heat planting). The
whisker plots indicate the standard errors
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10 of 17 MONTESINOS-LOPEZ ET AL.The Plant Genome

F I G U R E 3 Data Set 4. Prediction performance of the height (binary) trait under the threshold genomic best linear unbiased predictor model
(TGBLUP) and gradient boosting machine (GBM) under four proportions of the testing sets (0.2, 0.4, 0.6, and 0.8) for each environment in terms of
the proportion of cases correctly classified (PCCC). Four environments: Bed5IR (bed planting system under five irrigations), EHT (early heat
planting); Flat5IR (flat planting system under five irrigations), and FlatDrip (flat planting system under drought). The whisker plots indicate the
standard errors

the testing set was 0.8, 0.6, 0.4, and 0.2, respectively. On aver-
age, the GBM outperformed the TGBLUP method in all of the
proportions of testing sets for all environments (by 4, 3.23,
2.54, and 2.36% when the proportion of testing set was 0.8,
0.6, 0.4, and 0.2, respectively).

In terms of the Kappa coefficient, Figure 4 indicates that
the GBM outperformed the TGBLUP method in three of the
four environments (EHT, Bed5IR, and FlatDrip) for all the
proportions of testing sets. In the Flat5IR environment, the
TGBLUP method outperformed the GBM by 49.08, 22.38,
13.91, and 10.89% when the testing sets were 0.8, 0.6, 0.4,
and 0.2, respectively. Furthermore, on average, the GBM
outperformed the TGBLUP method in all of the proportions
of testing sets for all environments (by 49.08, 22.38, 13.91,
and 10.89% when the proportion of testing set was 0.8, 0.6,
0.4, and 0.2, respectively). Because of the lack of consistency
in obtaining these results, evaluation with other data sets is
required to support our findings.

4.2.2 Categorical trait (DTHD)

For the categorical trait DTHD, Table 1 indicates that
the GBM outperformed the TGBLUP method in terms of

PCCC in at least three of the four environments for three
proportions of testing sets (0.6, 0.4, and 0.2). When the pro-
portion of the testing set was 0.6, the GBM outperformed
the TGBLUP method in the Bed5IR, Flat5IR, and FlatDrip
environments by 0.6, 3.5, and 1.98%, respectively. Similarly,
for testing set 0.2, the GBM outperformed the TGBLUP
method in Bed5IR, Flat5IR, and FlatDrip environments by
7.33, 19.93, and 6.364%, respectively. The TGBLUP method
only outperformed the GBM in the EHT environment by 0.14
and 2.05% for testing sets 0.6 and 0.2, respectively. Further,
when the testing set was 0.4, the GBM outperformed the
TGBLUP method in all four environments (Bed5IR, Flat5IR,
FlatDrip, and EHT) by 2.89, 1.56, 10.97, and 3.75%, respec-
tively. When the testing set was 0.8, the GBM outperformed
the TGBLUP method in two (Flat5IR and FlatDrip) out of
the four environments by 4.91 and 1.97%, respectively. The
TGBLUP method outperformed the GBM in the remaining
environments (Bed5IR and EHT by 1.95 and 1.37%, respec-
tively).

In terms of the Kappa coefficient, Table 1 shows that,
in the categorical trait DTHD, the GBM outperformed the
TGBLUP method in two and one of the four environments
for the proportions of testing sets 0.8 and 0.2, respectively.
When the proportion of the testing set was 0.8, the GBM
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MONTESINOS-LOPEZ ET AL. 11 of 17The Plant Genome

F I G U R E 4 Data Set 4. Prediction performance of the height (binary) trait under the threshold genomic best linear unbiased predictor model
(TGBLUP) and gradient boosting machine (GBM) under Data Set 4 for four proportions of the testing sets (0.2, 0.4, 0.6, and 0.8) for each
environment in terms of the Kappa coefficient (Kappa). Four environments: Bed5IR (bed planting system under five irrigations), EHT (early heat
planting); Flat5IR (flat planting system under five irrigations), and FlatDrip (flat planting system under drought). The whisker plots indicate the
standard errors

