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A Theory of Crime and Vigilance

Jorge Vásquez∗

July 21, 2021

Abstract

This paper develops a novel equilibrium theory of crime and vigilance, in which (i)
potential victims elect how much vigilance to exert to guard their property; (ii) poten-
tial criminals choose whether to attempt a crime; (iii) random encounters of criminals
and victims produce attempted crimes; (iv) the success of an attempted crime is prob-
abilistic; and (v) the crime rate reflects the number of successful attempted crimes.

The model permits a supply and demand interpretation that yields a rich and
tractable framework for performing equilibrium, welfare, and policy analyses. It un-
covers a vigilance force that invariably limits the efficacy of policies aimed at discour-
aging crime. When vigilance expenses are greater than expected property losses, an
increase in punishment leads to more crime — namely, a criminal Laffer curve emerges.
This curve is higher and peaks earlier when victims face greater vigilance costs. Thus,
the government may wish to subsidize or mandate vigilance rather than increase legal
penalties or policing. In fact, an increase in penalties may shift the levels of vigilance
even further away from their socially optimal ones. Finally, this vigilance force makes
the crime rate and the attempted crime rate first rise and then fall in the value of the
property at stake, which seems to be consistent with the empirical evidence.

JEL codes: C72, D41, D62, K40.
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1 Introduction

Previous research on the economics of crime has emphasized the role of penalties and policing

as key drivers of criminal behavior; however, private self-protection by individuals — or

vigilance — is also an important determinant that has received significantly less attention

in the literature. Indeed, recent evidence indicates that vigilance expenditures against crime

are sizeable and even greater than public expenditures. Over and above property losses,

Anderson (2012) estimates that $480 billion is spent annually on vigilance efforts in the US,

in addition to public expenditures.1 Also, as we move towards a more digitized and globally

connected economy, cyber crime has become increasingly costly and it presents a pressing

issue for corporations, which spend major resources on security (Makridis and Dean, 2018).2

Understanding vigilance efforts is essential for improving policy interventions. Consider,

for example, an increase in legal penalties or policing. On one hand, the intended effect of

this legal policy is clear: to reduce criminal activity via greater deterrence (Becker, 1968).

On the other hand, this policy blunts individuals’ incentives to be vigilant, and thereby raises

the expected gains of a criminal offense. Altogether, the final effect is ambiguous, for there is

a vigilance force that will inevitably undermine the efficacy of this policy, potentially crowd-

ing out the government’s goal. Thus, to correctly evaluate the effect of any policy aimed at

alleviating crime, it is fundamental to know (1) how both market and technological forces in-

fluence potential victims’ incentives to self-protect; (2) how those incentives impact behavior

and welfare; and (3) the conditions under which policies lead to undesirable outcomes.

This paper develops a novel model of crime centered on the competition between potential

criminals and potential victims. By showing precisely how the different competing forces

interact, this model provides a new vehicle for analyzing policy and its impact on crime.

In this model, criminals choose whether to attempt a crime while potential victims decide

how vigilant to be. While formally specified as a game, the model admits a natural supply

and demand interpretation that yields a rich and tractable microfounded framework for

performing equilibrium, welfare, and policy analyses.

Randomness is a crucial aspect of crime. First, few of us are crime victims in any period.

According to the Bureau of Justice Statistics, in 2017, only 10.8% of 123 million households

experienced one or more property victimizations in the US. The stochastic nature of crime

is captured by assuming random encounters of criminals and victims. These encounters give

rise to the attempted crime rate which influences potential victims’ level of vigilance. Second,

1Altogether, Anderson (2012) estimates the cost of crime to be around $1 trillion in the US.
2According to estimates of the Center for Strategic and International Studies, cybercrime costs the global

economy up to $600 billion a year. This represents a $155 billion increase since 2014; see Lewis (2018).
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randomness plays another key role because not all attempted crimes succeed (e.g., one often

fails to break into a house or steal a car).3 The failure rate of an attempted crime determines

the expected gains from crime and is positively affected by potential victims’ vigilance.

As in Becker (1968), potential criminals have an extensive margin: whether to engage in

crime. Stricter punishments or increased policing make crime less appealing and so formally

raise the expected legal costs of crime. I assume that the incentives to attempt a crime vary

across potential criminals by considering heterogeneous opportunity costs. On the other side,

potential victims elect vigilance levels to secure, perhaps imperfectly, their property. Given

vigilance, the efficacy to frustrate an attempted crime is heterogeneous: potential victims

vary by their self-protection technologies. Finally, because criminals are often surprised by

the vigilance they encounter, I assume that vigilance efforts are unobserved by criminals.

This yields a rich and tractable benchmark model through which one can unveil economic

forces likely to be present even in instances where vigilance is observed, as shown in section §9.

All told, I explore the equilibrium of a model in which a continuum of heterogeneous

potential criminals each chooses whether to engage in crime, while a continuum of hetero-

geneous potential victims each elects their level of vigilance. The number of criminals then

fixes the attempted crime rate, while vigilance determines the failure rate. Potential vic-

tims are hurt by a greater attempted crime rate, while greater vigilance impedes criminal

gains. In equilibrium, all agents optimize, and the crime rate reflects the number of successful

attempted crimes. This model naturally applies to property crime where property can be

defined in a broad sense ranging from physical goods (e.g., cars) to digital ones (e.g., data).

I re-interpret the equilibrium as a competitive equilibrium, depicted in a metaphorical, yet

microfounded, supply and demand framework. Due to the natural asymmetry of the market,

the average failure rate plays the role of a price for potential criminals, while the attempted

crime rate plays the same role for potential victims. Optimal criminal behavior induces a

downward-sloping supply of crime, as fewer crimes are committed when failing is more likely.

Similarly, optimal vigilant behavior induces an upward-sloping demand for vigilance, because

a greater victimization chance elicits a more vigilant response. The supply-demand crossing

yields a unique market equilibrium, rendering unambiguous all analyzed comparative statics.

Contrary to standard supply and demand analyses, here “trade” is not win-win; rather,

criminal offenses constitute an economic good for criminals, but a bad for potential victims.

This distinction is fundamental when performing welfare and policy analyses.

Overview of the results. The model delivers new testable predictions. To see this,

consider the well-known claim that aggregate and individual criminal activity should fall

3A recent test verified that TSA security prevents only 5% of criminal attempts; see
www.vox.com/2016/5/17/11687014/tsa-against-airport-security.
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when legal penalties or policing increase or, more generally, when the expected punishment

rises (Becker, 1968). By contrast, in this paper a higher expected punishment deters criminal

entry, shifting the supply curve down, while leaving the demand curve unaffected. So greater

expected punishment discourages vigilance,4 as documented by Vollaard and Koning (2009),

raising the marginal profitability of every offense. On balance, there are fewer criminals but

each is less likely to fail to compensate for the greater punishment. When the demand curve

is sufficiently elastic, the effect on the crime rate is non-monotone. Precisely, Proposition 1

shows that the crime rate is a hump-shaped function of the expected punishment, resembling

a criminal Laffer curve. Thus, an increase in punishment can actually lead to more crime.5

Next, Proposition 2 provides a simple sufficient condition to determine when the criminal

Laffer curve is upward sloping: An increase in expected punishment raises the crime rate if

total vigilance expenses are no less than realized property losses. Proposition 3 then studies

the micro-effects of raising the expected punishment. While the attempted crime rate is

common to all potential victims, the ultimate property loss faced by them depends, largely,

on their own vigilant behavior. I find that the Lafferian force is stronger for potential victims

with superior technologies who will face more crime after an increase in punishment.

Because the endogenous vigilance efforts by potential victims lie at the heart of this paper,

I explore how vigilance costs, or technologies, impact equilibrium outcomes. First, unlike

punishment, when vigilance costs rise, or individuals with inferior technologies are more

abundant, the demand falls but the supply is unaffected. Thus, there are more criminals,

each with a lower chance of failing, such that the crime rate rises. As a result, the criminal

Laffer curve shifts up and peaks earlier (Proposition 4).

I then explore a variation in both the material losses for victims and gains for criminals,

or in the stakes of crime. This naturally applies, for example, to a fixed class of goods, as the

value of the goods varies for owners and criminals alike. Likewise, this change helps inform

policies that improve the recovery rate of stolen goods, as they clearly lower the stakes of

crime. In general, an increase in the stakes of crime impacts both sides of the market: facing

a greater loss, potential victims grow more vigilant, while criminals respond to the increased

gains with more offenses. The demand and supply curves increase, and so does the failure

rate. However, Proposition 5 shows that both the crime rate and the attempted crime rate

4Becker (1968) argued (on p. 188) that improved law enforcement has an ambiguous effect on total
offenses. He conjectured that more policing would be partially offset by a drop in private vigilance. Pushing
this logic further, this paper shows when such vigilance displacement leads to undesirable outcomes. See
Nagin (2013) and Chalfin and McCrary (2017) for excellent surveys of policing and crime.

5“Lafferian effects” have been found in other contexts. For instance, in the tax compliance literature
(Graetz et al., 1986; Andreoni et al., 1998), an increase in taxes can lead to an increase in the tax compliance
rate. In the industrial organization literature, it has been argued that consumer protection policies (e.g.,
price caps) can actually harm consumers (Armstrong et al., 2009).
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are non-monotone and highest for mid property values. These findings may help to explain,

e.g., why most stolen cars are typically in the mid-range for prices,6 and at a more aggregated

level, why as a country’s wealth rises crime initially rises and then, eventually, falls. This

non-monotone pattern has been observed in many countries; in particular, in the US from

1960 until now (Farrell et al., 2014).7 From a policy perspective, improving the recovery rate

of stolen goods (i.e., lowering the stakes) seems to be effective only for low value property.

When vigilance is unobservable, potential victims benefit from one another’s vigilance

efforts, as everyone faces the same attempted crime rate independent of their choices. These

positive externalities lead to an under-provision of total vigilance (Clotfelter, 1978; Shavell,

1991). Nonetheless, it is important to tie this insight to policy: if legal punishment were

to rise, should we expect more or less under-provision of vigilance? Proposition 6 examines

how the optimal failure rate and the degree of under-provision are affected by the expected

punishment. Interestingly, raising punishment can shift the equilibrium levels of vigilance

further away from their optimal ones. By contrast, policies targeted to directly aid the

demand side, such as subsidizing or mandating vigilance (Vollaard and van Ours, 2011), can

reduce or even eliminate the under-provision gap.

Some forms of vigilance are noticeable, such as installing a fence or an outside camera

on one’s property. When vigilance is observed, criminals can effectively target their offenses.

But, because criminals are ultimately affected by the success rate of their attempts — which

depends upon both the chosen vigilance and the victim’s private cost-technology — ob-

serving low vigilance is not necessarily good news for criminals. In equilibrium, potential

criminals use the information contained in vigilance choices to make failure rate inferences

and target their offenses, whereas potential victims understand this when choosing their op-

timal vigilance intensity. This novel signaling force is embedded into the model, which yields

a tractable framework to perform equilibrium analysis. Proposition 7 gives an equilibrium

characterization, uncovering new forces and qualitative differences between observable and

unobservable vigilance. By means of example, the levels of crime and vigilance are lower

and higher, respectively, when vigilance is observable. Also, observed vigilance leads to over-

provision of vigilance, which can be ameliorated with harsher punishment. Finally, since the

observed vigilance case also admits a supply and demand interpretation, the crowding out

of vigilance owed to an increase in punishment is prone to emerge, by common logic.

Outline. Section §3 sets up the model, and §4 performs equilibrium analysis. §5

6According to the National Insurance Crime Bureau, from 2006–2017, the Honda Civic and Accord have
consistently been the most stolen vehicles in the US; see www.nicb.org/news/reports-statistics.

7Among many competing hypotheses, these authors conclude that vigilance (security, in their paper) is
the most likely explanation for why crime has declined in many countries.
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characterizes the criminal Laffer curve and explores its determinants. Section §6 examines

the effects of vigilance costs and property stakes. §7 performs welfare analysis, whereas

§8 studies the under-provision of vigilance and the role of policy. Finally, §9 discusses the

observable vigilance case. §10 concludes and discusses directions for empirical and theoretical

work. All omitted proofs and analyses are in the Appendix.

2 Literature Review

The groundbreaking paper by Becker (1968) gave the first economic analysis of crime. Ac-

counting for the optimal criminal response to changes in punishment and the probability of

capture, he explored the socially optimal level of law enforcement expenditures. Becker’s

focus is on the supply side: in his analysis, the levels of crime are determined by the crim-

inal optimization. The demand side is missing in his analysis. Ehrlich (1981) later posited

a reduced-form downward demand for crime, where the net payoff per offense acts as the

price, and argued that the number of offenses is, indeed, an equilibrium variable.8 This

point was echoed and further developed by Cook (1986). Yet, the optimization of potential

victims is absent in those papers.9 In my analysis, the induced supply and demand curves

explicitly arise from both the criminals’ and victims’ optimization problems, respectively.

In addition, in my microfounded framework, I exploit the randomness of crime by modeling

both probabilistic encounters and stochastic vigilance efficacy. This allows me to originally

disentangle crimes and attempted crimes, which is crucial if the goal is to unveil forces that

shape policy interventions. In particular, the criminal Laffer curve, mentioned in §1, emerges

precisely because the crime rate and attempted crime rate are not forced to co-move.

There is a small literature that examines how equilibrium vigilance levels are affected by

whether vigilance is observed by criminals and how these levels compare to benchmarks. In a

model with homogeneous victims and a fixed pool of homogeneous criminals, Shavell (1991)

finds that, relative to the levels that minimize the victims’ losses, vigilance is over provided

when it is observable by criminals and under provided when unobservable. More recently,

building on Lacroix and Narceau (1995), Baumann and Friehe (2013) find that vigilance may

be under provided even if it is observable when there is asymmetric information between vic-

8Conceptually, our demand curves are different: In Ehrlich, “the demand schedule for offenses represents
the average potential payoff per offense at alternative frequencies of offenses”; see Ehrlich (2010) for a survey.
His verbal story also suggests that victims’ vigilance directly reduces criminal material payoffs. By contrast,
here the key effect of vigilance, like burglar systems, is to raise the failure chance of an attempted crime and
so reduce the expected criminal gain. See also Clotfelter (1977) for early work on the topic.

9Hotte et al. (2003) develop a market for offenses. While their supply follows from criminal entry, their
demand reflects the criminal optimization. So their market equilibrium takes vigilance as given.
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tims and criminals. Relatedly, this literature also focuses on how the observability of vigilance

may divert crime to less protected victims (Koo and Png, 1994; Hotte and Van Ypersele,

2008).10 My analysis differs from these papers along three dimensions. First, their focus

is on the demand: they consider a fixed number of criminals, and so a constant attempted

crime rate. In my analysis, the attempted crime rate is an endogenous variable that responds

to vigilance and is key in explaining crime rates. Second, this literature considers an ex-

ogenous theft chance function, whereas in my paper it is shaped by a criminal participation

constraint. Finally, these papers do not pursue welfare or policy analysis.

Following the normative approach to crime (see Polinsky and Shavell (2000) for a survey),

there is a small literature that focuses on optimal law enforcement and rational victim

behavior (Ben-Shahar and Harel, 1995; Hylton, 1996; Garoupa, 2003; Helsley and Strange,

2005). There, the government is another player who may choose the level of policing and

penalties in order to optimize a welfare function. Instead, my analysis considers an exogenous

government and explores how the jointly determined levels of crime and vigilance respond to

different intensities of policing and penalties. This allows me to provide a full characterization

of how and when vigilance will crowd out the government’s policy objective.

Finally, somewhat related, Knowles et al. (2001) focus on the interaction between police

and heterogeneous potential criminals and seek to identify whether police stops exhibit racial

or statistical discrimination. Their criminals decide whether to carry contraband, and the

probability of a police search influences their choices. The models differ in most respects

but share the feature that the criminal extensive margin and the police search decision (like

vigilance) are jointly determined. Persico (2002) gives an equilibrium analysis of police fair-

ness and crime, while O’Flaherty and Sethi (2008) develop an equilibrium model to explain

racial disparities in robbery, in which victims can choose to comply or resist. Burdett et al.

(2003) develop an equilibrium theory that jointly determines wages, unemployment, and

crime, assuming exogenous private vigilance efforts. Quercioli and Smith (2015) develop a

counterfeiting model, focusing on a money passing game, assuming homogeneous “bad” and

“good” guys. They study how the counterfeiting rate depends on the notes’ denomination.

3 The Model

Players and Matching. Consider an economy in which the ownership of a single good

is dispersed among a large population of risk-neutral agents. I call those endowed with

10For empirical studies, see Ayres and Levitt (1998); Vollaard and van Ours (2011); Cook and MacDonald
(2011); Gonzalez-Navarro (2013); Zimmerman (2014); van Ours and Vollaard (2015); Priks (2015); Borker
(2017); Domı́nguez (2020). See Draca and Machin (2015) for a recent survey.
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the good potential victims, and those not so endowed potential criminals. The value of the

property at stake is M > 0, where M represents a property loss for potential victims and a

criminal gain for potential criminals. Thus, the focus is naturally on property crime, such

as theft, burglary, cyber-crime, and not on so-called “victimless” crimes such as speeding,

contraband, and drug offenses. I consider a static environment, with the usual understanding

that it can be seen as the steady-state of a dynamic model.

