IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 21, 2020, accepted February 16, 2020, date of publication February 27, 2020, date of current version March 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2976586

Taming an Autonomous Surface Vehicle for Path
Following and Collision Avoidance Using Deep
Reinforcement Learning

EIVIND MEYER'!, HAAKON ROBINSON', ADIL RASHEED “'-2, AND OMER SAN 3

! Department of Engineering Cybernetics, Norwegian University of Science and Technology, 7034 Trondheim, Norway
2Department of Mathematics and Cybernetics, SINTEF Digital, 7031 Trondheim, Norway
3School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078-5016, USA

Corresponding author: Adil Rasheed (adil.rasheed @ntnu.no)

This work was supported in part by the Norwegian Research Council, and in part by the industrial partners through DNV GL, Kongsberg,
and Maritime Robotics of the Autosit Project under Grant 295033.

ABSTRACT In this article, we explore the feasibility of applying proximal policy optimization, a state-of-
the-art deep reinforcement learning algorithm for continuous control tasks, on the dual-objective problem of
controlling an underactuated autonomous surface vehicle to follow an a priori known path while avoiding col-
lisions with non-moving obstacles along the way. The Al agent, which is equipped with multiple rangefinder
sensors for obstacle detection, is trained and evaluated in a challenging, stochastically generated simulation
environment based on the OpenAl gym Python toolkit. Notably, the agent is provided with real-time insight
into its own reward function, allowing it to dynamically adapt its guidance strategy. Depending on its
strategy, which ranges from radical path-adherence to radical obstacle avoidance, the trained agent achieves

an episodic success rate close to 100%

INDEX TERMS Deep reinforcement learning, autonomous surface vehicle, collision avoidance, path

following, machine learning controller.

I. INTRODUCTION

Autonomy offers surface vehicles the opportunity to improve
the efficiency of transportation while still cutting down
on greenhouse emissions. However, for safe and reliable
autonomous surface vehicles (ASV), effective path planning
is a pre-requisite which should cater to the two important
tasks of path following and collision avoidance (COLAV).
In the literature, a distinction is typically made between reac-
tive and deliberate COLAV methods [1]. In short, reactive
approaches, most notably artificial potential field methods
[2]-[4], dynamic window methods [5]-[7], velocity obsta-
cle methods [8], [9] and optimal control-based methods
[10]-[14], base their guidance decisions on sensor read-
ings from the local environment, whereas deliberate meth-
ods, among them popular graph-search algorithms such as
A* [15] and Voronoi graphs [16], [17] as well as ran-
domized approaches such as rapidly-exploring random tree
[18] and probabilistic roadmap [19], exploit a priori known

The associate editor coordinating the review of this manuscript and

approving it for publication was Dalei Wu

41466

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

characteristics of the global environment in order to construct
an optimal path in advance, which is to be followed using a
low-level steering controller. By utilizing more data than just
the current perception of the local neighborhood surrounding
the agent, deliberate methods are generally more likely to
converge to the intended goal, and less likely to suggest
guidance strategies leading to dead ends, which is frequently
observed with reactive methods due to local minima [20].
However, in the case where the environment is not perfectly
known, as a result of either incomplete or uncertain mapping
data or due to the environment having dynamic features,
purely deliberate methods often fall short. To prevent this,
such methods are often executed repeatably on a regular basis
to adapt to discrepancies between recent sensor observations
and the a priori belief state of the environment [20]. However,
as this class of methods are computationally expensive by
virtue of processing global environment data, this is some-
times rendered infeasible for real-world applications with
limited processing power [21], especially as the problem
of optimal path planning amid multiple obstacles is prov-
ably NP-hard [22]. Thus, a common approach is to utilize a

VOLUME 8, 2020

https://orcid.org/0000-0003-2690-983X
https://orcid.org/0000-0002-2241-4648
https://orcid.org/0000-0002-9362-3906

E. Meyer et al.: Taming an ASV for Path Following and COLAV Using Deep RL

IEEE Access

reactive algorithm, which is activated whenever the presence
of a nearby obstacle is detected, as a fallback option for the
global, deliberate path planner. Such hybrid architectures are
intended to combine the strengths of reactive and deliberate
approaches and have gained traction in recent years [23], [24].
The approach presented in this article is somewhat related
to this; the existence of some a priori known nominal path
is presumed, but following it strictly will invariantly lead
to collisions with obstacles. Unlike other approaches, there
is, however, no switching mechanism that activates some
reactive fallback algorithm in dangerous situations. To this
end, a reinforcement learning (RL) agent is trained to exhibit
rational behaviour under such circumstances, i.e. following
the path strictly only when it is deemed safe. Despite the vast
amount of literature on the topic and the numerous different
approaches, of which only a small subset has been mentioned
here, it appears that, when applied to vehicles with nonholo-
nomic and real-time constraints such as autonomous surface
vehicles, no existing method is without drawbacks, whether
it is unrealistic assumptions about the vessel dynamics (if
not an outright neglect thereof), problems with scalability in
terms of environment complexity (including the degrees of
freedom, the number of obstacles as well as their shapes and
their velocities), excessive computation time requirements
in general, unrealistic assumptions of availability of mea-
surements, the disregard for desirable output path properties
such as continuity, smoothness, feasibility or even safety,
an incompatibility with external environmental forces, a lack
of determinism (which may or may not be deemed prob-
lematic), stability issues due to singularities or local minima
leading to sub-optimal guidance strategies [25], [26].

RL is an area of machine learning (ML) of particular inter-
est for control applications, such as the guidance of surface
vessels under consideration here. Fundamentally, this ML
paradigm is concerned with estimating the optimal behavior
for an agent in an unknown, and potentially partly unobserv-
able environment, relying on trial-and-error-like approaches
in order to iteratively approximate the behavior policy that
maximizes the agent’s expected long-time reward in the envi-
ronment. The field of RL has seen rapid development over
the last few years, leading to many impressive achievements,
such as playing chess and various other games at a level that
is not only superhuman, but also overshadows previous Al
approaches by a wide margin [27]-[29].

The focus of this paper is to explore how RL, given the
recent advances in the field, can be applied to the guidance
and control of ASV. Specifically, we look at the dual objec-
tives of achieving the ability to follow a path constructed from
a priori known way-points, while avoiding collision with
obstacles along the way. In an end-to-end fashion, control sig-
nals for a simulated vessel are generated by a RL agent which,
based on the readings from a rangefinder sensor suite which
is attached to the vessel as well as rewards received from the
environment, learns how to intelligently control the vessel
in challenging obstacle avoidance scenarios. The resulting
interplay between the environment, which incorporates the

VOLUME 8, 2020

Environment Agent

Control Policy
Value Function

Observation reward

A\ 4

Sensor Readings
Path / Obstacles

Control Inputs

FIGURE 1. Block diagram illustrating the interaction between the
environment and the RL agent.

dynamics of the vessel itself, and the autonomous RL agent
is illustrated in Figure 1.

For simplicity, we limit the scope of this work to
non-moving obstacles of circular shapes. As RL methods are,
model-free approaches, by their very nature, a positive result
can bring significant value to the robotics and autonomous
system field, where implementing a guidance system typi-
cally requires knowledge of the vessel dynamics, in the form
of non-linear first-principle models with parameters that can
only be determined experimentally at great cost.

Il. THEORY

A. GUIDANCE AND CONTROL OF MARINE VESSELS

1) COORDINATE FRAMES

In order to model the dynamics of marine vessels, one must
first define the coordinate frames forming the basis for the
motion. A few coordinate frames typically used in control
theory are of particular interest. The geographical North-
East-Down (NED) reference frame {n} = (x;, yn, z,) forms
a tangent plane to the Earth’s surface, making it useful for
terrestrial navigation. Here, the x,-axis is directed north,
the y,-axis is directed east and the z,,-axis is directed towards
the center of the earth.

The origin of the body-fixed reference frame {b} =
(xp, ¥p, zp) is fixed to the current position of the vessel in
the NED-frame, and its axes are aligned with the heading
of the vessel such that x; is the longitudinal axis, yp is the
transversal axis and z,, is the normal axis pointing downwards.
It should be noted, that whenever the vessel is aligned with the
water surface, a common assumption, z, points in the same
direction as z,, i.e. towards the center of the Earth.

2) STATE VARIABLES

Following Society of Naval Architects and Marine Engi-
neers (SNAME) notation [30], twelve variables are used for
representing the vessel state. The state vector consists of the
generalized coordinates 7 £ [x",y", 7", ¢, 0, w]T, where
the quantities in the bracket are North, East, Down positions
in reference frame {n}, roll, pitch, yaw corresponding to
a Euler angle zyx convention from {n} to {b} respectively,
representing the pose of the vessel relative to the inertial

41467

IEEE Access

E. Meyer et al.: Taming an ASV for Path Following and COLAV Using Deep RL

frame. Also v £ [u, v, w,p, q, r1T, where the quantities in
the bracket are surge, sway, heave, roll rate, pitch rate and
yaw rate respectively representing the vessel’s translational
and angular velocity in the body-frame.

3) DYNAMICS

Assumption 1 (Calm Sea): There is no ocean current,
no wind and no waves and thus no external disturbances to
the vessel.

In the general case, twelve coupled, first-order, nonlinear
ordinary differential equations make up the vessel dynamics.
In the absence of ocean currents, waves and wind, these can
be expressed in a compact matrix-vector form as

= Je(nv
Bf = Mgpv + Crp(v)v + g(n) (rigid-body, hydrostatic)
+Mav 4+ Ca(v)v + D(v)v (hydrodynamic) (D

Here, Jo (1) is the transformation matrix from the body frame
{b} to the NED reference frame {n}. Mrg and M, are the
mass matrices representing rigid-body mass and added mass,
respectively. Analogously, Crp(v) and Ca(v) are matrices
incorporating centripetal and Coriolis effects. Finally, D(v)
is the damping matrix, g(n) contains the restoring forces
and moments resulting from gravity and buoyancy, B is the
actuator configuration matrix and f is the vector of control
inputs.

