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Abstract 

Inference and analysis of gene regulatory networks (GRNs) require software that 
integrates multi-omic data from various sources. The Network Zoo (netZoo; netzoo.
github.io) is a collection of open-source methods to infer GRNs, conduct differential 
network analyses, estimate community structure, and explore the transitions between 
biological states. The netZoo builds on our ongoing development of network meth‑
ods, harmonizing the implementations in various computing languages and between 
methods to allow better integration of these tools into analytical pipelines. We demon‑
strate the utility using multi-omic data from the Cancer Cell Line Encyclopedia. We will 
continue to expand the netZoo to incorporate additional methods.

Keywords:  Gene regulation, Multi-omic analysis, Network biology, Open-source 
software

Background
Biological phenotypes are driven by a complex network of interacting elements that 
defines cell types and determines response to perturbations [1]. These interactions can 
be modeled by assessing the physical binding between biological elements [2], their co-
expression [3], and their co-dependency [4] to identify functional modules that together 
control the emergence of a given phenotype. A particular type of network is gene reg-
ulatory networks (GRNs) that are comprised of regulators and their target genes. One 
type of regulators is transcription factors (TFs), regulatory proteins that bind to DNA 
to activate or repress gene transcription. TFs often form complexes that act together 
to regulate transcription [5–7] and TF activity can be further influenced by epigenetic 
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modifications such as promoter methylation or histone acetylation [8]. Other regula-
tors of gene expression include microRNAs (miRNAs) that act post-transcriptionally, 
primarily to degrade and subsequently repress the expression of their mRNA target [9, 
10]. These and other factors together modulate the expression of the more than twenty-
five thousand protein-coding genes in the genome, altering cellular processes and giving 
cells the potential to respond to various stimuli [7].

Despite rapid advances in sequencing technologies, the size and complexity of GRNs 
put them out of reach of direct measurement [6]. Consequently, there have been many 
attempts to represent them using computational methods [3, 6, 11–13], although not all 
model gene regulatory processes.

Our group has developed a number of robust methods for GRN inference and anal-
ysis (Additional file  1: Text S1), each of which takes advantage of multiple data types 
available in individual studies. Each method is based on using known biological interac-
tions as prior information to guide network inference from the data, seeking consist-
ency between a variety of input data sources to identify a common underlying biological 
signal. Our methods for reconstructing networks include PANDA [14] that infers a cis-
regulatory network for TFs and their target genes by first positing a prior regulatory net-
work and then iteratively optimizing its structure by seeking consistency between gene 
co-expression and TF protein-protein interactions (PPIs). The prior regulatory network 
can be constructed by scanning the sequence of the promoter region of target genes (for 
example, by using FIMO [15]) for transcription factor binding sites (TFBS) using TF 
motifs taken from catalogs (such as CIS-BP [5]). The input TF PPI data can be obtained 
from resources such as STRING [2], and gene co-expression is obtained from the par-
ticular experiment being analyzed. The inference is based on the concept that interacting 
TFs co-regulate their target genes and co-expressed genes are potentially regulated by 
the same sets of TFs. PANDA uses message passing to iteratively update all three data 
sets, maximizing consistency between them, until it converges on a data set-specific 
regulatory network with interaction scores between TFs and their regulated targets. 
OTTER [16] takes the same input but uses graph matching as an alternative implemen-
tation of the network optimization solution. SPIDER [17] uses epigenetic data such as 
DNase-Seq measurements of DNA accessibility to inform the PANDA prior network on 
context-specific accessible chromatin regions. EGRET [18] uses cis-eQTL data to seed 
the method with genotype-specific priors. PUMA [19] extends PANDA’s regulatory 
framework by including miRNA target predictions in the initial prior network to capture 
both TF and miRNA regulation of target genes/mRNAs.

LIONESS [20] is a general-purpose single-sample network method that can be 
used with any network inference approach. It iteratively leaves out individual sam-
ples and uses linear interpolation to infer sample-specific networks for each sample 
in the original sample set. LIONESS outputs individual sample edge weights which 
can be treated as inferred measures on each sample, allowing statistical compari-
sons to be performed on the associated networks. A key use case of LIONESS is to 
infer sample-specific GRNs using PANDA. DRAGON [21] is a flexible method for 
integrating multiple data sources into a Gaussian Graphical Model (GGM). GGMs 
differ from correlation networks in that partial correlation corrects for spurious cor-
relations between variables; the multi-omic networks inferred by DRAGON therefore 
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represent direct associations between the different data types included for network 
inference. DRAGON differs from PANDA and similar methods for network inference 
in that GGMs are undirected unipartite networks rather than a bipartite GRNs.

A second group of methods in netZoo was developed to identify and explore higher-
order structure in GRNs [22, 23] by identifying highly connected network “communi-
ties” and comparing the structure of these communities between phenotypic states. 
CONDOR [24] identifies communities in bipartite graphs [25] (including eQTL and TF-
gene networks), while ALPACA [26] finds differential community structures between 
two networks, such as in a case versus control setting, by going beyond the simple differ-
ence of edge weights and using the complete network structure to find differential com-
munities. CRANE [27] assesses the significance of differential modules discovered by 
ALPACA based on a baseline of network ensembles that are simulated while preserving 
the specific structure and constraints of GRNs. In this regard, CRANE provides an effi-
cient tool for hypothesis testing inference on differential community structures in GRNs. 
A fourth method, MONSTER [28], treats the transition between related biological states 
as one in which a first network is subject to a regulatory transition that involves alter-
ing transcription factor connections to their target genes. Mathematically, MONSTER 
estimates such changes by identifying a “transition matrix” that maps an initial state 
network to a final state network to identify the TFs that have the largest effect on the 
structure of the network and therefore are likely to help drive the phenotypic transition. 
SAMBAR [29] allows users to group biological samples based on how genetic variants 
alter functional pathways, and finally, YARN [30] is a tissue-aware implementation of 
smooth quantile normalization for multi-tissue gene expression data.

