
1

Decentralized Energy Management Concept for 
Urban Charging Hubs with Multiple V2G

Aggregators
Erdem Gümrükcü, Student Member, IEEE, Jonatan Ralf Axel Klemets, Jon Are Suul, Member, IEEE, 

Ferdinanda Ponci, Senior Member, IEEE, Antonello Monti, Senior Member, IEEE

Abstract—This work introduces a decentralized management 
concept for the urban charging hubs (UCHs) where electric vehi­
cles (EVs) can access multiple charger clusters, each controlled 
by an aggregator. The given day ahead schedules (DASs) and 
peak power limits (PPLs) of the aggregators providing grid-to- 
vchiclc (G2V) and vehide-to-grid (V2G) services can constrain 
the energy supply. A suitable energy management concept is 
required to prevent the impact of supply limitations on EV users. 
In the proposed approach, an electromobility operator (EMO) 
acting as an authorized entity, allocates incoming EVs into the 
charger clusters in the UCH. The EMO executes a smart routing 
(SR) algorithm that jointly optimizes the cluster allocations and 
charging schedules, minimizing the charging cost for the given 
dynamic price signals produced by the aggregators. For real­
time charging control (RTC) of the charging units, each aggre­
gator solves an optimization problem with periodically updated 
parameters given by the DAS/PPLs and charging commitments. 
This work demonstrates the effectiveness of the proposed concept 
through comparisons against benchmark strategies without SR 
and RTC. The results highlight that the proposed concept 
reduces the deviations from the DASs and the violations of PPLs 
while significantly decreasing unfulfilled charging demand and 
unscheduled discharge from EV batteries.

G l o s s a r y

Frequently used abbreviations
DAS Day ahead schedule
DP Dynamic price
EMO Electromobility operator
EV Electric vehicle
RTC Real time (charging) control
SOC State-of-charge
SR Smart routing
UCH Urban charging hub
V2G Vehicle-to-grid
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Indices
c Cluster controlled by an aggregator
u Charging unit
V Electric vehicle

Dynamic Pricing
Kc The regular time-of-use tariff of c

Peak power limits of c
L CfL c Lower and upper limits of desired consumption 

range of c
’p c Day ahead schedule of c

Smart Routing
U c,v DP signal calculated by c for v
E v V2G allowance of v

9̂ V Lower and upper limit of desired SOC range v
~Ä DJ- 'v Arrival and departure time of v
E v Battery capacity of v
p -  p+  

c  >J c Maximum discharge and charge rating of the 
charger type of cluster c

P v Charging schedule of v
SV(AV) Arrival SOC of v
SV(DV) Target SOC of v

Binary variable representing allocation of v to c
£+ Binary variable representing positive power 

(charging) to v

Real Time Charging Control
V u  ^ Discharging and charging efficiency of u
P c , P c Lower and upper limits of the aggregate net con­

sumption of c
P u Net power to the EV connected in u
p -  p+ Maximum power that can be discharged from and 

charged to the EV battery by u
P u  ,P u Negative (discharging) and positive (charging) 

power to the EV connected in u
S t Reference SOC of the EV in u
S u SOC of the EV in u
x+ Binary variable representing positive power 

(charging) to the EV in u

I .  I n t r o d u c t i o n

Electric vehicles (EVs) are becoming more and more pop­
ular in many countries.For instance, in Germany, plug-in EVs 
(plug-in hybrid plus full-electric vehicles) made up only 2% 
of the new car registrations in 2018. Since then, the share
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of plug-in EVs have been growing continuously and reached 
26% in 2021 [1]. Furthermore, the share of full-electric cars 
reached 64.5% of all new cars sold in Norway in 2021
[2] .The increasing penetration of EVs also imposes the need 
for expansion of charging infrastructure.

It is safe to foresee that most urban parking lots (PLs) will 
accommodate EV charging infrastructure in the future. An 
urban PL having a number of EV chargers is a natural ag­
gregation environment for EVs. Therefore, densely populated 
urban areas having multiple public PLs in short perimeters 
are likely to develop into urban charging hubs (UCHs) with 
multiple aggregation units. These aggregation units will be 
referred to as charger clusters in the following. Especially 
when the charger clusters in the UCH share a distribution grid 
under the same secondary substation, uncontrolled charging 
can lead to serious grid problems, such as overloading on 
substation transformers, thermal stress on the lines, voltage 
drops, voltage unbalance, power losses and rising peak demand
[3] . Suitable operational strategies will be required to achieve 
coordination between the charger clusters in the future UCHs.

A. Statement of problem
This work addresses the energy management problem of 

future UCHs with multiple aggregators. In general, aggregators 
provide a single interface point for utilities to interact with a 
group of distributed energy resources across the network and 
thus facilitate cooperative control of large-scale systems [4]. In 
a UCH, each PL operator responsible for a cluster of charging 
units can act as an aggregator. In addition to providing G2V 
charging to the EVs, these aggregators can offer V2G services 
to the energy market such as frequency control reserve [5].

An UCH with multiple aggregators presents a unique energy 
flexibility management problem. On the one hand, such a 
system would be a competitive market as each aggregator 
aims to maximize its energy sales to EVs. On the other hand, 
uncoordinated operation of selfish aggregators may lead to 
lose-lose situations. The lack of coordination may result in 
serious problems in the power distribution grid shared by the 
charger clusters. For the cooperative operation of UCHs with 
competitive aggregators, it is necessary to identify relevant 
control capabilities and develop suitable algorithms.

B. Literature review
There exists a considerable body of literature on coordinated 

EV charging, emphasizing that it enables peak flattening, cost 
reduction, and charging with renewable energy in various use 
cases [6]—[8], The most relevant references for the scenario 
addressed in this work are in the following areas: multi­
aggregator systems, networked microgrids, and large PLs. This 
section mentions a few representative examples to highlight 
the need for an original approach for the UCHs.

The authors of [9] propose a hierarchical multi-agent frame­
work where the grid operator of a specific region (i.e., higher- 
level agent) solves a designated optimal power flow problem 
to assign peak power constraints to the aggregators (i.e., lower- 
level agents). The aggregators organize their EV charging 
activities considering these constraints. Kaur et al. present a

similar hierarchical approach to provide V2G-based frequency 
support in scenarios with multiple EV aggregators in [10]. 
Similar hierarchical approaches are also applied in incentive- 
based frameworks. For instance, Yi et al. formulate the intel­
ligent behavior of the virtual power plants (VPP) agents and 
the aggregators as two layers of a hierarchical system [11]. 
In the higher layer, the VPP agent acts as a price-maker; in 
the lower layer, the aggregators optimize the schedules of the 
controllable devices according to the price curves issued by 
the VPP agent. Li et al. consider a similar approach for the 
scenario with a load-serving entity that purchases electricity 
from the wholesale market and sells it to multiple aggregators 
[12], In the strategy proposed in [12], the aggregators are 
rewarded with customer coupons when they contribute to the 
peak shaving objective of the load-serving entity. Kok et al. 
apply locational marginal pricing to coordinate the operation 
of multiple aggregators in a distribution network [13].