4) 3-DOF MANEUVERING MODEL
In this subsection, the ASV assumptions and the resulting
3-DOF model is outlined.

Assumption 2 (State Space Restriction): The vessel is
always located on the surface and thus there is no heave
motion. Also, there is no pitching or rolling motion.

This assumption implies that the state variables 7", ¢, 8, w,
p, q are all zero. Thus, we are left with the three generalized
coordinates x", ¥ and ¢ and the body-frame velocities u, v
and r. In this case, the transformation matrix Jg(#) is reduced
to a basic rotation matrix R; y for a rotation of ¥ around the
Zp-axis as defined by

cosyy —siny 0O
R,y =| sinyy cosyy O
0 0 1

Furthermore, since restoring forces are unimportant for
3-DOF maneuvering [31], we have that g(y) = 0. Also,
by combining the corresponding rigid-body and added mass
terms associated such that M = Mgg + Mp and C(v) =
Crp(v) + Ca(v), we obtain the simpler 3-DOF state-space
model

0= Rz,w//(")"
Mv + C(v)v + D(v)v = Bf 2)

where 3 £ [x", y", W]T and v = [u,v, r]T and each matrix
is 3x3.

41468

Assumption 3 (Vessel Symmetry): The vessel is port-
starboard symmetric.

Assumption 4 (Origin at the Centerline): The body-fixed
reference frame {b} is centered somewhere at the longitudinal
centerline passing through the vessel’s center of gravity.

Assumption 5 (Sway-Underactuation): There is no force
input in sway, so the only control inputs are the surge thrust
T, and the yaw moment T,.

Assumptions 3 and 4, which are commonly found in
maneuvering theory applications, justify a sparser structure
of the system matrices, where some non-diagonal elements
are zeroed out. Also, from Assumption 5 we have that
f £ [Ty, T,]". The matrices and their numerical values are
obtained from [31], where the model parameters were esti-
mated experimentally for CyberShip II, a 1:70 scale replica
of a supply ship, in a marine control laboratory.

B. REINFORCEMENT LEARNING

In this section, we will briefly review the RL paradigm and
introduce the specific technique that our method builds on.
For a more comprehensive coverage, the reader is advised to
consult the book by Sutton and Barto [32].

Fundamentally, RL is an approach to let autonomous
agents learn how to behave optimally in their environments.
Using the phrase “let learn” instead of “teach’ is not acci-
dental; a defining feature of RL is that the learning is not
instructive, as opposed to the related field of supervised
learning. Instead, learning is achieved through a combination
of exploration and evaluative feedback, which bears a close
resemblance to the way in which humans and other animals
learn [32]; they become gradually wiser by virtue of trial and
error.

1) FUNDAMENTALS OF RL

At each discrete time-step of the learning process, the agent,
which is operating within an environment, chooses an action
u based on its current state s (also often referred to as obser-
vation). The way in which the specific action was chosen
by the agent (i.e. the agent’s strategy) is commonly referred
to as the policy and denoted by m. Thus, the policy m can
be thought of as a mapping # : & — A from the state
space to the action space. In order to learn, i.e. improve the
policy m, the agent then receives a numerical reward r from
the environment. The fundamental goal of the agent is to
maximize its long-term reward (also known as the return),
and updates to the agent’s policy are intended to improve the
agent’s ability to do this. These concepts (i.e. agents, environ-
ments, observations/states, policies, actions and rewards) are
fundamental to the study of RL.

Remark: The reward may not solely depend on the lat-
est action made. An intuitively attractive action may have
long-term repercussions. Similarly, an action which is unex-
citing in the short-term may be optimal in the long term.
Delayed rewards are common in RL environments.

VOLUME 8, 2020

E. Meyer et al.: Taming an ASV for Path Following and COLAV Using Deep RL

IEEE Access

Remark: The policy need not be deterministic. In fact,
in games such as rock—paper—scissors, the optimal policy is
stochastic.

Remark: The actions need not be discrete. Traditionally,
RL algorithm have been dealing with discrete action spaces,
but recent advances in the field have led to state-of-the-
art algorithms that are naturally compatible with continuous
action spaces (i.e. do not involve the workaround of dis-
cretizing a continuous action space, which is undesirable for
control applications [33]).

As the environment may be stochastic, it is common to
think of the process as a Markov decision process (MDP) with
state space S, action space A, reward function r(s;, a;), tran-
sition dynamics p(s;+1]s;, a;) and an initial state distribution
p(so) [34]. The combined MDP and agent formulation allows
us to sample trajectories from the process by first sampling
an initial state from p(sp), and then repeatedly sampling the
agent’s action a; from its policy 7 (s;) and the next state ;1
from p(s;+118z, a;). As the agent is rewarded at each time step,
its total reward can be represented as

o
R &) r(sia) 3)
i=t

Remark: Analogous to discount functions used in the field
of economics, it is common to introduce a discount factor
y € (0, 1] fo capture the agent’s relative preference for
short-term rewards mathematically and to ensure that the
infinite sum of rewards will not diverge. The discounted sum
of rewards is then given by Z?io y'r(s;, a;). For concrete-
ness in the following derivations, however, the discount factor
is disregarded. This is justified by considering the discount
factor as being already incorporated into the reward function,
making it time-dependent.

Due to the stochasticity of the environment, one must
consider the expected sum of rewards to obtain a tractable for-
mulation for optimization purposes. Thus, we can introduce
the state-value function V7 (s) and the action-value function
0" (s, a), two very related concepts. V7 (s) represents the
expected return from time ¢t onwards given an initial state s,
whereas Q7 (s, a) represents the expected return from time ¢
onwards conditioned on the initial action a;.

v (s¢) £ Esi>=1,ai>=1~n [Ry]s:] 4)
Qﬂ (s¢, ar) £ Es,->=,,a,->=,~n [R:lst, ar] (5)

2) POLICY GRADIENTS

Whereas value-based methods are concerned with estimating
the state-value function and then inferring the optimal pol-
icy, policy-based methods directly optimize the policy. For
high-dimensional or continuous action spaces, policy-based
methods are commonly considered to be the more efficient
approach [35].

From now on, we consider the policy 7 (6) to be stochas-
tic (i.e. w(0) S x A — [0,1]) and assume that is
defined by some differentiable function parametrized by 6,
enabling us to optimize it through policy-gradient methods.

VOLUME 8, 2020

In general, these methods are concerned with using gradient
ascent approximations to gradually adjust the policy function
parameterization vector in order to optimize the performance
objective

J(0) = Ey; 4~ (o) [Rol (6)

More formally, policy-gradient methods approach gradient
ascent by updating the parameter vector 6 according to the

approximation ;11 <« «af; + m), where m) is
a stochastic estimate of VyJ(0) satisfying]EI:V()J (0)] =

VpJ(0). Intuitively, the estimation of the policy gradient
might be considered intractible, as the state transition dynam-
ics, which affect the expected reward and hence our perfor-
mance objective, are influenced by the agent’s policy in an
unknown fashion. However, the policy gradient theorem [36]
establishes that the policy gradient VyJ(0) satisfies

Vol (0) o Y u(s) Y Vem(als)Q™ (s, @))

Here, u is the steady state distribution under 7, i.e. u(s) =
lim;_, o Pr{S; = s|Ag:s1—1 ~ 7}, where S; and Ag.;— are ran-
dom variables representing the state at time-step ¢, and the
actions up to that point, respectively. Interestingly, the expres-
sion for the policy gradient does not contain the derivative
Vo u(s), implying that approximating the gradient by sam-
pling is feasible, because calculating the effect of updating
the policy on the steady state distribution is not needed.
By replacing the probability-weighted sum over all possible
states in Equation 7 by an expectation of the random variable
S; under the current policy, we have that

Vo (0) o Ex [Z Vo (alS$HQ™ (St a)} ®)

Similarly, we can replace the sum over all possible actions
with an expectation of the random variable A; after multiply-
ing and dividing by the policy 7 (a|S;):

S
Vo (6) o Ex [Z ZEZ: S’;venww,)Q”(St, a)}
a t

Vorr (As]S;)

Vol (0) o E”[(A1)

Q”(Sz,Ar)} ®

Furthermore, it follows from the identity Vinx = % that
VoJ (0) o Ex[Voln(A/1SHQ™ (Si, Ar)] (10)
Also, by considering that
> b(s)Vr(als) = b(s)VY _ w(als)
’ = b(s)Vlaz 0 (11)

it is straight-forward to see that one can replace the
state-action value function Q7(s,a) in Equation 7 by
O™ (s,a) — b(s), where the baseline function b(s) can be
an arbitrary function independent of the action a, without
introducing a bias in the estimate. However, it can be shown

41469

IEEE Access

E. Meyer et al.: Taming an ASV for Path Following and COLAV Using Deep RL

that the variance of the estimator can be greatly reduced by
introducing such a baseline. It is possible to calculate the
optimal (i.e. variance-minimizing) baseline [37], but com-
monly the state value function V7 is used, yielding an almost
optimal variance [38]. The resulting term is known as the
advantage function:

A%(s,a) = Q" (s, a) — V™ (s) 12)

which intuitively represents the expected improvement
obtained by an action compared to the default behavior.
Furthermore, by following the same steps as outlined above,
we end up with the expression

VoJ (0) o Ex[Volog m(A;|S)A™ (s, a)] (13)

Thus, an unbiased empirical estimate based on N episodic
trajectories (i.e. independent rollouts of the policy in the
environment) of the policy gradient is