Following Becker (1968), potential criminals simply have an extensive margin — they

choose whether to attempt a crime. If so, they shall be labeled as criminals. Potential

criminals are heterogeneous and differ by their outside option, or opportunity cost c ≥ 0.

This cost subsumes, for example, the expected foregone income from the legal sector. The

cost mass distribution F has a density f(c) ≡ F ′(c) > 0 on [0,∞). Since the mass of

criminals is endogenous, F need not be a probability distribution with unit mass. As in

Becker (1968), criminals are apprehended with capture probability p ∈ [0, 1] and, if so, face

a penalty x ≥ 0, where the latter is the monetary equivalent of the punishment. Altogether,

criminals treat c+ℓ as the fixed cost of attempting a crime, where ℓ ≡ px ≥ 0 is the expected

legal punishment and it is naturally bounded by the criminal gain M , namely, ℓ ≤M .

Randomness plays two roles in this model. First, criminals randomly meet potential

victims as part of a decentralized pairwise random matching model. All potential victims

are criminal targets facing the same endogenous attempted crime rate α ≥ 0, namely, the

expected number of attempted crimes per capita. Second, if a potential victim faces an

attempted crime, she can randomly deter it by, for example, placing bars on windows,

installing home alarms, or by avoidance and mental alertness.11 All such actions determine

a level of vigilance. Because the model is stationary, vigilance is a flow cost, or the annuity

value of initial one-shot costs, and so it is a direct subtraction from utility.

Any attempted crime against a potential victim can either fail or succeed in stealing

the victim’s property. A potential victim is able to impact the failure rate of an attempted

crime by being vigilant. Potential victims vary by their private cost-technology indexed by

ξ ∈ [0, 1]. Types ξ have a probability distribution G and density g(ξ) ≡ G′(ξ) > 0 on (0, 1).

A potential victim with technology ξ can stop an attempted crime with probability φ ∈ [0, 1]

if her vigilance equals V (φ|ξ) ≥ 0.12 That is, V (φ|ξ) is the vigilance cost function of se-

curing an individual failure rate φ for type ξ. I assume a monotone and strictly convex

cost Vφ(φ|ξ), Vφφ(φ|ξ) > 0 for φ > 0, with V (0|ξ) = Vφ(0|ξ) = 0 and Vφ(1|ξ) < ∞ for

every ξ. While marginal vigilance costs rise, I posit that its elasticity (φVφφ/Vφ) falls in φ.

This assumption will ensure that potential victims are more sensitive to crime when the at-

11Each adult spends one minute and 50 seconds locking and unlocking doors each day (Anderson, 2012).
12E.g., ξ may index an invariant layer of private security embedded in the property good.
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tempted crime rate is higher. More technically, it implies that marginal costs are log-concave,

[log(Vφ)]φφ≤0, and so cannot increase too rapidly; also, it forces a limit limφ↓0 Vφφ/Vφ>1.

I further assume that potential victims with higher types ξ face greater costs and a faster

increase in marginal costs: Vξ(φ|ξ)> 0 and Vφφξ(φ|ξ)> 0 for φ > 0. The latter condition

implies that higher types ξ have greater marginal costs Vφξ(φ|ξ)> 0 for φ > 0.13 Finally,

I assume that the marginal cost elasticity (φVφφ/Vφ) increases in ξ. All told, vigilance

cost V (φ|ξ) rises in ξ, and its marginal Vφ is supermodular in (φ, ξ) and log-supermodular in

(φ, ξ).14 These assumptions not only simplify the analysis, but will discipline the comparative

statics. Any convex geometric function V (φ|ξ) = (1+ξ)φγ, γ ≥ 1, meets all these properties.

Criminals cannot observe potential victims’ types ξ and vigilance level,15 and so each

criminal conjectures that a type ξ potential victim elects vigilance to ensure an individual

failure rate φ(ξ). Since ξ varies across potential victims, criminals expect that their at-

tempted crimes will fail with chance ϕ ≡
∫ 1

0
φ(ξ)dG(ξ) ∈ [0, 1], the average or expected

failure rate. Naturally, the criminal success rate is 1−ϕ and the success odds are (1−ϕ)/ϕ.

The actual crime rate κ ≡ α(1−ϕ) ∈ [0, 1] denotes the mass of successful attempted crimes.

Optimizations and Equilibrium. Because losses realize when a crime succeeds,16 a

potential victim chooses the failure rate φ ∈ [0, 1] to minimize the expected property losses

of crime α(1− φ)M plus vigilance cost V (φ|ξ):17

L(φ, α, ξ) ≡ α(1− φ)M + V (φ|ξ). (1)

Reflecting an underlying competitive assumption that no potential victim impacts the

attempted crime rate α, potential victims choose φ to minimize (1), taking α as given. In this

respect, vigilance (or private defense) is different from law enforcement (or public defense),

13Since Vφ(0|ξ) = 0 for all ξ, it follows that Vφξ(φ|ξ) =
∫ φ

0
Vφφξ(t|ξ)dt > 0 for φ > 0.

14A real valued function x 7→ h on a lattice X ⊆ R
n is supermodular (submodular) if h(max{x, x′}) +

h(min{x, x′}) ≥ (≤)h(x) + h(x′). When h is twice differentiable, then h is supermodular (submodular) iff
hxixj

(x) ≥ (≤)0 for all i 6= j, by Topkis (1998). These definitions are strict if the inequalities are strict. A
positive function h > 0 is log-supermodular (log-submodular) if log(h) is supermodular (submodular).

15In reality, vigilance also subsumes observable actions. For instance, installing a fence or bars on windows
are observable to criminals. Yet, these observable actions are likely to be similar across potential victims that
have similar characteristics (e.g., in a residential neighborhood). Thus, given a “submarket,” the encounters
between criminals and victims can be seen as random, and the variation of actual crimes across victims
can be seen as a result of unobservable and idiosyncratic vigilance actions (e.g., installing deadbolt locks on
house doors, or following “best avoidance practices”). Section §9 explores the observable vigilance case.

16In practice, victims could still bear losses (e.g., psychological costs) even if an attempted crime fails.
This consideration can be easily incorporated into the model without sacrificing any insight. In this sense,
the model analyzes the case in which losses from failed crimes are small relative to losses from successful ones.

17With risk averse potential victims, the problem is slightly more complex: a victim chooses φ to maximize
expected utility α(1−φ)u(w−M)+αφu(w)−V (φ|ξ), for some increasing and strictly concave utility function
u(·), and income w > 0. Relaxing the model in this dimension is not essential for the results of this paper.
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which surely has aggregate effects; see, e.g., Polinsky and Shavell (2000). To isolate the

impact of vigilance on crime, policing behavior is unmodelled and simply embedded into the

legal punishment ℓ with the understanding that policing is positively associated with ℓ.18

A potential criminal with total cost c + ℓ cannot observe the failure rates produced by

potential victims, and so he takes the average failure rate ϕ as given, and attempts a crime

if and only if his expected net criminal profits Π(ϕ|c) ≥ 0, where:

Π(ϕ|c) ≡ (1− ϕ)M − ℓ− c. (2)

The marginal potential criminal c̄(ϕ) ≡ max{(1 − ϕ)M − ℓ, 0} earns non-positive criminal

profits. Thus, naturally, potential criminals attempt a crime provided their cost c ≤ c̄.19

Notice the embedded causation. The potential victims’ losses reflect the aggregated

criminal behavior, via the attempted crime rate, and the criminal profits are only impacted

by the average failure rate. Also, the only spillovers of potential victims onto each other are

indirectly channeled by the impact on criminal behavior, and conversely, criminals only affect

other criminals indirectly via the potential victims’ vigilance. Likewise, law enforcement

indirectly impacts potential victims to the extent that it affects criminal participation.

Altogether, I examine equilibria of the simultaneous move interaction between potential

victims and criminals. Potential victims independently and simultaneously choose their

failure rates, anticipating the attempted crime rate, while potential criminals independently

and simultaneously choose whether to attempt crime, taking as given the average failure rate.

Formally, an equilibrium is a pair (φ∗(·), c̄∗) such that (i) for each potential victim ξ, the

individual failure rate φ∗(ξ) minimizes expected losses L(φ, α∗, ξ) in (1), given the attempted

crime rate α∗ = F (c̄∗), and (ii) a potential criminal attempts a crime if and only if his cost

is c ≤ c̄∗, where profits Π(ϕ∗|c̄∗) = 0 in (2), for an average failure rate ϕ∗ =
∫ 1

0
φ∗(ξ)dG(ξ).

4 A Supply and Demand Equilibrium Analysis

The Demand Curve. Consider the potential victims’ optimization problem (1). Given an

attempted crime rate α ≥ 0, the best response for a potential victim ξ is an optimal failure

rate φ̂(α|ξ) ∈ [0, 1] that minimizes losses L(φ, α|ξ). Clearly, if there is no attempted crime,

18While law enforcement may also respond to changes in the attempted crime rate (e.g., hire police officers
or adjust police patrol patterns), most individuals can vary their vigilance significantly quicker. Thus, at
least from a short-run perspective, punishment ℓ can be seen as exogenous for decision making.

19With risk-averse criminals, profits turn to (1−ϕ)[pπ(M − x) + (1− p)π(M)] +ϕ[pπ(−x) + (1− p)π(0)],
for some increasing and concave π(·), capture probability p, and penalty x. Notice that with or without
risk-aversion, an increase in ϕ lowers profits, making the focus on risk-neutrality an innocuous simplification.
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then individuals elect no vigilance, or φ̂(0|ξ) = 0. If the optimal failure rate is interior, i.e.,

φ̂(α|ξ) ∈ (0, 1), then it obeys the first-order condition for (1):

Lφ(φ̂, α|ξ) = −αM + Vφ(φ̂|ξ) = 0. (3)

The second order condition holds by strict convexity of V . Notice that the marginal losses

from crime are negative when the attempted crime rate α > Vφ(1|ξ)/M , and so the optimal

failure rate is interior when 0 < α < Vφ(1|ξ)/M , and obeys (3). Since Vφ(0|ξ) = 0, the

optimal failure rate φ̂(α|ξ) = 0 if α = 0, and φ̂(α|ξ) > 0 if α > 0. Also, φ̂(α|ξ) rises from

zero as α rises from zero, since Lαφ = −M < 0. Now, potential victims with higher types ξ

have higher vigilance cost V (·|ξ) and marginal cost Vφ(·|ξ), and thus choose a lower failure

rate, i.e., φ̂ξ(α|ξ) < 0, and face greater losses from crime (by the Envelope theorem applied

to (1)). Finally, the individual level of vigilance expenditures V (φ̂(α|ξ)|ξ) is hump-shaped

in ξ, provided the attempted crime rate α is neither too high nor too low (Claim A.1).

The optimal failure rate φ̂(α|ξ) can naturally be interpreted as an induced individual de-

mand for vigilance. At the aggregate, the market demand for vigilance, given the attempted

crime rate α, is captured by:

D(α) ≡

∫ 1

0

φ̂(α|ξ)dG(ξ). (4)

The demand vanishes with no attempted crime, D(0) = 0, and is continuous and upward

sloping (see Figure 1) because crime is an economic bad. It hits perfect security D(α) = 1

once all types ξ choose φ̂(α|ξ) = 1, i.e. when α ≥ ᾱ ≡ Vφ(1|1)/M . Thus, the threshold ᾱ

is called the attempted crime ceiling. As potential victims take more precautions when they

risk losing a more valuable good, the demand D increases in the property loss M .

When is the market demand D more or less elastic? Consider two type-distributions for

potential victims, namely, GL and GH with respective densities gL and gH . Appendix A.2

shows that, demand D is less elastic with GH than GL if gH(ξ)/gL(ξ) is increasing. Recall

that when the likelihood ratio gH(ξ)/gL(ξ) is monotone, then GH dominates GL in the sense

of first-order and second-order stochastic dominance (see, e.g., Athey, 2002). Thus, the

market demand falls when potential victims with higher vigilance costs are more abundant,

because the individual demand φ̂(α|ξ) is decreasing in ξ. That is, the demand is lower with

GH than GL. Likewise, by standard results, the demand falls when vigilance costs are less

dispersed in the population, provided the individual demand φ̂(α|ξ) is convex in type ξ (this

is, e.g., the case when vigilance costs V (φ|ξ) are geometric in φ for all ξ).

The Supply Curve. Given an expected failure rate ϕ, the marginal potential criminal

is c̄ = (1 − ϕ)M − ℓ if and only if ϕ ≤ ϕ̄ ≡ 1− ℓ/M , the failure rate ceiling. No crimes are
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Figure 1: Equilibrium Existence and Uniqueness. The demand slopes upward, while the sup-
ply slopes down. The crime rate κ∗ = (1−ϕ∗)α∗ is the dashed area of successful attempted crimes.

attempted when the expected failure rate is too high, ϕ > ϕ̄. Hence, the supply of crime is

S(ϕ) ≡ F ((1− ϕ)M − ℓ), (5)

for ϕ ≤ ϕ̄, and S(ϕ) ≡ 0 for ϕ > ϕ̄. The supply curve simply reflects the (almost everywhere)

differentiable and increasing map from the marginal criminal c̄ to the attempted crime rate

α = F (c̄). As noted after (3), if the failure rate ϕ is less than ϕ̄, the attempted crime rate

is at most Vφ(1|1)/M , and thus is boundedly finite, as seen in Figure 1.

The supply curve is downward sloping, falling in ϕ (see Figure 1) and vanishing as ϕ ↑ ϕ̄.

It rises in the criminal gain M , but falls in punishment ℓ. Also, the supply elasticity falls

when the cost distribution F improves in the monotone likelihood ratio sense (Appendix A.3).

Therefore, the supply is lower when more potential criminals have higher opportunity costs.

Notice that, for potential victims, the failure rate ϕ plays the role of a demand quantity,

while the attempted crime rate α serves as a price. But conversely, for potential criminals,

ϕ acts as a supply price, while α acts as a quantity. Thus, while a more elastic supply in

Figure 1 is more horizontal per usual, a more elastic demand is more vertical.

The falling supply and rising demand curves imply that there exists a unique equilib-

rium (φ∗(·), c̄∗), balancing market forces (see Appendix A.4). Figure 1 depicts this unique

equilibrium. In such equilibrium, the crime rate κ∗ is the rectangular shaded area (1−ϕ∗)α∗.

Example 1. Consider a criminal-cost distribution F (c) = c, a quadratic vigilance cost

V (φ|ξ) = (1 + ξ)φ2/2, and a potential-victim-type distribution G(ξ) = (1 + ξ)2/4. To

obtain simple closed-form solutions, I assume property value M ≤ 2 so that, in the unique

equilibrium, almost all potential victims elect φ̂(α∗|ξ) < 1 for all punishment ℓ ∈ [0,M ].

Under this parametrization, the optimal failure rate that solves (3) is given by φ̂(α|ξ) =

αM/(1 + ξ). This expression is well-defined for all types ξ as long as α ≤ 1/M , a condition

that is verified in equilibrium. Now, integrating across types ξ yields the market demand
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curve ϕ = D(α) = 3αM/4, displayed in (4). The supply curve (5) easily follows α = S(ϕ) =

(1 − ϕ)M − ℓ. Thus, intersecting the demand and supply curves determines the unique

equilibrium: α∗ = 4(M − ℓ)/(4 + 3M2) and ϕ∗ = 3(M − ℓ)M/(4 + 3M2).

Finally, I verify that α∗ ≤ 1/M . Since punishment ℓ ∈ [0,M ] and M ≤ 2, it follows that

α∗M = 4(M − ℓ)M/(4 + 3M2) ≤ 4M2/(4 + 3M2) ≤ 1. ♦

Remark 1 (Vigilance and Policing). This paper assumes that potential victims’ vigi-

lance has no impact on probability that a criminal is captured by the police. That is, the

probability of capture p does not depend on the failure rate ϕ. One could imagine cases

in which vigilance and policing have complementary effects. For instance, an alarm could

turn on during a burglary, making burglars more likely to be apprehended. This would

directly affect the supply curve. Appendix D considers this possibility and shows that the

key property of the supply curve (namely, that it is downward sloping) does not depend

on whether vigilance and policing are complements. Thus, the qualitative insights that this

paper provides remain valid, and assuming independent policing and vigilance is a harmless

simplification. However, clearly the levels of crime and vigilance will change, as criminals

will be more likely to get caught whenever they fail.