Both control- and incentive-based methods developed in 
previous studies provide valuable perspectives on flexibil­
ity management in multi-aggregator systems. That said, the 
problem described in Section I-A has a peculiar flexibility 
dimension that does not exist in most multi-aggregator sys­
tems. Typically, a UCH would have multiple available charger 
clusters within proximity of the intended destination of the 
EV driver. Therefore, the incoming EVs can be allocated (i.e., 
routed) within the UCH to support the aggregator goals. It 
is important to note that this is not the same problem as the 
charging station selection in inter-city trips (e.g., [14], [15]). In 
such trips, the temporal flexibility is limited since EV drivers 
usually prefer fast charging to reduce waiting time. In the 
UCH, fast charging is not always a requirement because EV 
drivers can spend time longer than the minimum required for 
recharging EV batteries. Hence, the routing problem in UCHs 
will be associated with a scheduling problem.

One can draw an analogy between UCHs with multiple 
charger clusters and networked microgrids. A networked mi­
crogrid is a community of microgrids collaborating for provid­
ing reliable and low-cost power supply to the end customers 
and offering services in ancillary markets [16]. When such a 
community consists of closely located microgrids, it would 
be beneficial to manage the distribution of incoming EVs 
to support the community’s objectives. Previous studies on 
networked microgrids (e.g. [17], [18]) have almost exclusively 
focused on the temporal flexibility of EV charging. Only 
a few works in the literature demonstrate the benefits of 
active mobility management in networked microgrids. The 
authors of [19] consider EVs as a solution to increase the 
resilience of microgrids and design a scheme where EVs travel 
between microgrids to supply power to the sections that lost 
connection from the main grid during a contingency. The 
strategy proposed in [19] requires connected EVs to leave their 
spots and travel to other microgrids multiple times; however, it 
does not include active routing management of incoming EVs. 
Another recent publication introduces a charging station rec­
ommendation algorithm minimizing the load factor unbalance 
between individual microgrids [20]. However, the algorithm 
proposed in [20] does not optimize the charging schedules of 
EVs. Therefore, it neglects a crucial dimension of flexibility
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in the management problem.
A series of recent studies indicated the importance of active 

mobility management in large PLs with clustered EV charging 
systems. In [21], the authors address a generic topology with 
multiple charger clusters fed by dedicated feeders under peak 
power constraints. The referred work introduces a central­
ized management strategy based on cascaded optimization of 
incoming EVs’ schedules and allocation into clusters. The 
same parking operator owns all the charger clusters in the 
scenario investigated in [21]. Therefore, the allocation step 
minimizes the inter-cluster unbalances to avoid peak power 
violation. The authors implement the same approach also in 
[22] for charging stations with grid side interface based on 
modular multilevel converters (MMC). This approach reduces 
the unbalances between the MMC arms where charging units 
arc clustered. Nevertheless, since the strategy proposed in [21], 
[22] does not exploit V2G transfer, it is not a generally appli­
cable solution for the UCHs with aggregators providing grid 
services. Furthermore, balancing between clusters, as pursued 
in [21] and [22], is not necessarily desired in an environment 
with multiple competitive aggregators. When an aggregator 
offers cheaper charging, the allocation of the incoming EV to 
this aggregator’s cluster would be more reasonable.

To summarize, an UCH with multiple aggregators have 
similarities with other multi-aggregator systems and networked 
microgrids. It is beneficial to consider EV mobility a control­
lable feature jointly with temporal flexibility to support the 
cooperative objectives of the aggregators operating charger 
clusters. The existing routing management frameworks in the 
literature do not meet the requirements of a scenario where 
aggregators compete for EVs during daily operation while 
providing V2G services. All things considered, the future 
UCHs with multiple aggregators present a unique management 
problem. To best of the authors’ knowledge, no prior studies 
have examined this problem.

C. Statement of Contributions

In the light of the presented literature review, the overall 
goal of this work is to develop an overarching framework to 
manage UCHs with multiple aggregators. The concept devel­
oped toward this goal is summarized in Fig. 1 by illustrating 
the interactions between the involved parties. In this concept, 
each aggregator is responsible for charging coordination of 
a particular cluster and the electromobility operator (EMO) 
is responsible for allocating incoming EVs to clusters in the 
UCH. The intelligent behavior of EMO and aggregators are 
represented by smart routing (SR) and real-time control (RTC) 
algorithms respectively.

The SR algorithm is executed upon reservation requests of 
EV drivers that will visit the UCH. At this step, the aggregators 
send their individualized dynamic price (DP) signals to the 
EMO. Through DP signals, each aggregator indicates the 
desired consumption profiles in its cluster by assigning high 
prices for the periods when the additional charging load must 
be avoided due to given day ahead schedules (DASs) or peak 
power limits (PPLs). The SR strategy jointly optimizes the 
allocation of incoming EVs into charger clusters and their

charging schedules. This approach prioritizes the EV users’ 
interests and therefore, aims at charging cost minimization un­
der the given DP signals. Aggregators control the real-time set 
points of the charging units in their clusters by executing RTC 
algorithm periodically. RTC expedites or suspends charging of 
certain EVs if the given DAS or PPL requires deviation from 
the individual-optimal charging schedules of the EVs, which 
are calculated at the SR step.

The main technical contributions of this work are as follows: 
1) It introduces a management concept for UCHs with multiple 
cluster, which defines specific roles for the aggregators and 
EMO in a competitive market. 2) It formalizes the intelligent 
behavior of the interacting parties through dynamic pricing, 
SR and RTC algorithms. 3) It defines performance metrics 
to quantify the degree at which the cooperative objectives of 
the aggregators are met. 4) It assesses the proposed strategy 
in test scenarios under capacity constraints, limiting energy 
supply potential of UCHs, and compares the strategy against 
relevant benchmarks.

I I .  I n d i v i d u a l i z e d  d y n a m ic  p r i c i n g

A. Context
Individualized dynamic pricing is a component of the de­

veloped energy management concept. It helps the aggregators 
to achieve their desired consumption profiles and the EMO 
to optimize the allocation of incoming EVs into the charger 
clusters. Each aggregator in the UCH determines its own DP 
signal. A DP signal includes time-dependent cost coefficients 
for EV charging in a cluster controlled by a particular aggre­
gator. Aggregators update their DP signals based on the new 
conditions, such as new charging commitments or renewable 
forecast. This approach is in line with the usual tendency in the 
literature (e.g., [8], [17], [23]), where DP signals are deemed 
as indicators of the desired consumption profiles.

In the considered scenarios, the aggregators purchase elec­
tricity in the day ahead market as suggested by many literature 
works (e.g. [24]). Day ahead schedules (DASs) and peak 
power limits (PPLs) define the desired consumption profiles 
of the aggregators during intra-day operation. The processes 
underlying the DAS and PPL specifications are not within the 
scope of this work. This work assumes that DASs and PPLs are 
given scenario inputs and there exist incentives for aggregators 
to accept them. When producing DP signals, the aggregators 
assign high values for the periods where they should avoid 
additional power consumption due to the given DASs or PPLs.

