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Abstract—In recent years, thermal imaging has been used in
numerous applications due to its ability to capture and visualize
the thermal radiation emitted by objects. Thermal cameras can
be employed as non-invasive systems for detecting variations in
temperatures while protecting privacy in case people are involved.
Due to this, thermal imaging is especially suitable in surveillance
and medical applications. However, the accuracy of commercial
uncooled thermal cameras is usually too low to provide the user
with a precise temperature value of a target object under real-
world conditions. This paper aims to investigate the challenges
of performing accurate temperature measurements when using
thermal imaging during birth scenarios. Our results demonstrate
that temperature estimates are susceptible to several factors when
measuring in delivery room environments.
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I. INTRODUCTION

Thermal imaging has become a very appealing technology
for applications where visualizing temperature variations is
required. By capturing the amount of thermal radiation of
all objects in a scene, thermal cameras are able to estimate
their temperature. Thermal imaging was initially used for mil-
itary applications and surveillance. Through the development
of low-cost thermal detectors using uncooled infrared mi-
crobolometer arrays [1], [2], this technology has become more
accessible and applicable for other scenarios, e.g., analysis of
volcanic activity [3], non-destructive testing [4], [5], industrial
safety [6], precision agriculture [7], people detection [8], ambi-
ent assistant living systems [9], and self-driving vehicles [10].
In the medical field, thermal imaging has initially been used for
non-invasive monitoring of human skin temperature [11]. Later
on, several medical applications have used this technology
for, among others: breast cancer detection [12], skin cancer
detection [13], stress detection [14], and diagnosis of fever,
hypothermia, diabetes and vascular disorders [15]. Recently,
triggered by the emergence of COVID-19, the use of thermal
imaging to detect people with elevated body temperature has
increased, as described in [16]–[18].

However, as most of the mentioned papers reported, it
is difficult to get an accurate temperature measurement of a
particular object by using a thermal camera. Not only can
multiple sources of thermal energy be found in the scene,
but also several factors may distort the measurement. Various

studies have analyzed the relevance of the distance [19], size-
of-source effect [20], camera field of view [21], and angle
of view [21], [22] when measuring temperature. Furthermore,
thermal sensor fabrication is very complex, resulting in devices
of uneven quality. More accurate thermal cameras are available
at a much higher price or restricted to military purposes.

This paper aims to provide the reader with a better un-
derstanding of the existing challenges of using an uncooled
thermal camera to measure temperature values in real-world
environments accurately. As illustrated in Fig. 1, the birth
scenario with a dual thermal sensor setup is used as an example
for this study. Four experiments were carried out to analyze
fluctuations in the temperature measurements and the chal-
lenges of using thermal cameras. This study is the preliminary
step for developing a time of birth detector based on artificial
intelligence (AI) and thermal imaging. Currently, there exists
no automated solution for the time of birth detection. It is
recorded manually in minute precision and can be potentially
unreliable. The skin temperature of the newborn immediately
after birth is approximately 37◦C, which is higher than the
skin temperature of other people in the room. Thus, thermal
imaging can be used for detecting the exact time of birth
while respecting privacy of the healthcare personnel and the
mothers. Videos recorded with thermal cameras from natural
births and simulations at the Stavanger University Hospital
(SUS) were utilized for the experiments. This research is part
of the NewbornTime1 project, which aims to improve newborn
care by using AI for activity and event recognition in video
during and after birth.

II. THERMAL RADIATION

Thermal radiation is the electromagnetic radiation emitted
by any object with a temperature above absolute zero. At
temperatures relatively close to ambient temperature, thermal
radiation is typically concentrated around the mid- and long-
wavelength infrared bands (3 to 15µm) [23] and many ther-
mal cameras are designed to capture radiation within this
wavelength. The thermal radiation E emitted per unit area
by an object with perfect emission properties (black body) is
dependent on its temperature T in accordance with the Stefan-
Boltzmann formula [24]:

E = φT 4 (1)

1https://www.uis.no/newborntime



Fig. 1. Representation of a delivery room at SUS. As illustrated, the use of thermal imaging ensures the privacy of patients and healthcare personnel. Thermal
radiation captured by the sensors is provided as intensity values (single-channel values). Video frames can therefore be represented as grayscale images. Four
situations causing fluctuations are analyzed in our experiments: Exp. 1 in green, noise variation over time in a fixed region of interest; Exp. 2 in blue, changes in
the target object’s position relative to the sensor module; Exp. 3 in yellow, disparity between the estimated temperature values provided by two different sensors
on the same region of interest; and Exp. 4 in red, effect of room temperature in measurements.

where φ ≈ 5.67×10−8W ·m−2 ·K−4 is the Stefan–Boltzmann
constant.