N oo

1 .
v > ArVelogm(a)lst (14)

n=1 =0

Vol (0) =

3) ADVANTAGE FUNCTION ESTIMATION

Asboth Q7 (s, a) and V7 (s) are unknown in general, it follows
that A™ (s, a) is also unknown. Thus, it is commonly replaced
by an advantage estimator A (s, a). Various estimation meth-
ods have been developed for this purpose, but a particularly
popular one is Generalized Advantage Estimation (GAE) as
originally outlined in [38], which uses discounted tempo-
ral difference (TD) residuals of the state value function as
the fundamental building blocks. For this, we reintroduce the
discount parameter y. However, even if y corresponds to the
discount factor discussed in the context of MDPs, we now
consider it as a variance-reducing parameter in an undis-
counted MDP. TD residuals [32], which are in widespread
use within RL, and give a basic estimate of the advantage
function, are defined by

SIV =r+ VV(S1+1) - ‘A/(St) (15)

where V is an approximate value function. Whenever V=
V7, i.e. our approximation equals the real value function,
the estimate is actually unbiased. For practical purposes, how-
ever, this is unlikely to be the case, so a common approach is
to look further ahead than just one step in order to reduce the
bias. More formally, by defining AE") as the discounted sum
of the k£ next TD residuals, we have that

~(1 %

AV = 3V = —V(s,) +re+ yVisin)

A 2 %

AP =57 4980 = =Vio+r+yr + 7 V(s

k—1

A=Y, a6

=0

The defining feature of GAE is that, instead of choosing
some k-step estimator Agk), we use an exponentially weighted

41470

average of the k first estimators, letting k — oo. Thus,
we have that

AGETR 2 1)AL 424242282+ .. A7)
which can be shown by insertion of the definition of Aﬁ") to
equal

GAE(y 2)

Z(ﬂ)’sm (18)

Here, A € [0, 1] serves as a trade-off parameter controlling
the compromise between bias and variance in the advantage
estimate; using a small value lowers the variance as the imme-
diate TD residuals make up most of the estimate, whereas
using a large value lowers the bias induced by inaccuracies in
the value function approximation.

Due to the recent advances made within deep learning
(DL), a common approach is to use a deep neural net-
work (DNN) for estimating the value function, which is
trained on the discounted empirical returns. More specif-
ically, the DNN state value estimator Vg(st), which is
parametrized by 6yr, is trained by minimizing the loss
function

L) =T, {%(s[) = v s, a»} (19)

i=t

where the expectation I@t[. ..] represents the empirical aver-
age obtained from a finite batch of samples. The reader is
referred to [39] for a comprehensive introduction to DL, or
to [40], which covers supervised machine learning, of which
DL is a subfield.

4) A SURROGATE OBJECTIVE

Optimizing the performance objective directly using the
empirical policy gradient approximation from Equation 14 is
feasible; in fact, this constitutes the vanilla policy gradient
algorithm originally proposed in [41]. However, it is well
known that this approach has limitations due to a relatively
low sample efficiency and thus suffers from a rather slow con-
vergence time, as it requires an excessive number of samples
for accurately estimating the policy gradient direction [42].
Accordingly, unless the step-size is chosen to be trivially
small (yielding unacceptably slow convergence), it is not
guaranteed that the policy update will improve the perfor-
mance objective, which leads to the algorithm having poor
stability and robustness characteristics [43].

Instead, recent state-of-the-art policy gradient methods
such as Trust Region Policy Optimization (TRPO) [44] and
its “successor”’ Proximal Policy Optimization [45] optimize
a surrogate objective function which provides theoretical
guarantees for policy improvement even under nontrivial
step sizes. Fundamentally, these methods rely on the relative
policy performance identity proven in [42], which states that
the improvement in the performance objective J(9) achieved
by a policy update & — 6’ is equal to the expected advan-
tage (ref. Equation 12) of the actions sampled from the new

VOLUME 8, 2020

E. Meyer et al.: Taming an ASV for Path Following and COLAV Using Deep RL

IEEE Access

policy), calculated with respect to the old policy 7s. More
formally, this translates to

J©) = J0) =Eyy [Z Y AT (s, a»} (20)
t

which is, albeit interesting, not practically useful as the expec-
tation is defined under the next (i.e. unknown) policy my/,
which we are obviously unable to sample trajectories from.
However, Equation 20 can be rewritten and finally approxi-
mated by

J(©) —J(@®)
= 1 s ~mpr [Beay~my |V St, At
Y1 By [Ba oy [y AT (51, @1)]]
= Zt IESINHQ, I:E“t”ﬂe I:jzfi;((cézz,tllss,t)) ytAﬂg (s¢, (11)]]

~ Y By | Bary | oy a7 10 || 2D)

7o (ar|st)

where the third and last steps can be seen as importance
sampling and neglecting state distribution mismatch respec-
tively. Loosely stated, the last approximation assumes that the
change in the state distribution induced by a small update to
the policy parameters is negligible. This is justified by theo-
retical guarantees imposing an upper bound to the distribution
chance provided in [42]. This suggests that one can reliably
optimize the conservative policy iteration surrogate objective

ﬂ@’(at|5t)A79]

22
7o (az|sy) (%)

JCPLg") = IE,[
[42]. However, this approximation is only valid in a local
neighborhood, requiring a carefully chosen step-size to avoid
instability. In TRPO, this is achieved by maximizing L (6")
under a hard constraint on the KL divergence between the
old and the new policy. However, as this is computationally
expensive, the PPO algorithm refines this by integrating the
constraint into the objective function by redefining the objec-
tive function to

JCLIP(Q/) - I@jt [min (r;(@)A?o, clip, (”t(e))/ife)]
clip.(x) = clip(x, 1 —¢, 1 +¢€) @3)

where r4(f) is a shorthand notation for the probability ratio
Z‘;’((j[’llsst')). The truncation of the probability ratio is motivated
by a need to restrict r4(6) from moving outside of the interval
[1 —¢€, 1+ €]. Also, the expectation is taken over the min-
imum of the clipped and unclipped objective, implying that
the overall objective function is a lower bound of the orig-
inal objective function JP/(#’). At each training iteration,
the advantage estimates are computed over batches of tra-
jectories collected from N4 concurrent actors, each of which
executes the current policy mg for T timesteps. Afterwards,
a stochastic gradient descent (SGD) update using the Adam
optimizer [46] of minibatch size Nyp is performed for Ng
epochs.

The PPO algorithms strikes a balance between ease of
implementation and data efficiency, and is likely to perform
well in a wide range of continuous environments without

VOLUME 8, 2020

Algorithm 1 Proximal Policy Optimisation
for iteration=1,2, ... do
for actor=1,2,...N do
For T time-steps, execute policy my.
Compute advantage estimates A, ... Ar

for epoch=1,2,...Ng do
Obtain mini batch of Ny samples from the NgT
simulated time-steps.
Perform SGD update from minibatch (Xps, YuB)-
0 <0

extensive hyperparameter tuning [45]. Sensitivity to hyper-
parameter choices is a frequently encountered problem for
policy gradient methods [47], [48], and given the computation
time required to train and test agents in a collision avoidance
environment, this could be a detrimental bottleneck in our
research.

C. TOOLS AND LIBRARIES
The code implementation of our solution make use of the
RL framework provided by the Python library OpenAl
Gym [49], which was created for the purpose of standardizing
the benchmarks used in RL research. It provides a easy-to-use
framework for creating RL environments in which custom RL
agents can be deployed and trained with minimal overhead.
Stable Baselines [50], another Python package, provides
a large set of state-of-the-art parallelizable RL algorithms
compatible with the OpenAl gym framework, including PPO.
The algorithms are based on the original versions found in
OpenAl Baselines [51], but Stable Baselines provides sev-
eral improvements, including algorithm standardization and
exhaustive documentation.

Ill. METHODOLOGY

In this section, we outline the specifics of our approach
by defining the fundamental RL concepts as presented in
Section II-B.1 according to the problem at hand and describe
how the vessel’s guidance capabilities are trained within the
context of the RL framework Stable Baselines.

A. ENVIRONMENT

The environment in which we except the agent to perform
is an ocean surface filled with obstacles, also containing an
a priori known path that the agent is intended to follow while
avoiding collisions. The vessel dynamics (ref. Section II-A.3)
should, in fact, also be considered as a part of the environ-
ment, as it is outside of the agent’s control. It is also critical
that the environments in which the agent is trained pose a
wide variety of challenges to the agent, so that the trained
agent is able to generalize to unseen obstacle landscapes,
potentially following a deployment on a vessel in the real
world. Thus, we need a stochastic algorithm for generating
training environments. If the environments are too easy or
monotone (or a combination thereof), the agent will overfit to

41471

IEEE Access

E. Meyer et al.: Taming an ASV for Path Following and COLAV Using Deep RL

the training environments leading to undesired behavior when
testing it in unseen, more complicated obstacle landscapes.
For instance, if all obstacles are located very close to the
path within the training environments, the trained agent may
exhibit undesired behavior by always going around obstacles
to avoid them, whereas an intelligent agent would simply
ignore obstacles that are not in its way in order to stay on
track. Also, if the obstacle density is too low, it is unlikely
that the agent would perform well in a high-obstacle-density
environment. To this end we suggest the procedure outlined
in Algorithm 2 for generating new, independent training envi-
ronments. Some randomly sampled environments generated
from this algorithm can be seen in Figure 2. It is obvious
that performing well within these environments (i.e. adhering
to the planned path while avoiding collisions) necessitates a
nontrivial guidance algorithm.