5 The Criminal Laffer Curve

Understanding the deterrence effects of different policies aimed at alleviating crime is a

challenge that lies at the heart of the economics of crime literature (Becker, 1968). Policies

not only differ in their effects on crime, but also in their implementation costs. For instance, it

is arguably the case that deterring individuals from criminal participation is more economical

than incapacitating them in prisons. Chalfin and McCrary (2017) argue that, “offenders who

are deterred from committing crime in the first place do not have to be identified, captured,

prosecuted, sentenced, or incarcerated. . . ” (pp. 5). While there are several ways of making

crime less attractive, perhaps the most direct one is increasing either legal penalties (x) or

policing (p), and thereby the expected legal punishment of crime (ℓ).

So motivated, in this section, I study the equilibrium effects of raising an offense’s ex-

pected punishment, ℓ= px. I explore how potential victims’ vigilance impacts the determi-

nation of crime rates and the efficacy of public policy, as the expected punishment rises.

It is well-known in the economics of crime literature that, at least theoretically, an increase

in the expected punishment must unambiguously reduce crime (Becker, 1968). This insight

owes to the decision theory nature of most crime models, and also to the uniform treatment

of attempted and actual crimes. Indeed, when attempted and actual crimes are carefully
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Figure 2: Punishment and the Criminal Laffer Curve. Left: When expected punishment ℓ
rises from ℓ = 0, supply shifts left from S3(ϕ), and the failure rate ϕ∗ and attempted crime rate α∗

fall. Right: The crime rate κ∗ is hump-shaped and so highest for mid punishment levels.

disentangled,20 an increase in punishment unambiguously lowers only the attempted crime

rate α. Meanwhile, potential victims respond to variations in α, reducing their vigilance as

the attempted crime rate α falls. As a result, the crime rate κ need not be monotone. Thus,

legal policies that appear effective ex-ante may actually be ineffective ex-post.

Proposition 1 characterizes how increases in expected punishment impact individual be-

havior and market outcomes. Before stating the result, say that the demand D is sufficiently

elastic if its elasticity is greater than the criminal success odds, namely, Eα(D) ≥ (1−D)/D.

Proposition 1. If expected legal punishment ℓ rises, then the failure rate ϕ∗ and the at-

tempted crime rate α∗ fall. The crime rate κ∗ is a hump-shaped function of legal punishment

ℓ ∈ [0,M ] if the demand D is sufficiently elastic for low enough punishments; otherwise, the

crime rate is monotone decreasing in ℓ.

For an intuition, consider two extreme cases. In the “police state,” massive legal penalties

hold the attempted crime rate α∗ very low, and so decreases in legal penalties lead to

proportionately large increases in α∗, and thus the crime κ∗ = (1 − ϕ∗)α∗ rises. In other

words, if potential victims are over-protected by police, their behavior is not responsive

enough to variations in penalties. At the opposite extreme, in the “Wild West,” policing is

very slight, and crime is held at bay by individual vigilance — the quick draw. In this case,

the criminal success rate 1− ϕ∗ is extremely low, and so decreases in legal penalties lead to

proportionately large increases 1−ϕ∗, and thus the crime rate κ∗ = (1−ϕ∗)α∗ falls. In less

extreme cases, the impact of increasing criminal costs on the crime rate κ∗ = (1 − ϕ∗)α∗ is

unclear, a priori. Proposition 1 clarifies this showing that the equilibrium crime rate is a

hump-shaped function of the expected punishment, resembling a criminal Laffer curve.21,22

20See, e.g., Farrell (2016) and Tseloni et al. (2017) for empirical research that accounts for this difference.
21See Ayres (2016) for a related and intuitive discussion of the criminal Laffer curve.
22Because ℓ ≡ px, the equilibrium crime rate κ∗ will also be hump-shaped in p, as ℓ is proportional to p.

That is, a criminal Laffer curve would arise between the crime rate κ∗ and the probability of capture p.
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The criminal Laffer curve systematically characterizes the trade-offs between crime rates

and expected punishment, and rationalizes the empirical finding that better policing displaces

private vigilance (e.g., Vollaard and Koning, 2009). It shows that the efficacy of public policy

depends critically on the current level of policing and penalties for a criminal offense.23 It also

highlights the interaction between two opposing market forces that govern the competitive

nature of crime. While raising expected penalties has a positive deterrent effect ex-ante, since

fewer crimes are attempted, increased penalties also has a negative deterrent effect ex-post

— as more attempted crimes succeed. The relative magnitude of these positive and negative

effects on any given crime is, thus, an empirical question. Notice that when the expected

punishment is below a critical value, the negative effect is dominant but becomes weaker as

the punishment rises. The strength of these effects depends on the demand elasticity. The

next result provides a simple sufficient condition that determines when the negative effect

dominates, or the criminal Laffer curve is upward sloping in punishment ℓ. Define the total

vigilance expenses as
∫ 1

0
V (φ̂(α|ξ)|ξ)dG(ξ).

Proposition 2. The crime rate rises when the expected legal punishment rises, if the equi-

librium property losses are less than total vigilance expenses.

Proposition 2 provides a condition, based on observable variables, that sheds light on

when increasing expected punishment will be more than crowded out by a reduction in

potential victims’ vigilance. This result builds on Proposition 1. Indeed, raising penalties

leads to higher crime rates when the demand curve is sufficiently elastic (Proposition 1).

Thus, Proposition 2 essentially identifies when this is the case, by leveraging the structure

of the model and equilibrium conditions.24 In addition, as a corollary, Proposition 2 implies

a lower bound on the average efficacy of vigilance. To see this, notice that the average effect

of vigilance is to reduce expected property losses from αM to α(1− ϕ)M , and so naturally

a cost-benefit analysis implies that total vigilance expenses must be less than the average

property value preserved by potential victims, αϕM .25 Consequently, if property losses

α(1 − ϕ)M are less than total vigilance expenses, then the average failure rate ϕ must be

greater than 0.5. In other words, a criminal attempt must fail with more than 50% chance.

23For instance, as seen in the right panel of Figure 2, the crime rate κ∗ is low but strictly positive in the
“Wild West,” whereas the crime rate is zero when punishment ℓ exceeds property gain M , as attempting a
crime would never be optimal regardless of potential victims’ vigilance. Thus, if the goal is to minimize the
crime rate, then raising police protection and penalties, so that ℓ ≥M , would achieve this objective.

24In the same spirit, Persico (2002) shows how to use the distributions of income opportunities to criminals
to identify the relative elasticity of crime to policing in two groups of people.

25Optimal behavior implies that vigilance spending is less than αϕM but not necessarily less than propery
losses α(1− ϕ)M . For example, one could pay, say, $50 for an alarm that reduces the expected loss in, say,
$100, although the total expected loss with the alarm is only, say, $10. This decision is perfectly rational,
because not paying $50 implies that the expected property loss would jump from $10 to $110.
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Proposition 2 is of practical interest and raises awareness regarding the use of harsher

punishment. For example, according to Ayres and Levitt (1998), in the US the property

loss of vehicles with Lojack was roughly $1000. They estimate a theft rate in Lojack cities

of 0.025, and a $97 annuity equivalent of the $600 Lojack installation fee. This exceeds the

expected property loss of $25. So Proposition 2 predicts that, if penalties for auto theft had

risen, the auto theft rate, if anything, would have increased.26

Finally, to close this section, I ask what happens at the individual level? Notice that the

criminal Laffer curve aggregates the individual responses of potential victims to variations

in expected punishment. While the attempted crime rate is common to all potential victims,

the ultimate property loss faced by them depends on their own vigilant behavior. This means

that potential victims effectively face different victimization rates. Thus, if punishment were

to increase, which types of potential victims will end up facing more crime? The next result

shows that, as punishment rises, the crime rate rises for potential victims with low vigilance

costs and falls for those with high costs; furthermore, the proportion of potential victims

facing less crime rises. To wit, the negative ex-post effect of punishment dominates for

potential victims with superior self-protection technologies.

Proposition 3. For any punishment ℓ ∈ [0, m], there exists a potential victim critical type

ξ̄ ∈ [0, 1] such that, a marginal increase in punishment ℓ leads to higher crime rates for all

potential victims ξ ≤ ξ̄ and to lower crime rates for all potential victims ξ > ξ̄. Moreover,

the critical type ξ̄ is decreasing in punishment ℓ.

By Proposition 3, an increase in punishment could lead to more crime for some types of

potential victims, even if the total crime rate decreases. Intuitively, potential victims with

low vigilance costs (i.e., low ξ) are more sensitive to variations in the attempted crime rate

than those with high costs, leading them to thwart fewer attempted crimes.

Example 2. Consider the parametrization given in Example 1. The equilibrium crime rate

κ∗ = α∗(1− ϕ∗) is thus given by κ∗ = 4(M − ℓ)(4 + 3Mℓ)/(4 + 3M2)2. The criminal Laffer

curve is the map ℓ 7→ κ∗. Differentiating this curve with respect to punishment ℓ yields

κ∗ℓ(ℓ) ≡ ∂κ∗/∂ℓ = −4(4 + 6Mℓ − 3M2)/(4 + 3M2)2. When property value M >
√

4/3, the

criminal Laffer curve strictly rises from ℓ = 0 (i.e. κ∗ℓ(0) > 0). The reason is that, in such case,

the demand curve D(α) = 3αM/4 is sufficiently elastic for ℓ = 0 (Proposition 1). Indeed,

26For another illustration, consider the overall motor vehicle theft in the US. From the FBI, in 2017 the
average property loss from motor vehicle theft was $7,708; the theft rate was 237.4 per 100,000 inhabitants,
or at least 470 per 100,000 car owners, i.e., a theft rate at least κ = 0.004. So the expected property losses
are at least κM = $30 (conservatively assuming stolen cars are a write-off). Thus, an increase in penalties
would lead to more crime if average vigilance expenses exceed $30. Since a car is on average replaced every
10 years, this amounts to a one-shot investment on car security greater than $185.
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Figure 3: Vigilance Costs and the Criminal Laffer Curve. Left: When more victims face
higher vigilance costs, i.e., G rises from GL to GH , demand shifts right from DL to DH along S.
The crime rate and attempted crime rate rise, while the failure rate falls. Right: The criminal
Laffer curve shifts up and left.

the demand elasticity Eα(D) = 1, while the criminal success odds (1 − D)/D = 4/(3M2);

therefore, Eα(D) ≥ (1−D)/D when property value M ≥
√

4/3. ♦

6 Comparative Statics

6.1 The Role of Vigilance Costs

When potential victims face high vigilance costs, policymakers may wish to subsidize them,

or may seek to increase, for example, policing to counterbalance potential increases of crime.

While more policing can, effectively, control the attempted crime rate, it is unclear whether

the number of actual crimes would decrease due to the criminal Laffer curve. Self-protection

technologies impact not only the vigilance levels but also their adjustment to changes in

policy. These aspects should be given consideration when policy towards crime is considered.

In general, when more potential victims face higher vigilance costs, the type distribu-

tion G naturally shifts. Consider two distributions for potential victims’ types, GL to GH .

Say that G rises if G shifts from GL to GH in the monotone likelihood ratio sense.

Proposition 4. When more potential victims face higher vigilance costs (i.e., when G rises):

(i) the failure rate ϕ∗ falls, while the crime rate κ∗ and attempted crime rate α∗ both rise;

and (ii) the criminal Laffer curve shifts up and left.

As seen in the left panel of Figure 3, when G rises the failure rate ϕ∗ falls, whereas

the attempted crime rate α∗ and crime rate κ∗ rise. The reason is that demand D shifts

down as the proportion of potential victims with high vigilance cost rises. Because supply S

is unaffected by G, the success of a criminal attempt rises, and so does the crime rate as

more crimes are attempted and each succeeds with a higher probability. Consequently, the
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criminal Laffer curve shifts up (right panel of Figure 3), and it peaks sooner because G also

affects the demand elasticity, as shown in Lemma A.8.1.

Thus, when more individuals have access to technologies that lower vigilance costs, the

levels of crime fall. This prediction is consistent with the empirical finding that after the

introduction of Lojack the auto theft rate fell substantially in the US (Ayres and Levitt,

1998).27 It is also in line with the observed decline in auto theft rates since 2003 in the US,

as newer cars have theft-immobilizer devices or part markings (Fujita and Maxfield, 2012).

Indeed, Farrell et al. (2011) find that the drop in auto theft over the last 20 years in the US,

Britain and Australia is negatively correlated with an increase in anti-theft devices for cars.

Likewise, van Ours and Vollaard (2015) find a large reduction of car theft in the Netherlands

after the EU mandated that all new cars have electronic engine immobilizers.28 In the same

spirit, these authors also found in 2011 that burglary greatly fell in the Netherlands after a

mandate for burglary-proof windows and doors in all home constructions.

In light of these results, policies aimed at reducing vigilance expenses are enticing, as they

would not only decrease crime, but also they would reduce the region wherein an increase in

penalties leads to more crime. In fact, demand-side interventions are particularly attractive

compared to supply-side ones when vigilance spending exceeds property losses because, in

such a case, an increase in punishment increases crime (Proposition 2), whereas a reduction

in vigilance costs unambiguously lowers crime (Proposition 4).

6.2 The Stakes of Crime

In this section, I explore the equilibrium effects of increasing the stakes of crime, or the

property value M . For example, stealing a luxury vehicle would likely induce a greater loss

to the owner and a greater gain to the criminal. The same logic should also hold for other

offenses such as money theft and burglary. From a policy perspective, one would like to

explore the effects of policies that, for example, improve the recovery rate of stolen goods in

the sense of lowering both the expected victims’ property losses and the criminals’ gain.29

So motivated, say that the stakes of crime rise if M rises. In general, moving from low

to high stakes affects both the demand and supply curves, complicating the comparative

statics. The next result uncovers a criminal Laffer curve for the attempted crime rate.

27These authors find an elasticity of car theft with respect to Lojack adoption of −7. This sizable effect
must reflect the elasticity of the supply curve, given Figure 3. Indeed, if the demand curve shifts left along
the supply curve, the magnitude of the change in α∗ and κ∗ is determined by the supply’s slope.

28Accounting for theft diversion to older cars, van Ours and Vollaard find that the device lowered the
overall rate of car theft on average by 40% during 1995–2008 in the Netherlands.

29Assume that a stolen good can be recovered with recovery chance r ∈ [0, 1]. The original model subsumes
this by considering instead the effective loss (1−r)M for victims and the effective gain (1−r)M for criminals.
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Proposition 5. The failure rate ϕ∗ rises as the stakes rise. If demand D is sufficiently

elastic for high enough M , then the attempted crime rate α∗ is a hump-shaped function of

the stakesM ; the crime rate κ∗ initially rises and then, eventually, falls asM rises. Potential

victims with low cost ξ respond with more vigilance than high cost ones, as stakes M rises.

First, as the stakes of crime rise, potential victims have more to lose, whereas potential

criminals have more to gain. So, as seen in the left panel of Figure 4, potential victims raise

their vigilance, shifting the demand curve D up. Likewise, more potential criminals attempt

a crime, moving the supply curve S right. Thus, the failure rate ϕ∗ unambiguously rises.

The effect on the attempted crime rate is more subtle: The attempted crime rate α∗ rises if

and only if supply S shifts up more than demand D does. Appendix A.9 shows that supply

shifts up more than demand does iff stakes are below a critical value. The attempted crime

rate is, thus, hump-shaped; see right panel of Figure 4. The crime rate κ∗ falls if stakes are

high enough, for there are fewer attempts and each is more likely to fail. For low stakes,

Appendix A.9 shows that κ∗ must be initially rising, as S vanishes as the stakes vanish.

Proposition 5 may explain, for example, why most stolen cars and attempted car-thefts

are consistently in the mid-range (in price and year) in the US, as reported by the National

Insurance Crime Bureau.30 Also, at a more aggregated level, this result suggests that, as

a country’s income rises (from low income) crime should initially rise and then, eventually,

fall, ceteris paribus.31 Finally, from a policy viewpoint, Proposition 5 argues that improving

the recovery rate of stolen goods (i.e., lowering the stakes) is effective only for low value

property. Further connections with the empirical literature are discussed in §10.

Example 3. Consider the parametrization given in Example 1. I now focus on the effects

of property values M . To this end, consider punishment ℓ = 0. Then, the crime rate and

attempted crime rate obey κ∗ = 16M/(4 + 3M2)2 and α∗ = 4M/(4 + 3M2), respectively.