In the developed concept, when the EMO of UCH receives 
a reservation request from an EV, it calls aggregators in 
the system for DP signals. With the provided DP signals, 
it solves an optimization problem and routes the incoming 
EV into the cluster offering the minimum charging price for 
the requested amount of charging demand. This step jointly 
optimizes charging schedules and cluster (i.e., aggregator) 
allocations. Section IE-A explains the relationship between 
the individualized dynamic pricing and SR in greater detail.

Besides indicating the desired consumption profiles and 
enabling SR, DP signals could provide a quantitative basis 
for billing charging services. The billing strategy can be an

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2022.3208627

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Sintef. Downloaded on October 24,2022 at 12:45:42 UTC from IEEE Xplore.  Restrictions apply. 



4

Fig. 1. Distributed management concept for UCHs. Dashed and solid arrows represent occasionally and periodically executed algorithms respectively.

essential element of the competition between the aggregators 
as the charging price is an incentive factor that affects the 
EV drivers’ selection among alternative suppliers. However, 
this work focuses on the energy management of UCHs; the 
billing and competition strategies of the aggregators are not 
within the scope. Therefore, individual dynamic pricing is only 
a component of the management concept.

B. Generic Formulation for Individualized Dynamic Pricing
Whenever the EMO informs the aggregators about a reserva­

tion request, each aggregator having an available charger in its 
cluster generates a DP signal. In the following, uiCtV represents 
the DP signal generated by the aggregator controlling the 
cluster c for the EV v. In fact, luCiV is a time-dependent 
parameter, with uic,v(t) representing the price for kWh EV 
charging at a time interval represented by t. The following 
piece-wise function formalizes the mles to determine DP 
signals, ojCiV(t):

nc(t)
tiçif) ~ F~ ■ iLç{t) -  Pc,vit))
K̂ it) + F+ ■ ipc,vit) -  Lçit))

Lejt) < Pc,vit) < f'Y:(0
Pc,V it) ^  Lçit)
Pc,vit) ^  L cif)

( 1 )
where the parameters Lc(t) and Lcit) represent the upper and 
lower limits of the desired power consumption of the c. The 
sections II-C and II-D explain how the aggregator controlling c 
determines L c(t) and Lcit) under given DAS and PPL. Pc,vit) 
is the scheduled aggregate consumption of c for t. v index in 
this parameter denotes that it is an individualized parameter 
for the EV represented by n; hence it changes with the new 
charging commitments. p'c,vit) has positive values if c will

withdraw power from the public grid at t  (power flow from 
grid to cluster) and negative values if it will inject power to 
the grid (power flow from cluster to grid).

The piece-wise function (1) indicates that three cases are 
distinguished in calculation of u>C}V(t). The first case occurs 
when the scheduled net consumption of the cluster is within 
the desired range specified by L cjt) and Lc(t). For the t steps 
where this condition is met, uic,vit) is equal to the regular 
time-of-use tariff of the aggregator, Kc(t). The second and 
third cases indicate that Pc,v it) is, respectively, less than L cjt) 
and larger than L rf t ) .  In these cases, nr(t) are overridden by, 
respectively, smaller and larger cost coefficients.

To ensure that the charging is more attractive when the lower 
limit is missed (deficit consumption), the cost coefficient for all 
t with deficit consumption must be smaller than the minimum 
of the electricity purchase tariff of the aggregator, kc{t). In 
the proposed approach, these adjustments are done by con­
sidering the amount of deficit (Lc(t) Pc,vit)) and reducing 
the coefficients proportionally to the deficit consumption. In 
the mathematical formulation F~  is the discount factor for 
compensating each kW of deficit consumption. With the same 
principle, the coefficients for t with excessive consumption 
must be larger than the maximum of the tariff of the aggrega­
tor, Kcjt), and the coefficients must be increased proportionally 
to the excessive consumption, that is (Lc(t) ~Pc,vit))- In (1), 
F + represents the markup factor for compensating each kW 
of excessive consumption.

The following subsections elaborate the implementation of 
the generic DP formulation in two use cases where DASs and 
PPLs of the aggregators determine Lc and L c.
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Fig. 2. DASs of aggregators and their relation to charger clusters

C. DP calculation under day ahead schedules
The literature pertaining to the aggregators often emphasizes 

day-ahead scheduling as an enabler for energy producers’ 
participation in the energy flexibility market [25]. For this 
reason, we considered the scenarios where each aggregator 
in a UCH has a given DAS. In this case, the DAS defines 
the reference loading profile of the charger cluster operated 
by the aggregator. It is important to note that the policies 
generating the aggregators’ DASs are not within the scope of 
this work. Likewise, the control of other flexible assets such as 
stationary batteries is assumed to be an independent process. 
Therefore, the DASs are linked to the DP as exogenous inputs. 
With c indicating a particular cluster, the reference schedule 
for this cluster, <pc, is the residual power after subtracting the 
net consumption of all other electrical entities in the control 
of the aggregator from the DAS as shown in Figure 2.

When an aggregator has a given DAS, <pc is considered to 
be as both the upper L c and lower limits Lc of desired net 
consumption of the cluster c as shown in (2). In this case, the 
aggregator would tend to lower charging prices for t where 
the scheduled consumption of the cluster indicates a power 
consumption less than the given DAS (i.e., Pc,v (t) < Pc) and 
vice versa.

L c(t) = Lc(t) = p c (2)

D. DP calculation under peak power limits
Peak shaving is a common practice in power systems. It 

is particularly beneficial for the grid operators as it helps 
avoiding grid congestion and improving operational efficiency. 
It also offers some direct incentives to the energy consumers 
(e.g., reduced capacity fees) and indirect benefits (e.g., grid 
reliability). In the considered use case, the aggregators are 
assumed to have agreements with other entities such as energy 
providers or grid operators, and thus, they are obliged to keep 
their net power consumption between the specified limits. 
However, the procedure for the specification of the PPLs is 
not within the scope of this work. Therefore, the PPLs are 
scenario parameters. 7r+ is the upper limit of the power that

cluster c is allowed to withdraw from the grid at t, and it~ 
the upper limit power that c cm  inject at t. Therefore these 
parameters define L c and Lc as follows:

Lc(t) = 7r+ (3)

L j t )  = ~TT~ (4)

III. S m a r t  r o u t in g

The management concept considered in this work entitles 
the UCH’s electromobility operator (EMO) to allocate the 
incoming EVs to charger clusters, each operated by an aggre­
gator. In the smart routing (SR) strategy, the EMO prioritizes 
the economic interests of EV drivers. Based on the DP signals 
provided by the aggregators, it finds the optimal combination 
of cluster selection and charging profile (reference schedule), 
minimizing the charging cost for the incoming EV. Since 
DP signals indicate when and where additional charging load 
should be motivated/avoided, SR helps track DASs and keep 
the charger clusters’ consumption under PPLs.