Algorithm 2 Generate Path With Obstacles
Require:
Number of obstacles N, € Ny
Number of path waypoints N,, € Ny
Path length L, € N
Mean obstacle radius 1, € R
Obstacle displacement distance standard deviation oy €
R+
procedure GeneratePathColavEnvironment(N,, Ny, Ly,
Wr»> Od)

Draw 604, from Uniform(0, 27)

Path origin p,,,, < 0.5 L, [c0S (Osrarr), Sin (Osrar)]”

Goal pOSitionpend < Pstart

Generate N,, random waypoints between p,,,,, and
Pend-

Create smooth arc length parameterized path p,(w) =
[xp(@), yp(cT))]T using 1D Piecewise Cubic Hermite Inter-
polator (PCHIP) provided by Python library SciPy [52].

repeat

Draw arclength Wobst from
Uniform(0.1 L,, 0.9 L).

Draw obstacle displacement distance d,ps; from
N@©,02)

Path angle y,bsr < atan2 (p,,'(@obst)2, P (Dobst)1)

Obstacle position p,, <~ Pp(@Wobst) +
dobst[€OS (Vobst — %), sin (Yobst — %)]T

Draw obstacle radius ryps from Poisson(ji,).

Add obstacle (p,p;, obst) to environment

until Ny obstacles are created

In the current work the values of N, = 20, N,, = U(2, 5),
L, = 400, u, = 30, o4 = 150 (where U is the uniform
distribition) were used.

B. AGENT

Although the agent, within the context of RL, can be con-
sidered to be the vessel itself, it is more accurate to look at
it as the guidance mechanism controlling the vessel, as its

41472

600 -

400 - I-Goal 400 - aStart
% o /
200- 2 ® 0 200 e @
® e o
3]
0 0 N
@ /’. = ..//
.0 / 9
-200- /@ ~200- .i -@
. e “,
-400- oStart -400- ‘G

-600

-400 —200 0 200 400 ~600 -400 -200 O 200 400 60(

400 -

@ Start 400- estart
@g .]
200 - (] ® //. 200 \\
@ @ i ' ‘\\
0 .‘ ,'. @ e . oo-)
/ @ ‘ !
/ /
~200- .,/ —200- i
Goal @/ ~ .o

—400 -

~400- t D

—400 -200 0 200 400 —-400 =200 0 200 400

FIGURE 2. Four random samples of the stochastically generated path
following scenario. Note that the scenario difficulty is highly varying.

operation is limited to outputting the control signals that
steer the vessel’s actuators. As discussed in Section II-A .4,
the available control signals are the surge thrust 7}, driving
the vessel forward, and the yaw moment 7, inducing a
change in the vessel’s heading. The RL agent’s action, which
it will output at each simulated time-step, is then defined as
the vector a = [T, T,]%. Specifically, the action network,
which we train by applying the PPO algorithm described
in Section II-B.4, will output the control signals following
a forward pass of the current observation vector through
the nodes of the neural network. Also, the value network
is trained simultaneously, facilitating estimation of the state
value function V(s) which is used for GAE as described in
Section II-B.3. Deciding what constitutes a state s is of utmost
importance; the information provided to the agent must be
of sufficient fidelity for it to make rational guidance deci-
sions, especially as the agent will be purely reactive, i.e. not
able to let previous observations influence the current action.
At the same time, by including too many features in the state
definition, we risk overparameterization within the neural
networks, which can lead to poor performance and excessive
training time requirements [39]. Thus, a compromise must be
reached, ensuring a sufficiently low-dimensional observation
vector while still providing a sufficiently rich observation of
the current environment. Having separate observation fea-
tures representing path following performance and obstacle
closeness is a natural choice.

1) PATH FOLLOWING

The agent needs to know how the vessel’s current position
and orientation aligns with the desired path. A few concepts
often used for guidance purposes are useful in order to for-
malize this. First, we formally define the desired path as the

VOLUME 8, 2020

E. Meyer et al.: Taming an ASV for Path Following and COLAV Using Deep RL

IEEE Access

one-dimensional manifold given by
Pé{peR2 |p=pp(a))v(z)eR+} (24)

Accordingly, for any given @, we can define a local path
reference frame {p} centered at p,(@) whose x-axis has been
rotated by the angle

Yp(@) £ atan2 ()(@), x(@)) (25)

relative to the inertial NED-frame. Next, we consider the
so-called look-ahead point pp(d) + Aga), where Agqg > 0
is the look-ahead distance. In traditional path-following,
look-ahead based steering, i.e. setting the look-ahead point
direction as the desired course angle, is a commonly used
guidance principle [53]. Based on the look-ahead point,
we define the course error, i.e. the course change needed for
the vessel to navigate straight towards the look-ahead point,
as

Vp(@w + Ara) — yp(®)
xp(d) + Apa) — xp(d))

MO atan2<) —x@® (26)
where x(¢) is the vessel’s current heading as defined in
Section II-A.2. Furthermore, (as in [54]) given the current
vessel position p(t) we can define the error vector €(r) =
[s(), e()] € R2, containing the along-track error s(t) and
the cross-track error e(t) at time ¢, as

€(t) =R @) @(1) — pp(d)) 27)

A natural approach for updating the path variable ® is to
repeatedly calculate the value that yields the closest distance
between the path and the vessel using Newton’s method.
Here, the fact that Newton’s method only guarantees a local
optimum is a useful feature, as it prevents sudden path vari-
able jumps given that the previous path variable value is used
as the initial guess [55]. Another approach is to update the
path variable according to the differential equation

@ =V u +v2cos 5 (t) — yps(t) (28)

where the along-track error coefficient y; > 0 ensures that
the absolute along-track error |s(¢)| will decrease. As this
method is computationally faster, we chose to use it in our
Python implementation. More specifically, in the current
work y; = 0.05 and Apq = 100m.

2) OBSTACLE DETECTION

Using rangefinder sensors as the basis for obstacle avoidance
is a natural choice, as a reactive navigation system applied
to a real-world vessel would typically use such a solution or
a camera-based one. This realistic approach should enable
a relatively straightforward transition from the simulated
environment to a real one, given the availability of common
rangefinder sensors such as lidar, radar or sonar.

In the setup used, N = 225 sensors with a total visual span
of s = 47” radians (240 degrees) are arranged as illustrated
in Figure 3b. The sensors are assumed to have a range of
S, = 150 meters, which was deemed sufficient given the

VOLUME 8, 2020

(b) N = 225 rangefinder sensors partitioned into d = 25
sectors

FIGURE 3. Illustrations showing the parameters for path following and
collision avoidance. (a) shows the cross-track error e, along-track error s,
heading error j, path reference point p,(©), look-ahead point pp (o + A 4)
and look-ahead path tangential angle yp(® + Ay 4). In (b), the sensors are
arranged in sectors, where the sensor measurements are pooled into a
scalar values.

relatively small size of the vessel. Obviously, with regards
to the number of sensors, one must consider the trade-off
between computation speed and sensor resolution. In the
experiments conducted in this research project, 225 sensors
were chosen, even if it is likely that a much lower number
of sensors would yield similar performance. With regards to
the visual span, it could be argued that providing 180 degree
vision would be sufficient to achieve satisfactory collision
avoidance, given the precondition of static obstacles. How-
ever, in the interest of avoiding sub-optimal performance due
to a restrictive sensor suite configuration, the conservative
choice of having 240 degree vision was made.

Even if, in theory, a sufficiently large neural network is
capable of representing any function with any degree of accu-
racy, including satisfactory mappings from sensor readings to
collision-avoiding steering maneuvers in our case, there are
no guarantees for either the feasibility of the required network
size or the convergence of the optimization algorithm used for
training the network [39]. Thus, forcing the action network

41473

IEEE Access

E. Meyer et al.: Taming an ASV for Path Following and COLAV Using Deep RL

to output the control signal based on 225 sensor readings (as
well as the features intended for path-following) is unlikely
to be a viable approach, given the complexity required for
any satisfactory mapping between the full sensor suite to
the steering signal. Instead, we propose three approaches for
transforming the sensor readings into a reduced observation
space from which a satisfactory policy mapping should be
easier to achieve. As illustrated in Figure 3b, this involves
partitioning the sensor suite into d disjoint sensor sets, here-
after referred to as sectors. First, we define the sensor density
n as the number of sensors contained by one sector: n £ %’

Each sector is made up of neighboring sensors, so we can

formally define the k”* sector, which we denote by S, as

Sk & {xk=1) nt1s - - s Xkn | (29)
where x; refers to the i/ sensor measurement according to
a counter-clockwise indexing direction. This partitioning,
which assumes that N is a multiple of d, is illustrated in
Figure 3b.

Based on the concept of partitioning the sensor suites
into sectors, we then seek to reduce the dimensionality of
our observation vector. Instead of including each individual
sensor measurement x; in it, we provide a single scalar feature
for each sector S, effectively summarizing the local sen-
sor readings within the sector. The resulting dimensionality
reduction is quite significant; instead of having N sensor
measurements in the observation vector, we now have only d
features. What remains is the exact computation procedure by
which a single scalar is outputted based on the current sensor
readings within each sector. Always returning the minimum
sensor reading within the sector, in the following referred to
as min pooling, i.e. outputting the shortest measured obsta-
cle distance within the sector, is a natural approach which
yields a conservative and thereby safe observation vector.
As can be seen in Figure 4, however, this approach might be
overly restrictive in certain obstacle scenarios, where feasible
passings in between obstacles are inappropriately overlooked.
However, even if the opposite approach (max pooling) solves
this problem, it is straightforward to see, e.g. in Figure 4b
by considering the fact that the presence of a small, nearby
obstacle in the leftmost sector is ignored, that it might lead to
dangerous navigation strategies.