Differentiating α∗ in M yields α∗
M(M) ≡ ∂α∗/∂M = 4(4 − 3M2)/(4 + 3M2)2. Clearly,

α∗
M(M) falls in M , with α∗

M(0) > 0 > α∗
M(2), implying that the attempted crime rate is

hump-shaped. As stated in Proposition 5, this result owes to the demand D being sufficiently

elastic forM ≥
√

4/3, as seen in Example 2. Finally, differentiating κ∗ inM yields κ∗M(M) ≡

∂κ∗/∂M = 4(16−36M2)/(4+3M2)3. So κ∗M(0) > 0 > κ∗M(2), namely, the crime rate initially

rises and then, eventually, falls. ♦

30See Top Vehicles Stolen at https://www.nicb.org/news/reports-statistics.
31In many countries, the property crime rate trend has been non-monotone from 1960 until now, as

documented in, e.g., Figures 2–4 in Farrell et al. (2014). In particular, in the U.S., crime peaked in the early
1990s when the average income per capita was around $24,000. In the case of auto theft, the drop in crime
afterward has been found to be negatively correlated with an increase in car security (Farrell et al., 2011).
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Figure 4: Greater Criminal Gains and Property Losses. For expositional clarity, the figure
assumes punishment ℓ = 0, and thus the failure rate ceiling ϕ̄ = 1 for all M . Left: When the
stakes of crime rise demand D shifts left whereas supply S shifts right (from thin to thick lines).
Right: The failure rate ϕ∗ rises, while the crime rate and attempted crime rate are non-monotone.

7 A Supply and Demand Welfare Analysis

Having examined the interplay between crime and vigilance, I now turn to its welfare conse-

quences. The thrust of Becker (1968) was a treatise on the social costs of crime, focusing on

the optimal public expenditures against crime. But, as argued in §1, vigilance expenses are

an important source of social costs that have received much less attention among economists.

In this framework, the welfare loss of crime owes to criminal costs and vigilance costs.32

Since the respective marginal criminal and attempted crime rate obey c̄ = (1−ϕ)M − ℓ and

α = F (c̄), integrating by parts imply that total criminals costs are:
∫ c̄

0
(c+ ℓ)f(c)dc = α(1−

ϕ)M −
∫ c̄

0
F (c)dc. That is, criminal costs equal revenues α(1−ϕ)M minus profits

∫ c̄

0
F (c)dc.

Notice that criminal profits reflect criminal heterogeneity: a criminal c ∈ [0, c̄) makes profits

c̄− c, and thus total profits across all criminals amount to c̄F (c̄)−
∫ c̄

0
cf(c)dc =

∫ c̄

0
F (c)dc.

Total vigilance costs are
∫ 1

0
V (φ̂(α|ξ)|ξ)dG(ξ). Consequently, given the crime rate κ =

α(1− ϕ), the social costs of crime can be written as:

κM −

∫ c̄

0

F (c)dc+

∫ 1

0

V (φ̂(α|ξ)|ξ)dG(ξ). (6)

Observe that the social costs of crime (6) can be reinterpreted as potential victims’

expected losses (summing the left and right terms) less criminal profits (middle term).

Now let me suggestively depict the social costs in the supply and demand framework,

developed in §4. In any equilibrium (variables with a star), criminal profits
∫ c̄∗

0
F (c)dc

are captured by the area above equilibrium failure rate ϕ∗ and below the value-scaled supply

curve S(ϕ)M in Figure 5. That is,
∫ c̄∗

0
F (c)dc =

∫ ϕ̄

ϕ∗
S(ϕ)Mdϕ.33 This crucially owes to the

32There is no transfer loss of theft, since the property loss to victims is balanced by equal gains to criminals.
33Indeed,

∫ c̄∗

0
F (c)dc =

∫ ϕ∗

ϕ̄
F (c̄(ϕ))c̄ϕ(ϕ)dϕ, where F (c̄(ϕ)) = S(ϕ) by (5) and c̄ϕ = −M .
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Figure 5: The Social Costs of Crime. The areas are measured in dollars after I scale the units
on the horizontal axis by M . For visual clarity, both panels assume punishment ℓ = 0, and so a
failure rate ceiling ϕ̄ = 1. Left: The NW-dashed region is criminal profits, the light-shaded region
is criminal costs, and the dark-shaded region vigilance expenses. The dashed area below demand
D(·) is the potential victims’ surplus, i.e., vigilance benefits α∗ϕ∗M less total costs. Notice that
criminal costs plus vigilance costs are strictly less than the rectangle α∗M , namely, the value of
potential gains of attempted crimes. The difference is the dashed areas, owing to victim and
criminal heterogeneity and vigilance cost convexity. Right: Mandated vigilance resembles a price
floor and it lowers the crime rate and attempted crime rate when binding. The crosshatched area
captures the reduction in total losses in response to less criminal activity, whereas the light-shaded
area represents total potential victims’ losses after the price floor is dictated.

fact that crime is an economic bad for potential victims but an economic good for criminals.

Next, I depict vigilance expenses. For simplicity, consider an equilibrium in which all

types ξ optimally choose imperfect vigilance, i.e., φ̂(α∗|ξ) < 1. Appendix A.10 shows that

total vigilance expenses v∗ equal the area below ϕ∗ and above the demand D(α).34 In other

words, v∗ =
∫ α∗M

0
[ϕ∗ −D(α)] d(αM). Because the demand curve D depicts victims’ “reser-

vation price” at any “quantity,” the area over it and below ϕ = ϕ∗ captures a cost, and their

surplus is thus the triangular area below their demand. Next, I explore three applications.

Rent-seeking. How well do the rewards from crime approximate the social costs of

crime? Becker (1968) argues that in a competitive theft market, the market value of the

property loss should approximate the total criminal costs (Becker, 1968, page 171, footnote

3). Along these lines, Tullock (1967) had already crystalized a more general insight, implying

that the property value at stake should approximate the costs of all agents involved, namely,

potential victims and criminals. On the other hand, his “Tullock paradox” (Tullock, 1980)

later observed that total costs are often swamped by the potential gains. As seen in the

left panel of Figure 5, the social costs of crime are strictly less than the potential gains.

This owes to the strict convexity of the vigilance costs, and to potential criminal and victim

heterogeneity. Indeed, it can be shown that social costs equal potential gains only in the

extreme case, in which vigilance costs are linear, and criminals and victims are homogeneous,

34If in equilibrium some types ξ choose φ̂ = 1, this area provides an underestimate of vigilance expenses.
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Figure 6: Punishment and Welfare. Left: Suppose that punishment ℓ rises from ℓ = 0 so that
the supply curve shifts left from S2 to S1. While the crime rate may rise, total potential victims’
losses unambiguously fall. The crosshatched area measures the decrease in potential victims’ losses
owed to the increase in punishment. Right: This panel considers Example 1’s parametrization
(with M = 1.5). The crime rate (measured in dollars) is hump-shaped in punishment ℓ, whereas
total potential victim losses is decreasing in ℓ because of the benefits of lowering vigilance.

forcing demand and supply to have extreme elasticities (i.e., 0 or ∞).

Price Floors. Next, consider the effects of regulating vigilance technology (see, e.g.,

Vollaard and van Ours, 2011; van Ours and Vollaard, 2015). As discussed in §6.1, these

interventions effectively impact the distribution of vigilance cost across potential victims.

Given a fixed supply curve, these regulations can be seen as a price floor, because they force

a higher failure rate of attempted crimes, leading to fewer crimes and attempted crimes

(Proposition 4). As seen in the right panel of Figure 5, these regulations reduce potential

victims’ losses, although they increase vigilance expenses. Unlike punishment, regulating

vigilance is effective not only in reducing crime but also lowering potential victims’ losses.

Punishment. Finally, I ask what happens to potential victims’ expected losses when

punishment rises? Because of the criminal Laffer curve (§5) the answer is unclear a priori,

since greater penalties reduce vigilance expenses but they could also raise expected property

losses (Proposition 1). However, this puzzle is easily resolved using Figure 5. Indeed, as

discussed in §5, as punishment ℓ rises, the supply curve shifts left along the demand curve;

thus, both potential victims’ losses (the dark area in Figure 5’s left panel plus the crime

rectangle area α∗(1 − ϕ∗)M) and the net benefits of vigilance (the dashed area below D in

the left panel of Figure 5) must unambiguously fall. That is, greater expected punishment de-

creases total potential victims’ losses and the net benefits of vigilance, even when punishment

raises the crime rate; see Figure 6 (left panel). This observation highlights that the effect

of punishment on crime provides an incomplete description of the impact of punishment on

welfare. As seen in the right panel of Figure 6, the effect of punishment on the crime rate

understates its impact on potential victims’ losses because it ignores the benefits to potential

victims from reducing vigilance spending, which is captured by the shaded area.
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8 Minimizing Potential Victims’ Losses

Criminal activity is shaped by the unobservable vigilance efforts that potential victims make

to prevent losing their property. Because all potential victims face the same attempted crime

rate, independent of their vigilance choices, the more potential victims protect themselves,

the lower the incentives to attempt crimes. Thus, there is a positive externality among

potential victims as each benefits from the others’ vigilance. So by standard economic

logic, total vigilance must be under-provided, as theoretically argued by Shavell (1991) and

empirically tested by Ayres and Levitt (1998). However, a missing aspect in the literature

is understanding the determinants of the degree of under-provision. For instance, if legal

punishment were to rise, should we expect more or less under-provision of vigilance?

To this end, consider a social planner who is in charge of coordinating unobservable

vigilance efforts to minimize potential victims’ expected losses. Unlike potential victims,

who take the attempted crime rate as given, the social planner anticipates how changes in

vigilance impact the attempted crime rate. Specifically, suppose that the planner desires an

average failure rate ϕo∈ [0, 1], and so an attempted crime rate αo=S(ϕo). The planner could

implement any ϕ by exploiting the inverse demand function D−1 : [0, 1] 7→ [0, ᾱ], where

ᾱ is the attempted crime rate ceiling (see §4).35,36 Indeed, by the FOC (3), the planner

can mandate individual failure rates φ̂o(ϕ|ξ) obeying, D−1(ϕ)M ≡ Vφ(φ̂
o(ϕ|ξ)|ξ) for each

ξ ∈ [0, 1], and thus
∫
φ̂o(ϕ|ξ)dG(ξ) = ϕ.37 Intuitively, φ̂o(ϕ|ξ) is the failure rate optimally

chosen by potential victim ξ when the attempted crime rate is D−1(ϕ). Clearly, φ̂o(·|ξ) is

monotone and φ̂o(0|ξ) = 0 for all ξ. Altogether, the planner’s failure rate target ϕo solves:

min
ϕ∈[0,1]

S(ϕ)(1 − ϕ)M +

∫ 1

0

V (φ̂o(ϕ|ξ)|ξ)dG(ξ). (7)

To have a convex program, I assume that the density elasticity E1−ϕ(f(c̄)) ≥ −2.38 Ap-

pendix A.11 show that, the optimal failure rate ϕo ∈ (0, 1) and attempted crime rate αo > 0

obey:

S(ϕo)− S ′(ϕo)(1− ϕo) = D−1(ϕo) (8)

and αo = S(ϕo), respectively. The individual failure rates obey φ̂o(ϕo|ξ) for all ξ ∈ [0, 1].

As seen in Figure 7, the optimal failure rate is given by the intersection of the inverse

demand curve and the marginal crime rate supply curve MS(ϕ) ≡ [S(ϕ)(1 − ϕ)]ϕ. The

35This inverse function is well-defined, since D(·) is strictly increasing for all attempted crime rates α ≤ ᾱ.
36In words, D−1(ϕ) is the attempted crime rate that induces an average failure rate ϕ.
37For simplicity, I assume that the FOC (3) holds for all potential victim types ξ.
38This condition holds when the cost distribution F is either convex or not too concave.
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Figure 7: Centralizing Vigilance. Both panels assume ℓ = 0, and so ϕ̄ = 1. Left: The optimal
failure rate is given by the intersection of the inverse demand D−1 and marginal supply MS, which
lies above S. The respective optimal failure and attempted crime rates are greater and lower than
the equilibrium ones. The shaded area captures the net benefits of centralizing vigilance. Right:
A subsidy ψ∗ on vigilance costs or a price floor implements the desired levels of crime and vigilance.

resulting attempted crime rate αo is fixed by the supply curve S. Notice the analogy with

non-competitive markets, where a monopolist chooses how much to produce by equalizing

marginal costs (supply) and marginal revenues, and the final price is fixed by the demand

curve. The same occurs here as potential victims are the producers of vigilance, and so for

them the attempted crime rate α resembles a price and the failure rate ϕ a quantity.

Compared to the decentralized case (Figure 1), the new term −S ′(ϕo)(1−ϕo) < 0 in (8)

is the marginal deterrence effect of vigilance (Shavell, 1991), as the planner also influences

criminal entry. Since this effect is negative, the failure rate is higher and the crime rate and

the attempted crime rate are lower than in the competitive benchmark (see the left panel of

Figure 7). Also, in the same panel, the shaded triangle represents the benefits of coordinating

vigilance efforts. While total vigilance may rise compared to the benchmark, the reduction

in property losses more than compensates for it. Criminal profits unambiguously fall.

The degree of vigilance under-provision is captured by the gap ϕo−ϕ∗, or by the relative

excess of demand, namely, (D−1 − S)/S, as it measures the vigilance deviation from the

competitive equilibrium. Furthermore, by (8), at the optimum, the degree of under-provision

is equal to the elasticity of the supply curve (with respect to the failure rate) evaluated at

ϕ = ϕo:
D−1(ϕo)− S(ϕo)

S(ϕo)
= E1−ϕ(S). (9)

The degree of under-provision is, thus, affected by the supply elasticity E1−ϕ(S), which is

a function of the expected punishment ℓ and the criminal cost distribution F . Proposition 6

examines how punishment ℓ impacts the optimal vigilance levels and the under-provision gap.

Proposition 6. (i) If (c + ℓ)f(c) falls in c, the optimal failure rate ϕo and the degree of

vigilance under-provision both rise as punishment ℓ rises; (ii) If (c + ℓ)f(c) rises in c, the
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optimal failure rate ϕo falls in punishment ℓ, but the degree of vigilance under-provision rises

in ℓ, provided the cost distribution F is log-concave and the elasticity cf(c)/F (c) rises in c.

The sufficient conditions in Proposition 6 do not depend on endogenous variables and

are critically related to the curvature of the cost distribution F and the punishment level ℓ.

Indeed, (c+ℓ)f(c) is increasing in c when F is convex or not too concave, and it is decreasing

in c when F is concave and the absolute rate of change of f is high enough.

Proposition 6 highlights another channel through which penalties may have an unde-

sirable effect. In the benchmark case, an increase in punishment unambiguously lowers the

equilibrium failure rate ϕ∗ (Proposition 1). However, when vigilance is centralized, the effect

of punishment on ϕo is ambiguous: Depending on the curvature of the criminal cost distri-

bution F , an increase in punishment ℓ may lower or raise the marginal deterrence effect of

vigilance, and so it may decrease or increase the optimal failure rate ϕo. In particular, when

condition (i) in Proposition 6 holds, an increase in punishment raises the optimal failure rate

ϕo and it lowers the equilibrium failure rate ϕ∗. Thus, as punishment rises, the equilibrium

failure rate not only falls, but also becomes more distant to its desirable level.39

Finally, I briefly discuss how the planner could implement the optimal failure rate ϕo.

This could be done by either subsidizing vigilance, or mandating it with a price floor. Indeed,

suppose that the government can subsidize vigilance by paying a fraction ψ ∈ (0, 1) of

vigilance costs. Potential victim ξ expected losses would turn to α(1−φ)M +(1−ψ)V (φ|ξ),

and individual demands would obey φ̂( α
1−ψ

|ξ) = argminφ
α

1−ψ
(1 − φ)M + V (φ|ξ) for all ξ.

That is, potential victims would behave as if they faced an attempted crime rate α
1−ψ

> α.

As seen in Figure 7 (right panel), the planner can implement her desired levels of crime

and vigilance with a Pigovian subsidy ψ∗ obeying D( αo

1−ψ∗
) = ϕo. Alternatively, she could

mandate a minimum vigilance level, emulating a price floor (van Ours and Vollaard, 2015).

Altogether, the government need not to rely on greater punishments (as argued, their effi-

cacy is limited), but rather its policies should be targeted to directly incentivize, or regulate,

potential victims’ vigilant behavior, and thereby indirectly impact criminals’ incentives.

Remark 2 (Social Cost Minimization). One could also imagine that the social plan-

ner’s goal is to minimize the social costs (6). If so, the planner would elect a lower failure

rate and more attempted crimes than those that minimize potential victims’ losses (7). Be-

cause now the marginal cost of raising the average failure rate ϕ not only embeds total

marginal vigilance expenses but also the foregone marginal criminal profits. Appendix B

shows that if the supply elasticity E1−ϕ(S) > 1 then the failure rate minimizer lies between

39Appendix A.12 shows that if condition (ii) holds, the relative excess of demand (9) rises in punishment ℓ.
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ϕ∗ and ϕo. However, if E1−ϕ(S) < 1, the social cost minimizer entails a lower failure rate

and more attempted crimes compared to the equilibrium levels. In other words, vigilance is

over-provided in equilibrium. Proposition B.0.1 then provides sufficient conditions for either

case in terms of primitives. The former case arises when the criminal cost distribution F is

not “too concave,” while the latter one when F is “sufficiently” concave.40

9 The Observable Vigilance Case

In this section, I relax the assumption that vigilance is unobservable. If potential criminals

can observe potential victims’ vigilance levels, then a new criminal decision margin emerges:

criminals must choose, e.g., whether to burgle the gated mansion or the ungated one. That is,

when vigilance is observable, the interaction between potential victims and criminals become

sequential. First, potential victims simultaneously and independently choose their vigilance

level v ≥ 0. Then, potential criminals observe the vigilance choices made by potential victims

and simultaneously and independently choose where to target their offense, if any.