Many of these methods share a methodological and philosophical framework that 
derives from the “No Free Lunch Theorem”—modeling of complex systems can be 
improved by incorporating domain-specific knowledge [31] — as they optimize around 
a regulatory network prior and impose biologically motivated soft constraints. Many 
of these methods also use an overlapping set of standard input data types and provide 
complementary views of GRNs. As such, they have often been used together. To facili-
tate their use and integration into analytical pipelines, we gathered these into the Net-
work Zoo (netZoo; netzoo.github.io), a platform that harmonizes the codebase for these 
methods, in line with recent similar efforts [32, 33], and provides implementations in R, 
Python, MATLAB, and C. In building netZoo, we also created the ZooKeeper, an online 
server that helps ensure consistency of the codebase as it is continuously updated in 
response to user feedback. The netZoo codebase has helped develop an ecosystem of 
online resources for GRN inference and analysis to both scientists and method develop-
ers that includes tools to integrate contributions from the community, to share use cases 
[34], and to host and visualize networks online [35].

To demonstrate the power of this unified platform, we used netZoo methods to build 
a comprehensive collection of genome-scale GRNs for the cell lines in the Cancer Cell 
Line Encyclopedia (CCLE) [36–38]. We also used PANDA, LIONESS, and MONSTER 
to infer TF-gene targeting in melanoma to explore how regulatory changes affect disease 
phenotype, and used DRAGON to integrate nine types of genomic information and find 
multi-omic markers that are associated with drug sensitivity.
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Results
The netZoo integrates network inference and downstream analyses

Regulatory processes drive gene expression and help define both phenotype and the abil-
ity of a biological system to respond to perturbations. However, identifying context-spe-
cific regulatory processes is difficult because the underlying regulatory network is often 
unobserved [6]. Several netZoo methods address this challenge by integrating multiple 
sources of available data to infer TF-gene regulation.

Many of the netZoo methods share common methodological and computational 
cores, and over the years, we have used combinations of these methods to explore the 
regulatory features driving biological states [39, 40]. Harmonizing the implementation of 
these methods to create netZoo as a unified resource facilitates interoperability and their 
seamless integration in a pipeline that connects network inference with downstream 
analyses (Fig. 1; Table S1) to generate hypotheses and actionable biological insights. To 
do so, we aggregated methods in a unique central resource, which allowed to reconcile 
their dependencies and standardize the formats of input data and the output of gener-
ated networks. This facilitated building interfaces between them by identifying intersec-
tion points in algorithms and by using data transformation to fit underlying statistical 
hypotheses for each method. Co-developing methods in various languages while using 
the same unit tests across them has helped identify inconsistencies for some edge cases 
and has dramatically improved reproducibility. netZoo implementations were also opti-
mized for runtime and memory usage which included using GPU [41], and wrapping 
faster implementations to be used in other languages.

To demonstrate these features, we chose to model gene regulation in CCLE cell 
lines that include measurements for various omics but not for the activity of regula-
tory elements, which further supports the need for GRN inference. CCLE data pre-
sents unique challenges first to identify meaningful associations in multi-omic data 
with different underlying distributions and second to infer single-sample networks 
using one gene expression measurement per cell which may occur after collapsing 
replicates. netZoo is uniquely positioned for GRN inference in this setting because 

(See figure on next page.)
Fig. 1  Inference and analysis of GRNs using netZoo. YARN normalizes gene expression (RNA-Seq) data to 
account for differences between tissues. Then, a first group of methods uses normalized gene expression 
data to infer gene regulatory networks (PANDA, PUMA, OTTER, LIONESS, SPIDER, EGRET) to reconstruct GRNs 
using multiple genomic modalities. The input data used for PANDA and OTTER are normalized RNA-Seq data 
to build gene coexpression networks, PPI network such as STRINGdb to build TF interaction networks, and 
a prior knowledge TF motif network built on scanning TF position weight matrices in promoter region of 
target genes. We refer to these three input networks as the core input data that may be shared by groups 
of methods. In addition to this core input, SPIDER uses DNase-Seq chromatin accessibility data to constrain 
predictions to open regions of the genome. Instead of using TF motif network, PUMA employs miRNA target 
gene prediction data from tools such as TargetScan and miRanda as a prior knowledge network to seed 
inference of miRNA regulation networks. EGRET uses data from DNA sequence to first identify variants in TF 
binding sites and compute their effect on target gene regulation by combining these mutation data with 
the core input data. DRAGON builds multi-omic, partial correlation-based networks that can use data such as 
RNA-seq, methylation status, protein levels, and chromatin accessibility. A second group (CONDOR, ALPACA, 
CRANE) identifies communities in the networks (CONDOR), finds differential community structures between 
two networks of interest (ALPACA), and estimates the significance of differences between modules (CRANE). 
Finally, MONSTER estimates a transition matrix between two networks representing an initial and a final state, 
and SAMBAR de-sparsifies mutation data using biological pathways. Overlapping methods share the same 
input data. SNP, single nucleotide polymorphism; PPI, protein-protein Interaction network; miRNA, microRNA
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of the connections we created between existing methods, which enable analyses that 
were not previously possible. The package also includes novel methods that were 
designed for large-scale multi-omic data such as CCLE. Finally, netZoo implementa-
tions are optimized for runtime and memory and can scale up network inference for 
various omics, cell lines, and node types such as thousands of genes and their target-
ing regulatory elements.

Fig. 1  (See legend on previous page.)
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Estimating TF targeting in melanoma CCLE cell lines

Melanoma progression and metastasis are known to be associated with many regula-
tory changes that alter patterns of gene expression [42], ultimately leading to pheno-
type switching to malignancy and drug resistance. These changes in expression can 
be tied to a variety of regulatory elements including transcription factor targeting, 
miRNA suppression of transcripts, and genomic and epigenetic changes. To demon-
strate the utility of combining netZoo methods, we applied PANDA with LIONESS to 
model transcriptional regulation for individual samples in melanoma. This workflow 
allows us to understand regulatory changes in disease by inference and analysis of 
sample-specific regulatory networks for the 76 melanoma cell lines available in CCLE 
and exploring a variety of disease-associated processes (see the sections “Methods”: 
“Applications of netZoo using the Cancer Cell Line Encyclopedia”).