For any real object, absorptivity α is the ability to ab-
sorb thermal radiation; emissivity ϵ refers to the ability to
emit thermal radiation; reflectance ρ is the ability to reflect
the radiation incident on its surface; and transmittance τ
is the ability to transmit radiation through it. The sum of
the absorptivity, reflectance and transmittance is equal to 1
(α + ρ + τ = 1). For opaque objects in thermodynamic
equilibrium, there is no transmitted radiation (τ = 0), and
the emitted and absorbed thermal radiation are equal (ϵ = α)
according to the Kirchhoff’s law of thermal radiation [25].
The emissivity of real objects is experimentally estimated
and expressed in a range from 0 (perfect mirror) to 1 (ideal
black body). For human skin, emissivity is considered to be
0.98± 0.01 [26]. In practice, the total incident radiation Etot

captured by a thermal camera can be expressed as the sum
of the emitted radiation Eobj from the opaque target object
at temperature Tobj and the reflected radiation Eref from a
remote thermal source at temperature Tref :

Etot = ϵEobj + ρEref (2)

The atmosphere between the target object and the thermal
camera is usually a cause of perturbation in measurement so
that the incident radiation can be attenuated due to atmospheric
conditions. According to [27], Eq. (2) can be rewritten con-
sidering the atmospheric transmittance τatm as:

Etot = τatm(ϵEobj + ρEref ) + (1− τatm)Eatm (3)

where Eatm is the amount of radiation emitted by the at-
mosphere at an ambient temperature of Tatm. In normal
atmospheric conditions (no sprays, mists, fog, or precipitations
in the atmosphere), the atmospheric constituents that contribute
significantly to the attenuation of the radiation are water vapor
and carbon dioxide [28].

III. MATERIAL

The thermal cameras used in this study are delivered by
MOBOTIX. Each installation consists of a Mx-S16B camera
module and two Mx-O-SMA-TPR079 thermal sensor modules

[29]. The thermal sensor modules consist of an uncooled
microbolometer developed by FLIR, a lens, and a housing to
mount the sensor modules to the ceiling. The microbolometer
is operating in the spectral range from 7.5 to 13.5µm with
noise equivalent temperature difference (NETD) typical of 50
mK (< 79 mK), and is calibrated for temperature events from
−40◦ to 550◦C. The lens has a field of view of 45◦×32◦ with a
focal length of 7 mm. The maximum image size is 336× 252
pixels with a maximum frame rate of 9 frames per second.
Three thermal compensation parameters can be configured for
calculating temperature values: object emissivity, atmospheric
transmittance, and ambient temperature. The sensors have a
flat-field correction mechanism for self-calibration. A shutter
with uniform temperature is presented to every detector ele-
ment to update the sensor correction coefficients, resulting in
a more uniform array output. The process takes less than 0.5
seconds and is induced based on elapsed time and the sensor
module’s temperature.

The black body JQ-D70Z used in our experiments is from
Dahua Technology [30]. It emits thermal radiation at a set
temperature on a surface of 70 by 70 mm. The following
parameters are reported for the black body: resolution of
0.1◦C, accuracy of ±0.2◦C, stability of ±(0.1 to 0.2)◦C and
emissivity of 0.97± 0.01.

For logging actual room temperature values, the MicroLite
LITE5032P-RH USB data logger [31] was used. The device
has a temperature range of −40 to 80◦C, an accuracy of
±0.3◦C, and a resolution of ±0.01◦C.

IV. EXPERIMENTS AND RESULTS

In each delivery room, two sensor modules were mounted
to the ceiling: behind the bed (head sensor) and on the side of
the bed (side sensor), as illustrated in Fig. 1. Four experiments
were carried out to gain a better understanding of the factors
influencing temperature measurements in delivery rooms. The
temperature of the black body was set to 36◦C, similar to
the human skin temperature. Object emissivity was set to
0.97 in the sensor settings. Ambient temperature was set to
a fixed value corresponding to the room temperature at the
beginning of each experiment. At any time sample n, let
Tm(x, n) denote the measured temperature, where x = [x y]

T



TABLE I. EXP. 1. INFORMATION RELATED TO THE THERMAL VIDEOS
RECORDED.