Crucially, the observability of vigilance changes the strategic nature of crime. Indeed,

when vigilance is observable, a novel signaling force arises as potential victims’ types ξ

are private information. Because criminals care about the failure rate of their attempted

crimes, observing vigilance v conveys information about types ξ, and so about the expected

failure rate associated with vigilance v.41 To encompass this sequentiality, the equilibrium

notion, used throughout this paper, must naturally change from Nash equilibrium to perfect

equilibrium. In a perfect equilibrium, potential criminals use the information contained in

vigilance choices to make failure rate inferences and target their offenses, whereas potential

victims understand this when choosing their vigilance intensities. In what follows, I examine

separating equilibria in which vigilance effectively varies across potential victims.

For the sake of clarity, I now introduce some notations that are only necessary here. As

discussed in §3, the failure rate of an attempted crime depends on both vigilance and the

(privately known) potential victim’s type. Specifically, for each type ξ ∈ [0, 1] and vigilance

v ≥ 0, the induced failure rate function φ̃(v, ξ) ∈ [0, 1] obeys v ≡ V (φ̃(v, ξ)|ξ). It is increasing

in vigilance v (as Vφ > 0) and decreasing in ξ (as also Vξ > 0) with partials:

φ̃v(v, ξ) = 1/Vφ(φ(v, ξ)|ξ) > 0 and φ̃ξ(v, ξ) = −Vξ(φ(v, ξ)|ξ)/Vφ(φ(v, ξ)|ξ) < 0. (10)

40See Propositions 3A and 3B in Shavell (1991) for a related discussion.
41Baumann and Friehe (2013) study a model with observable vigilance, in which victims have private

information. They consider binary vigilance and a fixed mass of criminals, which simplifies the analysis.
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Also, φ̃vξ(v, ξ) ≤ 0 (Claim C.1), so vigilance’s efficacy and marginal efficacy fall as ξ rises.

Now, for every observed vigilance v ≥ 0, the attempted crime rate function α̃(v, ξ̂) ≥ 0 is

the attempted crime rate aimed to vigilance v when the criminal inference function, ξ̂I(·),

about the victims’ type obeys ξ̂I(v) = ξ̂ ∈ [0, 1]. I assume α̃ is differentiable with non-

vanishing partials, α̃v 6= 0 and α̃ξ̂ 6= 0. Slightly abusing notation, a potential victim’s losses

are: L(ξ, ξ̂, v|α̃) ≡ α̃(v, ξ̂)(1 − φ̃(v, ξ))M + v. These are the losses from crime for potential

victim ξ ∈ [0, 1] who chooses vigilance v ≥ 0 when the realized criminal inference is ξ̂ ∈ [0, 1].

Next, consider an equilibrium candidate vigilance function χ(·) for potential victims,

where χ(ξ) ≥ 0 is the vigilance level exerted by potential victim ξ ∈ [0, 1]. In a separating

equilibrium, χ must be one-to-one, and so invertible. Thus, on the equilibrium path, i.e., if a

potential victim chooses v ∈ χ([0, 1]) then, irrespective of her true type, potential criminals

infer that the victim’s type is ξ̂I(v) ≡ χ−1(v) and the induced failure rate is φ̃(v, χ−1(v)).

Consequently, the total amount of attempted crimes obeys
∫

χ([0,1])
α̃(v, χ−1(v))dv. Now, off

the equilibrium path, i.e., for v /∈χ([0, 1]), equilibrium perfection puts no restriction on the

inference performed by criminals as long as ξ̂I(v) ∈ [0, 1].

In equilibrium, the vigilance function χ(·) must incentivize potential criminals to target

their attempted crimes following α̃(·, χ−1(·)) on path. Likewise, the attempted crime rate

function α̃(·, ξ̂I(·)) must encourage potential victims to follow the vigilance function χ(·).

Formally, a separating equilibrium is a pair (χ(·), α̃(·)) such that: (i) given the vigilance

function χ(·), criminal profit maximization yields attempted crime rates α̃(v, χ−1(v)) for

v ∈ χ([0, 1]), and α̃(v, ξ̂) for v /∈ χ([0, 1]) and some ξ̂I(v) = ξ̂; (ii) given the attempted crime

rate function α̃(·), vigilance χ(ξ) minimizes expected losses for potential victim ξ ∈ [0, 1].

Given χ(·) and ξ̂I , define Ld(ξ, ξ̂I) ≡ inf{L(ξ, ξ̂I(v), v|α̃) : v < χ(0)}. The next result

states the necessary conditions to sustain an equilibrium. Appendix C.2 examines when such

conditions are also sufficient; see Proposition C.2.1.

Proposition 7. Consider an equilibrium (χ(·), α̃(·)). Then, there exists an interior failure

rate ϕ̃ ∈ (0, 1) with χ(ξ) ≡ V (ϕ̃|ξ), and α̃(χ(ξ), ξ) solving

[

α̃v(χ(ξ), ξ) + α̃ξ̂(χ(ξ), ξ)
1

χ′(ξ)

]

Vφ(ϕ̃|ξ)(1− ϕ̃)M − α̃(χ(ξ), ξ)M + Vφ(ϕ̃|ξ) = 0, (11)

and market clearing:
∫ 1

0
α̃(χ(ξ), ξ)dG(ξ) = S(ϕ̃). The vigilance function χ(ξ) is strictly

increasing, whereas the attempted crime rate α̃(χ(ξ), ξ) is strictly decreasing, vanishing when

ξ = 1. The equilibrium losses L(ξ, ξ, χ(ξ)|α̃) ≤ Ld(ξ, ξ̂I) for all ξ and some inference ξ̂I .

Proposition 7 installs a constraint on the shape that any equilibrium can take. First,

because each criminal optimally attempts a crime towards potential victims for whom the
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failure rate is the lowest, in equilibrium, the induced failure rates φ̃(χ(ξ), ξ) must be constant

across all types ξ. Consequently, from the criminals’ viewpoint, all vigilance levels are equally

desirable targets. The vigilance function χ is thus characterized by an average failure rate ϕ̃

obeying φ̃(χ(ξ), ξ) ≡ ϕ̃, or χ(ξ) ≡ V (ϕ̃|ξ), and so high types are more vigilant than low types,

since χ′(ξ) = Vξ(ϕ̃|ξ) > 0. Second, given a common failure rate ϕ, the amount of attempted

crimes is determined by the supply S(ϕ), as in §4. Since α̃(χ(ξ), ξ) is the attempted crime

rate faced by victim ξ, the failure rate ϕ̃ must also clear the market :

∫ 1

0

α̃(χ(ξ), ξ)dG(ξ) = S(ϕ̃). (12)

Third, the differential equation (11) is a consequence of potential victim optimality and

equilibrium considerations. Notice that, on path, the losses of a type ξ that chooses v are

L(ξ, χ−1(v), v|α̃). Thus, in equilibrium, χ must be incentive compatible, i.e., χ(ξ) must solve,

min
v∈χ([0,1])

α̃(v, χ−1(v))(1− φ̃(v, ξ))M + v. (13)

The first-order condition, evaluated at v = χ(ξ) with φ̃(χ(ξ), ξ) ≡ ϕ̃, yields (11), whereas

the second-order condition implies the strict monotonicity of the attempted crime rate func-

tion α̃(χ(·), ·). In addition, α̃(χ(1), 1) must vanish; for if not, victim type ξ = 1 could slightly

raise her vigilance and lower her expected losses, for any off path inference; see Appendix C.1.

Finally, potential victims must have no incentives to elect vigilance v /∈ χ([0, 1]). Consider

an upward deviation v > χ(1). Because α̃(χ(1), 1) = 0, incentive compatibility (13) makes

such deviations unattractive, as they lead to losses L ≥ χ(1). Now, take a downward

deviation v < χ(0). Such vigilance would attract all criminals, as φ̃(v, ξ̂) < φ̃(χ(0), ξ̂) ≤

φ̃(χ(0), 0) = ϕ̃, for any off-path inference ξ̂I(v) = ξ̂, yielding an attempted crime rate

function α̃(v, ξ̂) ≡ S(φ̃(v, ξ̂)).42 The lowest downward-deviation losses are Ld(ξ, ξ̂I), and so

for some off-path inference ξ̂I , the equilibrium losses must obey L(ξ, ξ, χ(ξ)|α̃) ≤ Ld(ξ, ξ̂I).

Notice the qualitative differences between observable and unobservable vigilance. In the

observable case, since the attempted crime rate α̃(χ(ξ), ξ) is strictly decreasing and the

failure rate ϕ̃ is constant, the crime rate α̃(χ(ξ), ξ)(1− ϕ̃) falls as ξ rises. By contrast, when

vigilance is unobservable, potential victims face the same attempted crime rate α∗ but secure

distinct failure rates φ̂(α∗|ξ); in fact, the crime rate α∗(1− φ̂(α∗|ξ)) rises as type ξ rises, since

high types are less vigilant, i.e., φ̂ξ < 0; see §4. This qualitative difference follows from the

first-order conditions (3) and (11), for in the unobservable case the marginal cost of vigilance

42Hence, the downward deviation losses for victim type ξ obey L(ξ, ξ̂, v|α̃) = S(φ̃(v, ξ̂))(1− φ̃(v, ξ))M + v.
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Figure 8: Equilibrium with Observed Vigilance. Both panels consider the parametrization
given in Example 1 with property value M = 0.7. Left: This panel assumes punishment ℓ = 0.
Point O and U denote the equilibrium with observed and unobserved vigilance, respectively, whereas
E describes the levels of crime and vigilance that minimize potential victims losses in §8. Right:
This panel considers an increase in penalties to ℓ = 0.3. Compared to the left panel, the degree of
underprovision of unobserved vigilance (distance OE) rises, as predicted by Proposition 6, whereas
the degree of overprovision of observed vigilance (distance EU) falls.

is constant across types, while it varies when vigilance is observable. Also, by Proposition 7

and Claim A.1, in the observable and unobservable cases, high-cost victims (high ξ) exert

more and less vigilance, respectively. Still, in any case, equilibrium losses L are higher for

high-cost victims (see Claim C.2 and §4), but each owing to different economic trade-offs.

The observability of vigilance gives rise to new forces. As in §8, the first term in (11)

captures the marginal deterrence effect of vigilance for victim ξ. By Proposition 7, this

effect becomes absolutely stronger as potential victims’ types ξ rise — namely, high-cost

victims benefit more from the observability of vigilance.43 Also, notice that the marginal

deterrence effect is proportional to the decline in the attempted crime rate, aimed to victim

ξ = χ−1(v), caused by a marginal increase in vigilance v, dα̃/dv|v=χ(ξ). In particular, the

effect is determined by two additive forces. First, there is a redirection effect (proportional

to α̃v) as criminals divert their attempted crime towards other victims in response to an

increase in vigilance.44 And second, there is learning effect (proportional to α̃ξ̂(1/χ
′)), owed

to criminals updating their inferences and, consequently, their victim targets.

As in §4, the equilibrium is fixed by the intersection of supply and demand, where the

demand now should be seen as a derived demand for attempted crime. Indeed, given a

failure rate ϕ, the map AD(ϕ) ≡
∫ 1

0
α̃dG captures the induced demand for attempted crime,

43Consider the FOC (11). Notice that when ξ rises, the middle and right terms −α̃M and Vφ, respectively,
rise (given Proposition 7 and Vφξ ≥ 0). Therefore, the left term, namely, the marginal deterrence effect of
vigilance, must fall in order to keep condition (11) balanced. As a result, dα̃/dv cannot fall too rapidly.

44See, e.g., Gonzalez-Navarro (2013) for an empirical analysis of this diversion effect in auto-theft.
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as α̃ induces a vigilance behavior governed by χ, given (11). By market clearing (12), the

equilibrium is fixed by the intersection of supply S(·) and demand AD(·). So, the Lafferian

effects, identified in §5, are likely to apply to this case, by common logic.

To close this section, Figure 8 simulates the model using Example 1 in order to shed

further light into the potential effects of observed vigilance. As seen in the left panel,

AD(ϕ) rises in ϕ and induces a demand for vigilance D̃(α), where AD(D̃(α)) ≡ α. More

crucially, D̃(·) is above D(·), and thus the equilibrium with observed vigilance (point O)

entails a greater failure rate ϕ and fewer attempted crimes α and so fewer actual crimes

κ = (1−ϕ)α, compared to the equilibrium with unobserved vigilance (point U). Additionally,

unlike the unobserved vigilance case, there is over-provision of vigilance relative to the

benchmark studied in §8 (compare points O and E in Figure 8). Finally, the right panel

of Figure 8 depicts the effects of punishment ℓ. Since the cost distribution F (c) = c in

Example 1, an increase in punishment ℓ raises the degree of under-provision of unobserved

vigilance (Proposition 6-(ii)); however, the degree of over-provision of observed vigilance falls

as punishment rises (distance between O and E). This exercise suggests that when vigilance

is observed, although there could be too much vigilance compared to the levels that minimize

potential victims’ losses, this divergence could be ameliorated with harsher punishment, as

potential victims’ incentives relax. A general analysis is pursued in ongoing work.

10 Concluding Remarks

Since the domestic security changes made post 9-11, it is more clear than ever that the

costs of crime are not just the actual losses of individuals, but also the vigilance expenses

for crimes that never happen. This paper has examined the interplay between crime and

vigilance. To this end, I developed an economic framework with both heterogenous potential

criminals and potential victims in which: (1) pairwise matching of criminals and potential

victims produces attempted crimes; (2) not all attempted crimes succeed; and (3) the failure

of an attempted crime is probabilistic, rising as the individual vigilance level rises.

From an economic perspective, the equilibrium analysis uncovered and characterized a

vigilance force that naturally arises in these settings. This force invariably limits the efficacy

of policies aimed directly at alleviating crime, such as raising an offense’s legal punishment

— because victims and criminals both respond when change befalls either party. This force

becomes stronger when vigilance expenses are greater than property losses, unveiling a crim-

inal Laffer curve, namely, a crime rate that is hump-shaped in legal punishment. In terms of

welfare, the focus on crowding out effects helps to sharpen policy intervention: if the goal is
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to lower the crime rate or the attempted crime rate, policies aimed at incentivizing vigilance,

such as mandating or subsidizing it, could be more effective than raising punishment. In

fact, raising punishment may shift vigilance even further away from its efficient level.

Next, I turn to discuss some empirical and theoretical avenues for future research. First,

this paper suggests that the effects of punishment on crime can be confounded, and thus

disentangling crimes and attempted crimes may be a fruitful exercise. For instance, the

empirical literature has found the elasticity of crime to police manpower to be in a range of

−0.1 to −2 (Chalfin and McCrary, 2017). Yet, this finding need not imply that the criminal

Laffer curve slopes down. Indeed, to test whether this curve slopes up or down, one needs

first to differentiate attempted crimes and actual crimes and then examine the impact of

punishment on both the attempted crime rate and actual crime rate.

Second, this paper predicts that the relationship between crime and its stakes is non-

monotone. Draca et al. (2018) recently examined the relationship between crime and the

price of goods, accounting only for time-invariant vigilance such as security factors inherent

to a good. These factors are embedded in the goods’ fixed-effects. It would be interesting to

also account for varying vigilance and test whether crimes and attempted crimes rise or fall

as the price of goods rise. Varying vigilance factors may be obtained from the differential

patterns of theft across households that have similar composition of goods. This could be

explored using a combination of household-level and crime victimization data.

Third, in terms of identification, empirical analyses of traditional markets suggest that,

when prices and quantities are observable for a given good, supply and demand can be

respectively identified by exogenous demand shifters and exogenous supply shifters. This

insight can be used to empirically examine the supply and demand framework that this

paper provides. Indeed, if one measures the attempted crime rate α and crime rate κ,

then the failure rate ϕ could be recovered using the identity κ = (1 − ϕ)α.45 Having data

(α, ϕ) can be then used to guide the identification of the supply’s and demand’s slopes. In

particular, as seen in §5-6, changes in punishment or policing shift the supply curve S along

the demand D, while changes in vigilance technology shift the demand curve D along the

supply S. Identifying the elasticity of the supply and demand curves is useful to inform

policy. For instance, the demand elasticity is key for understanding the crowding out effects

of punishment, whereas the supply elasticity determines the inefficiency gap outlined in §8.