outperformed the TGBLUP method by 8.57 and 8.23%
in environments Flat5IR and FlatDrip, respectively. The
TGBLUP method outperformed the GBM in the two remain-
ing environments (Bed5IR and EHT by 6.01 and 17.73%,
respectively). When the proportion of the testing set was
0.2, we observed that the GBM outperformed the TGBLUP
method by 26.16% in environment Flat5IR. The TGBLUP
method outperformed the GBM in the remaining environ-
ments (Bed5IR, EHT, and FlatDrip by 21.08, 34.48, and
2.75%, respectively). The TGBLUP method outperformed the
GBM in all the environments by 15.60, 21.03, 7.21, and 2.72%
in environments Bed5IR, EHT, Flat5IR, and FlatDrip, respec-
tively, when the proportion of the testing set was 0.6 and
by 25.75, 24.32, 0.83, and 4.5% in environments Bed5IR,
EHT, Flat5IR, and FlatDrip when the testing set was 0.4.
A similar performance was obtained in Data Sets 1 and 2
(Supplemental Figures S1–S8).

4.3 Meta-picture across environments for
each data set

For Data Set 3, Figure 5a and Figure 6a indicate that across
environments, the GBM outperformed the TGLUP method

for both metrics in all proportions of the testing sets. The
GBM outperformed the TGBLUP by 2.24%, 3.61%, 4.87%,
and 5.06% regarding PCCC when the proportions of testing
sets were 0.8, 0.6, 0.4, and 0.2, respectively. At the same time,
the GBM outperformed the TGBLUP by 20.88%, 21.66%,
24.49%, and 23.72%, respectively, under the Kappa coeffi-
cient.

For Data Set 3, for the categorical trait DTHD, Table 1
shows that across environments, the GBM outperformed the
TGBLUP method in all proportions of the testing sets in terms
of PCCC. The GBM outperformed the TGBLUP by 9.13%,
14.73%, 21.38%, and 23.91% for PCCC when the proportions
of testing sets were 0.8, 0.6, 0.4, and 0.2, respectively. Regard-
ing the Kappa coefficient, in Table 1, we can see that the GBM
also outperformed the TGBLUP in all proportions of the test-
ing sets. The GBM outperformed the TGBLUP by 6.67%,
4.26%, 13.37%, and 12.25% when the proportions of testing
sets were 0.8, 0.6, 0.4, and 0.2, respectively.

For Data Set 4, we can observe in Figure 5b and Figure 6b
that across environments, the gain in terms of prediction accu-
racy of the GBM with regard to the TGBLUP was consider-
ably better for both metrics in all proportions of the testing
sets. The GBM outperformed the TGBLUP by 4.001, 3.233,
2.541, and 2.361% for PCCC and by 49.087, 22.387, 13.91,
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12 of 17 MONTESINOS-LOPEZ ET AL.The Plant Genome

F I G U R E 5 Data Sets 3 and 4. Prediction
performance of the height (binary) trait under
the threshold genomic best linear unbiased
predictor model (TGBLUP) and gradient
boosting machine (GBM) under four
proportions of the testing sets (0.2, 0.4, 0.6, and
0.8) across environments in terms of the
proportion of cases correctly classified (PCCC)
for (a) Data Set 3 (across five environments)
and (b) Data Set 4 (across four environments).
The whisker plots indicate the standard errors

F I G U R E 6 Data Sets 3 and 4. Prediction
performance of the height (binary) trait under
the threshold genomic best linear unbiased
predictor model (TGBLUP) and gradient
boosting machine (GBM) under four
proportions of the testing sets (0.2, 0.4, 0.6, and
0.8) across environments in terms of the Kappa
coefficient (Kappa) for (a) Data Set 3 (across
five environments) and (b) Data Set 4. The
whisker plots indicate the standard errors

and 10.895% under the Kappa coefficient when the propor-
tions of the testing sets were 0.8, 0.6, 0.4, and 0.2, respec-
tively.

For Data Set 4, in terms of PCCC, we can see in
Table 1 that, across environments, the GBM outperformed
the TGLUP method in all proportions of the testing sets. The
GBM outperformed the TGBLUP by 0.85, 1.44, 4.63, and

7.58% for PCCC when the proportions of testing sets were
0.8, 0.6, 0.4, and 0.2, respectively. In addition, in Table 1,
we can see that the TGBLUP outperformed the GBM method
in all proportions of the testing sets. The TGBLUP outper-
formed the GBM by 2.39, 13.81, 17.13, and 11.07% regarding
the Kappa coefficient when the proportions of the testing sets
were 0.8, 0.6, 0.4, and 0.2, respectively. Quite similar behavior
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was observed across environments for Data Set 1 (Supplemen-
tal Figures S9a and S10a) and Data Set 2 (see Supplemental
Figures S9b and S10b).

