
Mutual information estimation for graph convolutional neural

networks

Marius C. Landverk1 and Signe Riemer-Sørensen2

1mariuslandc@gmail.com
2signe.riemer-sorensen@sintef.no, Analytics and AI, SINTEF Digital, P.O. Box 124

Blindern, N-0314 Oslo, Norway

Abstract

Measuring model performance is a key issue for
deep learning practitioners. However, we often lack
the ability to explain why a specific architecture at-
tains superior predictive accuracy for a given data
set. Often, validation accuracy is used as a per-
formance heuristic quantifying how well a network
generalizes to unseen data, but it does not capture
anything about the information flow in the model.

Mutual information can be used as a measure of
the quality of internal representations in deep learn-
ing models, and the information plane may provide
insights into whether the model exploits the avail-
able information in the data.

The information plane has previously been ex-
plored for fully connected neural networks and
convolutional architectures. We present an
architecture-agnostic method for tracking a net-
work’s internal representations during training,
which are then used to create the mutual informa-
tion plane. The method is exemplified for graph-
based neural networks fitted on citation data. We
compare how the inductive bias introduced in
graph-based architectures changes the mutual in-
formation plane relative to a fully connected neural
network.

1 Introduction

1.1 Motivation

For classification problems, the validation accuracy
is a common heuristic to gauge the generalization
capabilities of a model. Whilst it is a useful met-
ric, it leaves something to be desired in terms of
understanding why a model is able to perform as
well, or as ill, as it does. The ability of a model to
fit the data is directly related to the quality of the
representations generated by the model. The in-
formation plane is given as the mutual information

between a model’s representations, Zi, with the in-
put X and the true labels Y [11, 16, 14]. Visual
inspection of the information plane at the point in
training where the performance plateaus can pro-
vide qualitative guidance. In this paper, we seek
to use the information plane from the information
bottleneck method [14] in order to gauge model fit
across architectures with different inductive biases,
and we exemplify by comparing a fully-connected
neural network to graph-based networks trained on
the same classification task.

1.2 Mutual information

The core of the information bottleneck method is a
quantification of shared information between ran-
dom variables originally suggested by [11]. For two
random variables X and Y , the mutual informa-
tion I(X,Y ) is a symmetric quantity measuring the
amount of information that X contains about Y ,
and vice versa. If we want to predict the true labels
Y from X, we can define a compressed version of
X, called Z, with shared information I(X,Z) and
I(Z, Y ). The minimal representation Z (maximally
compressed information on Y from X), that simul-
taneously maximises the mutual information with
Y is called the ’information bottleneck’ [14, 10]:

argmaxZ∈∆I(Y,Z) such that I(X,Z) ≤ R, (1)

where R is a given scalar threshold. Mutual infor-
mation can be expressed in terms of the entropy
H(X), H(Y ), as I(X,Y ) = H(X) − H(X|Y ) =
H(Y )−H(Y |X), where H(Y |X) is the conditional
entropy of Y given X [3].

If Y,X and Z are random variables in a Markov
chain where Y → X → Z, the data-processing in-
equality applies to the mutual information between
the variables [3]:

I(X,Y ) ≥ I(Z, Y ). (2)

In other words, the information about an input
X contained in Z cannot be increased by applying
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a function to Z, as long as the function does not
use additional information about X.

For neural networks, the representations Zi can
be associated with the successive hidden layers. For
fully connected neural networks, the data process-
ing inequality can then be applied to obtain a set
of inequalities. However, in more complicated neu-
ral network structures such as recurrent neural net-
works or graph convolutional neural networks, the
hidden layers Z draws on information about X,
and the data processing inequality is broken. In
the case of graph convolutional neural network, the
data processing inequality is broken explicitly be-
cause all hidden layers uses the edge information in
X to compute the forward pass.

1.3 Related work

It has been debated whether the mutual infor-
mation follows a specific pattern during training
with a fitting phase followed by a compression
phase [14, 13]. So far, the compression phase is only
observed for symmetric activation functions such as
sigmoid and tanh (see [5] for an overview of exper-
iments). Here we do not make any claims regarding
the compression phase, but provide a framework
for comparing the mutual information across neu-
ral network architectures.