Finally, from a theoretical angle, in this paper optimal public responses to crime are

unmodelled in order to isolate the effects of vigilance on crime. Modeling both endogenous

45For instance, in motor vehicle theft, one could connect the model to the FBI data by letting α be simply
the reported theft rate, and κ the proportion of those that are not cleared with an arrest. In general, the
mapping of the model to the data will naturally depend on the specific property crime in mind.
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public and private responses to crime would shed light on the classic debate of public ver-

sus private law enforcement (Becker and Stigler, 1974; Landes and Posner, 1975). Also, this

paper separately examines the cases of unobserved and observed vigilance. It would be inter-

esting to augment the model and allow potential victims to choose whether or not to disclose

their vigilance, as in Baumann et al. (2019). These avenues are left for future research.

A Omitted Analyses and Proofs

A.1 Optimal Vigilance Responses

Claim A.1. Consider an attempted crime rate α < Vφ(1|1)/M . If α > Vφ(1|0)/M , vigilance

expenditures V (φ̂(α|ξ)|ξ) are hump-shaped in type ξ; otherwise, they are decreasing in ξ.

Proof: Fix α, and call ξh ≥ 0 the first type ξ ∈ [0, 1] for which Vφ(1|ξ)/M ≥ α. If ξh > 0

then, by (3), all types ξ < ξh choose φ̂(α|ξ) = 1 (for Vφ(1|ξ)/M > α), whereas types ξ ≥ ξh

elect φ̂(α|ξ) ∈ (0, 1) obeying (3). Thus, for ξ < ξh, vigilance expenditures, V (1|ξ), increase

in ξ, since Vξ ≥ 0. However, for ξ ≥ ξh, differentiating (3) yields φ̂ξ = −Vφξ/Vφφ ≤ 0, and:

dV (φ̂|ξ)

dξ
= Vφφ̂ξ + Vξ = Vξ − Vφ

Vφξ
Vφφ

=
VφVξ
Vφφ

(
Vφφ
Vφ

−
Vφ
V

+
Vφ
V

−
Vφξ
Vξ

)

≤ 0,

where the inequality holds, since V is log-concave in φ and log-supermodular in (φ, ξ), and

also Vξ, Vφ, Vφφ ≥ 0. Altogether, vigilance V (φ̂|ξ) rises for ξ < ξh and falls for ξ ≥ ξh.

Finally, notice that ξh > 0 for α > Vφ(1|0)/M ; otherwise, ξh = 0, and so vigilance

expenditures V (φ̂|ξ) decrease in ξ ∈ [0, 1], as previously argued. �

A.2 The Demand Elasticity

I now show that demand D is less elastic with GH than GL if gH(ξ)/gL(ξ) is increasing. To

this end, consider the following parametrized type-distribution H : [0, 1] × {0, 1} → [0, 1]

with (ξ, θ) 7→ H and density h(ξ, θ). Also, let H(ξ, 0) ≡ GL(ξ) and H(ξ, 1) ≡ GH(ξ).

Step 1: h(ξ, θ) is log-supermodular in (ξ, θ). To see this, take any ξ′ ≥ ξ, then

gH(ξ
′)/gL(ξ

′) ≥ gH(ξ)/gL(ξ), which rearranging terms yields gH(ξ
′)gL(ξ) ≥ gH(ξ)gL(ξ

′),

which is equivalent to h(ξ′, 1)h(ξ, 0) ≥ h(ξ′, 0)h(ξ, 1).

Step 2: φ̂(α, ξ) is log-submodular in (α, ξ). Log-differentiate the α derivative M =
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Vφφφ̂α of the FOC (3) in ξ to get:

0 =
Vφφφ
Vφφ

φ̂ξ +
Vφφξ
Vφφ

+
φ̂αξ

φ̂α
⇒

φ̂αξ

φ̂α
=
Vφφφ
Vφφ

·
Vφξ
Vφφ

−
Vφφξ
Vφφ

=
Vφξ
Vφφ

(
Vφφφ
Vφφ

−
Vφφξ
Vφξ

)

, (14)

where I used φ̂ξ = −Vφξ/Vφφ, found by differentiating (3). Since αφ̂α = Vφ/Vφφ > 0 by (3),

φ̂αξ

φ̂α
−
φ̂ξ

φ̂
≤ 0 ⇐⇒

Vφξ
Vφφ

(
Vφφφ
Vφφ

−
Vφφξ
Vφξ

+
1

φ̂

)

≤ 0.

This last inequality holds, because the parenthesized term is negative. Indeed,

Vφφφ
Vφφ

−
Vφφξ
Vφξ

+
1

φ̂
=

(
1

φ̂
+
Vφφφ
Vφφ

−
Vφφ
Vφ

)

+

(
Vφφ
Vφ

−
Vφφξ
Vφξ

)

≤ 0,

because the first parenthesized expression is negative since φVφφ/Vφ is non-increasing in φ,

whereas the second parenthesized term is negative since Vφ is log-supermodular in (φ, ξ), by

assumption. Since Vφξ > 0 and Vφφ > 0, we have that φ̂ is log-submodular in (α, ξ).

Step 3: D(α, θ) =
∫
φ̂(α, ξ)h(ξ, θ)dξ is log-submodular in (α, θ). Fix α > 0. Since φ̂ is

log-submodular in (α, ξ), we have φ̂(α|ξ)/φ̂α(α|ξ) is increasing in ξ. By Lemma 4 in Athey

(2002), since h(ξ, θ) is log-supermodular in (ξ, θ), we have that:

D(α, θ)

Dα(α, θ)
=

∫
φ̂(α|ξ)h(ξ, θ)dξ

∫
φ̂α(α|ξ)h(ξ, θ)dξ

is increasing in θ, which implies that αDα/D is decreasing in θ. This means that the market

demand D(α, θ) is log-submodular in (α, θ), or αDα(α, 1)/D(α, 1) ≤ αDα(α, 0)/D(α, 0), or

the demand D is less elastic with GH than GL. �

A.3 The Supply Elasticity

Paralleling §A.2, I now show that supply S is less elastic with FH than FL if fH(c)/fL(c)

is increasing. Consider the auxiliary and parametrized cost distribution K : R+ × {0, 1} →

[0,∞] with (c, θ) 7→ K and density k(c, θ). Also, let K(c, 0) ≡ FL(c) and K(c, 1) ≡ FH(c).

Following the same logic, k(c, θ) is log-supermodular in (c, θ), since the likelihood ratio

k(c, 1)/k(c, 0) is monotone. Thus, the cost distribution K(c, θ) =
∫
1[0,c](c

′)k(c′, θ)dc′ is log-

supermodular in (c, θ), since the indicator 1[0,c](c
′) is log-supermodular in (c, c′); see Lemmas
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3–4 in Athey (2002). Altogether, k(c, θ)/K(c, θ) is increasing in θ, or:

k(c, 1)/K(c, 1) = fH(c)/FH(c) ≥ fL(c)/FL(c) = k(c, 0)/K(c, 0).

Next, using (5) with the distribution K, the supply elasticity is given by:

Eϕ(S) = −
k(c̄, θ)

K(c̄, θ)

(
M − ℓ− c̄

c̄

)

,

where c̄ is the marginal potential criminal. Since the above parenthesized term is positive,

the supply is less elastic with θ = 1 or FH than FL. �

A.4 Existence and Uniqueness of Equilibrium

First, since the demand D(α) is strictly increasing in α for α ≤ ᾱ, one can define the inverse

demand map ϕ 7→ D−1(ϕ) ∈ [0, ᾱ]. Next, define the excess of supply ES(ϕ) ≡ S(ϕ)−D−1(ϕ).

Clearly, when the failure rate is perfect, S(1) = 0 < D−1(1) = ᾱ. Also, since the demand

D(0) = 0, its inverse obeys D−1(0) = 0 < S(0) = F (M−ℓ). Altogether, the excess of supply

satisfies: ES(1) < 0 < ES(0). Thus, by the Intermediate Value Theorem (IVT), there exists

ϕ∗ ∈ (0, 1) such that the excess of supply vanishes ES(ϕ∗) = 0, or S(ϕ∗) = D−1(ϕ∗). Finally,

since supply falls in the failure rate, while the inverse demand rises in it, ϕ∗ is unique because

the excess of supply ES(ϕ) strictly falls in ϕ. �

A.5 The Criminal Laffer Curve: Proof of Proposition 1

Lemma A.5.1. Along the demand curve, the crime rate α(1−D(α)) is hump-shaped.

I prove this result in steps. Define the individual crime rate function κ̄(α, ξ) ≡ α(1 −

φ̂(α, ξ)) for victim ξ, given α. Notice that κ̄(0, ξ) = 0, and also κ̄(α, ξ) = 0 for all α ≥ ᾱξ,

where ᾱξ ≡ Vφ(1|ξ)/M is the attempted crime rate ceiling for victim ξ. Also, the critical

attempted crime rate α̂ξ ∈ (0, ᾱξ) is the one that maximizes the crime rate κ̄(α, ξ), for all ξ.

Step 1: The individual crime rate is quasi-concave in α. Consider a specific poten-

tial victim ξ. Now, think of κ̄(α|ξ)M as the total criminal revenue, and (1− φ̂(α|ξ))M as the

price. Then, the individual crime rate κ̄ falls in α along the demand curve if (1− φ̂(α|ξ))αM

rises in (1− φ̂(α|ξ))M . Since the elasticity of a product is the sum of the elasticities:

E(1−φ̂(α|ξ))M ((1− φ̂(α|ξ))αM) = 1 + E(1−φ̂(α|ξ))M (α) = 1− (1− φ̂(α|ξ))/(αφ̂α(α|ξ)) > 0. (15)

33



Next, I show that the left side of (15) is increasing in α, and respectively negative and

positive for low and high values of α. For the monotonicity, (1− φ̂(α|ξ)) is decreasing in α,

since the failure rate φ̂(α|ξ) is increasing in α. Now, I claim that αφ̂α(α|ξ) is increasing in

α. Indeed, using (3), αφ̂α(α|ξ) = Vφ(φ̂|ξ)/Vφφ(φ̂|ξ). Since for each type ξ, marginal costs Vφ

are log-concave, Vφ(φ̂|ξ)/Vφφ(φ̂|ξ) is monotone in φ̂, and so in α.

Hence, the left side of (15) rises in α. Also, it is positive at α = Vφ(1|ξ)/M , since φ̂(α|ξ) =

1; and negative as α ↓ 0, since φ̂(0|ξ) = 0 and limφ↓0 Vφ/Vφφ < 1, so that limα↓0 αφ̂α(α|ξ) < 1.

So, by continuity, the left side of (15) is positive for α > α̂ξ and negative for α < α̂ξ, for

some α̂ξ ∈ (0, Vφ(1|ξ)/M). That is, κ̄(α|ξ) is hump-shaped in α, peaking at α̂ξ. So, κ̄ is

quasi-concave in α, since it is hump-shaped in α < ᾱξ and then zero for α ≥ ᾱξ. �

Step 2: The critical attempted crime rate α̂ξ increases in the index ξ. By

definition α̂ξ ≡ argmaxα κ̄(α, ξ). By Topkis’ Theorem (Topkis, 1998), α̂ξ rises in ξ if

κ̄αξ(α, ξ) > 0. I argue that this is positive, i.e., that κ̄αξ = −φ̂ξ − αφ̂αξ > 0.

Log-differentiate the α derivative M = Vφφφ̂α of the FOC (3) in ξ to get

0 =
Vφφφ
Vφφ

φ̂ξ +
Vφφξ
Vφφ

+
φ̂αξ

φ̂α
⇒

−φ̂αξ

φ̂α
= −

Vφφφ
Vφφ

·
Vφξ
Vφφ

+
Vφφξ
Vφφ

=
Vφξ
Vφφ

(
Vφφξ
Vφξ

−
Vφφφ
Vφφ

)

, (16)

where φ̂ξ = −Vφξ/Vφφ, found by differentiating (3). Since αφ̂α = Vφ/Vφφ by (3), κ̄αξ > 0 iff

−φ̂αξ

φ̂α
>

φ̂ξ

αφ̂α
⇐⇒

Vφξ
Vφφ

(
Vφφξ
Vφξ

−
Vφφφ
Vφφ

)

>
−Vφξ
Vφφ

Vφφ
Vφ

⇐⇒
Vφφξ
Vφξ

>
Vφφφ
Vφφ

−
Vφφ
Vφ

.

This last inequality holds, because the right side is nonpositive, as Vφ is log-concave in φ; and

Vφφξ, Vφξ > 0, as Vφ and V are supermodular and log-supermodular in (φ, ξ), respectively. �

Next, I show that the aggregate crime rate function κ̃(α) ≡
∫ 1

0
κ̄(α, ξ)dG(ξ) is quasi-

concave in α. Building on the variation diminishing property of totally positive functions

(Karlin, 1968), Choi and Smith (2017) provide a useful condition that ensures that the

weighted sum of quasi-concave functions is quasi-concave.

To this end, decompose the individual crime rate function κ̄ = κ̄I+ κ̄D into its increasing

and decreasing portions, κ̄I and κ̄D, respectively, where κ̄I and −κ̄D are monotone, and κ̄I

(resp. −κ̄D) is constant right (resp. left) of the peak (argmax) of κ̄. When these functions

are differentiable, for any ξ, ξ′, say that −κ̄D(·, ξ) grows proportionally faster than κ̄I(·, ξ′),

if κ̄I(·, ξ′) is more risk averse than −κ̄D(·, ξ), namely:

− κ̄Iαα(α, ξ
′)/κ̄Iα(α, ξ

′) ≥ −κ̄Dαα(α, ξ)/κ̄
D
α (α, ξ). (17)
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More generally, for any α3 ≥ α2 ≥ α1:

[κ̄I(α2, ξ
′)− κ̄I(α1, ξ

′)][κ̄D(α2, ξ)− κ̄D(α3, ξ)] ≥ [κ̄I(α3, ξ
′)− κ̄I(α2, ξ

′)][κ̄D(α1, ξ)− κ̄D(α2, ξ)] (18)

By Proposition 1 in Choi and Smith (2017), the crime rate κ̃ is quasi-concave in α iff

−κ̄D(·, ξ) grows proportionally faster than κ̄I(·, ξ′), for all ξ′, ξ.

Step 3: −κ̄D(·, ξ) grows proportionally faster than κ̄I(·, ξ′), for all ξ, ξ′. When-

ever κ̄D(·, ξ) or κ̄I(·, ξ) is constant, (18) holds, since both sides vanish.

Assume first ξ′ ≤ ξ. Then the claim holds — for if α < α̂ξ, then −κ̄D(α, ξ) is constant,

and if α ≥ α̂ξ, then κ̄
I(α, ξ′) is constant (recalling that α̂ξ ≥ α̂ξ′ , by Step 2).

The case ξ′ > ξ is trickier, as both κ̄I(α, ξ′) and −κ̄D(α, ξ′) are increasing on an interval,

namely, for α ∈ [α̂ξ,min{ᾱξ, α̂ξ′}]. Here, −κ̄D(·, ξ) and κ̄I(·, ξ′) are differentiable, and so I

can use criterion (17). But on this interval, κ̄I(α, ξ) = κ̄(α, ξ) is increasing and concave,

whereas κ̄D(α, ξ′) = κ̄(α, ξ′) is decreasing and concave, since κ̄(·, ξ) and κ̄(·, ξ′) are concave,

by Step 1. As a result, κ̄I(·, ξ′) is more risk averse than −κ̄D(·, ξ):

−κ̄Iαα(α, ξ
′)/κ̄Iα(α, ξ

′) > 0 > −κ̄Dαα(α, ξ)/κ̄
D
α (α, ξ). �

Proof of Proposition 1: Suppose that punishment ℓ rises. As depicted in Figure 2, as ℓ

rises the supply curve S shifts left, while the demand curve D holds constant. The attempted

crime rate α∗ and failure rate ϕ∗ unambiguously fall: fewer crimes are attempted, but each

succeeds more often, as potential victims grow less vigilant. Since supply S shifts along

demand D, the crime rate can be written as κ∗(ℓ) ≡ α∗(ℓ)(1 − D(α∗(ℓ))). Observe that

when penalties ℓ = M , no criminal obtains revenues; thus, there are no attempted crimes

α∗(M) = 0, and so κ∗(M) = 0. But when legal penalties ℓ = 0, the attempted crime rate is

clearly positive and below the attempted crime rate ceiling, i.e., α∗(0) ∈ (0, ᾱ), whereas the

failure rate is imperfect ϕ∗(0) < 1. Thus, since α∗(ℓ) ∈ [0, α∗(0)] is monotone decreasing,

and the map α 7→ α(1 − D(α)) is quasi-concave (Lemma A.5.1), it follows that κ∗(ℓ) is

quasi-concave in ℓ ∈ [0,M ]. Finally, if the demand is sufficiently elastic at α = α∗(0), then

the map α 7→ α(1 − D(α)) is decreasing around α = α∗(0), and so the crime rate κ∗(ℓ) is

increasing around α = α∗(0) because κ∗(·) is the composition of two decreasing functions. �

A.6 Higher Punishment Increases Crime: Proof of Proposition 2

Recall that the crime rate falls along the demand curve if the demand is sufficiently elastic

(Proposition 1). Equivalently, (1 − D(α))/(αD′(α)) < 1. This condition can be rewritten

as κM/(α2MD′(α)) < 1, where κ = (1 − D(α))α is the crime rate. Now, differentiate the
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demand curve D(α) in (4) to get:

α2MD′(α) = αM

∫ 1

0

Vφ(φ̂|ξ)

Vφφ(φ̂|ξ)
dG(ξ) ≥

∫ 1

0

Vφ(φ̂|ξ))
Vφ(φ̂|ξ)

Vφφ(φ̂|ξ)
dG(ξ)

=

∫ 1

0

V (φ̂|ξ)
Vφ(φ̂|ξ)/V (φ̂|ξ)

Vφφ(φ̂|ξ)/Vφ(φ̂|ξ)
dG(ξ) ≥

∫ 1

0

V (φ̂|ξ)dG(ξ).