To alleviate the problems associated with min and max
pooling mentioned above a new approach is required. A nat-
ural approach is to compute the maximum feasible travel
distance within the sector, taking into account the location
of the obstacle sensor readings as well as the width of the
vessel. This requires us to iterate over the sensor readings in
ascending order corresponding to the distance measurements,
and for each resulting distance level check whether it is feasi-
ble for the vessel to advance beyond this level. As soon as the
widest opening available within a distance level is deemed too
narrow given the width of the vessel, the maximum feasible
distance has been reached. A pseudocode implementation of
this algorithm is provided as Algorithm 3.

41474

(a) Min pooling (b) Max pooling

(c) Feasibility pooling

FIGURE 4. Pooling techniques for sensor dimensionality reduction. For
the sectors colored green, the maximum distance S, was outputted. It is
obvious that min-pooling yields an overly restrictive observation vector,
effectively telling the agent that a majority of the travel directions are
blocked. On the other hand, max pooling yields overly optimistic
estimates, potentially leading to dangerous situations.

TABLE 1. Sensor configuration.

Parameter Description Value
Unmaz Maximum vessel speed 2 m/s
w Vessel width 4m
N Number of sensors 225
S Total visual span of sensors 240°
Sy Maximum rangefinder distance 150 m
d Number of sensor sectors 25

Having a runtime complexity of O(dn?) when executed
on the entire sensor suite, the feasibility pooling approach
is slower than simple max or min pooling, both having the
runtime complexity O(dn). However, in the simulated envi-
ronment, the increased computation time, which is reported
through empirical estimates in Figure 5 for n = 9, is negligi-
ble compared to the time needed to compute the interception
points between the rangefinder rays and the obstacles.

Another interesting aspect to consider when comparing the
pooling methods, is the sensitivity to sensor noise. A com-
pelling metric for this is the degree to which the pooling
output differs from the original noise-free output when nor-
mally distributed noise with standard deviation o, is applied
to the sensors. Specifically, we report the root mean square
of the differences between the original pooling outputs and
the outputs obtained from the noise-affected measurements.
The results for oy, € {1, ..., 30} are presented in Figure 5b.
Evidently, the proposed feasibility method for pooling is
slightly more robust than the other variants.

VOLUME 8, 2020

E. Meyer et al.: Taming an ASV for Path Following and COLAV Using Deep RL

IEEE Access

Algorithm 3 Feasibility Pooling for Rangefinder
Require:
Vessel width W € RT
Total number of sensors N € N
Total sensor span S5 € [0, 27]
Sensor rangefinder measurements for current sector
x ={x1,...,x,}
procedure FeasibilityPooling(x)
Angle between neighboring sensors 6 < %
Initialize 7 to be the indices of x sorted in ascending
order according to the measurements x;
fori e Zdo
Arc-length d; < 0x;
Opening-width y < d;/2
Opening was found s; < false
for j < Otondo
if Xj > X then
y<y+d
if y > W then
§; < true
break

else
y < y+di/2
if y > W then
S; < true
break
y<«0
if s; is false then return x;

C. REWARDS

Any RL agent is motivated by the pursuit of maximum
reward. Ideally, the agent should receive its reward at the end
of the episode, after having either reached the goal position
or collided. However, such a reward function is extremely
sparse, leaving the agent with a near impossible learning
task. This demonstrates the need of a continuous reward
signal, guiding the agent to better performance. Given the
complexity of the dual-objective task, as well as RL agents’
tendency to misuse the reward function in any way possible,
we had to design an appropriate reward function r(¢). This
was paramount to the agent exhibiting the desired behavior
after training. Given the dual nature of our objective, which
is to follow the path while avoiding obstacles along the way,
it is natural to reward the agent separately for its performance
in these two domains.

Thus, we introduce the reward terms r,(¢) and ro.(2),
being the reward components at time ¢ representing
the path-following and the obstacle-avoiding performance,
respectively. Also, we introduce the weighting coefficient
A € [0,1] to regulate the trade-off between the two
competing objectives, leading to the preliminary reward
function

r(t) = Arpe(t) + (1 — AMroa(t) (30)

VOLUME 8, 2020

0.05 -
0.04 -
0.03 -
0.02 -
; - -
0.00 -

Min pooling Max pooling

Avg. Computation time [ms]

Feasibility pooling

(a) Average per-sector computation time for pooling
methods when n = 9

—— Min pooling
—— Max pooling
Feasibility pooling

40 -

10-

0-

0 5 10 15 20 25 30

(b) Robustness metric for pooling methods for o,, €

yeeey

FIGURE 5. Computational time and robustness of the different pooling
approaches. The noise-affected measurements were clipped at zero to
avoid negative values.

1) PATH FOLLOWING PERFORMANCE

A reasonable approach to incentivize adherence to the desired
path is to reward the agent for minimizing the absolute
cross-track error e(t). In [55], a Gaussian reward function
centered at e(t) = 0 with some reasonable standard deviation
o, 1s used for this purpose. However, based on Figure 6a,
we argue that the exponential e~"¢le®l has slightly more
reasonable characteristics for this purpose due to its fatter
tails, thus rewarding the agent for a slight improvement to
an unsatisfactory location.

However, this alone does not reflect our desire for the
agent to actually make progress along the path. This can be
achieved by multiplying by the velocity component in the
desired course direction given by /u? + vZ cos x(t), yielding
negative rewards if the agent is tracking backwards, and zero
reward if it is vessel course in a direction perpendicular to the
path. Finally, we note that, if the agent is standing still, or if
the course error is 90°, it will receive zero reward regard-
less of the cross-track error, which is not desired. Similarly,
when the cross-track error grows large, it receive zero reward
regardless of the speed or course error. Thus, we add constant
multiplier terms 1 and end up with the path-following reward
function

rpf () = =1+ < 'U";;Vz cos x(t) + 1) (E—Velye(t)\ + 1)
3D

where Uy, is the maximum vessel speed.

41475

IEEE Access

E. Meyer et al.: Taming an ASV for Path Following and COLAV Using Deep RL

1.0 - —— Exponential reward
—— Gaussian reward

Reward

0.2-

-100m -75m -50m -25m Om 25m 50m 75m 100m
Cross-track error

(a) Cross-section of the path-following reward landscape
assuming path-tangential full-speed motion

172° s
-2.4
115° -
-1.8
57° -

Heading error
o

-57° -
- 0.0
-115° -
- —0.6
-172° 4
-100m -75m -50m -25m Om 25m 50m 75m 100m
Cross-track error

(b) Path-following reward function assuming full-speed motion

FIGURE 6. Cross-section and level curves for the path-following reward
function for ye = 0.05.

Remark: Note that, for added flexibility, it is possible to
replace the 1 multipliers by some customizable coefficients.
However, for the sake of parametric simplicity, we decide to
use 1.

2) OBSTACLE AVOIDANCE PERFORMANCE

In order to encourage obstacle-avoiding behavior, penalizing
the agent for the closeness of nearby obstacles in a strictly
increasing manner seems natural. Having access to the sensor
measurements outlined in Section III-B.2 at each timestep,
we use these as surrogates for obstacle distances through
which the agent is penalized. By noting that the severity
of obstacle closeness intuitively does not increase linearly
with distance, but instead increases in some more or less
exponential manner, and that the severity of obstacle close-
ness depends on the orientation of the vessel with regards to
the obstacle in such a manner that obstacles located behind
the vessel are of much lower importance than obstacles
that are right in front of the vessel, is it easy to see that
the term (1 + |y99,~|)_1(yxrnax(x,~, ex)z)_l, where 6; is the
vessel-relative angle of sensor i such that a forward-pointing
sensor has angle 0, exhibits the desirable properties for penal-
izing the vessel based on the i’ sensor reading. This reward
function is plotted in Figure 7.

41476

Om - ———
I 4.5

5m -
-3.0

8 10m -

=] m >

8 -15 =

2 g

° I3

© 15m - o

% -0.0 S

+= Q

E —
20m -

o --1.5
25m - I -3.0
30m -5 0 0 . 0 0 i - —4.5

-172° -115° -57° 0° 57° 115° 172°

Vessel-relative sensor angle

FIGURE 7. Obstacle closeness penalty as a function of vessel-relative
sensor angle and obstacle distance, imposing a maximum penalty for
obstacles located right in front of the vessel.

In order to to cancel the dependency on the specific sen-
sor suite configuration, i.e. the number of sensors and their
vessel-relative angles, that arises when this penalty term is
summed over all sensors, we use a weighted average to define
our obstacle-avoidance reward function such that

_ —1
YN A+ 1996~ (yemax (x;, €:)?)
SN LA+ i) !

where €, > 0 is a small constant removing the singularity at
x; =0.

Foa(t) = — (32)

3) TOTAL REWARD

In order to discourage the agent from simply standing still
at a safe location, which would yield a reward of zero given
the preliminary reward function, we impose a constant living
penalty reyigs < O to the overall reward function. A simple
way of setting this parameter is to assume that, given a total
absence of nearby obstacles and perfect vessel alignment with
the path, the agent should receive a zero reward when moving
at a lower than speed o, Uppqx, Where o, € (0, 1) is a constant
parameter. This gives us

Feviss + 3 (%22 4+ 1) AL+ 1) = 1) =0
Texists = —A(2aty + 1) (33)

Also, in the interest of having bounded rewards, we enforce
a lower bound activated upon collisions by defining the total
reward

(1 = L) reottision (if collision)

rt) =
)\rpf(t) + (1 = 2) roa(t) + Texists

(otherwise)
(34)

Deciding the optimal value for the trade-off parameter A is
a nontrivial endeavour. This touches upon the fundamental
challenge tackled in this project, namely how to avoid obsta-
cles while without deviating unnecessarily from the desired
trajectory. Thus, we initialize it randomly at each reset of the

VOLUME 8, 2020

E. Meyer et al.: Taming an ASV for Path Following and COLAV Using Deep RL

IEEE Access

o o I
o w S

Probability density

o
=

0.0-
-0 2 5 8 o -2 -5 -8 -20
logio A

FIGURE 8. Gamma-distribution with parameters «; =1, 8, =2 from
which —logyg A is drawn.