5 DISCUSSION

The GS methodology can be used with some candidate
individuals without the need for phenotypic information. In
this vein, a reference population containing phenotypic and
genomic information is used to train a statistical machine-
learning model that makes predictions for candidate lines for
which only genotypic information is available. However, the
selection process of the best candidates using GS is very chal-
lenging and can present the following problems: (a) the data
sets for training the statistical machine-learning models are
frequently small (few genotypes), (b) the phenotypic records
are very noisy, (c) the traits of interest to be predicted (such
as grain yield) are very complex, (d) the training and testing
sets are frequently unrelated (belong to the same distribution),
(e) the amount and quality of independent variables (markers,
environmental information) are insufficient, (f) the records for
each line in the training set have few repetitions, or (g) the
models for particular data sets are often not optimal.

For the above reasons, plant breeders are interested in
exploring different options to improve the prediction perfor-
mance of the models used in this area (Montesinos-López
et al., 2019). For example, in the predictor, environmental
covariates can be included to help improve the predictions of
new lines (Jarquín et al., 2014). They are evaluating different
strategies for building the training testing set to increase the
prediction performance (Isidro et al., 2015). To help the pre-
dictions, they measure the spectral data of the plants and other
omics data to be taken into account in the predictor. They mix
genomic and pedigree information to increase the prediction
accuracy. They are also adopting novel statistical machine-
learning methods to be evaluated in GS, among others. For
this reason, with the goal of contributing to the efficiency of
GS methodology, we performed a benchmarking between the
Bayesian TGBLUP and the GBM. These two methods were
compared for binary and categorical response variables.

Under the empirical comparisons using four real data sets,
we found that the GBM method outperformed the TGBLUP
models in terms of PCCC and the Kappa coefficient; however,
the superiority of the GBM over the TGBLUP was clearer in
Data Sets 2, 3, and 4 and under the Kappa coefficient. For
example, in the binary response variable, the superiority of the
GBM over the TGBLUP was between 3.35 and 6.68% (in Data
Set 2), between 20.88 and 24.4% (in Data Set 3), and between
13.91 and 49.087% in Data Set 4. Also, in terms of implemen-
tation time, we found for the binary trait that the TGBLUB
was 1,780 (Data Set 1), 1,487 (Data Set 2), 1,643 (Data

Set 3), and 1,883 (Data Set 4) times slower than the GBM
method. These results are very promising since, empirically,
they show that the GBM is a powerful statistical machine-
learning algorithm that should be adopted for genomic pre-
diction because it can help to increase the efficiency of the GS
methodology for binary and categorical traits. An advantage
of GBM over TGBLUP is that the GBM method is an ensem-
ble (a combination of many trees) nonparametric machine-
learning method and for this reason, is more powerful for cap-
turing complex, nonlinear patterns more efficiently; it helps
reduce the variability of the resulting predictions (Friedman,
2001). However, with only four real data sets, there is not
enough empirical evidence to have a complete picture of the
prediction power of GBM for binary and categorical traits. For
this reason, we encourage other scientists to carry out more
applications of GBM on more than binary and categorical
traits to accumulate more empirical evidence of the prediction
ability of this method. Because GBM is simple and cheap to
implement—since a complex tuning process is not required—
we can experiment with many different model designs.

In the binary trait (height) and data sets (2, 3 and 4) where
the GBM outperformed the TGBLUP method by a large mar-
gin, we can speculate that this difference is due to the nature of
the trait and of these data sets, that is, the data sets under this
trait have more complex nonlinear patterns that are more diffi-
cult to capture for linear models such as the TGBLUP method.
Because GBM is a nonlinear method built with an ensemble of
decision trees, it more easily captures complex nonlinear pat-
terns. However, when these nonlinear patterns are not present
in a data set, conventional linear models can be equally as suf-
ficient for obtaining decent prediction performance.