To get the first equality, log-differentiate the FOC (3). To get the first inequality, use that

optimal φ̂ obeys αM ≥ Vφ(φ̂(α|ξ)|ξ) for all types ξ. Finally, use that (Vφ/V )/(Vφφ/Vφ) ≥ 1 as

is well-known that if log Vφ is concave in φ, so is log V by Prékopa’s Theorem (Prékopa, 1973).

Essentially, I used the fact that log-concavity is passed from functions to their integrals; see,

e.g., Lemma 3 in Bagnoli and Bergstrom (2005). Altogether, if κM <
∫ 1

0
V (φ̂|ξ)dG(ξ) then

κM/(α2MD′(α)) < 1, and thus the crime rate falls along the demand, or the criminal Laffer

curve is upward sloping. �

A.7 Individual Crime and Punishment: Proof of Proposition 3

First, write the individual crime rate function for victim ξ as κ̄(α, ξ) ≡ α(1 − φ̂(α, ξ)).

Next, let α∗(ℓ) be the equilibrium attempted crime rate for punishment ℓ ∈ [0,M ]. Now

differentiate the individual crime rate function in ℓ to get, dκ̄/dℓ = κ̄α(α
∗(ℓ), ξ) · (dα∗(ℓ)/dℓ).

Since dα∗(ℓ)/dℓ < 0 by Proposition 1, the individual crime rate for victim ξ increases when

punishment ℓ increases iff κ̄α(α
∗(ℓ), ξ) < 0. Also, by the proof of Proposition 1 (see Step 2),

κ̄(α, ξ) is supermodular in (α, ξ), and thus κ̄α(α
∗(ℓ), ξ) is increasing in ξ. Thus, there exists

a critical type ξ̄ such that ξ̄ equals one if κ̄α(α
∗(ℓ), 1) < 0; equals zero if κ̄α(α

∗(ℓ), 0) > 0;

and solves κ̄α(α
∗(ℓ), ξ̄) = 0 otherwise. Therefore, a marginal increase in punishment ℓ raises

the crime rate for potential victim ξ if and only if ξ ≤ ξ̄.

Finally, ξ̄ falls in ℓ, since κ̄(α, ξ) is also quasi-concave in α; see Appendix A.5. �

A.8 The Role of Vigilance Costs: Proof of Proposition 4

The proof of part (i) is given in the main text. I now prove part (ii).

Lemma A.8.1. Along the demand D, the average success rate 1−D is more elastic with GH

than with GL if the likelihood ratio gH(ξ)/gL(ξ) is increasing.

Proof: As in §A.2, consider a parametrized type-distribution H : [0, 1]×{0, 1} → [0, 1] with

(ξ, θ) 7→ H and density h(ξ, θ). Also, let H(ξ, 0) ≡ GL(ξ) and H(ξ, 1) ≡ GH(ξ). This implies

that h(ξ, θ) is log-supermodular in (ξ, θ); see Step 1 in §A.2.
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Step 1: φ̂α(α|ξ)/(1− φ̂(α|ξ)) rises in ξ. Log-differentiate this expression in ξ to get:

φ̂αξ

φ̂α
+

φ̂ξ

1− φ̂
=
Vφξ
Vφφ

(
Vφφφ
Vφφ

−
Vφφξ
Vφξ

−
1

1− φ̂

)

,

where I used (14) and φ̂ξ = −Vφξ/Vφφ, which was found in §A.2 (Step 2). Next, I show that

the above (displayed) expression is negative. Indeed, adding and subtracting Vφφ/Vφ to its

right-hand side,

Vφξ
Vφφ

(
Vφφφ
Vφφ

−
Vφφξ
Vφξ

−
1

1− φ̂

)

=
Vφξ
Vφφ

[(
Vφφφ
Vφφ

−
Vφφ
Vφ

)

+

(
Vφφ
Vφ

−
Vφφξ
Vφξ

)

−
1

1− φ̂

]

< 0.

The inequality holds, for log(Vφ) is concave in φ and supermodular in (φ, ξ); also, Vφξ, Vφφ≥0.

Step 2: 1−D is log-supermodular in (ξ, θ). By Lemma 4 in Athey (2002), since h(ξ, θ)

is log-supermodular in (ξ, θ), we have that:

∫
(1− φ̂(α|ξ))h(ξ, θ)dξ
∫
φ̂α(α|ξ)h(ξ, θ)dξ

=
1−D(α, θ)

Dα(α, θ)

is increasing in θ. Thus, Eα(1−D) = −αDα/(1−D) is increasing in θ. �

Proof of (ii): The criminal Laffer curve shifts up at every punishment ℓ (left panel of Fig-

ure 3). Now I show that it also shifts left. First, call ℓpeak ≥ 0 the punishment ℓ for which the

crime rate κ∗(ℓ) peaks. Notice that ℓpeak uniquely solves α∗(ℓpeak) = αpeak, where αpeak max-

imizes α(1−D(α)). Next, recall that optimizers are invariant to monotonic transformations

of the objective function. So, αpeak = argmaxα log(α) + log(1 − D). But, ∂ log(1 − D)/∂α

rises as G rises, by Lemma A.8.1; so αpeak rises as G rises, by Topkis’ theorem (Topkis, 1998).

Finally, since α∗ falls in ℓ (Proposition 1), ℓpeak must fall as G rises. �

A.9 The Stakes of Crime: Proof of Proposition 5

Parametrize the demand D (and individual demands φ̂) and supply S curves, so that

D(α,M) ≡
∫
φ̂(α, ξ,M)dG and S(ϕ,M) ≡ F ((1 − ϕ)M − ℓ), respectively. The follow-

ing observations are useful. (⋆): (i) S vanishes, i.e. S ≡ 0, for all ϕ when stakes are low,

i.e., when M ≤ ℓ. (ii) Second, Mφ̂M = Vφ/Vφφ by log-differentiating the FOC (3) in M .

Claim A.2. The equilibrium failure rate ϕ∗ rises as M rises.

Proof: First, as M rises potential victims raise their vigilance, i.e., φ̂M ≥ 0. On the other

side, criminals attempts more crime, i.e., the marginal criminal c̄M > 0. As seen in Figure 4,

both the demand D and supply S shift up; thus, the failure rate ϕ∗ unambiguously rises. �
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As discussed in the main text, the attempted crime rate α∗ rises iff supply S shifts up more

than demand D does. To get the respective magnitudes of the vertical demand shift ϕDM and

the vertical supply shift ϕSM , fix α = α∗ and, respectively, differentiate in M the equilibrium

conditions, D(α∗,M) = ϕ∗ and S(ϕ∗,M) = α∗. After few algebraic manipulations:

ϕDM ≡

∫

φ̂M(α∗, ξ,M)dG=

∫
Vφ

MVφφ
dG, and ϕSM ≡

1− ϕ∗

M
=

∫
1− φ̂(α∗, ξ,M)

M
dG. (19)

Claim A.3. If demand D is sufficiently elastic for some M , then the equilibrium attempted

crime rate α∗ is hump-shaped in the stakes. Otherwise, α∗ is monotone increasing.

Proof. Step 1: The attempted crime rate rises for small stakes. Consider the

shift-difference ϕDM − ϕSM , and small stakes 0 < M ≤ ℓ. By observation (⋆)-(i), the supply

S ≡ 0 for all ϕ, and so the supply and demand curves intersect at the origin: ϕ∗ = α∗ = 0.

So ϕSM = 1/M , while ϕDM < 1/M since φ̂(0, ξ,M) = 0 and limφ↓0 Vφφ/Vφ > 1 (see §3).

Step 2: The attempted crime rate falls iff demand is sufficiently elastic.

By (19), the shift-difference ϕDM−ϕSM ≥ 0 if and only if
∫
(Vφ/Vφφ)dG ≥ 1−ϕ∗. But this latter

inequality is equivalent to D being sufficiently elastic. Indeed, notice that, in equilibrium,

1−D = 1 − ϕ∗, and α∗Dα =
∫
α∗φ̂αdG =

∫
(Vφ/Vφφ)dG, by log-differentiating the FOC (3)

in α. Thus, ϕDM ≥ ϕSM ⇐⇒
∫
(Vφ/Vφφ)dG ≥ 1− ϕ∗ ⇐⇒ Eα(D) ≥ (1−D)/D.

Step 3: The shift-difference is monotone in M . First, assume that demand D

is sufficiently elastic for some high stakes M . Then, the shift-difference is positive for high

M and negative for small M , by Steps 1 and 2. Next, I’ll show that the shift-difference is

monotone, ensuring a single-crossing. Differentiate the shift-difference in M to get:

∂(ϕDM − ϕSM)

∂M
=

∫ (
Vφ

MVφφ

)(

Vφφφ̂M
Vφ

−
1

M
−
Vφφφφ̂M
Vφφ

)

+

(

φ̂M
M

+
1− φ̂

M2

)

dG

=

∫
[(

φ̂M
M

Vφ
Vφφ

)(
Vφφ
Vφ

−
1

Mφ̂M
−
Vφφφ
Vφφ

+
Vφφ
Vφ

)

+
1− φ̂

M2

]

dG

=

∫
[

−

(

φ̂M
M

Vφ
Vφφ

)(
Vφφφ
Vφφ

−
Vφφ
Vφ

)

+
1− φ̂

M2

]

dG > 0,

where I used observation (⋆)-(ii) for the last equality. Now, the inequality holds since

φt, Vφ, Vφφ ≥ 0, and Vφ is log-concave in φ (and so Vφφφ/Vφφ ≤ Vφφ/Vφ) and φ̂ < 1.

Finally, because the shift-difference is negative for small stakes (Step 1), is positive for

high stakes (Step 2), and the shift-difference is monotone (Step 3), there exists a unique

intermediate stake such that the attempted crime rate rises if and only if stakes are below
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this critical vale. In other words, the attempted crime rate α∗ is hump-shaped in M . �

Claim A.4. If demand D is sufficiently elastic for some stakeM , then the equilibrium crime

rate κ∗ initially rises and eventually falls as the stake rises.

Proof: First, recall that if D is sufficiently elastic for high M , then α∗ is decreasing in M by

Claim A.2. Next, since the failure rate ϕ∗ is increasing inM (by Claim A.1), the success rate

1−ϕ∗ is decreasing in M . So, for high enough stakes, the crime rate κ∗ = α∗(1−ϕ∗) is falls

in M , since it is the product of two decreasing functions. Now, for small stakes, α∗=ϕ∗=0,

and so κ∗=0. Finally, since κ∗ is strictly positive otherwise, κ∗ must initially rise. �

Claim A.5. Potential victims with low cost ξ respond with more vigilance than those with

high cost, as stakes M rises.

Proof: Call α∗(M) the equilibrium attempted crime rate for stakes M , and φ̂(α∗(M),M |ξ)

the optimal failure rate for type ξ when the stake isM and the attempted crime rate α∗(M).

Step 1: The individual failure rate φ̂(α∗(M),M |ξ) rises in M . To see this,

differentiate φ̂(α∗(M),M |ξ) in M to get:

dφ̂

dM
= φ̂α(α

∗(M),M |ξ)
dα∗

dM
+ φ̂M(α∗(M),M |ξ). (20)

Next, log-differentiate the FOC (3) in α and in M to respectively get φ̂α = Vφ/(αVφφ) > 0

and φ̂M = Vφ/(MVφφ) > 0. Thus, φ̂M = (α/M)φ̂α and so (20) can be written as:

dφ̂

dM
= φ̂α(α

∗(M),M |ξ)α∗(M)

(
dα∗

dM
·
1

α
+

1

M

)

.

I now argue that
(
dα∗

dM
· 1
α
+ 1

M

)
> 0 and so dφ̂

dM
> 0, since φ̂α > 0. Indeed, by Claim A.2,

ϕ∗(M) rises in M , i.e.,

dϕ∗(M)

dM
=

∫
dφ̂

dM
dG(ξ) > 0.

This implies that
(
dα∗

dM
· 1
α
+ 1

M

)
> 0. If not, then dφ̂

dM
≤ 0 for all types ξ since φ̂α > 0. But

then dϕ∗(M)
dM

=
∫

dφ̂

dM
dG(ξ) ≤ 0, a contradiction.

Step 2: φ̂α(α,M |ξ) is decreasing in ξ. To see this, use expression (16) to get:

φ̂αξ

φ̂α
=
Vφφφ
Vφφ

·
Vφξ
Vφφ

−
Vφφξ
Vφφ

= −
Vφξ
Vφφ

(
Vφφξ
Vφξ

−
Vφφφ
Vφφ

)

.
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Next, I show that
(
Vφφξ
Vφξ

−
Vφφφ
Vφφ

)

> 0 and so φ̂αξ < 0, since φ̂α > 0 and Vφξ, Vφφ > 0 by

assumption. Indeed, add and subtract
Vφφ
Vφ

to
(
Vφφξ
Vφξ

−
Vφφφ
Vφφ

)

to get:

Vφφξ
Vφξ

−
Vφφφ
Vφφ

=

(
Vφφξ
Vφξ

−
Vφφ
Vφ

)

+

(
Vφφ
Vφ

−
Vφφφ
Vφφ

)

.

Now, notice that the left parenthesized term is positive because Vφ is log-supermodular in

(φ, ξ), whereas the right parenthesized one is also positive because Vφ is log-concave in φ.

Step 3: d2φ̂

dMdξ
< 0. By Steps 1 and 2:

d2φ̂

dMdξ
= φ̂αξ(α

∗(M),M |ξ)α∗(M)
︸ ︷︷ ︸

<0

(
dα∗

dM
·
1

α
+

1

M

)

︸ ︷︷ ︸

>0

< 0.

In other words, after an increase in the stakes of crime M , high cost individuals raise their

vigilance less than low cost ones. �

A.10 Depicting Potential Victims’ Welfare Losses

Use the FOC (3) and that φ̂(0|ξ) = 0 = Vφ(0|ξ) to get:

v∗ =

∫ 1

0

V (φ̂(α∗|ξ)|ξ)dG(ξ) =

∫ 1

0

(∫ α∗

0

Vφ(φ̂(α|ξ)|ξ)φ̂α(α|ξ)dα

)

dG(ξ)

=

∫ 1

0

∫ α∗

0

αMφ̂α(α|ξ)dαdG(ξ).

Now integrate by parts to get:
∫ α∗

0
αφ̂α(α|ξ)dα = α∗φ̂(α∗|ξ)−

∫ α∗

0
φ̂(α|ξ)dα. Therefore,

v∗/M =

∫ 1

0

∫ α∗

0

αφ̂α(α|ξ)dαdG(ξ) =

∫ 1

0

α∗φ̂(α∗|ξ)dG(ξ)−

∫ 1

0

∫ α∗

0

φ̂(α|ξ)dαdG(ξ)

=

∫ 1

0

α∗φ̂(α∗|ξ)dG(ξ)−

∫ α∗

0

∫ 1

0

φ̂(α|ξ)dG(ξ)dα = α∗ϕ∗ −

∫ α∗

0

D(α)dα

=

∫ α∗

0

[ϕ∗ −D(α)]dα =

∫ α∗M

0

[ϕ∗ −D(α̃/M)]dα̃/M,

where I have changed variables so that α̃ = αM , and used Fubini’s Theorem to exchange the

double integral. Altogether, v∗ =
∫ α∗M

0
[ϕ∗ −D(α)]d(αM), namely, vigilance expenditures v∗

equals the area below equilibrium failure rate ϕ∗ and above the demand D(α). �
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A.11 The Victim-Optimal Levels of Crime and Vigilance

First, notice that the optimal failure rate ϕo must be positive, since raising ϕ from zero is

costless at the margin, as Vφ(0|ξ) = 0 for all ξ and MS(0) < 0. Also, ϕo < 1, since a

marginal drop of ϕ from ϕ = 1 has no marginal impact on the crime rate, i.e, MS(1) = 0.