First, we used PANDA to generate an aggregate network across all CCLE cell lines, 
and we derived single-sample networks using LIONESS (see the sections “Meth-
ods”: “Applications of netZoo using the Cancer Cell Line Encyclopedia”). Then, we 
used ANOVA to analyze the 76 melanoma cell line networks to explore whether TF 
targeting scores, the sum of outgoing edge weights for each TF in the network [43], 
could be linked to methylation changes and copy number alterations (see the sections 
“Methods”: “TF targeting analysis”).

Among the top ten associations (Fig. 2A), we found that targeting by melanocyte-
inducing transcription factor (MITF) was associated with changes in promoter 
methylation; in particular, we found a significant association between MITF tar-
geting score (see the sections “Methods”: “TF targeting analysis”) and promoter 
hypermethylation of Discoidin, CUB, and LCCL Domain Containing 2 (DCBLD2) 
(Fig.  2A). We also found that MITF targeting was associated with the deletion of 
Protein Tyrosine Phosphatase Non-Receptor Type 20 (PTPN20; Fig.  2A). The tar-
geting by TFs (see the sections “Methods”: “Applications of netZoo using the Can-
cer Cell Line Encyclopedia”) glioma-associated oncogenes 1 and 2 (GLI1 and GLI2) 
was also significantly increased in melanoma. In examining GLI1 and GLI2 tar-
geting, we found it to be associated with promoter hypomethylation of MIR6893. 
Finally, mining additional significant associations (Fig.  2A), we find a decrease of 

Fig. 2  Modeling regulatory processes in melanoma using CCLE data. A Volcano plot of the ANOVA 
associations between TF targeting scores and promoter methylation and copy number statuses in melanoma 
cell lines. The 10 largest significant associations are colored in red and cyan for methylation status, and in 
orange and purple for copy number status. B Elastic net regression of regorafenib cell viability on TF targeting 
scores in melanoma cell lines. The figure represents the two largest positive coefficients and two largest 
negative coefficients. C Differential TF involvement in the transition between primary melanoma cell line and 
a cell line derived from melanoma metastasis. The top 50 TFs are colored in blue
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targeting by TBX19 to be associated with the amplification of the HLA-DBA1 and 
HLA-DQB1 genes.

We also tested whether TF targeting in the CCLE melanoma cell lines was associ-
ated with response to regorafenib, a multi-kinase inhibitor that has been approved for 
treating metastatic colorectal cancer, advanced gastrointestinal stromal tumors, and 
advanced hepatocellular carcinoma. The drug has been shown to have a high affinity 
for BRAF [44], a kinase commonly mutated in metastatic melanoma, suggesting it may 
also show efficacy in treating melanoma. We conducted elastic net regression [45] on 
TF targeting scores to test for meaningful pharmacogenomic interactions [46] associ-
ated to cell viability after regorafenib treatment (see the sections “Methods”: “TF tar-
geting analysis”), and among the largest four variables’ importance, we found targeting 
by MITF to be negatively associated with cell viability, while targeting by ZNF778 was 
positively associated to it (Fig. 2B, Additional file 1: Fig. S1).

This PANDA-LIONESS combination has been applied previously in various other set-
tings, such as the study of sex differences in health and disease [47], by our group [20, 
39, 48] and others [49], but the uniqueness of the CCLE data makes this combination 
particularly powerful on single gene expression samples from collapsed replicates and 
even in the absence of replicates. To demonstrate the advantage of using netZoo meth-
ods in combination, we modified MONSTER to use LIONESS networks as input for the 
estimation of drivers of transitions between two biological states using a PANDA-LION-
ESS-MONSTER pipeline (see the sections “Methods”: “TF targeting analysis”). We did 
this to study severe forms of melanoma and their transition from a noninvasive to an 
invasive state [50] which can be driven by epithelial to mesenchymal transition (EMT). 
We used MONSTER to define a TF transition matrix that maps a nonmetastatic LION-
ESS network for a cell line derived from a primary tumor (Depmap ID: ACH-000580) 
to a LIONESS network of a cell line derived from melanoma metastasis (Depmap ID: 
ACH-001569) (see the sections “Methods”: “TF targeting analysis”). We found that the 
TFs RUNX2, GLI1, and CREB3L1 were among those with the largest differential involve-
ment score [28] (Fig. 2C), indicating that they have the most profound changes in their 
regulatory targets as cells become metastatic.

CCLE pan‑cancer analysis reveals meaningful regulatory interactions

The CCLE cell lines are among the most widely studied model systems available in 
oncology research and include a large number of measurements for various biological 
entities as well as viability assays following drug challenges and gene knockouts. We 
used DRAGON [21,51] to explore multi-omic associations captured in these data, taking 
advantage of covariance shrinkage [51,52] to account for the unique structure of each 
data type. We calculated DRAGON partial correlation networks between all pairwise 
sets of measurements on the CCLE cell lines (see the sections “Methods”: “Computing 
CCLE multi-omic associations”), but we will focus on four sets of partial correlations in 
our analysis: (1) miRNA levels and gene knockouts, (2) protein levels with metabolite 
levels, (3) cell viability assays after drug exposure and gene knockout screens, and (4) TF 
targeting and metabolite levels.

In the first comparisons between miRNA expression and gene knockout, we assume 
that strong gene silencing by miRNA [9] would share a similar dependency signature 
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with a gene knockout using clustered regularly interspaced short palindromic repeats 
(CRISPR), as other small RNAs are commonly used in knockdown experiments. We 
found that MIR664 levels have a strong partial correlation with glutathione-disulfide 
reductase (GSR) dependency (Fig. 3A).