Room Sensors τatm (head / side) Video Length (frames)
1 1 & 2 1.00 / 1.00 14858
2 3 & 4 1.00 / 1.00 6271
3 5 & 6 0.81 / 0.82 40902

represents the spatial coordinates in the video frame. Deriving
the real object temperature Tobj by substituting Eq. (1) into
Eq. (3), the measured temperature can be modeled as the
sum of Tobj , noise w(x, n) expressed in terms of a moving
average MA(x, n) and a zero-mean Gaussian noise N (0, σ2),
and a variable bias b(x, n) that depends on several factors,
e.g. position relative to the sensor module, angle of view, lens
optics, room temperature, and sensor offset:

Tm(x, n) = Tobj(x, n) + w(x, n) + b(x, n) (4)
w(x, n) = MA(x, n) +N (0, σ2) (5)

A. Experiment 1 - Noise Modeling

Two videos (head and side views) from three different
delivery rooms were used in this experiment, giving a total of
six videos recorded at 8.33 fps. The details of each video can
be seen in Tab. I. For the atmospheric transmittance setting,
two configurations were considered:

1) Default configuration: In room 1 and 2, a real birth
was recorded. The default atmospheric transmittance
setting in sensors 1 to 4 was used (set to 1.00). To do
the evaluation, a non-motion background region was
selected. The results are shown in Tab. II.

2) Configuration with Black Body: The black body can
be used for configuring the atmospheric transmittance
and, thus, compensating for distance to the camera.
For head and side sensors in room 3, this parameter
was set to 0.81 and 0.82 respectively, based on
reference measurements of the black body placed
at the position where the newborn baby is expected
to be. The black body surface was used as region
of interest for evaluation. Results are presented in
Tab. III.

To model the noise w(x, n), a fixed set of pixels was evalu-
ated over time, illustrated with the green squares in Fig. 1. For
each video, the pixel set was placed on the same non-motion
region of interest seen from both head and side sensor modules
to have homogeneous temperature values over time. Let Sx

define a subset of corner and center pixel coordinates of an 11
by 11 sized box. Moving windows nl of length 1 second, 10
seconds, 60 seconds, and the full video (n1, n10, n60, and nL,
respectively) were used to analyze noise in temperature. For
each x′ ∈ Sx, the range and the signal-noise ratio (SNR)
were calculated using moving windows of length. Results are
presented as the average of the five pixels in Sx.

Rangex′,nl
= max(Tm(x′, nl))−min(Tm(x′, nl)) (6)

SNRx′,nl
= 20 log

(
µx′,nl

σx′,nl

)
(7)

B. Experiment 2 - Dynamic scene changes

In real births, people involved are continuously moving.
The second experiment aimed to analyze the effect of the bias

Fig. 2. Exp. 2: The sensor configuration is set with the black body at 36◦C,
at a distance of 3 meters to the sensor module. Left: the black body is moved
from front to back, staying centered in the video frame. Right: the black body
is moved from left to right, staying at 3 meters of distance.

Fig. 3. Exp. 3: Absolute difference in temperature between the measurements
taken from the two sensor modules mounted in the same delivery rooms.
In blue, the sensors used the default configuration for the atmospheric
transmittance. In red, the black body was used to adjust this parameter.

term b(x, n) when changing the target object’s position relative
to the sensor module, illustrated with the blue squares in Fig. 1.
This experiment was conducted in an empty room, using only
one sensor module. The black body was used as target ob-
ject. The ambient temperature and atmospheric transmittance
parameters were set to 23◦C and 0.85, respectively. The initial
distance between the sensor module and the black body was 3
meters, similar to the distance to the region of interest in the
delivery rooms at the hospital. For each video frame, the black
body surface was found and measured. Results from placing
the black body at different positions are depicted as box plots
in Fig. 2. Temperature differences of ±0.3◦C were seen when
displacing the black body from its initial position.

C. Experiment 3 - Offset between Sensor Modules

In each delivery room, each thermal sensor works indepen-
dently. The goal of this experiment was to compare head and
side sensors mounted in the same room when measuring the
same region of interest, as illustrated with the yellow squares in
Fig. 1. Videos from room 1 and room 3 were used to calculate
the absolute difference for each sensor pair. Similar to Exp. 1,
pixels in Sx were evaluated. The absolute difference between
head and side sensors of the average of the pixels in Sx is
represented in Fig. 3.



TABLE II. EXP. 1. NOISE MODELING FOR DEFAULT CONFIGURATION.

Range (◦C) SNR (dB)
Avg (std) Max Avg (std)

Window
Size Sen 1 Sen 2 Sen 3 Sen 4 Sen 1 Sen 2 Sen 3 Sen 4 Sen 1 Sen 2 Sen 3 Sen 4

1 sec 0.06 (0.05) 0.09 (0.06) 0.08 (0.05) 0.07 (0.05) 0.76 0.64 0.76 0.80 136.35 (8.89) 129.2 (13.26) 135.55 (9.42) 136.44 (9.58)
10 sec 0.26 (0.10) 0.29 (0.09) 0.27 (0.08) 0.28 (0.11) 0.80 0.80 0.84 0.84 119.55 (7.52) 115.4 (7.98) 120.18 (5.53) 117.81 (8.15)
60 sec 0.52 (0.15) 0.52 (0.11) 0.47 (0.11) 0.58 (0.19) 0.92 0.92 0.96 1.60 107.27 (7.86) 108.48 (7.34) 112.77 (5.12) 105.88 (7.15)

Full
Video 1.50 1.66 0.97 1.29 1.60 2.00 1.12 1.64 86.54 78.72 100.59 90.27

TABLE III. EXP. 1. NOISE MODELING WHEN CONFIGURING WITH
BLACK BODY.