This work applies the proposed SR strategy only in sce­
narios where each aggregator operates a cluster of charging 
units (CUs) with identical power ratings. Nevertheless, this 
strategy cm  also be applied in scenarios where the aggregators 
have CUs with different power ratings in their portolio. In 
such a scenario, a single aggregator cm  calculate multiple DP 
signals distinguishing the power ratings of the available CUs. 
It would be reasonable for the aggregators to assign the larger 
prices to the CUs with the higher power rating. However, such 
quantification is not within the scope of this work.

A. System architecture
For the implementation of the developed SR strategy, the 

system architecture illustrated in Figure 3 is envisioned. This 
architecture focuses on the functional relationships between 
the interacting entities, m d thus it describes the input/outputs 
exchmged by the EV drivers, EMO, m d aggregators. A 
system design with a detailed description of necessary soft- 
ware/hardware components md communication standards is
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Fig. 3. System architecture for the execution of SR based on DP: (1) 
The EV user sends a reservation request to the EMO server. (2) The EMO 
calls aggregators having available chargers for DP. (3) Aggregators calculate 
cluster-specific cost coefficients through DP. (4) The EMO reserves a charger 
for the EV, informs the EV user about the reservation, and sends the reference 
schedule to the reserved CU (via aggregator server).

not within the scope. Nevertheless, a low-latency communica­
tion infrastructure between EMO and aggregator servers must 
be in place to complete the execution of all necessary functions 
for SR (from the reservation request until a specific cluster 
selection) within seconds.

The central unit of the envisioned system is the EMO 
server, which stores the geographical data of the clusters in 
the UCH. The aggregator servers (AG servers) store the data 
of charger clusters, such as the connection/reservation status 
and reference schedules of the CUs. When an EV user accesses 
the EMO server with a reservation request, the EMO server 
sends a request (DP call) to the aggregators having available 
chargers in their clusters for the specified connection period. 
The clusters that are not within the specified distance of the 
intended destination of the EV driver are excluded in this 
step. The AG servers execute the individual dynamic pricing 
algorithm to provide the EMO with DP signals (ujc,v) based 
on commitments and capacity constraints of their clusters. The 
EMO server solves the optimization problem for SR. The 
optimization outputs (i.e., the selected cluster and reference 
schedules) are shared with the EV requesting a reservation 
and the selected cluster’s AG server.

B. Optimization model for smart routing
Upon a reservation request, the EMO learns the energy 

capacity E v and power limits of the battery of the incoming 
EV. In these formulations, v index represents a particular EV. 
In some applications, EV drivers can make reservation requests

in advance, such as several hours before visiting the UCH. In 
this case, arrival SOCs are subject to uncertainties. However, 
this work investigates the scenarios where the reservation time, 
R v, is only a few minutes before arrival A v. In this case, the 
information on arrival SOC, 5„(Ar ), is assumed to be precise.

The reservation request includes user specifications on the 
charging demand, such as the target SOC SV(DV) for the 
estimated departure time Dv, lower and upper boundaries of 
desired SOC range, and Sv. In addition, the drivers specify 
the energy that they make available for V2G discharge, namely 
V2G allowance, by selecting parameter E f .  In this case, the 
aggregators would be allowed to discharge the battery up to 
E f  as long as specification is respected.

Mathematically, two variables represent the decisions taken 
through SR. With c representing a particular cluster in the 
UCH, the first variable x v.c is a binary having the value of 1 
for the c that the EV is allocated to and 0 for all other c. The 
second variable, pv(t), is the net power that is planned to be 
supplied along a particular time step [t,t + A t) e  [Av , Dv) 
with t  and A t, respectively the time step identifier and length 
of one time step.

D v C

m in  y i  y ~ ] v c,v {t) -Pv,c(t) (5)
t= A v c= 1

c

Pv{p) — ^ (6)

Py * %V,C — Pv}c (t)  ^  * %V,C (7)
c

^   ̂*̂ v,c — 1
C = 1

(8)

Pv(t) = p t ( t ) - p ~ ( t ) (9)

0 <  P~(t) < P~  • (1 -  x+  (t)) (10)

0 < p + (t)< P +  -x+(t) (11)

sv(t + A t) = sv(t) + Pv{tl ' A t (12)

(13)

sv{Dv) =  S V(DV) (14)

Sv <  sv(t) <  S v (15)
D v

^ 2  P v ( t) -A t  < Ev (16)
t= A v

The objective function (5) represents charging/discharging 
of EV in all candidate clusters with dedicated variables pV:C (t ); 
in this way, it weighs the candidate charging schedules with 
corresponding DP signals uiCiV(t). Since an EV can reside in 
only one cluster at once, the power to be supplied to the 
EV at t, pv(t), has to be equal to one and only one of the 
P v ,c { t)  as shown in (6). The constraints (7) and (8) indicate 
that charging in particular clusters are exclusive cases. For 
p v ,c ( t )  to have a non-zero value, the binary x v ,c representing 
the corresponding c has to be 1; and only one x VtC can be

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2022.3208627

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Sintef. Downloaded on October 24,2022 at 12:45:42 UTC from IEEE Xplore.  Restrictions apply. 



7

1. An EV battery can either be charging or discharging at 
any given time. Hence, the constraint (9) defines pv (t) as 
combination of positive (charging) and negative (discharging) 
powers, respectively (f) and p~ (f); and the constraints (10) 
and (11) expresses their exclusiveness via the binary variable 
x+c(f), having the value of 1 when charging and 0 when 
discharging.

The SOC of the EV battery increases when charging and 
decreases when discharging as defined by (12). The equality 
functions (13) and (14) enforce the initial SOC and target 
SOC as optimization constraints. The inequality (15) defines 
the lower and upper boundaries of the SOC within the op­
timization instance by considering the parameters provided 
by the EV driver. Furthermore, the inequality constraint (16) 
limits the total cumulative V2G discharge according to the 
V2G allowance Eu ■

IV . R e a l - t i m e  c h a r g i n g  c o n t r o l

The EMO allocates the incoming EVs into clusters and 
assigns them reference schedules. Under normal conditions, 
the aggregators charge the EVs according to their reference 
schedules. However, DASs and PPLs of the aggregators may 
prevent following these references. Under conditions that 
require deviation from the reference schedules, the aggregators 
update the real-time set points of the CUs in their clusters by 
considering the connected EVs’ flexibility.

A mixed integer quadratic problem (MIQP) formalizes the 
real-time control (RTC) strategy of the aggregators. Let k be 
the time when an aggregator, controlling a cluster with N  
CUs, executes RTC. The specific optimization problem to be 
solved at k takes into account the events that will (or are 
expected to) take place within a future period of A k. By 
solving this problem, the aggregator calculates the optimal 
decision (i.e., real-time set points of all CUs in the cluster) 
that it will implement between [k,k + A k), which we will 
call the RTC period. The aggregator solves another instance 
of the optimization problem at k+ A k  with the new parameters 
representing the system’s updated state. These calculations are 
repeated periodically.