In our second DRAGON analysis of metabolomic and proteomic data, we first 
found three glycolysis metabolites, phosphoenolpyruvic acid, 3-phosphoglycerate, 
and glyceraldehyde 3P, had a negative partial correlation with lactate dehydroge-
nase-A (LDHA) protein levels (Additional file  1: Fig. S2, Fig.  3B), which converts 
pyruvate to lactate as the last step of glycolysis. This suggests that these metabolites 
are upstream of LDHA and indicates an active glycolysis (Additional file 1: Fig. S2). 
Second, we found that fumarate/maleate levels, which are TCA cycle metabolites, 
were negatively partially correlated with LDHA (Fig. 3B), indicating lower TCA cycle 
intermediates levels when LDHA is active. To further confirm the production of lac-
tate in cancer cell lines, we correlated the activity of LDHA with lactate concentra-
tions by normalizing it by LDHB levels (see the sections “Methods”: “Computing 
CCLE multi-omic associations”), the isozyme that preferentially carries the back-
ward reaction to produce pyruvate. We find that normalized LDHA levels and lactate 
are positively correlated, while normalized LDHB levels and lactate are negatively 
correlated, which confirms the known preferential directions for these enzymes, 
reflecting their larger molecular affinities towards lactate and pyruvate. We also find 
that normalizing by the isozyme ratio is an essential step to account for the activity 
of LDH depending on the levels of LDHA and LDHB chains, thereby avoiding spuri-
ous correlations (Fig. S3). Using these normalized variables, we further investigated 
metabolic phenotypes in two groups of cells based on their origin, either primary 
or metastatic. We find that in metastatic tumors, both LDHA and LDHB produce 
lactate, while in primary tumors, both LDHA and LDHB use lactate as a substrate to 
produce pyruvate (Fig. 3C).

Fig. 3  Pan-cancer analysis of regulatory interactions using DRAGON. A Partial correlation between miRNA 
levels and gene knockout screen across all cancer cell lines. B Partial correlation of metabolite levels and 
LDHA protein levels. C Partial correlation between normalized LDH isozyme levels and lactate in cell lines 
from primary and metastatic tumors. D Partial correlation between gene knockout screens and dabrafenib 
cell viability assays. E Partial correlation between 2-hydroxyglutarate levels and TF targeting across all cancer 
cell lines
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We also employed DRAGON to analyze cell viability assays after drug exposure and 
CRISPR screens (see the sections “Methods”: “Computing CCLE multi-omic associa-
tions”). Not surprisingly, we found that viability after exposure to dabrafenib, a BRAF 
inhibitor, was highly correlated with BRAF knockout (Fig. 3D). Dabrafenib cell viability 
was also correlated to MAPK1 and MAP2K1, two genes that are downstream of BRAF in 
the MAPK signaling pathway.

Finally, motivated by recent findings implicating oncometabolites in altering the epi-
genetic landscape in cancer [53], we analyzed oncometabolite 2-hydroxglutarate (2HG) 
levels because it has been shown to induce the hypermethylator phenotype in glioma 
and acute myeloid leukemia by inhibiting histone demethylases [54]. To identify TFs that 
are associated with 2HG epigenetic regulation, we computed correlations between TF 
targeting and 2HG levels across all CCLE cell lines using DRAGON (Fig. 3E). We found 
that 2HG levels might affect the regulatory profile of several TFs including PPARG, 
TP73, and GLI4.

An integrated CCLE multi‑omic network portal

Having inferred DRAGON networks for additional pairwise combinations of measure-
ments (Table S2) on the CCLE cell lines, we integrated these partial correlation networks 
from various biological data types and created an online portal to allow exploration of 
the integrated relationships we discovered (Additional file  1: Fig. S4; see the sections 
“Methods”: “CCLE pan-cancer map”). First, promoter methylation status, copy number 
variation, histone marks, and miRNA partial correlations networks with gene expres-
sion were stacked to capture the multi-modal regulation of gene expression. Then, gene 
expression was linked to protein levels, which in turn was associated with cellular phe-
notypes represented by metabolite levels, drug sensitivity, and cell fitness resulting in a 
final genotype-to-phenotype map.

The resulting integrated CCLE partial correlation network is available online (https://​
grand.​netwo​rkmed​icine.​org/​cclem​ap/) and can be queried to explore the biological 
associations contained within (Fig. 4A). To illustrate the utility of this multi-tiered cor-
relation network map, we used it to examine the effect of copy number variation on gene 
expression. As expected, we found positive partial correlations between copy number 
and expression. For example, we not only found that CDKN2A and CDKN2B copy num-
bers have a positive partial correlation with CDKN2A and CDKN2B expression, respec-
tively (Fig. 4B), but that CDKN2B copy number is correlated with CDKN2A expression, 
which may reflect the fact that these two genes are adjacent in the genome. We also 
found negative partial correlations between copy number variation and gene expression. 
For example, MIR378D1 copy number is negatively partially correlated with TBC1D21 
expression (Fig.  4C), suggesting that TBC1D21 may be repressed by MIR378D1. 
Although TBC1D21 is not listed as a target of MIR378D1 in miRDB, other members 
of the TBC1 family, including TBC1D12 (Target Score (TS) 66), TBC1D16 (TS 61), and 
TBC1D24 (TS 53), are among its predicted targets [55].

Creating a community ecosystem for collaborative software development

Development of netZoo has been driven through collaborative work involving users and 
developers at several academic institutions, all of whom are committed to open-source, 

https://grand.networkmedicine.org/cclemap/
https://grand.networkmedicine.org/cclemap/
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community-driven method development. A great deal of our work in harmonizing the 
code has been to facilitate reproducibility across the implementation of related methods, 
to facilitate re-use of common methods for network inference, and to standardize input 
and output file formats to enable the creation of network analysis pipelines.