Early works [16, 14] use a binning procedure
to estimate the mutual information. This is only
meaningful for activation functions with restricted
output range e.g. sigmoid, and the choice of bin-
ning has been proven to affect the resulting mutual
information estimate significantly [15]. This can be
alleviated by assuming a distribution for the hidden
variables Z and rewriting the mutual information
to only include the hidden layer representations.
In Sec. 2 we focus on this method which allows to
derive both upper and lower bounds for I(X,Z)
and I(Z, Y ) [9, 10, 13], and only briefly comment
here on alternative methods. Instead of assuming
the distributions, the approach of [2] relies on a
completely separate neural network to estimate the
mutual information of the problem-specific neural
network. However, this introduces additional hyper
parameters and high risk of numerical instabilities.

The method of [20] uses an estimate for the en-
tropy based on an eigenvalue decomposition of X
and a smoothing with an infinitely-divisible, real-
valued positive definite kernel. However, since the
method relies on computing eigenvalues, the com-
putational requirements fast become prohibitive, as
this computation is done several times in order to
obtain a single mutual information plot.

The authors of [4] apply the mutual informa-
tion plane as a way to explain convolutional neu-

ral networks trained for image classification (e.g.
ResNET), but they only consider that specific ar-
chitecture and image-like data.

1.4 Our contribution

We present a framework for tracking the activations
of a generic neural network. To produce an infor-
mation plane, a classification task is required, since
otherwise the conditional entropy H(X|Y ) becomes
intractable. The framework has been developed in
PyTorch [12] and can be found on GitHub1.

The novelty of the developed framework is that
it is agnostic to the kind of model architecture, as
long as all the submodules to be tracked are defined
explicitly in the initialization method of the Py-
Torch module. The original methods for mutual in-
formation estimations were developed on fully con-
nected neural networks. To our knowledge, mutual
information has not previously been estimated for
graph neural networks or recurrent networks (see
e.g. table 1 in [5]). The already existing code-
bases from [11, 13] are well suited for the specifi-
cally investigated network architectures and setup,
but they lack the flexibility to be easily applied on
different neural architectures, and hence do not in-
vite comparisons across architectures.

In Sec. 3, we exemplify on graph-like data and
discuss how the inductive bias introduced by the
imposed structure of the graph neural network af-
fects the model quality and how that is expressed
in the mutual information plane.

2 Method

We estimate the mutual information based on the
method from Kolchinsky et. al. [9, 10]. Given a
batch B with NB samples, the upper bound esti-
mates2 for the mutual information I(X,ZB) and
I(ZB , Y ) are

I(X,ZB) ≤ − 1

NB

∑
i

log
1

NB

∑
j

Kij (3)

with Kij = exp
(
−‖Zi − Zj‖22/(2σ2)

)
, and

I(ZB , Y ) ≤ − 1

NB

∑
i

log
1

NB

∑
j

Kij (4)

−
C∑

c=1

pc

− 1

Nc

∑
{i|Yi=c}

log
1

Nc

∑
{j|Yj=c}

Kij

 ,
1https://github.com/mariusmcl/

info-bottleneck-tracking
2The lower bound is obtained similarly by replacing the

2 in Kij with 8.
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with pc = Nc

N where Nc is the total number of ex-
amples in category c and N is the total number of
samples.

The estimate is based on pairwise distances be-
tween Zi and Zj . If the components in the repre-
sentation of a class (some/all classes) are very clus-
tered, their pairwise distances are small and hence
the second term in equation (4) becomes small,
leading to large mutual information. If the rep-
resentation is e.g. random and thereby not clus-
tered at all, the mutual information becomes large.
Hence, if the inter-class distances are small, one can
relate a sub-region of the representation’s domain
to a class label, which in turn would yield a higher
estimate of mutual information.