Our findings are promising for GS because they coin-
cide with the idea that a small change in algorithm can
significantly increase the prediction performance of specific
traits. This is key for GS since improved predictions lead
to more accuracy with this predictive methodology called
GS. Nevertheless, to be able to select the best algorithm
for a specific data set, we need to evaluate more than one
machine-learning algorithm, which is supported by the
statement of the ‘no-free-lunch’ theorem that says that there
is no universal machine-learning algorithm. This is the same
as saying that any two optimization algorithms are equivalent
when their performance is averaged across all possible
problems (Wolpert & Macready, 2005). Although the GBM
method is not new in the machine-learning community, it is
promising for GS since it can help increase the model options
available for the GS methodology and GS applications
because of the ease in understanding the fundamentals and
implementation of this method. Furthermore, it has the power
to capture nonlinear patterns that are not easy to capture with
most parametric genomic prediction models. Nonetheless, we
need to be careful in GBM implementation; even though it is
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possible to incorporate all the available information
(genomics, environmental, pedigree, etc.) in the predictor,
this does not always guarantee the best out-of-sample pre-
dictions. It is also important to select the right loss function
depending on the type of outcomes. The most popular loss
function for continuous outcomes is the mean square error;
for binary data, it is the Bernoulli; for categorical response, it
is the binomial loss function; while for other families, users
need to select or create custom loss function (Natekin &
Knoll, 2013). Likewise, because GBM can be implemented
with any base learners, the selection of these is important.
Many base learners exist for GBM, and the most common
can be classified as linear models, smooth models, and
decision trees. In our application, while we used decision
trees as base learners, we also used linear models, such as
penalized ridge regression, ordinary linear regression of
random effects models, and even a mixture of base-learners,
which can be very helpful in some applications. However,
not all available libraries that implement GBM offer so much
flexibility (Natekin & Knoll, 2013). For this reason, users
usually only implement the available options that are in the
selected library.

It is important to point out that in our benchmarking
between the TGBLUP and GBM, we included the informa-
tion of environment, genotypes, and genotype × environment
interaction in the predictor of both models. Nevertheless, it
is possible to include additional information or even omit the
genotype × environment interaction. In our case, we included
the genotype × environment interaction since in plant breed-
ing, the term is frequently very important in explaining a
considerable proportion of total variability. However, since
the GBM is a nonlinear model, it may not require to explic-
itly input this information (genotype × environment inter-
action) without having significant loss of prediction power.
For this reason, these issues can be of interest for further
research.

The GBM has been applied in many areas and used to
tackle various statistical machine-learning challenges (Bis-
sacco et al., 2007; Hutchinson et al., 2011; Pittman & Brown,
2011; Johnson & Zhang, 2014). Additionally, as pointed out in
the introduction, this method had been implemented in GS for
the prediction of continuous traits in plant breeding for maize
phenotypic traits (Li et al., 2018) and in animal science for
body weight phenotypes of Brahman cattle (Westhues et al.,
2021), as well as for the prediction of complex phenotypes
in outbred mice (Perez et al., 2022). Additionally, GBM is
very attractive for genomic prediction since it is more effi-
cient in the context of ‘large p and small n’ and works not
only for binary and categorical outcomes but is also a power-
ful supervised learning algorithm able to learn complex non-
linear functions to solve regression problems. Finally, we need
to understand GBM as a family of powerful machine-learning
techniques that have shown substantial success in a wide range

of practical applications, in part, because they are highly cus-
tomizable to the particular needs of the applications (Naketin
& Knoll, 2013). Furthermore, we encourage the exploration
of variants of the GBM, like the lightGBM and XGBoost, that
have had great success both in enterprise applications and data
science competitions (Naketin & Knoll, 2013). A disadvan-
tage of GBM, as most machine-learning methods, is that they
cannot estimate genetic parameters like TGBLUP and most
parametric models.

6 CONCLUSIONS

We found that, in terms of PCCC and the Kappa coeffi-
cient, the GBM outperformed the TGBLUP method in the
four data sets. The superiority of the GBM over the TGBLUP
method was larger in terms of the Kappa coefficient than the
PCCC. The power of GBM is attributed to the fact that it is
a nonlinear prediction model in the form of an ensemble of
weak prediction models, typically decision trees. We encour-
age researchers making other applications in the context of GS
to be able to accumulate more empirical evidence of GBM’s
power and fully consider including the GBM in the toolkit of
breeding scientists for predicting binary and categorical traits
in GS. Nevertheless, in this application, based on binary and
categorical traits, we observed a considerable gain in terms
of prediction performance of the GBM over the TGBLUP
method.
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