The netZoo codebase is version-controlled in GitHub and implementations of most 
methods are available in R [56, 57], Python [58], MATLAB [59], and C (Fig.  5). These 
implementations were developed over the years for various needs for performance, ease 
of use, and ease of combination with plotting and downstream statistical analysis func-
tions that each programming language may offer. Using a synchronized resource for code 
development avoids creating parallel branches and gives users access to tested and opti-
mized methods that are up to date with the newest frameworks, particularly for the grow-
ing userbase in R and Python, as well as with third-party dependencies. The codebase 
includes additional helper functions for plotting and analysis, and GPU-accelerated imple-
mentations [41] for faster network inference across large numbers of samples. The netZoo 
codebase is part of a larger ecosystem of online tools, that together support reproducible 
science. A first component of this ecosystem is a continuous integration tool ZooKeeper 
that runs unit tests using both public GitHub actions and a custom server, to regularly 
test the code and to maintain the integrity of the software and update its dependencies to 
third-party software. This tool facilitates contributions from the community using a fork-
branch model; new contributed features are tested through ZooKeeper before being added 
to the core codebase. A second component called Netbooks allows access to a set of cloud-
based Jupyter notebook use cases and tutorials [34]. Finally, GRAND database can store 
genome-scale networks and visualize them on the browser [35]. These online tools are 
essential to conducting large-scale analyses because most public hosting services cannot 
host genome-scale networks, and public cloud servers often do not offer enough memory 
to analyze these networks. These tools are constantly updated beyond their initial content, 

Fig. 4  Multi-tiered CCLE map links genotype to cellular phenotypes. A Screenshot of the online resource 
accessible at https://​grand.​netwo​rkmed​icine.​org/​cclem​ap/ that uses DRAGON to link promoter methylation 
(orange triangle), copy number variation (pink diamond), histone marks, miRNA levels, gene expression 
(blue circle), protein levels (purple circle), metabolite levels (green square), drug sensitivity, and cell fitness 
following CRISPR gene knockout. Green arrows indicate positive partial correlation and red arrows indicate 
negative partial correlation. B Positive partial correlations between copy number variation and gene 
expression of CDKN2A and CDKN2B. C Negative partial correlation between MIR378D1 levels and TBC1D21 
expression

https://grand.networkmedicine.org/cclemap/
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for example, we released Netbooks 2.0 which adds new use cases, as a companion to this 
work, and we will continue to develop these tools together as new releases of the codebase 
will enable the generation of additional networks hosted in GRAND and new analyses in 
Netbooks, together supporting all the aspects of high-quality and reproducible research in 
computational biology.

Discussion
We used netZoo methods to identify disrupted regulatory processes in melanoma, then 
we extend the analysis by building a pan-cancer multi-omic map across all CCLE cell 
lines. In the cancer type-specific use case, we used netZoo methods to model gene regu-
lation in CCLE melanoma cell lines by first analyzing multi-omic associations between 
TF targeting and various genomic modalities, then comparing them with drug sensitiv-
ity to identify markers of resistance, and finally identifying TFs that drive the transition 
to metastasis.

First, we found an association between MITF targeting scores and DCBLD2 promoter 
hypermethylation. DCBLD2 has been suggested to trigger oncogenic processes in mela-
noma through Epidermal Growth Factor Receptor (EGFR) signaling [60]. This finding 
is also consistent with the identification of MITF as a key driver of melanoma [61, 62]. 
In addition, we found associations between MITF targeting and PTPN20, a tyrosine 

Fig. 5  netZoo ecosystem. The codebase is hosted on GitHub and is regularly tested through a continuous 
integration system called ZooKeeper. Networks generated by netZoo methods are hosted in the GRAND 
database. Cloud-hosted use cases and tutorials are available through a JupyterHub server called Netbooks. 
GitHub discussions and issues provide a forum for discussion and exchange within the community.
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phosphatase coding gene, providing further evidence that disrupted signaling mediated 
by MITF regulation plays an important role in melanoma. Targeting by GLI1 and GLI2 
was also increased in melanoma confirming their association to drug resistance in mela-
noma cell lines [63] and was associated with promoter hypomethylation of MIR6893. 
According to TargetScan [10], MIR6893 regulates two related TFs, Glis Family Zinc Fin-
ger 1 and 2 (GLIS1 and GLIS2), and both have been reported to be involved in psoriasis 
[64], an inflammatory skin condition, which may indicate that they play a similar role 
in melanoma. We finally found a decrease of targeting by TBX19 to be associated with 
the amplification of the HLA-DBA1 and HLA-DQB1 genes. Both of which are known 
to be melanoma risk factors [65], although HLA genes are highly polymorphic and 
any inference on them needs to account for the underlying population structure [66]. 
TBX19 itself has not been implicated in melanoma, but it has been linked to lymph node 
metastasis in colorectal cancer [67] and TBX2, another member of the T-Box family, is 
involved in melanoma proliferation [68].

Second, a regression analysis identified four TFs to be strongly implicated in mela-
noma drug resistance. We found targeting by MITF to be negatively associated with 
regorafenib cell viability. This finding is consistent with studies that found MITF loss 
to be associated with drug resistance [69] and underscores the multifunctional role that 
MITF appears to play in melanoma based on our analysis. However, other studies have 
implicated an increased activity of MITF in resistance to BRAF inhibitor treatment 
[70, 71]. Another TF, ZNF778, was also a strong predictor of regorafenib cell viabil-
ity (Fig. 2B, Additional file 1: Fig. S1); the ZNF778 promoter has also been found to be 
highly mutated in melanoma [72].

Third, we ran a transition analysis to identify TFs involved in metastasis. We found 
that the TFs RUNX2, GLI1, and CREB3L1 were among those with the largest differen-
tial involvement score. RUNX2 has been previously identified as a driver of epithelial to 
mesenchymal transition (EMT) processes and phenotype switching in melanoma [50]. 
CREB3LI has been reported to be activated in drug-resistant cell lines [73] and GLI1 
knockout has been shown to increase sensitivity to vemurafenib [63], an approved mela-
noma BRAF inhibitor. Collectively, the results from these analyses suggest a co-involve-
ment of TFs associated with both drug resistance and cell state transition in invasive 
disease and highlight the promise of multi-kinase targeting [74].