The SOCs of the EV batteries, S u(k), are the optimization 
inputs defining the initial system state. Here u represents 
a particular CU in the cluster and the connected EV at k. 
It is worth noting that the initial system state at k is the 
consequence of the charging/discharging activities before k. 
Each u has an individual reference value, S*(k + A k), that 
indicates the desired SOC for the end of the RTC period, 
k + A k. The discharge and charge efficiencies (represented by 
T]~ and 7 7+ respectively), the discharge and charge power rat­
ings (represented by P~  and P+  respectively), and the energy 
capacities of the connected EV batteries (represented by E u) 
are the input parameters imposing the physical constraints to 
the RTC problem. In practice, t)~ and 77+ change slightly with 
discharge/charge power variations. However, for EV chargers 
with near-ideal efficiencies (e.g., 7 7“ =  p i  «  0.95), the 
deviations around this standard value are limited and therefore 
can be neglected in the normal operation range. Likewise, 
P~  and P+  are dependent upon the SOC of the connected

battery. The SOC dependency can be significant in ultra-fast 
charging applications. However, the introduced strategy mainly 
addresses scenarios with power ratings smaller than 50fcW 
where scheduling is relevant. In this case, the SOC change 
over a single RTC period (e.g., typically few minutes) is 
rather small, and the variations in P~  and P+  are negligible. 
In the considered scenarios, the charger clusters have power 
limitations due to DASs or PPLs. These limitations are ex­
pressed by the help of two parameters, Pc and Pc, representing 
the lower and upper bounds of the power limitation of the 
cluster c. However, it is allowed to violate Pc and Pc to 
avoid infeasibility errors. Therefore, these parameters will be 
mentioned as soft constraints in the following.

The main control variables of RTC problem are the real 
time charging rates of the charging units in the cluster. In 
the following, pu represents the power to be supplied to 
the EV battery connected to u  through the RTC period (i.e, 
[.k , k + Ak)). su is a state variable representing the SOC to 
be achieved by k + A  k as result of pu. The non-negative 
slack variable, e, represents the amount of violation of the 
soft constraints defined by Pc and Pc.

N

m i n  Pv ‘ “  S “ ) 2 +  Pz ' 6  ( 1 7 )
U = 1
s-

E

_  a tu\ > P u 'A k Su — Su\fc) H- tp (18)

Pu = p i  -  Pu (19)

0.0 < p i  < P+ ■ x i (20)

0 . 0  < p -  < p -  ■ ( 1  -  x i ) (21)
N  +

£ < ^ 2 ^ :  -P Z  'Vu <Pc + e (22)

The objective function (17) penalizes two terms. First term, 
Jy , represents the cost of deviation from the individual refer­
ence schedules (i.e., the difference between the achieved SOC 
and reference SOCs at the end of the RTC period k +  A k). 
Je represents the cost of violation of the soft constraints, 
determined by Pc and Pc. In these formulations, py and 
Pc are penalty weights for, respectively, the deviations from 
the reference schedules and the violation of soft constraints. 
For such an MIQP to be convex, its Hessian matrix needs 
to be positive semi-definite. This condition is met when py 
has a positive value. There exist several optimization solvers 
(e.g., CPLEX [26]) guaranteeing global optimality of the 
convex MIQPs. Nevertheless, the quadratic objective function 
could also be linearized by a simple technique to reduce 
computation times and make the problem suitable for a wider 
variety of solvers. For this purpose, non-negative variables, 
cr„, are introduced for each u. In fact, <r„ is equal to the 
absolute value of the deviation from the reference SOC (i.e., 
(7U =  |S*(k +  A k) — s„|). This equality can be expressed via 
a linear constraint — au < S*(k + A k) — su < au. Since au is 
already non-negative, it represents both negative and positive 
deviations from the reference SOCs, su < S*(k + A k) and
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su > S*(k + A k). Therefore, the same cost factor can be 
penalized via merely au without quadratic terms.

The constraint (18) describes the relationship between the 
supplied power and the SOC increase/decrease. Due to the 
losses in charging/discharging process, the power pu trans­
ferred to/from an EV battery is not equal to the power that the 
CU withdraws or injects from/to the power system. To transfer 
pu to the EV battery, the CU must withdraw Conversely, 
when discharging pu from the EV battery, the CU injects 
only pu • 7j+ to the system. Therefore, positive (charging) 
and negative (discharging) values of pu are distinguished and 
represented as and p~ respectively. Since a battery can be 
either charged or discharged at once, it is not allowed for p~ 
and p^  to have a non-zero value simultaneously. To achieve 
this, binary variables specifying the charging mode of u 
are added in the optimization model. The constraints (19)- 
(21) indicate the exclusiveness of charging/discharging for a 
specific RTC period.

The inequality (22) indicates that the aggregate net power 
of the cluster must be within a certain operating range. Pc 
and Pc define the soft limits of this range. The value of 
the slack variable, e, is the measure of violation of these 
soft limits. The non-zero values of e are penalized in the 
objective function of the RTC model (17). When P^ and Pc 
must be enforced as hard constraints, e is constrained to be 
zero. In this case, the selection of pv and pt is ineffective. 
When violation of [Pc, Pc\ range is allowed, the ratio can 
affect the system behavior significantly. The aggregators can 
update these parameters during the operation if needed. For 
example, an aggregator that has to pay large penalties in case 
of deviation from DAS would tend to assign larger values for 
pt . The aggregator could decrease the value of pt if it estimates 
that the deviations from individual optimal schedules of the 
EVs will have more significant cost implications than deviating 
from DASs. The quantification of the trade-off between these 
factors is dependent upon the aggregators’ business model and 
thus, is not within the scope of this work. Therefore, both 
parameters were considered to be 1 in the simulated scenarios.

V. P e r f o r m a n c e  m e t r ic s

This work considers use cases where aggregators in a UCH 
have DASs and PPLs. The aggregators may have liabilities 
such as penalty payments to the DSO or energy providers in 
case of deviation from DASs and PPL violations. However, the 
penalty that an aggregator would have to pay in such cases 
is a question of the business model between the aggregator 
and the relevant external entities. Therefore, the performance 
in these aspects is not quantified but qualitatively assessed 
by comparing results obtained under different management 
concepts.

The quantitative evaluations are conducted by using per­
formance metrics related to the EV users’ experience. In 
the operation of an UCH, DASs or PPLs can affect the 
rate at which the charging demands are fulfilled and lead to 
excessive V2G discharge from EV batteries. For the sake of 
generality of the performance indicators, this work quantifies 
user experience on the basis of the comparison between what

is provided to the EV users (achieved as the consequence of 
the operation) versus what is promised to them (defined by the 
reservation agreement). Therefore, it uses unfulfilled demand 
and unscheduled V2G discharge as performance metrics. Let 
6V and \ v be the simulation outputs measuring the net energy 
supplied to the EV battery and cumulative discharge from 
the EV battery. The unfulfilled demand and unscheduled V2G 
discharge metrics are calculated as follows.