Range (◦C) SNR (dB)
Avg (std) Max Avg (std)

Window
Size Sen 5 Sen 6 Sen 5 Sen 6 Sen 5 Sen 6

1 0.09 (0.06) 0.07 (0.07) 1.52 1.36 141.92 (10.05) 143.53 (9.89)
10 0.30 (0.12) 0.29 (0.17) 1.68 1.52 125.08 (6.39) 125.56 (8.09)
60 0.55 (0.20) 0.62 (0.33) 1.68 1.76 117.48 (7.12) 114.62 (11.01)

Full
Video 1.66 2.39 1.84 2.44 99.09 88.37

Fig. 4. Exp. 4: Temperature measurements on the black body surface from
head and side sensor modules in room 3 along with the room temperature.
Black body temperature is expected to be 36± 0.2◦C.

D. Experiment 4 - Effect of Room Temperature

In room 3, the room temperature was logged every 30
seconds using the MicroLite data logger. This experiment
aimed to evaluate the impact of the room temperature on
the measurements, illustrated with the red squares in Fig. 1.
The black body surface was used as region of interest. The
temperature data logger was placed near the black body. A
evaluation of room temperature and drifting in temperature
values is shown in Fig. 4.

V. DISCUSSION

Exp. 1 aimed to model the noise in the measurements.
From Tab. II, a slight variation in the temperature values in
concordance with the NETD value provided in the thermal
sensor datasheet (< 79 mK) can be noticed when evaluating
very short periods of time. The effect of the flat-field correction
mechanism can be seen looking at the maximum range for
small windows, where abrupt temperature changes occur in
short times. Along with this, temperature range increases
in terms of mean value, standard deviation, and maximum
value with longer windows. This means that there is a more
considerable drift in the temperature values when evaluating
longer time sequences. Although fluctuations were expected

to be reduced by utilizing a black body for configuring the
thermal sensor, its use did not improve the sensor’s behavior
in terms of noise and drifting, as shown in Tab. III. Placing
a black body near the target object or the region of interest
at all times is usually recommended for providing a reference
temperature point in the field of view of the sensor modules.
However, for the birth scenario, this option is not physically
feasible.

Explaining the variable bias is a complex task. Exp. 2
allowed us to evaluate the changes in temperature values when
moving a target object. The effect of other factors can be more
challenging to assess. The lens optics may cause variations in
the behavior of pixels further away from each other, implying
that the lens effect has less impact in the center of the image
than in the corners when considering the same distance to
the sensor module. The sensor offset is another factor to take
into consideration when referring to the bias term. Together
with this, controlling the flat-field correction mechanism is not
easy, and it needs to be synchronized between sensor modules
to make a proper measurement comparison. Due to all this,
as shown in Exp. 3, a disparity of up to 1.5◦C exists when
comparing the measurements between both sensors.

At the same time, the transmission coefficient directly
leverages the ambient temperature value, as shown in Eq. (3),
so the lower the atmospheric transmittance is, the greater
influence the ambient temperature will have on the overall
measurement. This means that room temperature has a sig-
nificant impact when measuring, generating a drifting in the
temperature values. As delivery rooms are connected to the
same heating system, the behavior in Fig. 4 is expected to
happen in all delivery rooms. This is challenging for the
birth scenario, as considerable and non-uniformly distributed
variations in room temperature can exist during labor.

VI. CONCLUSION

In this paper, we have investigated the challenges of
using a dual thermal sensor setup for detecting the exact
time of birth in delivery room environments, where accurate
temperature measurements would be desirable. We showed that
the variation in the thermal sensors consists of a combination
of short-time random noise, drift, self-calibration steps, and
room temperature. This all imposes challenges preventing the
temperature measurements from being used directly for the
time of birth detection. The performance of other uncooled
commercial thermal sensors is expected to be similar to that
shown in our experiments, since most of these sensors are
based on FLIR technology. Future work will concentrate
on testing different strategies to compensate for drifting in
temperature values, and make it possible to utilize thermal
imaging to develop an accurate AI-based time of birth detector.
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