TABLE 2. Observation vector s at timestep ¢.

Observation feature Definition

Surge velocity u®

Sway velocity »®

Yaw rate r(®

Look-ahead course error Vp(tD(f‘) +Apa) — X(t)
Course error)Z(t)

Cross-track error e®

Reward trade-off parameter log,q A

Obstacle closeness, first sector 1 — SirFeasibilityPooling(w ={z1,...2q})

Obstacle closeness, last sector 1 — o-FeasibilityPooling(z = {zN—d,--- 2N })

environment by sampling it from a probability distribution.
In order to familiarize the agent with different degrees of
radical collision avoidance strategies (A — 0), which is
useful in dead-end scenarios where the correct behavior is
to ignore the desire for path adherence in order to escape the
situation, we sample log;, A from a gamma distribution such
that

—logo A ~ Gamma(w;,, B,.) 35)

In order to let the agent base its guidance strategy on the
current A, we include log;y A as an additional observation
feature. The reward parameters used in the current work is
given by o) = 1.0, B = 2.0, . = 0.05, yp = 4.0,
v = 0.005, €, = 1.0m, ap = 0.1, reoptision = —2000.

The complete observation vector, which in the context of
RL represents the state s, contains features representing the
position and orientation of the vessel with regards to the path
as well as the pooled sensor readings and the logarithm of the
current trade-off parameter A.

D. TRAINING

The RL agent is trained using the PPO algorithm (ref. Algo-
rithm 1) implemented in the Python library Stable Base-
lines [50], with the hyperparameters given by y = 0.999,
T = 1024, Ny = 8, K = 10° n = 0.0002, Nyz =
32, A = 095, ¢c1 = 05, ¢ = 001, ¢ = 0.2. The
action and value function networks were implemented as

VOLUME 8, 2020

TABLE 3. List of reward trade-off test values.

Agentindex A\

1 1.0
0.9
0.5
0.1
0.01
0.001
0.0001
0.00001
0.000001

O 001N DN B~ W

fully-connected neural networks, both using the tanh(.) acti-
vation function and consisting of with two hidden layers with
64 nodes. We simulate the vessel dynamics using the fifth
order Runge-Kutta-Fahlberg method [56] using the timestep
At = 0.1s. Whenever the vessel either reaches the goal p,,;,
collides with an obstacle or reaches a cumulative negative
reward exceeding —5000, the environment is reset according
to Algorithm 2.

E. EVALUATION

We analyze the agent’s performance based on quantitative as
well as qualitative testing. Evaluating how the value of the
reward trade-off parameter A, which is fed to the agent as
an observation feature, influences the guidance behavior is
of particular interest. Specifically, we test the agent with the
values listed in Table 3, including both radical path adherence
(i.e. A = 1) as well as various shades of radical obstacle
avoidance strategies (i.e. A — 0).

1) QUANTITATIVE TESTING

In order to obtain statistically significant evidence for the
guidance ability of the trained agent, we simulate the agent’s
behavior in 100 random environments generated stochasti-
cally according to Algorithm 2. We then report the perfor-
mance criteria in terms of success rate, average cross-track
error and average episode length. In the current context,
the success rate is defined as the percentage of episodes in
which the agent reached the goal, average cross-track error is
defined as the average deviation from path in meters, average
episode length is the average length of episode in seconds.

F. QUALITATIVE TESTING
In addition to the statistical evaluation, we observe the agents’
behavior in the test scenarios shown in Figure 9.

G. COMPARISON WITH ALTERNATIVE RL ALGORITHMS

In order to assess the performance of the PPO algorithm
on this guidance problem, we train the agent using several
other frequently cited model-free policy gradient algorithms,
a class of RL algorithms known for excelling at continu-
ous control tasks [48]. Deep Deterministic Policy Gradient
(DDPG) [33], Actor Critic using Kronecker-Factored Trust

41477

IEEE Access

E. Meyer et al.: Taming an ASV for Path Following and COLAV Using Deep RL

TABLE 4. Quantitative test results obtained from 100 episode simulations per agent.

Agent A Success Rate Avg. Cross-track Error ~ Avg. Episode Length
1 1 97% 3492 m 1001 s
2 0.9 97% 36.56 m 1028 s
3 0.5 99% 38.15m 1024 s
4 0.1 100% 49.13 m 1077 s
5 0.01 100% 63.95m 1062 s
6 0.001 100% 68.36 m 1238 s
7 0.0001 100% 72.99 m 1480 s
8 0.00001 100% 70.40 m 1469 s
9 0.000001 100% 70.51 m 1212's

Region (ACKTR) [57] and Asynchronous Advantage Actor
Critic (A3C) [58] are all available in the Stable Baselines
library, and their quantitative test results will be included as
benchmarks for the performance of the PPO agent.

IV. RESULTS AND DISCUSSIONS
In this chapter, we present the test results obtained from
training and testing the agent and discuss the findings.

A. TRAINING PROCESS

We train the agent for 3903 episodes, corresponding to more
than 5 million simulated time-steps of length At = 0.1 s.
At this point, all the metrics used for monitoring the train-
ing progress had stabilized. The training process, which, for
the purpose of faster convergence, ran 8 parallel simulation
environments, took approximately 48 hours on a Intel Core
17-8550U CPU.

B. TEST RESULTS

As outlined, each value of A was tested for 100 episodes, all
of which took place in a randomly generated path following
environments according to Algorithm 2. Of course, a larger
sample size is always better for quantitative evaluation, but in
the interest of time, 100 test episodes for each A value was a
reasonable compromise. Clearly, the calculation of the inter-
ception points between the rangefinder rays and the obstacles
is the most computationally expensive part of the simulation.
Thus, the simulation can be made orders of magnitude faster
by lowering the sampling rate of the sensors, but we decided
to perform the testing without any restrictions to the sensor
suite. The observed test results are displayed in Table 4.

Additionally, we simulated each agent in the four outlined
qualitative test scenarios. Except for scenario B, in which
all agents chose more or less exactly the same trajectory,
the other scenarios clearly reflect the differences between
the agents. The agents’ trajectories in each test scenario are
plotted in Figure 9.

The PPO agent was clearly superior to the other RL
algorithms that were tested, which, despite unquestionably
exhibiting different kinds of behavior, all must be classified
as failures when applied to this task. The trained A3C agent is
the least competent one, mindlessly guiding the vessel in an

41478

1200 -0
1200 - —— Path I
1000 - Goal |

800 -

1000 -

800-
E E 600-
= 600~

North (m)
|
10g10 A

Z 400~ z 400-

200- 200

~200- - , B¢
~600 400 =200 0 200 400 600

0 250 500 750 1000 1250
East (m) East (m)

(a) Test scenario A (b) Test scenario B

- -0 700 - -0
—= Path —= Path
600 - 600 -

500- Goal 500-

North (m)
North (m)

1
100 - A -4 100 -
1

0- Start o

~400 -200 0 200 400 —400 ~200 0 200 400
East (m) East (m)

(c) Test scenario C (d) Test scenario D

FIGURE 9. Agent trajectories in qualitative test scenarios when 1
parameter is varied. The behaviour in terms of collision avoidance is
significantly modulated.

arbitrary direction until it collides. The ACKTR agent appears
to master the path following task, but frequently collides.
The DDPG agent rarely collides, but does not follow the
path and often ends up going in circles. A comparison of all
four algorithms is provided in Figure 10, where the trained
agents are simulated in a randomly generated scenario. This
illustrates the superior performance exhibited by the PPO
agent. It should be noted, however, that only the default set
of hyper-parameters found in the Stable Baselines package
were tested for the other RL algorithms.

Based on the results, it seems clear that a reactive RL
agent is capable of becoming proficient at the combined
path-following / collision-avoidance task after being trained
using the state-of-the-art PPO algorithm. Prior to conduct-
ing any experiments, our assumption was the decreasing A,
and thus decreasing the degree to which the agent would
prioritize path-adherence over collision avoidance, would
lead to a higher success rate. Also, our expectation was that
this performance increase would come at the expense of the
agent’s path following performance, leading to an increase
in the average cross-track error. The results show a clear
and reliable trend, supporting our hypothesis. In fact, as seen

VOLUME 8, 2020

m

. Meyer et al.: Taming an ASV for Path Following and COLAV Using Deep RL

IEEE Access

—= Path
—— Path taken

—= Path
—— Path taken
00- 00-

200-

E @
?: 0 tart
z @ ©. 0 _
—=200- .
e @
~400 ~400- @
*'1‘00 *2‘(](] (‘J 2(‘)0 'l(‘JU *'1‘00 *2‘(](] (‘J 2(‘)0 ’l(‘JU
East (m) ast (m)
(a) PPO (b) DDPG

— mn taken

North (m)

-400 -200 0 200 400 -400 -200 0 200 400
East (m) East (m)

(c) A3C (d) ACKTR

FIGURE 10. Comparison of agent trajectories in randomly generated
scenario for different RL algorithms. All agents were given A = 1. Only the
PPO agent managed to reach the goal.