S* = (SV(DV) -  SV(AV)) • Ev (23)

£UFD _  ^ 2  m ax{0, S* -  Sv} (24)
vev

Above S* represents the charging demand specified by the 
driver of v. is a simulation parameter given by the difference 
between the targeted and arrival SOCs, respectively SV{DV) 
and ¿'„(A,,). The charging demand is deemed unfulfilled 
only if the supplied energy (¿„) is smaller than the amount 
requested by the driver (<5*). Therefore, the equation (24), 
which calculates the unfulfilled demand metric, £UFD, takes 
into account only the EVs that received less energy than the 
amount specified by the driver (i.e., v with 5* > 6V).

,, = ■y i pv(t) ■ A t  pv(t) < 0
” ¿ X , 1 °  p ^ ) > °

£V2g = m ax{0, A„ -  A*}
v £ V

(25)

(26)

The scheduled amount of V2G discharge, A*, is given by 
(25). This value is obtained by solving optimization problem 
(5-16) for smart routing of v and fixed by the reservation 
agreement. Here, pv (t ) with a negative value indicates that the 
battery of v is scheduled for discharging in t. V2G discharge 
is deemed unscheduled only when the discharged amount (A„) 
exceeds the amount specified by the schedule (A*). As shown 
in (26), the overall unscheduled V2G, £V2G, is the summation 
of unscheduled V2G of individual EVs.

In a reservation-based service as assumed here, it would be 
reasonable to pay compensation fees for unfulfilled demand 
and unscheduled V2G discharge. However, mapping these 
quantities into currency units is a business question with 
threefold complexity. First, the compensation fees must be 
associated with the billing strategy; for example, the payments 
for fulfilled and unfulfilled parts of the charging demand must 
be defined. Second, the trade-off between deviations from 
DASs (or PPL violations) and EV user experience must be 
quantified. Third, the share of the EMO and the aggregators 
in the resulting compensation fees must be quantified since 
both parties affect £UFD and £V2G by their actions. Since 
such business questions are not within the scope, this work 
does not map £UFD and £,V2G into compensation fees and 
does not distribute them into relevant entities; instead, it takes 
them as global performance indicators.

VI. S im u l a t i o n  r e s u l t s  

A. Benchmark strategies
In the following, the proposed strategy is applied in test 

scenarios where aggregators in a UCH have given DASs and
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PPLs. To demonstrate the proposed strategy’s effectiveness, 
its performance was compared against relevant benchmark 
strategies in terms of the metrics introduced in Section V. 
To best of the authors’ knowledge, this is the first work that 
studies a scenario with a UCH having multiple aggregators 
and the literature does not provide a model of interaction 
between the parties involved in such a scenario. Therefore, 
three assumptions were made about the involved parties. First, 
an EMO would exist and would be the first point of contact for 
the incoming EVs, which look for a charging spot in the UCH. 
Second, each aggregator would apply dynamic pricing for EV 
charging in its cluster. Third, the charging profile of each 
EV would be individually scheduled based on the available 
DP signal(s). By considering the potential functions of the 
assumed parties, multiple benchmark strategies were selected.

1) Benchmarks without SR function o f the EMO: In the 
proposed strategy, the EMO has smart routing (SR) function; 
thus, it is responsible for the allocation of incoming EVs into 
clusters. The charging schedule is jointly optimized with the 
cluster selection in the proposed SR strategy. In benchmarks 
without SR, the EMO only informs the EV user about the 
available clusters, and the EV driver chooses the cluster 
randomly. The charging schedule of the EV is optimized based 
on the selected cluster’s DP signal.

2) Benchmarks without RTC function o f the aggregators: 
In the proposed RTC strategy, the aggregators recognize the 
conditions requiring deviations from the individual charging 
schedules of the EV (i.e., DASs and PPLs) and optimize 
the real-time charging rates of the CUs in their clusters. In 
benchmarks without RTC, the aggregators apply the given 
charging schedules of the EVs without any modifications.

B. Implementation
Pyomo library [27] and optimization solver CPLEX [26] 

were used for, respectively, modeling and solving the optimiza­
tion problems. The test scenarios were simulated in Python 
with 5-min resolution. This is also equal to optimization time 
steps for both SR and RTC problems. For statistical analyzes of 
the simulation outputs, functions of numpy library of Python 
[28] was used. The tested scenarios are introduced in more 
detail in the following sub-sections.

C. Test case 1: Tracking DASs o f the aggregators
The UCH scenario simulated in this part has three aggre­

gators, each cratrolling 8 CUs with 11 kW power ratings and 
95% efficiency. Each aggregator is responsible for supplying 
energy to a non-residential building with a non-flexible elec­
trical load. When selecting the non-residential building types, 
heterogeneity in consumption patterns was sought Therefore, 
the following building types were considered: a metal com­
pany for the first aggregator (AG1), a food production facility 
for the second (AG2), and a sports hall for the third aggregator 
(AG3). The load profiles of the non-residential buildings were 
generated by using the Python package for data handling and 
scenario generation of city districts and urban energy systems, 
pycity [29]. The generated load profiles were then scaled such 
that the peak power demands of the non-residential buildings

controlled by AG1, AG2, and AG3, are respectively 56, 76, 
and 72 kW.

In the tested scenario, 25 EVs use the charging infrastructure 
of the UCH in 24 hours. The flat price of 0.1 Eur/kWh is 
assumed for the entire simulation period (i.e., Kc(t) =  0 
for all i). The EV charging sessions last between 2 and 9 
hours. The DASs of aggregators were generated by aiming 
at load flattening during the periods with EV presence. The 
non-residential fixed loads and DASs of the aggregators are 
plotted in Figure 4.

AG1

04-Jan

Fig. 4. Non-residential fixed loads and day ahead schedules of the aggregators 
controlling the charger clusters in the UCH

This scenario was simulated without/with applying smart 
routing and without/with applying real-time charging control. 
The resulting net consumption profiles of the aggregators were 
compared against the DASs given by the scenario in all tests. 
Figure 5 shows these comparisons. In all subplots, blue and 
orange colors represent, respectively, operations without and 
with SR. The subplots on the left show the results of the 
operation without RTC while the ones on the right are the 
results of the operation with RTC.

The comparison between left and right subplots shows that 
RTC improves the DAS tracking performance significantly. 
As seen in the blue curve of the upper-left subplot, the net 
consumption of AG1 is mostly more than the amount specified 
by the DAS. Without RTC, A Gl’s excessive consumption 
reaches 25 kW multiple times. The deviations from DAS 
reduce to near zero values (with a maximum of 11 kW) when 
AG1 implements RTC. Likewise, the maximum excessive 
consumption (actual consumption minus DASs) reduces from 
37 kW to 15 kW for AG2 and from 26 kW to 14 kW for AG3 
when aggregators apply RTC in the scenario without SR.
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AG1 without RTC

04-Jan

AG1 With RTC
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AG2 with RTC

04-Jan

Fig. 5. Deviations from the DASs without RTC versus with SC. Left (without SC) and right (with SC).