The only hyperparameter in the method is the
homoscedastic noise variance σ2 of the assumed
normal distribution. In equations (3) and (4), σ2

can be interpreted as a bandwidth term, with a
higher σ2 allowing more interactions between batch
elements i and j, leading to higher values of Kij .
Different choices of σ2 produce quantitatively and
qualitatively different results. If the variance is too
small, the estimates become noisy (large scatter in
the plots), and if it becomes too big the estimates
have large uncertainty, which also tends to break
the data processing inequality even for fully con-
nected neural networks. This is consistent with
previous observations based on independent esti-
mators [5, 18, 19].

The developed framework is designed to be com-
patible with the PyTorch training workflow and re-
lies on recording the activation values of the model
during training by attaching a ”hook” on the for-
ward pass3. We show an example training loop with
activation tracking during training in code listing 1.
The forward hooks are defined through the model’s
named children attribute4.

We have verified that the method reproduces the
mutual information estimates of [14] and [4] (as far
as possible with the details provided in the paper).

3 Example on graph-like data

We exemplify the method on two different graph-
like datasets (Sec. 3.1, Sec. 3.2) and and three dif-
ferent architectures (Sec. 3.3-Sec. 3.5).

3Pytorch: Forward And Backward Func-
tion Hooks, https://pytorch.org/tutorials/

beginner/former_torchies/nnft_tutorial.html#

forward-and-backward-function-hooks
4Pytorch: Modules https://pytorch.org/docs/stable/

generated/torch.nn.Module.html

for epoch in range(num_epochs): 1

hooks = list(tracker.forward_hooks.keys()) 2

tracker.register_new_epoch(hooks) 3

for x, y in train_loader: 4

optimizer.zero_grad() 5

out = classifier(x) 6

loss = crossentropy_loss(out, y) 7

loss.backward() 8

optimizer.step() 9

tracker.save() 10

Listing 1: An example of activation tracking dur-
ing a training loop in PyTorch for training a net-
work for a classification task. The forward hooks
are defined through the model’s named children at-
tribute.

3.1 The Cora data

The Cora data5 has a graph like structure with
2708 nodes representing scientific papers and 5429
edges given by citations between papers. The edges
are unidirectional so paper A can cite paper B or
opposite, or they can both cite each other. The
papers are described by a feature vector of length
D = 1433 where each element is the number count
of a predetermined word (bag-of-words feature vec-
tor). In addition, each of the papers belong to one
of seven categories indicating which scientific field
the article is published in. For the Cora data, we
consider the task of classifying the papers into one
of seven publication categories. We use the built in
masks for splitting in training (140 nodes), valida-
tion (500 nodes) and test (1000 nodes) samples.

3.2 The arxiv data

The arxiv dataset6 contains the citation network
between preprint papers in computer science sub-
mitted to arXiv. The nodes represents 169,343
preprints connected by 1,166,243 directed edges
representing one preprint citing another. The pa-
pers are described by a feature vector of length
D = 128 where each element is the number count
of a predetermined word (bag-of-words feature vec-
tor). The targets are one of 40 sub-categories as-
signed to each paper (e.g. cs.AI, cs.LG etc. which
are manually assigned by the authors and modera-
tors), and hence the task is classification. We follow
the recommendation and split into training and test
nodes based on submission dates such that we train
on papers published until 2017, validate on those

5https://relational.fit.cvut.cz/dataset/CORA
6https://ogb.stanford.edu/docs/nodeprop/

#ogbn-arxiv

3

https://pytorch.org/tutorials/beginner/former_torchies/nnft_tutorial.html##forward-and-backward-function-hooks
https://pytorch.org/tutorials/beginner/former_torchies/nnft_tutorial.html##forward-and-backward-function-hooks
https://pytorch.org/tutorials/beginner/former_torchies/nnft_tutorial.html##forward-and-backward-function-hooks
https://pytorch.org/docs/stable/generated/torch.nn.Module.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html
https://relational.fit.cvut.cz/dataset/CORA
https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv


published in 2018, and test on those published since
2019. This is known to be slightly more challenging
than the random split used in the Cora data [7].