—=— Path —=— Path

—— 400 - —
400~ Path taken PY Path taken

North (m)
-
North (m)

~200- =200 -

—400- —400 -

74‘00 72‘00 (‘) 26() /1(‘)0 74‘00 72‘00 6 26() /1(‘)0
East (m) East (m)

(a) Agent 1, episode 56/100 (b) Agent 9, episode 77/100
FIGURE 11. Example trajectories highlighting the different in guidance
strategies for extreme values of the trade-off parameter 1. Evidently,
the radical obstacle avoidance agent, where) was set to 10~5, clearly
exhibits a more defensive behavior, basically avoiding the entire cluster
of obstacles surrounding the path b. More impressively, the radical path
adherence agent, with 1 = 1, follows the path closely while avoiding the
obstacles blocking it a.

in Table 4, the collision avoidance rate stabilizes at 100%
when A is sufficiently small. Figure 11, which features two
episodes extracted from the training process, clearly illus-
trates why a small A will lead to a lower collision rate, but also
cause a significant worsening in path following performance.
From plotting the test metrics against A, it becomes clear that
the trends can be described mathematically by simple para-
metric functions of L. After deciding on suitable parameter-
izations, we use the Levenberg-Marquardt curve-fit method
provided by Python library SciPy [52] in order to obtain a
non-linear least squares estimate for the model parameters.
The fitted models for our evaluation metrics can be visu-
alized in Figure 12a and Figure 12b. The fitted parametric
models allow us to generalize the observed results to unseen
values of A.

V. CONCLUSION
In this work, we have demonstrated that RL is a viable
approach to the challenging dual-objective problem of con-

VOLUME 8, 2020

——- Fitted success rate
® Success rates
——= Fitted avg. cross-track error -75.0m

® Cross-track error averages ® -
————— * ¢ -700m
e_-~
>
100% - = eitalalele datatn el Tatatatats < e (e - .
- - -65.0m
/ o,
’ -
/ A
) it s -60.0m
2
g 99% - [] —-
~ ! J .
a 1 / -55.0m
I3 ! Y
8 / ! -50.0
S 98% - H 7 50.0 m
) /
17 ~
’ -45.0 m
P
ot
i — -40.0 m
/e
o
q -35.0m
96% - ! L I I I I
0 -1 -2 7«; —4 -5 -6
log10 A

(a) The agents emplrlcal success rates and avg. cross-track errors fitted
to f(A) = a + 1 and Ff(A) = a + bA~¢, respectively. The non-
linear least squares estlmate for the success rate model parameters is

a = 0.937, b = 5.364, whereas the estimate for the average cross-track
error model parameters isa =736, b= —35.8, c = —0.265

1600.0 s -
——- Fitted function e
---- Critical obstacle avoidance) 4
1500.0s- @ Test results inliers * B
® Test results outlier A
/,/
»1400.0s - S
.
) //
l .
.
| 1300.0s - -
i - .
] .
! <
Y S e
.

1120005 - — +
n //
i 7
. /’

1100.0 s - -

e o
L’
(]
1000.0 s - .//’/
0 -1 -2 -3 =4 -5 -6
loglo A

(b) The agent’s empirical average episode length fitted to f(\)
a — blog;y A. The non-linear least squares estimate for the model
parameters is a = 982, b = 99.1. The point marked as an outlier
was excluded from the regression, as there is an obvious explanation
as to what might cause a drop in average episode length when \ gets
very small: due to the resulting radical collision avoidance strategy, the
gent will tend to simply avoid the entire cluster of obstacles, instead
of avoiding individual obstacles. Thus, the log-linear model will only be
valid up to a certain point. In the figure, this validity threshold is labelled
as the critical obstacle avoidance

FIGURE 12. Empirical success rate.

trolling a vessel to follow a path given by a priori known
way-points while avoiding obstacles along the way without
relying on a map. More specifically, we have shown that
the state-of-the-art PPO algorithm converges to a policy
that yields intelligent guidance behavior under the pres-
ence of non-moving obstacles surrounding and blocking the
desired path.

Engineering the agent’s observation vector, as well as
the reward function, involved the design and implementa-
tion of several novel ideas, including the Feasibility Pooling
algorithm for intelligent real-time sensor suite dimensionality
reduction. By augmenting the agent’s observation vector by
the reward trade-off parameter A, and thus enabling the agent
to adapt to changes in its reward function, we have demon-

41479

IEEE Access

E. Meyer et al.: Taming an ASV for Path Following and COLAV Using Deep RL

strated experimentally that the agent is capable of adjusting
its guidance strategy (i.e. its preference of path-adherence as
opposed to collision avoidance) based on the A value that is
fed to its observation vector.

By means of extensive testing, we have observed that,
even in challenging test environments with high obstacles
densities, the agent’s success rate is in the high 90s when 2 is
set such that it induces a strict path adherence bias, and close
to 100% when a more defensive strategy is chosen. It is worth
mentioning that here, we simply studied the impact of A on
the performance of the agent. It would be desirable to actually
learn the optimal value of A. This is outside the scope of our
current work. However, one approach could be to learn this
parameter from the Automatic Identification System (AIS)
data.

A weakness of these algorithms is that they rely heavily
on deep neural networks which contains a massive number of
trained parameters, the interpretation of which is immensely
challenging. This flaw prevents a wholehearted acceptance
of these algorithms for safety critical applications. However,
the current work does demonstrate the possibility of program-
ming intelligence into these safety critical applications.

REFERENCES

[11 R. W. Beard and T. W. McLain, Small Unmanned Aircraft: Theory and
Practice. Princeton, NJ, USA: Princeton Univ. Press, 2012.

[2] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. Robot. Res., vol. 5, no. 1, pp.90-98, Jul. 2016,
doi: 10.1177/027836498600500106.

[3] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle
avoidance for mobile robots,” IEEE Trans. Robot. Autom., vol. 7, no. 3,
pp. 278-288, Jun. 1991.

[4] D. Panagou, “Motion planning and collision avoidance using navigation
vector fields,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2014,
pp. 2513-2518.

[5] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robot. Autom. Mag., vol. 4, no. 1, pp. 23-33,
Mar. 1997.

[6] O.Brock and O. Khatib, “High-speed navigation using the global dynamic
window approach,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 1,
May 1999, pp. 341-346.

[7] B.-O.-H. Eriksen, M. Breivik, K. Y. Pettersen, and M. S. Wiig, “A mod-
ified dynamic window algorithm for horizontal collision avoidance
for AUVs,” in Proc. IEEE Conf. Control Appl. (CCA), Sep. 2016,
pp. 499-506.

[8] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” Int. J. Robot. Res., vol. 17, no. 7,
pp. 760-772, Jul. 1998. [Online]. Available: http://dblp.uni-
trier.de/db/journals/ijrr/ijrr1 7. html#FioriniS98

[9] D. K. M. Kufoalor, E. F. Brekke, and T. A. Johansen, ‘‘Proactive col-
lision avoidance for ASVs using a dynamic reciprocal velocity obsta-
cles method,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2018, pp. 2402-2409.

[10] Y. Chen, H. Peng, and J. Grizzle, “Obstacle avoidance for low-speed
autonomous vehicles with barrier function,” IEEE Trans. Control Syst.
Technol., vol. 26, no. 1, pp. 194-206, Jan. 2018.

[11] I. M. Mitchell, A. M. Bayen, and C.J. Tomlin, “A time-dependent
hamilton-jacobi formulation of reachable sets for continuous dynamic
games,” IEEE Trans. Autom. Control, vol. 50, no. 7, pp.947-957,
Jul. 2005.

[12] B. H. Eriksen, M. Breivik, E. F. Wilthil, A. L. Flaten, and E. F. Brekke,
“The branching-course model predictive control algorithm for maritime
collision avoidance,” J. Field Robot., vol. 36, no. 7, pp. 1222-1249,
Aug. 2019.

[13] 1. B. Hagen, D. K. M. Kufoalor, E. F. Brekke, and T. A. Johansen, “MPC-
based collision avoidance strategy for existing marine vessel guidance
systems,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018,
pp. 7618-7623.

41480

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27])

(28]

[29]

(30]

(31]

(32]

(33]

G. Bitar, M. Breivik, and A.M. Lekkas, ‘“Energy-optimized path
planning for autonomous ferries,” IFAC-PapersOnLine, vol. 51, no. 29,
pp. 389-394, 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S2405896318321451

P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100-107, Jul. 1968.

M. Candeloro, A.M. Lekkas, A.J.Sgrensen, and T.]I. Fossen,
“Continuous curvature path planning using Voronoi diagrams
and Fermat’s spirals,” I[FAC Proc. Volumes, vol. 46, no. 33,
pp. 132137, 2013. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S147466701646146X

S. Garrido, L. Moreno, M. Abderrahim, and F. Martin, ““Path planning for
mobile robot navigation using Voronoi diagram and fast marching,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2006, pp. 2376-2381.
S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, ‘“Prob-
abilistic roadmaps for path planning in high-dimensional configura-
tion spaces,” IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566-580,
Sep. 1996.

O. A. G. Loe, “Collision avoidance for unmanned surface vehicles,”
M.S. thesis, Norwegian Univ. Sci. Technol., Trondheim, Norway, 2008.
M. S. Wiig, “Collision avoidance and path following for underactuated
marine vehicles,” Ph.D. dissertation, Dept. Eng. Cybern., Norwegian Univ.
Sci. Technol., Trondheim, Norway, 2019.

J. Canny and J. Reif, ‘“New lower bound techniques for robot motion plan-
ning problems,” in Proc. 28th Annu. Symp. Found. Comput. Sci. (SFCS).
Washington, DC, USA: IEEE Computer Society, Oct. 1987, pp. 49-60,
doi: 10.1109/SFCS.1987.42.

E. Serigstad, B.-O.-H. Eriksen, and M. Breivik, “Hybrid collision avoid-
ance for autonomous surface vehicles,” IFAC-PapersOnLine, vol. 51,
no. 29, pp. 1-7, 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S2405896318321499

B.-O. H. Eriksen, G. Bitar, M. Breivik, and A. M. Lekkas, “Hybrid
collision avoidance for ASVs compliant with COLREGs rules 8
and 13-17,7 2019, arXiv:1907.00198. [Online]. Available: http://
arxiv.org/abs/1907.00198

Z.Yan, Y. Zhao, S. Hou, H. Zhang, and Y. Zheng, *‘Obstacle avoidance for
unmanned undersea vehicle in unknown unstructured environment,” Math.
Problems Eng., vol. 2013, pp. 1-12, Nov. 2013.