Although the RTC helps aggregators track DASs, it is not 
alone sufficient for the optimization of the system behavior. 
The constraint (22) often leads to deviations from the charging 
schedules of the EVs. Therefore, in some cases, the DASs 
require compromises on the demand fulfillment rates. When 
aggregators apply RTC in scenarios without SR, the total 
unfulfilled demand of EVs (S,UFD) is measured to be 231 
kWh. However, this value reduces to 129 kWh thanks to 
SR. A closer look to the subplots on the left reveals the 
underlying reason. In all left subplots, the blue curves show 
deeper and more frequent fluctuations when compared to the 
orange curves, which means that the deviations from DASs are 
deeper and more frequent in operation without SR. In other 
words, the SR leads to a system behavior that resembles the 
DASs even without RTC. In this case, the aggregators do not 
have to deviate from individual schedules of the EVs while 
tracking the DASs. Consequendy, the demand fulfillment rates 
increase when the RTC is combined with SR.

To understand the process that led to higher deviations 
under operation without SR, the events in the first three 
hours (7-10AM period) were analyzed carefully. Table I shows 
the arrival/departure times and the arrival SOCs of the EVs

arriving in this period and the clusters that these EVs use. The 
cluster selections in two cases (i.e., with and without SR) start 
to differ by 8AM. As seen in Fig. 4, for tracking the DAS in 
this period, the net power consumption of AG2 must decrease, 
and the consumption of AG3 must increase. Table I shows that 
SR allocates all three EVs arriving at 8 AM to the cluster of 
AG3. In case without SR, the drivers of these EVs randomly 
select the clusters of AG1 or AG2. Consequently, under the 
benchmark management without SR, as seen in the subplots 
on the left of Fig. 5, AG3’s cumulative energy consumption in 
this period is much less than the DAS. With SR, the deviations 
reduce to near-zero values.

This analysis found evidence for the impact of cluster 
selections on the demand fulfillment rate. From this, it can 
also be inferred that the demand fulfillment rates would be 
variable if the cluster selections of the EVs are not supervised 
(i.e., random). To analyze the impact of this randomness, the 
simulations without SR were repeated 100 times, each creating 
a unique test scenario in terms of the EVs’ cluster selections 
in the UCH. The histograms in Fig. 6 show the distribution of 
£ufd  and £V2G in these 100 tests. In all tests, the observed 
£ufd  is larger than what is observed in the simulation with
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TABLE I
EV CONNECTIONS TO THE CLUSTERS CONTROLLED BY THREE 

AGGREGATORS.

EV Arrival Leave Arrival SOC W ithout SR With SR
1 07:00 15:45 78% AGI AGI
2 08:00 10:45 38% AG2 AG3
3 08:00 15:00 30% AGI AG3
4 08:00 13:30 33% AG2 AG3
5 08:30 12:45 76% AG2 AG2
6 09:15 14:45 55% AG3 AG2
7 09:30 16:00 67% AGI AG3
8 09:45 16:15 37% AG3 AG3

SR. Out of 100 tests, only one produces a smaller £V2G as 
compared to the simulation with SR. The mean values of 
£ufd  and £V2G were measured to be 261 kWh and 41 kWh 
in 100 tests without SR. These values indicate that SR reduces 
¿:UFD by 51% on average and £y2G by 70%. In light of these 
findings, it is clear that the performance improvement due to 
SR is not coincidental because SR consistently outperforms 
random cluster selections.

Unfulfilled Demand Unscheduled V2X

kWh kWh

Fig. 6. Histograms of unfulfilled demand and unscheduled V2G transfer 
without SR.

To summarize, the results of the analyzes indicate the clear 
benefit of the proposed management concept -  which jointly 
optimizes the allocation and schedules of EVs through SR and 
controls the real-time operation through RTC -  in terms of 
tracking the DASs of the aggregators. The increased accuracy 
in DAS tracking is important for grid management as it 
increases the predictability of the consumer behavior. Further­
more, the applied concept proves to increase the net energy 
supply to the EVs using the UCH and decrease unscheduled 
V2G under the controlled operation of aggregators. The im­
provements in these performance indicators imply significant 
benefits to the involved parties, such as increased revenues for 
aggregators and improved experience for EV users.

D. Test case 2: Peak power limits o f the aggregators
This test considers an example UCH with 60 identical 

bidirectional 3-phase AC chargers having an 11 kW power 
rating and 95% power conversion efficiency (for both charging 
and discharging). In the main simulation variant, 60 CUs are 
equally distributed into three clusters, each controlled by one 
of the aggregators -named AG1, AG2, and AG3. Each aggre­
gator has a PPL of 132 kW, which is equal to 60% of the total

installed power of its cluster. In this scenario, V2G discharge 
essentially indicates a vehicle-to-vehicle energy transfer with 
the purpose of local balancing under the given PPLs. All 
aggregators have the same regular time-of-use tariff (kc). This 
tariff is the day ahead market price listed in Germany on 
January 8th, 2022 [30].

Fig. 7. Number of EVs present in clustered PL and electricity purchase tariff 
of aggregators.

The considered time-of-use tariff is plotted in Fig. 7 along­
side the number of EVs present in the UCH over the simulated 
period. During this period, 100 EVs visit (each EV once) the 
UCH between 07:00-22:00. 25% of these EVs stay connected 
for 1-2 hours, 25% for 2-4 hours, and 50% for 4-6 hours. Their 
battery capacities are 55 kWh, and their initial SOCs range 
between 20%-80%. They aim to achieve maximum SOC that 
could be achieved with 11 kW in the given parking duration, 
and they permit 5.5 kWh discharging (equal to 10% of the 
battery capacity of EVs) for V2G purposes.

The introduced scenario was simulated for four cases: with- 
out/with SR and without/with RTC. The resulting consumption 
profiles of the aggregators were plotted in Figure 8. As can be 
seen in the subplots on the left, the PPLs of the aggregators 
are often violated unless RTC is implemented to control the 
operation of the charging units. Such violations occur more 
often under random cluster selections (i.e., without SR). For 
AG1, the limits are violated for 145 minutes without SR and 
only for 25 minutes with SR. AG2’s consumption is larger 
than the given PPL for 145 minutes without SR; it is always 
within the specified limit under SR.

The comparison between the blue curves on the left and 
right subplots of Fig. 8 shows that RTC changes the consump­
tion profiles of the aggregators significantly under uncontrolled 
cluster selection (without SR). On the other hand, the orange 
curves (i.e., operation with SR) are nearly identical without 
and with RTC. The underlying reason is that, by jointly 
optimizing the cluster allocations and reference schedules of 
the incoming EVs, SR produces reference schedules that are 
easier to follow. Therefore, the RTC that enforces the peak 
power constraints requires fewer deviations from the reference 
schedules under SR. In this case, only 5 kWh of the charging 
demand remains unfulfilled; it is 113 kWh without SR. In other 
words, the return of implementing SR is equal to fulfilling 
the charging demands of four more average customers (each 
wishing to increase the SOC of their 55 kWh batteries by 
50%).
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AGI without RTC

Time

AGI With RTC

Time

Fig. 8. Cluster profiles versus capacity constraints in 3x20x1 lkW variant

To investigate the impact of the size of the clusters on the 
performance metrics, the number of aggregators was modified 
in different simulation variants. All variants were simulated 
by applying RTC without and with SR. Tables n and in 
summarize the comparison between the cases without and with 
SR in the simulated variants. The observations on demand 
fulfillment performance are similar in all variants; £UFD 
decreases noticeably thanks to SR. Furthermore, the results 
indicate that SR not only increases the EV charging potential 
(i.e., decreasing unfulfilled demand) under capacity constraints 
but also reduces vehicle-to-vehicle transfer for local balancing 
purposes. For example, in variant 6x15x1 lkW, SR reduces 
the total V2G by 71 kWh. More importantly, it eliminates the 
unscheduled V2G, £V2G, entirely.