3.3 Multilayer perceptron model

The simplest model is a vanilla multilayer percep-
tron (MLP) model [6]. The propagation rule for
the MLP is given by

Zl+1 = σ
(
ZlWl+1

)
, (5)

where W is the weight matrix, and σ indicates
the activation function. The MLP was chosen as
reference to explore if the mutual information plane
is affected by inductive bias in the model.

3.4 Graph convolution model

Graph convolutions are a generalisation of the con-
volutionary operator that have become a standard
workhorse in deep learning on images, to operate on
arbitrary graphs [8, 1]. The propagation rule for a
graph convolutional network is achieved through a
weighted sum of neighboring nodes’ features, fol-
lowed by a matrix multiplication. The propagation
rule for a node n is given by

Zn
l+1 = σ

 ∑
j∈N (n)

1√
d̂j · d̂n

Zj
l

Wl+1

 , (6)

with d̂i being defined as d̂i = 1 +
∑

j∈N (i) eij with
eij being the edge weight between nodes i and j,
with the default being eij = 1. The graph convo-
lutional architecture thus has a fixed weighing of a
nodes’ attribute based on that nodes’ edge degree.

3.5 Graph attention model

Graph attention networks follows the same propa-
gation rule as in equation (6) but apply an atten-
tion mechanism at the point when the information
is aggregated from the neighbouring nodes through
normalised attention scores assigned to each source
node before the summation [17]. For a single node
n the propagation can be written as:

Zn
l+1 = σ

 ∑
j∈N (n)

αj,nZj
l

Wl+1

 , (7)

where the attention scores αj,n are trainable and
thus not fixed as for the graph convolutional net-
work.

3.6 Training the models

All architectures are fitted using three hidden lay-
ers, with 300, 200 and 100 neurons each. For the
Cora data we use relu activations, while for the
arxiv data we fit two models for each architecture
using tanh and relu activations respectively. We
train for 600 epochs for the arxiv dataset, and for
100 epochs for the Cora dataset. Due to the dif-
ficulties of batching a graph dataset, all models
are trained with full-batch gradient descent, and
as such each epoch corresponds to one update of
the model parameters.

We estimate the upper bound on the mutual in-
formation using Listing 1 with a noise parameter of
σ2 = 0.1 for the Cora dataset and σ2 = 0.001 for
the arxiv dataset. We have tested multiple values of
σ. Generally, we find that small values (σ = 10−5)
lead to very scattered values of mutual information,
while large values (σ = 0.1) reduce the scatter at
the cost of increased uncertainty, which may lead to
apparent violation of the data processing inequality
for the MLP model on some datasets. We selected
the values of σ such that the data processing in-
equality was not (strongly) violated for the MLP
model (see also Sec. 2).

3.7 Results on Cora data

Fig. 1 shows the training and validation accuracy
during training. We see that both models obtain a
training accuracy of almost 100%, but the valida-
tion accuracy of the MLP model remains low, while
the GCN structure enforces specific relationships in
the model that appears to prevent some overfitting
and consequently higher validation accuracy.

Fig. 2 shows the information planes for the MLP
and GCN models fitted to the Cora data. For the
MLP model we see that the mutual information
between input and the individual layers (I(X,Zi))
and the individual layers and output (I(Zi, Y )) in-
crease with training, also referred to as the fitting
phase. As expected, we do not observe any com-
pression phase due to the choice of the asymmet-
ric relu activation function. For the MLP, the
layers follow the data processing inequality (equa-
tion (2)) with I(X,Z1) ≥ I(X,Z2) ≥ I(X,Z3) and
I(Z1, Y ) ≥ I(Z2, Y ) ≥ I(Z3, Y ). We note that even
though the MLP model has less information about
X in its final layer compared to the GCN model,
it is not able to use this in order to create general-
ized features which perform better on the validation
set. Seen together with the gap between training
and validation accuracy in Fig. 1 this is a clear sign
that the MLP architecture is unable to generalize
well on this dataset.
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Figure 1: The training (solid lines) and validation accuracies (dashed lines) during the fitting process.
To the left is the Cora data with the MLP model in blue and GCN model in black. The to right is the
arxiv data with the GAT model is blue, MLP model is orange and GCN model is green.