Y. Koren and J. Borenstein, ‘“‘Potential field methods and their inherent
limitations for mobile robot navigation,” in Proc. IEEE Int. Conf. Robot.
Autom., vol. 2, Apr. 1991, pp. 1398-1404.

D. Silver, T. Hubert, J. Schrittwieser, 1. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “Mastering chess and shogi by self-play with a gen-
eral reinforcement learning algorithm,” 2017, arXiv:1712.01815. [Online].
Available: https://arxiv.org/abs/1712.01815

D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J.Nham, N. Kalchbrenner,
I. Sutskever, T.Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis, ‘‘Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, no. 7587, pp. 484-489,
Jan. 2016. [Online]. Available: http://www.nature.com/nature/journal/
v529/n7587/full/nature16961.html

O. Vinyals. (2019). AlphaStar: Mastering the Real-Time Strategy
Game StarCraft II. [Online]. Available: https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/

Society of Naval Architects and Marine Engineers (U.S.). Technical and
Research Committee, Nomenclature for Treating the Motion of a Sub-
merged Body Through a Fluid: Report of the American Towing Tank Con-
ference (Technical and Research Bulletin). Jersey City, NJ, USA: Society
of Naval Architects and Marine Engineers, 1950. [Online]. Available:
https://books.google.no/books?id=VqgNFGwAACAAJ

R. Skjetne, @. Smogeli, and T. I. Fossen, “Modeling, identification, and
adaptive maneuvering of CyberShip II: A complete design with experi-
ments,” IFAC Proc. Volumes, vol. 37, no. 10, pp. 203-208, Jul. 2004.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018. [Online]. Available:
http://incompleteideas.net/book/the-book-2nd.html

T. P. Lillicrap, J.J.Hunt, A.Pritzel, N.Heess, T.Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control ~with deep
reinforcement learning,” 2015, arXiv:1509.02971. [Online]. Available:
https://arxiv.org/abs/1509.02971

VOLUME 8, 2020

http://dx.doi.org/10.1177/027836498600500106
http://dx.doi.org/10.1109/SFCS.1987.42

E. Meyer et al.: Taming an ASV for Path Following and COLAV Using Deep RL

IEEE Access

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

D. P. Bertsekas, Dynamic Programming and Optimal Control, 2nd ed.
Belmont, MA, USA: Athena Scientific, 2000.

L. Tai, J. Zhang, M. Liu, J. Boedecker, and W. Burgard, “A survey of
deep network solutions for learning control in robotics: From rein-
forcement to imitation,” 2016, arXiv:1612.07139. [Online]. Available:
https://arxiv.org/abs/1612.07139

R. Sutton, D. Mcallester, S. Singh, and Y. Mansour, “Policy gradient meth-
ods for reinforcement learning with function approximation,” in Proc. Adv.
Neural Inf. Process. Syst, 2000, pp. 1-7.

L. Weaver and N. Tao, “The optimal reward baseline for gradient-based
reinforcement learning,” 2013, arXiv:1301.2315. [Online]. Available:
https://arxiv.org/abs/1301.2315

J. Schulman, P.Moritz, S.Levine, M.Jordan, and P. Abbeel,
“High-dimensional continuous control using generalized advantage
estimation,” Jun. 2015, arXiv:1506.02438. [Online]. Available:
https://arxiv.org/abs/1506.02438

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Germany: Springer-Verlag, 2006.

R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, nos. 3—4,
pp. 229-256, May 1992, doi: 10.1007/BF00992696.

S. Kakade and J. Langford, ‘“Approximately optimal approximate
reinforcement learning,” in Proc. 19th Int. Conf. Mach. Learn. (ICML),
San Francisco, CA, USA: Morgan Kaufmann, 2002, pp.267-274.
[Online]. Available: http://dl.acm.org/citation.cfm?id=645531.656005

J. Schulman. (2016). Optimizing Expectations: From Deep Reinforcement
Learning to Stochastic Computation Graphs. [Online]. Available:
https://www.semanticscholar.org/paper/Optimizing-Expectations %3 A-
From-Deep-Reinforcement-to-Schulman/ €31692a74427b58b6154e37da
7535e142ceceb4b

J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust
region policy optimization,” 2015, arXiv:1502.05477. [Online]. Available:
http://arxiv.org/abs/1502.05477

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘“Prox-
imal policy optimization algorithms,” 2017, arXiv:1707.06347. [Online].
Auvailable: https://arxiv.org/abs/1707.06347

D. P. Kingma and J.Ba, “Adam: A method for stochastic
optimization,” 2014, arXiv:1412.6980. [Online]. Available: https://
arxiv.org/abs/1412.6980

A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra,
“Benchmarking reinforcement learning algorithms on real-world
robots,” 2018, arXiv:1809.07731. [Online]. Available: https:/
arxiv.org/abs/1809.07731

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” 2017, arXiv:1709.06560.
[Online]. Available: https://arxiv.org/abs/1709.06560

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J.
Tang, and W. Zaremba, “OpenAl gym,”” CoRR, vol. abs/1606.01540, 2016.
[Online]. Available: http://arxiv.org/abs/1606.01540

A. Hill, A.Raffin, M. Ernestus, A. Gleave, A.Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A.Radford,
J. Schulman, S. Sidor, and Y. Wu. (2018). Stable baselines. [Online].
Available: https://github.com/hill-a/stable-baselines

P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov. (2017). Openai Baselines.
[Online]. Available: https://github.com/openai/baselines

P. Virtanen et al,, “SciPy 1.0-Fundamental algorithms for scientific
computing in Python,” 2019, arXiv:1907.10121. [Online]. Available:
http://arxiv.org/abs/1907.10121

T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Con-
trol. Chichester, U.K.: Wiley, 2011.

M. Breivik and T. I. Fossen, “Guidance laws for autonomous underwater
vehicles,” in Underwater Vehicles, A. V. Inzartsev, Ed. Rijeka, Croatia:
IntechOpen, 2009, ch. 4, doi: 10.5772/6696.

A. B. Martinsen, “End-to-end training for path following and control of
marine vehicles,” Dept. Eng. Cybern., Norwegian Univ. Sci. Technol.,
Trondheim, Norway, Tech. Rep., 2018.

E. Fehlberg, “Klassische Runge-Kutta-Formeln vierter und niedrigerer
ordnung mit schrittweiten-kontrolle und ihre anwendung auf
Wirmeleitungsprobleme,” Computing, vol. 6, nos. 1-2, pp.61-71,
Mar. 1970, doi: 10.1007/BF02241732.

Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba, ““Scalable trust-region
method for deep reinforcement learning using kronecker-factored approx-
imation,” in Proc. NIPS, 2017, pp. 5279-5288.

VOLUME 8, 2020

[58] V. Mnih, A.P.Badia, M. Mirza, A. Graves, T.P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” Feb. 2016, arXiv:1602.01783. [Online]. Available:
https://arxiv.org/abs/1602.01783

EIVIND MEYER is currently working on the mas-
ter’s thesis and completing the five-year integrated
master’s degree in cybernetics and robotics with
the Norwegian University of Science and Tech-
nology (NTNU), Trondheim. Having specialized
in real time systems, his research interest focuses
on adopting state-of-the-art artificial intelligence
methods for autonomous vehicle control.

HAAKON ROBINSON received the bachelor’s
degree in physics and the master’s degree in cyber-
netics and robotics from NTNU, in 2015 and 2019,
respectively. He is currently pursuing the Ph.D.
degree with the Norwegian University of Science
and Technology (NTNU). His current work inves-
tigates the overlap between modern machine learn-
ing techniques and established methods within
modeling and control, with a focus on improv-
ing the interpretability and behavioural guaran-
tees of hybrid models that combine first principle models and data-driven
components.

ADIL RASHEED received the bachelor’s degree in
mechanical engineering and the master’s degree in
thermal and fluids engineering from IIT Bombay,
and the Ph.D. degree in multiscale modeling of
urban climate from the Swiss Federal Institute of
Technology Lausanne. He is currently a Professor
of big data cybernetics with the Department of
Engineering Cybernetics, Norwegian University
of Science and Technology, where he is working to
develop novel hybrid methods at the intersection of
big data, physics-driven modeling, and data-driven modeling in the context
of real-time automation and control. He is currently a part-time Senior
Scientist with the Department of Mathematics and Cybernetics, SINTEF
Digital, where he led the Computational Sciences and Engineering Group,
from 2012 to 2018.

OMER SAN received the bachelor’s degree in
aeronautical engineering from Istanbul Techni-
cal University, in 2005, the master’s degree in
aerospace engineering from Old Dominion Uni-
versity, in 2007, and the Ph.D. degree in engi-
neering mechanics from Virginia Tech, in 2012.
He held a postdoctoral position at Virginia Tech,
from 2012 to 2014, and then the University of
Notre Dame, IN, USA, from 2014 to 2015. He has
been an Assistant Professor of mechanical and
aerospace engineering with Oklahoma State University, Stillwater, OK,
USA, since 2015. He was a recipient of the U.S. Department of Energy
2018 Early Career Research Program Award in Applied Mathematics. His
field of study is centered upon the development, analysis, and applications
of advanced computational methods in science and engineering with a par-
ticular emphasis on fluid dynamics across a variety of spatial and temporal
scales.

41481

http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.5772/6696
http://dx.doi.org/10.1007/BF02241732