The results denote a limited scenario dependency in the un-

TABLEH
U n f u l f il l e d  c h a r g in g  d e m a n d  f o r  a l l  s c e n a r io  v a r ia n t s

WITHOUT AND WITH SR

Total energy supply Unfulfilled demand
Variant Without With Without With

3x20x1 lkW 2309 2416 113 5
4x15x1 lkW 2330 2414 92 7
5x12x1 lkW 2328 2414 94 7
6x10x1 lkW 2314 2410 108 11

fulfilled demand and unscheduled V2G. For instance, without 
SR, ÇUFD is 113 kWh in the scenario variant 3x20x1 lkW and 
92 kWh in the variant 4x15x1 lkW. However, the difference 
between £UFD measured in two variants reduces to 2 kWh un­
der SR. Likewise, f V2G ranges between 8-44 kWh in different 
variants without SR; it is zero in all variants under SR. From

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2022.3208627

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Sintef. Downloaded on October 24,2022 at 12:45:42 UTC from IEEE Xplore.  Restrictions apply. 



13

TABLE III
V2G TRANSFER FOR DIFFERENT SIMULATION VARIANTS

Variant V2G Without With
3x20xllkW Scheduled 272 270

Unscheduled 15 0
Total 287 270

4xl5xllkW Scheduled 258 239
Unscheduled 44 0

Total 302 239
5xl2xllkW Scheduled 274 235

Unscheduled 7 0
Total 281 235

6xl5xllkW Scheduled 273 210
Unscheduled 8 0

Total 281 210

these findings, it follows that the proposed strategy responds to 
the scenario variations consistently while the random cluster 
selection’s performance can show great variability.

The increase in the demand fulfillment under PPLs can 
have important implications for the system design. This is 
particularly meaningful when the existing power distribution 
system lacks sufficient capacity to host a large amount of 
EV charging demand. In such scenarios, the ability to fulfill 
charging demands under pronounced PPL reduces the need for 
grid reinforcement and consequently affects electricity prices.

VII. Computational analysis

For the presented framework to be practicable in real­
time applications, the computation times required to solve SR 
and RTC problems must be sufficiently low. However, there 
exist no standards that determine the acceptable limits of the 
computation times in the investigated scenario. Furthermore, 
the computation time depends upon the available hardware and 
software. Nevertheless, in the following, it is demonstrated 
that even moderate computational power (i.e., that of a per­
sonal computer, having an Intel(R) Core(TM) i5-8250U CPU 
@1.80GH and using a CPLEX solver) is sufficient to complete 
the required computations within reasonably short times.

The time required for solving the SR problem depends 
upon two factors: the number of time steps in the scheduling 
problem and the number of candidate clusters in the UCH. 
The number of time steps is a degree of freedom as the EMO 
can choose an optimization time step (i.e., At in SR model) 
corresponding to the problem complexity. On the other hand, 
the EMO has to consider all options within proximity of the 
intended destination of the driver; thus, it is not allowed to 
choose the number of candidate clusters in the SR problem. 
To investigate the impact of this factor, randomly generated 
SR problems with a fixed number of optimization time steps 
-  96 steps which correspond to 24 hours with the 15-minute 
resolution -  and a varying number of clusters were solved, 
and their computation times were observed. 100 trials were 
made for each case (i.e., a specific number of clusters) to 
obtain an average measure of the computation time. The mean 
computation times are depicted in Figure 9a. The results show 
that it takes about 2 seconds to solve a big optimization 
problem with 64 candidate clusters, having 13197 constraints 
and 25382 variables. It is important to note that such a high

number of candidate clusters is often unrealistic in small 
distances to the intended destination of the EV driver. From 
this, it follows that the computation time of the SR problem in 
most scenarios is sufficiently short for real-time applications.

As opposed to the SR, RTC is formulated as a single period 
problem. Thus, the size of the problem is only related to the 
number of connected EVs. To observe the impact of different 
problem sizes, the number of the EVs were gradually increased 
from 2 to 64, and the computation times (of 100 trials per 
each size) were observed. The mean values of the observed 
computation times are depicted in Figure 9b. The problem with 
a cluster size of 64 has 451 variables, with 64 being binary. 
Even in this case, the mean computation time is below 0.12 
seconds. This demonstrates that even computers with moderate 
performance can quickly solve large RTC problems and adapt 
the system behavior according to the changes in the real­
time conditions, such as connection/disconnection and updated 
PPLs.

VIII. Conclusion

This paper addresses urban charging hubs (UCHs) where 
an EV user can access charging services provided by multiple 
aggregators, each controlling a cluster of EV charging units. 
In such a scenario, the rules governing 1) the distribution of 
the EVs into clusters and 2) the distribution of the charging 
power over time can affect the service quality. This work con­
tributes to the technical literature by defining a decentralized 
management concept that distributes the control authority to 
the aggregators, and the electromobility operator (EMO) of 
a UCH. In this concept, the aggregators control G2V/V2G 
operations and apply individualized dynamic pricing for EV 
charging in their clusters. The EMO is entitled to select a 
cluster for the incoming EVs to minimize the charging cost 
of its customer. The intelligent behaviors of aggregators and 
EMO are formalized by dynamic pricing, smart routing (SR) 
and real-time charging control (RTC) algorithms.

The management concept is demonstrated in two example 
scenarios where aggregators aim to 1) follow given day ahead 
schedules and 2) keep their peak consumption under the given 
limits. The performance of the proposed management concept 
is compared against benchmark strategies without SR and 
RTC. The simulation results show that the proposed manage­
ment concept tracks the day ahead schedules with remarkably 
higher accuracy. In scenarios where charger clusters have peak 
consumption power limitations, the proposed strategy removes 
the unscheduled discharge from EV batteries and reduces the 
unfulfilled charging demand by up to 97% as compared to the 
amounts recorded under benchmark strategies without SR.

In a real-world application, tracking day ahead schedules 
with higher accuracy makes the behavior of charger clusters 
more predictable and thus facilitates dealing with the capacity 
constraints of the power system. Furthermore, the reduction in 
unfulfilled charging demand and unscheduled V2G discharge 
is strongly related to EV users’ satisfaction with charging 
services. Therefore, the proposed strategy proposes significant 
benefits for grid-oriented coordinated charging and EV users’ 
experience.
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