For the GCN model we also observe that the mu-
tual information between input and the individual
layers (I(X,Zi)) and the individual layers and out-
put (I(Zi, Y )) increase with training. By choosing
σ2 = 0.1 the data processing inequality is not vio-
lated, however for lower values of σ2 the data pro-
cessing inequality was violated for the GCN model.
It is not always expected that the GCN architec-
ture fulfills the data processing inequality. This is
due to the successive representations Z1

i , Z
2
i draw-

ing upon knowledge of the input data X to gener-
ate the representations. Specifically for the GCN,
they are obtained through an averaging of previous
features from neighbouring nodes. This introduces
an explicit dependence upon the structure of X in
the update step in equation (6), violating the data
processing inequality.

It is somewhat surprising that the GCN model
retains more information about X than the MLP
model while at the same time performing better
on the validation set. Usually one would seek to
generalize away as much unnecessary variation in
X as possible in order to only retain variation re-
lated to predicting Y . It seems the MLP architec-
ture is bottlenecked by its ability to only convey
information through matrix multiplications, whilst
the GCN model alleviates this by also pooling each
neighboring nodes’ features in its propagation step.

3.8 Results on arxiv data

Fig. 1 (right) shows the training and validation ac-
curacy during training using relu activations on
the arxiv data. On the arxiv data, the models ob-
tain training accuracies of 64-77%, and validation
accuracies of 54% for the MLP model and 58% for

the two graph models7. The gap between training
and validation accuracies indicate some overfitting,
which is worst for the MLP. We assume this is due
to the graph-based models enforcing specific rela-
tionships that helps with the generalization. The
accuracies have very similar behaviour for the tanh
activations (not shown).

Fig. 3 shows the information planes for all three
models fitted to the arxiv data with relu activa-
tions. For all models we observe a rapid fitting
phase with increasing mutual information along
both axes. For the MLP model we see that all
the layers ends up within a very small region and
while the inset indicates that the ordering breaks
the data processing inequality, this is most likely
due to uncertainty in the estimation. We associate
the closeness of the layers to a lack of compression
during training and a poor generalization perfor-
mance. The GCN and GAT show similar patterns,
but with fewer iterations needed for the rapid in-
crease of mutual information. The GAT performs a
small compression of the last layer. In both cases,
the closeness of the layers indicate low compression
between the layers.

At the current stage, we are unable to draw
general conclusions from the mutual information
planes, but the presented framework will ease fur-
ther study of the mutual information plane of in-
ductively biased models.

7These are slightly worse than the official best fit models
obtained on the data, but we have not tuned the individual
models [7] in order to keep them comparable
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Figure 2: The information plane of the training process for MLP model (left) and GCN model (right)
on the Cora citation dataset, with noise parameter σ2 = 0.1 and relu activations. The different
symbols/numbers refer to layers in the networks (©:1, 4:2, �:3) whereas the colours refer to fitting
epoch. The inserts provide a zoom-in of the convergence region. For the MLP the third layer (squares)
ends up with smaller mutual information with X than the previous two layers (triangles and circles)
adhering to the data processing inequality. Through its pooling operation, the GCN architecture is able
to retain more information about X than the MLP model, which is shown by the final layer (square)
having noticeably higher mutual information about X compared to its fully connected counterpart.

4 Conclusion

We provide a framework for performing the infor-
mation plane analysis by tracking the activations
of a general PyTorch model. The work was partly
motivated by the need for evaluating generalisa-
tion performance based on training data alone, and
partly by the need for informed model architecture
selection. Being able to compare the mutual infor-
mation plane across neural architectures is reliant
on whether the architectures violate the data pro-
cessing inequality. Ideally the data processing in-
equality would hold, but for more complicated ar-
chitectures, and as shown in this work, that is not
necessarily the case but the information plane can
still provide insight in some cases.
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