Extending our analysis from melanoma to all cancer types using a DRAGON multi-
omic network, we correlated miRNA levels with gene dependency scores and found a 
negative partial correlation between MIR664 and GSR, suggesting that MIR664 post-
transcriptionally regulates GSR. This is consistent with annotation in TargetScan data-
base [10], which predicts GSR to be a target of MIR664, ranked 613/5387 with a total 
context++ score [75] (which is the sum of contributions of 14 features for each target 
site, lower total context++ score indicating stronger evidence) of −0.16.

Next, analyzing metabolite concentrations and protein levels, we found negative par-
tial correlations between LDHA and glycolysis metabolites, as well as LDHA and TCA 
cycle metabolites. These two observations suggest an activity of LDHA in the forward 
direction towards lactate production through aerobic glycolysis and fermentation (Addi-
tional file 1: Fig. S2). Activation of this suboptimal pathway (Warburg effect [76]) to pro-
duce energy is a hallmark of cancer and has been correlated with poor prognosis and 



Page 13 of 23Ben Guebila et al. Genome Biology           (2023) 24:45 	

drug resistance [77, 78]. Because we conducted this analysis across all cell lines without 
filtering for a particular lineage, this result suggests that aerobic glycolysis could be prev-
alent in CCLE cell lines as observed in several solid tumors [79]. We also find a nega-
tive partial correlation between normalized levels of LDHA and LDHB with lactate in 
primary tumors and a positive partial correlation between them in metastatic tumors. 
This indicates that LDHA and LDHB may operate in their non-preferential direction, 
to control the production of lactate in metastatic tumors and its breakdown in primary 
tumors. It has been shown that LDHB can compensate LDHA after LDHA knockout 
[80] to produce lactate. Therefore, our network analysis identified a distinct metabolic 
program [81] in primary and metastatic cells, mediated by LDHA and LDHB switching. 
In particular, it has been shown that production of lactate drives the cellular program 
towards a migrating phenotype, while primary tumors may still have increased mito-
chondrial activity and therefore need substrates from lactate breakdown for TCA cycle 
[82]. Our analysis indicates that this happens by the concerted activity of both LDHA 
and LDHB, disrupting their physiological balance.

Examining DRAGON correlations between dabrafenib, a BRAF inhibitor and gene 
dependency scores, we found an association with BRAF, but also with MAPK1 and 
MAP2K1. This is possibly due to compensatory mechanisms between functionally 
related genes [83]. In the absence of these effects, the finding makes sense because 
although dabrafenib is described as “selective” to BRAF [84], it has been shown to be 
active in cell lines with constitutively activated BRAF harboring the V600E activating 
mutation [85]; this subsequently triggers drug resistance by reactivating the MAPK 
pathway, particularly, MAPK1 and MAP2K1.

We finally analyzed the association between the levels of 2HG, an oncometabolite 
implicated in the hypermethylator phenotype in glioma and TF targeting to identify TFs 
that may be affected by changes in methylation induced by 2HG. We found significant 
associations between 2HG and PPARG, TP73, and GLI4 possibly mediated by promoter 
hypermethylation and the subsequent disruption of their binding sites. These TFs have 
been implicated in cancer; PPARG is linked to cell proliferation and tumor development 
[86], TP73 is a homologue of the tumor suppressor gene TP53, and GLI4 is an oncogene 
in glioma, which is among the cancer types associated with 2HG-induced epigenetic 
disruption.

Conclusions
We developed netZoo as an open-source platform for the inference and analysis of 
GRNs including bipartite networks (inferred by PANDA, PUMA, and similar methods), 
multi-omic partial correlation DRAGON networks, and downstream analytical meth-
ods for community detection and differential analyses on these networks using CON-
DOR and MONSTER. We accomplished this by standardizing the implementations of 
software methods built on a common conceptual framework. This has allowed us to 
build a robust and reproducible codebase that we used as the core of an ecosystem of 
online tools for sharing of use cases through Netbooks, hosting networks in GRAND, 
and continued development and maintenance through ZooKeeper which is essential 
for software accuracy [87]. We will continue to expand netZoo (Additional file  1: Fig. 
S5) particularly for single-cell genomics, adding new methods [88–90] and improving 
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implementations of existing methods, as well as building interfaces to allow methods to 
be combined appropriately. We will also continue to leverage the codebase to add new 
components in the ecosystem of online tools we developed to further aid users and 
developers in hosting genome-scale networks and running complex analyses on the 
cloud for their own investigations. Our approach has enabled an open and collaborative 
development model that is committed to the broad use of the methods available within 
netZoo and welcomes community participation in methods development by identifying 
errors, adding features, and discussing issues and ongoing work.

Methods
Applications of netZoo using the Cancer Cell Line Encyclopedia

The CCLE project characterized more than a thousand cell lines from 35 cancer types, 
measuring gene and miRNA expression, promoter methylation status, copy number var-
iation, and protein and metabolite levels (Table S3). Cellular phenotypic data are avail-
able from the PRISM project on viability of these cell lines following drug exposure [91] 
and from cell fitness screens available through the dependency map [92]. For all analysis 
presented in this work, we used the following releases of CCLE data: promoter methyla-
tion data of 2018/10/22, histone marks data of 2018/11/30, miRNA expression data of 
2018/11/03, metabolite levels data [38] of 2019/05/02. Cell viability assays were taken 
from the 19Q4 release of PRISM [91]. Cell fitness screens were taken from the 21Q1 
release of project Achilles. Gene expression and copy number variation were taken from 
the 21Q1 release of the Dependency Map [92]. Protein levels [37] were taken from the 
2020/01 version of CCLE.

Gene expression data for RNA-Seq measurements was collected on protein-coding 
genes and used as processed in CCLE; by log2 normalizing count data with a pseudo-
count of 1. Data was available for 1376 cell lines across 19,177 genes. Methylation data 
was assessed using reduced representation bisulfite sequencing (RRBS) for 21,337 loci 
located with a 1-kb region of 17,182 genes across 843 cells, these values varied between 
0 and 1. Global chromatin profiling data was assessed for 42 modified and unmodified 
H3 tail peptides across 897 cells and measured their abundances [36]. miRNA data con-
sists of the quantification of the expression of 734 miRNAs across 954 cells. Metabolic 
data consisted of metabolite levels for 225 metabolites (124 polar and 101 lipid) using 
hydrophilic interaction chromatography and reversed phase chromatography in 928 cell 
lines [38]. Differential cell viability screens after drug exposure data consist of log fold-
change of viability for 4686 compounds in 578 cells with respect to a DMSO control, as 
processed in PRISM [91] which corrects for batch effects and experimental confounders. 
CRISPR screens for the knockout of 18,119 genes across 808 cell lines describe the fitness 
of cell lines after gene removal. Data was used as normalized in the cancer Dependency 
Map [92] by removing principal components correlated to batch effects and by centering 
the data such as nonessential gene knockout has a value of 0, and essential knockouts 
have a median of −1. Gene-level copy number variation data for 18,119 genes across 808 
cells was obtained by log2 normalizing the count number after adding a pseudo-count 
of 1; count data was derived from SNP array, whole exome or whole genome sequenc-
ing, as detailed by Ghandi and colleagues [36]. Quantitative proteomic data for 12,755 
proteins was assessed in 375 cancer cell lines across 22 lineages using mass spectrometry 
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[37]; data normalization has been described in detail by Nusinow and Gygi [93]. We pro-
cessed this data by removing three low-quality samples and replacing missing entries 
with 0.

For the 1376 CCLE cell lines that had transcriptomic measurements, we inferred 
GRNs using PANDA and LIONESS algorithms (Table S4) available in netZooPy v0.8.1 
and used these for various analyses. As input to PANDA network inference process, we 
began with a TF-to-gene prior regulatory network computed by running FIMO [15] 
scans of 1149 TF motifs from CIS-BP (v1.94d [5];) in the promoter region of 38,723 
genes (defined as 1kb downstream of each gene’s transcription start site) in the reference 
human genome sequence (hg38); we adjusted the TF-gene pair by combining two previ-
ously suggested scores [94, 95]. The modified score (s) integrates the distance between 
the detected motif and the TSS with the significance of motif assignment as follows:

where t is a transcription factor, g is a target gene, k is the number of binding sites of t 
identified in the promoter region of g, dk denotes the distance of t’s biding site k to TSS 
of g, md the median of all the distances d, and p-valuek the significance of assignment 
of binding site k. Therefore, the TF motif network associates 1149 TFs to 38,723 tar-
get genes. In addition, we used as inputs a TF PPI network derived from the STRING 
database [2] (using the aggregate score for human interactions only and scaling them 
between 0 and 1) that we restricted to a list of 1603 TFs as defined by Lambert and col-
leagues [5], and a gene coexpression network between 19,177 protein-coding genes 
across 1376 cells. The latter network is a Pearson correlation network based on RNA-Seq 
data as preprocessed in CCLE by adding a pseudo-count of 1 to TPM gene expression 
data and applying log2 transformation. The resulting PANDA network includes regula-
tory associations between 1132 TFs and 18,560 genes because we set the “mode” param-
eter in PANDA to “intersection” which takes the intersecting TFs and genes between the 
three input networks. Then, we used LIONESS to infer regulatory networks for each of 
the 1376 cell lines; all networks can be found in the GRAND database (https://​grand.​
netwo​rkmed​icine.​org/​cell/).

We also computed TF targeting scores [43] by computing the weighted outdegree for 
each TF in each cell line-specific network. TF targeting scores as a network metric could 
be interpreted as the number of target genes that each TF has and therefore reflects the 
activity of TFs in various contexts. We showed that building differential TF targeting 
scores by comparing TF targeting scores between conditions allows to identify newly 
acquired target genes in a case versus control setting. We found that TF targeting scores 
[43] and differential targeting scores [35] summarize accurately biological processes in 
the cell such as those activated in cancer and as a response to drug exposure.

TF targeting analysis

To find associations between TF targeting and promoter methylation status and copy 
number variation status, we selected 76 melanoma CCLE cell lines and we computed 
the significance of associations using ANOVA as implemented in the Python package 
statsmodels v0.13.2 [96]. Since we were mostly interested in finding strong associations 

(1)s t, g =

k

−log10(p− valuek) ∗ e
−

dk
md∗10+1

https://grand.networkmedicine.org/cell/
https://grand.networkmedicine.org/cell/
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and prominent regulatory hallmarks of melanoma, we discretized the input data by con-
sidering a gene to be amplified if it had more than three copies and to be deleted if both 
copies are lost. For promoter methylation data, promoters were defined in CCLE as the 
1kb region downstream of the gene’s transcriptional start site (TSS). We defined hyper-
methylated promoter sites as those having methylation status with a z-score greater than 
three and we defined hypomethylated sites as those having methylation status with a 
z-score less than negative three; we considered a gene to be amplified if it had evidence 
of more than three copies in the genome and to be deleted if both copies are lost. We 
only computed the associations if they had at least three positive instances of the explan-
atory variable (for example, for a given gene at least three cell lines had a hypomethyla-
tion in that gene’s promoter) and corrected for multiple testing using a false discovery 
rate of less than 25% following the Benjamini-Hochberg procedure [97].

In all melanoma cell lines, for each modality (promoter hypomethylation, promoter 
hypermethylation, gene amplification, and gene deletion) and for each gene, we built 
an ANOVA model using TF targeting as the response variable across all melanoma cell 
lines while the status of that gene (either promoter methylation or copy number status) 
was the explanatory variable. For example, in modeling promoter hypermethylation, we 
chose positive instances to represent hypermethylated promoters and negative instances 
for nonmethylated promoters along with an additional factor correcting for the cell lin-
eage. Similarly, for copy number variation analysis, we chose positive instance to rep-
resent amplified genes and negative instances for nonamplified genes while correcting 
for cell lineage. We only computed the associations if they had at least three positive 
instances of the explanatory variable (for example, promoter hypomethylation in at least 
three cell lines).

To predict drug response using TF targeting, we conducted a linear regression with 
elastic net [45] regularization as implemented in the Python package sklearn v1.1.3 
using an equal weight of 0.5 for L1 and L2 penalties using regorafenib cell viability assays 
in melanoma cell lines as a response variable and the targeting scores of 1,132 TFs (Table 
S5) as the explanatory variable.

Finally, to model EMT in melanoma, we used MONSTER on two LIONESS net-
works of melanoma cancer cell lines, one representing a primary tumor (Depmap ID: 
ACH-000580) as the initial state and the other a metastasis cell line (Depmap ID: ACH-
001569) as the end state. We modified the original implementation of MONSTER that 
implements its own network reconstruction procedure to take any input network, such 
as LIONESS networks. MONSTER identifies differentially involved TFs in the transition 
by shuffling the columns of the initial and final state adjacency matrices 1000 times to 
build a null distribution, which is then used to compute a standardized differential TF 
involvement score by scaling the obtained scores by those of the null distribution.

Computing CCLE multi‑omic associations

We used DRAGON to compute partial correlations between multi-omic data of CCLE 
cell lines. In particular, we computed partial correlations between the four following 
data type pairs across all CCLE cell lines: (1) miRNA levels and gene knockout screens, 
(2) protein levels and metabolite levels, (3) cell viability assays after drug exposure and 
gene knockout screens, and (4) TF targeting and metabolite levels. For each association, 
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the final number of cell line samples is the intersection of the cell lines for each modality. 
DRAGON builds a GGM that implements covariance shrinkage with tuning parameters 
specific to each biological layer or “ome,” represented by a different data type, a novel 
addition to covariance shrinkage that enables DRAGON to account for varying data 
structures and sparsity of different multi-omic layers [52]. The magnitude of DRAGON 
partial correlation values may not be always interpretable without a reference because 
they are derived from a regularized, shrunken covariance matrix [98]. All variables 
were standardized to have a mean of 0 and a standard deviation of 1 before running 
DRAGON.

To compute associations between protein levels and metabolite concentrations, we 
averaged protein isoform levels to reduce the set of 12,755 measured proteins to 12,197 
unique proteins. The final number of samples used to compute this association rep-
resented 258 cells shared between the 375 cells for proteomics data and 928 cells for 
metabolomic data. To compute associations between LDH levels and its substrate lac-
tate, and because the LDH isozymes (LDHA and LDHB) catalyze opposite biochemical 
reactions, we created two new variables in the DRAGON network accounting for the 
ratio between isozymes:

where LDHA and LDHB represent protein levels of LDH isozymes. This normalization 
reflects our understanding of the nonlinear relation between the ratio of LDHA/LDHB 
and lactate concentrations: when LDHA is dominant, LDH produces lactate; therefore, 
we expect a positive correlation with lactate levels, and conversely, when LDHB is domi-
nant, lactate is a substrate for LDH and the correlation should be negative. We did not 
include pyruvate concentrations because it was not among the measured metabolites in 
CCLE.

CCLE pan‑cancer map

To enable further exploration and discovery of biological associations, we built an online 
resource representing a multi-tiered regulatory network. First, to build a pan-cancer 
multi-tiered network that connects the genotype to cellular phenotypes, we extended 
DRAGON networks from modeling pairwise interactions between two biological 
variables to a multi-omic network that includes more than two node types by sequen-
tially adding a new layer to an initial pairwise DRAGON network. In addition, since 
DRAGON networks are undirected, we added direction based on our understanding of 
how biological elements interact with each other. For example, gene expression nodes 
are upstream of protein level nodes and metabolite nodes. To facilitate browsing and 
limit exploration to potentially causal associations that best reflect our understanding 
of how different data types link to one another in cellular biology, our approach was to 
prune edges between the same node type to build bipartite DRAGON networks between 
each pair of genomic modalities. In particular, promoter methylation status, copy num-
ber variation, histone marks, and miRNA were linked to gene expression in a pairwise 
fashion. Then, gene expression was linked to protein levels, which in turn was associated 

LDHAnormalized = 1[ LDHA
LDHB>1

]. LDHA
LDHB

LDHBnormalized = 1[ LDHB
LDHA

>1
]. LDHB
LDHA
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with cellular phenotypes represented by metabolite levels, drug sensitivity, and cell fit-
ness following CRISPR gene knockout. To reduce the size of the network to the most 
relevant positive and negative associations, only the 2000 most positive correlations and 
the 2000 most negative correlations in each pairwise association in each of the bipartite 
networks were retained in the final multi-omic network. The CCLE online pan-cancer 
map was built using Vis.js (v8.5.2) and can be queried for biological associations using 
user input queries at https://​grand.​netwo​rkmed​icine.​org/​cclem​ap.

Software package

All analyses were performed using netZooPy v0.8.1, the Python distribution of the net-
Zoo (netzoo.github.io). NetZoo methods are implemented in R, Python, MATLAB, 
and C. netZooR v1.3 is currently implemented in R v4.2 and available through GitHub 
(https://​github.​com/​netZoo/​netZo​oR) and Bioconductor (https://​bioco​nduct​or.​org/​
packa​ges/​netZo​oR) and includes PANDA, LIONESS, CONDOR, MONSTER, ALPACA, 
PUMA, SAMBAR, OTTER, CRANE, SPIDER, EGRET, DRAGON, and YARN. net-
ZooPy v0.8.1 is implemented in Python v3.9 and includes PANDA, LIONESS, CON-
DOR, PUMA, SAMBAR, OTTER, and DRAGON. netZooM v0.5.2 is implemented in 
MATLAB 2020b (The Mathworks, Natick, MA, USA) and includes PANDA, LIONESS, 
PUMA, OTTER, and SPIDER. netZooC v0.2 implements PANDA and PUMA.
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