Thus, the optimal failure rate is positive and imperfect, i.e., ϕo ∈ (0, 1), and so it solves the

FOC:

S(ϕ0)M − S ′(ϕo)(1− ϕo)M =

∫ 1

0

Vφ(φ̂
o(ϕo|ξ)|ξ)φ̂Iϕ(ϕ

o|ξ)dG(ξ).

Next, by the definition of φ̂o,
∫ 1

0
φ̂o(ϕ|ξ)dG(ξ) = ϕ and so

∫ 1

0
φ̂0
ϕ(ϕ|ξ)dG(ξ) = 1. Also,

Vφ(φ̂
o(ϕ|ξ)|ξ) = D−1(ϕ)M , again by construction of φ̂o. Thus, the above FOC simplifies

to (8). The attempted crime rate is the mass of potential criminals that attempt a crime

when ϕ = ϕo, namely, S(ϕo), and the individual failure rates obey φ̂o(ϕo|ξ) for all ξ.

Finally, since E1−ϕ(f) ≥ −2, the crime rate S(ϕ)(1 − ϕ) is convex in ϕ, and so is the

program (7), as D−1(ϕ) is increasing in ϕ. So, (ϕo, αo, φ̂o) solves the planner’s problem. �

A.12 The Inefficiency Gap: Proof of Proposition 6 Finished

Optimal Vigilance. Differentiate the objective function (7) in ℓ, using (5), to get:

Sℓ(ϕ)(1 − ϕ)M = −f [(1 − ϕ)M − ℓ](1 − ϕ)M . Next, differentiate this latter expression

in ϕ to obtain,

f ′[(1− ϕ)M − ℓ](1− ϕ)M2 + f [(1− ϕ)M − ℓ]M = f(c̄(ϕ))(E1−ϕ(f) + 1)M.

So the objective function is submodular in (ϕ, ℓ) iff E1−ϕ(f(c̄)) ≤ −1. Thus, by Topkis

(1998), the minimizer ϕo rises as ℓ rises iff E1−ϕ(f(c̄)) ≤ −1.

Next, notice that (i) if [(c+ ℓ)f(c)]′ ≤ 0, then (c+ ℓ)f ′(c)/f(c) ≤ −1 and so at c = c̄:

E1−ϕ(f(c̄)) =
f ′[(1− ϕ)M − ℓ](1− ϕ)M

f [(1− ϕ)M ]
=
f ′(c̄)(c̄+ ℓ)

f(c̄)
≤ −1,

where I used the definition of c̄(ϕ) below (2). Thus, the minimizer ϕo rises as ℓ rises. Finally,

following the same logic, (ii) if [(c+ℓ)f(c)]′ ≥ 0, then (c+ℓ)f ′(c)/f(c) ≥ −1 and so at c = c̄:

E1−ϕ(f(c̄)) =
f ′[(1− ϕ)M − ℓ](1− ϕ)M

f [(1− ϕ)M ]
=
f ′(c̄)(c̄+ ℓ)

f(c̄)
≥ −1.

Therefore, ϕo falls as ℓ rises, by the previous arguments.

Inefficiency Gap. Now, I address the claims regarding the inefficiency gap. Part (i) is
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proved in the main text.

Part (ii): Differentiate the right side of (9) to get:

∂E1−ϕ(S)

∂ℓ
=

∂

∂ϕ

(
f(1− ϕo)M

F

)
∂ϕo

∂ℓ
︸ ︷︷ ︸

(♣)

+
∂

∂ℓ

(
f(1− ϕo)M

F

)

︸ ︷︷ ︸

(♠)

.

Next, I note that (♣) is positive. Indeed, after some algebra:

∂

∂ϕ

(
f(1− ϕo)M

F

)

= −E1−ϕ(S)M

(
f ′

f
−
f

F
+

1

(1− ϕo)M

)

< 0,

where the inequality follows as −E1−ϕ(S)M < 0 and

f ′

f
−
f

F
+

1

(1− ϕo)M
>
f ′

f
−
f

F
+

1

(1− ϕo)M − ℓ
≥ 0.

The last inequality holds since (f/F )c is monotone in c. Thus, (♣) > 0, since the ∂ϕo/∂ℓ < 0

as previously argued. Next, (♠) is positive, since (f/F ) is decreasing in c and so increasing

in ℓ. Altogether, the relative excess of demand rises as punishment rises, given (9). �

B Minimizing the Social Costs of Crime

Suppose the planner’s goal is to minimize the social costs of crime (6). The planner can

minimize social costs by choosing an average failure rate ϕsc ∈ [0, 1], individual demands

φ̂o(ϕsc|ξ), and an attempted crime rate αsc = S(ϕsc), where ϕsc solves:

min
ϕ∈[0,1]

S(ϕ)(1− ϕ)M +

∫ 1

0

V (φ̂o(ϕ|ξ)|ξ)dG(ξ)−

∫ (1−ϕ)M−ℓ

0

F (c)dc. (21)

As argued in §7, the last term in (21) equals total criminal profits. To have a convex program,

I assume that the density elasticity E1−ϕ(f) ≥ −1 for c = c̄(ϕ). This condition holds if the

cost distribution F is either convex or not too concave.

Next, notice that the average failure rate ϕsc must be interior. Indeed, differentiate the

objective function (21) in ϕ and evaluate it at ϕ = 0 and ϕ = 1. In the former case, the

marginal returns of raising ϕ from ϕ = 0 are negative and equal to S ′(0)M < 0. In the

latter case, the absolute marginal returns of lowering ϕ from ϕ = 1 are positive and equal
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to D−1(1) > 0. Thus, ϕsc ∈ (0, 1) and is characterized by the FOC:

S(ϕsc)− S ′(ϕsc)(1− ϕsc) = D−1(ϕsc) + S(ϕsc). (22)

Comparing (8) and (22), one can deduce that ϕsc < ϕo, namely, the planner elects a

lower failure rate compared to the level that minimizes potential victims’ losses. Thus,the

attempted crime rate αsc > αo and individual vigilance φ̂o(ϕsc|ξ) < φ̂o(ϕo|ξ) for all ξ.

Could ϕsc be lower than its equilibrium counterpart ϕ∗? Since the excess of supply

S(ϕ)− D−1(ϕ) vanishes when ϕ = ϕ∗, the social cost minimizer ϕsc < ϕ∗ if and only if ϕsc

induces excess of supply, or S(ϕsc)−D−1(ϕsc) > 0. By (22),

S(ϕsc)−D−1(ϕsc) = S(ϕsc) + S ′(ϕsc)(1− ϕsc) = S(ϕsc) (1− E1−ϕ(S)) .

Thus, ϕsc induces excess of supply if, at the optimum, the supply elasticity with respect to

the success rate is low enough, i.e., E1−ϕ(S) < 1. Conversely, ϕsc induces excess of demand

if this elasticity is high enough, E1−ϕ(S) > 1.

Proposition B.0.1. (i) If F is sufficiently concave, i.e. F (c)/(c + ℓ) is decreasing in c,

then the social cost minimizer ϕsc < ϕ∗; (ii) If F is convex, or not too concave, namely, if

F (c)/(c+ ℓ) is increasing in c, the social cost minimizer ϕsc > ϕ∗.

Proof: For proving (i) and (ii), I exploit the fact that E1−ϕ(S) = (c̄ + ℓ)f(c̄)/F (c̄), where

c̄ = (1−ϕsc)M − ℓ. Part (i): Log-differentiate F (c)/(c+ ℓ) in c to get, f(c)
F (c)

− 1
c+ℓ

≤ 0, where

the inequality follows since F (c)/(c+ ℓ) falls in c. Next, rearrange this inequality to obtain

(c+ ℓ)f(c)/F (c) ≤ 1. Thus, E1−ϕ(S) ≤ 1 and so ϕsc < ϕ∗.

Part (ii): If F is convex, the secant F (c)/c is increasing, and so (c + ℓ)f(c)/F (c) ≥

cf(c)/F (c) ≥ 1, implying the desired conclusion. �

C The Observable Vigilance Case

Claim C.1. The failure rate function φ̃ is submodular in (φ, ξ), i.e., φ̃vξ ≤ 0.

Proof: Log-differentiate φ̃v(v, ξ), using (10), to get:

φ̃vξ

φ̃v
= −

(
Vφφ
Vφ

φ̃ξ +
Vφξ
Vφ

)

= −

(
Vφφ
Vφ

−Vξ
Vφ

+
Vφξ
Vφ

)

= −
Vξ
Vφ

(

−
Vφφ
Vφ

+
Vφξ
Vξ

)

.
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Now, notice that the above parenthesized term is positive,

−
Vφφ
Vφ

+
Vφξ
Vξ

=

(
Vφ
V

−
Vφφ
Vφ

)

+

(
Vφξ
Vξ

−
Vφ
V

)

≥ 0,

as V is log-concave in φ and log-supermodular in (φ, ξ). Thus, φ̃vξ ≤ 0, as φ̃v, Vξ, Vφ > 0. �

Before proving Proposition 7, slightly abuse notation and rewrite victims’ losses (1) as:

L(ξ, ξ̂, v|α̃) ≡ α̃(v, ξ̂)(1− φ̃(v, ξ))M + v.

for v ≥ 0 and ξ, ξ̂ ∈ [0, 1], and α̃(·) ≥ 0 with α̃v, α̃ξ̂ 6= 0.

C.1 Equilibrium Characterization: Proof of Proposition 7

Step 1: The failure rate φ̃(χ(ξ), ξ) is constant for all ξ ∈ [0, 1]. First, I show

that there is no interval for which φ̃ is strictly monotone. By contradiction, suppose that,

given χ, the failure rate function φ̃ is strictly monotone for types ξ ∈ [ξ′, ξ′′] with ξ′′ > ξ′.

WLOG assume φ̃ is strictly increasing in this set. Then, if ξ′ attracts no criminals, then so

does ξ ∈ [ξ′, ξ′′]; thus, all types would want to mimic the type that chose the lowest vigilance

level. Now, if ξ′ does attract criminals, then any type ξ ∈ (ξ′, ξ′′] does not (as φ̃ is strictly

increasing); therefore, any type ξ ∈ (ξ′, ξ′′] is better off imitating a type that attracts no

criminal and elects vigilance strictly less than χ(ξ).

Now, I show that φ̃(χ(ξ), ξ) must be continuous in [0, 1]. Suppose that φ̃ is discontinuous,

and call ξ1 ∈ [0, 1] its first discontinuity point. As previously argued, φ̃ must be constant

for all ξ 6= ξ1 in a neighborhood of ξ1. WLOG suppose that φ̃(χ(ξ1), ξ1) > φ̃(χ(ξ0), ξ0) for

ξ0 6= ξ1 in this neighborhood, and ξ0 arbitrarily close to ξ1. Now, since φ̃ is continuous, χ

must be discontinuous at ξ1, with ǫ ≡ χ(ξ1)−χ(ξ0) > 0. Clearly, the losses of ξ1 are χ(ξ0)+ǫ,

whereas the losses for ξ0 are α̃(χ(ξ0), ξ0)(1−φ̃(χ(ξ0), ξ0))M+χ(ξ0). So, if ǫ ≥ α̃(χ(ξ0), ξ0)(1−

φ̃(χ(ξ0), ξ0))M , ξ1 is better off imitating ξ0; otherwise, ξ0 is better off imitating ξ1.

Altogether, there exists a failure rate ϕ̃ ∈ (0, 1) with χ(ξ) ≡ V (ϕ̃|ξ) > 0 with φ̃(χ(ξ), ξ) =

ϕ̃ for all ξ ∈ [0, 1].46 As a byproduct, vigilance χ(·) is strictly increasing in ξ, as Vξ(ϕ̃|·) > 0.

Step 2: The attempted crime rate function α̃ solves (12) and the ODE (11).

First, the ODE. In a separating equilibrium, incentive compatibility (13) requires L(ξ, ξ, χ(ξ)|α̃) ≤

L(ξ, χ−1(v), v|α̃) for all types ξ ∈ [0, 1], and vigilance v ∈ χ([0, 1]). But, since χ is one-to-one,

46If ϕ̃ = 0 then χ(ξ) = 0 for all ξ, and so a separating equilibrium cannot be sustain. Likewise, if ϕ̃ = 1,
all victims face no property losses; thus, each victim has incentives to deviate from χ(·) = V (1|·).
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for each v ∈ χ([0, 1]) there is a unique ξ̂ = χ−1(v) ∈ [0, 1], and so (13) can be rewritten as:

ξ ∈ argmin
ξ̂∈[0,1]

α̃(χ(ξ̂), ξ̂)(1− φ̃(χ(ξ̂), ξ))M + χ(ξ̂),

for all ξ ∈ [0, 1]. Thus, the first-order condition FOC, evaluated at ξ̂ = ξ, must hold:

[

α̃v(χ(ξ), ξ) + α̃ξ̂(χ(ξ), ξ)
1

χ′(ξ)

]

(1− φ(χ(ξ), ξ))M − α̃(χ(ξ), ξ)φv(χ(ξ), ξ)M + 1 = 0.

Now, use (10) to substitute φv, and multiply both sides of the above first-order condition by

Vφ(ϕ̃|ξ) to get (11), where χ(ξ) = V (ϕ̃|ξ). Finally, in equilibrium, α̃ and ϕ̃must be consistent

with criminal optimization, namely, the market clearing condition (12) must hold.

Step 3: The attempted crime rate function α̃ is strictly decreasing. First,

since ξ̂ = ξ minimizes expected losses L(ξ, ξ̂, χ(ξ̂)|α̃) over ξ̂ ∈ [0, 1], the following second-

order condition, evaluated at ξ̂ = ξ, must hold:

(♣) = Lξ̂ξ̂(ξ, ξ, χ(ξ))+ 2Lvξ̂(ξ, ξ, χ(ξ))χ
′(ξ) +Lξ̂(ξ, ξ, χ(ξ))χ

′′(ξ) +Lvv(ξ, ξ, χ(ξ))[χ
′(ξ)]2 ≥ 0

Also, the FOC holds for all ξ ∈ [0, 1], and so Lξ̂(ξ, ξ, χ(ξ)) + Lv(ξ, ξ, χ(ξ))χ
′(ξ) ≡ 0. Differ-

entiating the above identity with respect to ξ yields:

(♣) + Lξ̂ξ̂(ξ, ξ, χ(ξ)) + Lvξ(ξ, ξ, χ(ξ))χ
′(ξ) = 0.

Therefore, since (♣) ≥ 0 by the second-order conditions,

0 ≥ Lξ̂ξ̂(ξ, ξ, χ(ξ)) + Lvξ(ξ, ξ, χ(ξ))χ
′(ξ) (23)

= −[α̃ξ̂(χ(ξ), ξ)φ̃ξ(χ(ξ), ξ) + α̃v(χ(ξ), ξ)φξ(χ(ξ), ξ)χ
′(ξ) + α̃(χ(ξ), ξ)φvξ(χ(ξ), ξ)χ

′(ξ)].

But, since φ̃vξ < 0 < χ′, the immediately above inequality implies:

α̃ξ̂(χ(ξ), ξ)φ̃ξ(χ(ξ), ξ) + α̃v(χ(ξ), ξ)φξ(χ(ξ), ξ)χ
′(ξ) > 0.

Finally, because φ̃ξ < 0, the immediately above inequality reduces to:

dα̃(χ(ξ), ξ)

dξ
= α̃v(χ(ξ), ξ)χ

′(ξ) + α̃ξ̂(χ(ξ), ξ) < 0.

That is, α̃(χ(ξ), ξ) must be strictly decreasing in ξ.
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Step 4: The attempted crime rate function α̃ vanishes at ξ = 1. By contradiction,

suppose α̃(χ(1), 1) > 0. If type ξ = 1 deviates and chooses vd = χ(1) + ǫ, with 0 < ǫ <

α̃(χ(1), 1)(1− ϕ̃)M , then potential criminals, after observing vd, would expect an associated

failure rate that is higher than the equilibrium one, since for any inference ξ̂:

φ̃(vd, ξ̂) ≥ φ̃(vd, 1) = φ̃(χ(1) + ǫ, 1) > φ̃(χ(1), 1) = ϕ̃.

Thus, no criminal would target potential victims choosing vd. This deviation is also prof-

itable, as L(1, 1, χ(1)|α̃) > χ(1) + ǫ. Thus, in equilibrium, α̃(χ(1), 1) = 0. �

C.2 The Envelope Formula and Sufficient Conditions

Claim C.2. Consider an equilibrium (χ(·), α̃(·)). Then, potential victims’ equilibrium losses

L(ξ, ξ, χ(ξ)|α̃) are strictly increasing in type ξ and obey the envelope formula:

L(ξ, ξ, χ(ξ)|α̃) = χ(1) +

∫ 1

ξ

α̃(χ(t), t)φ̃ξ(χ(t), t)Mdt. (24)

Proof: First, since φ̃(v, ·) is differentiable for all v > 0, it follows that Lξ(ξ, ξ̂, χ(ξ̂)) =

−α̃(χ(ξ̂), ξ̂)φ̃ξ(χ(ξ̂), ξ)M < −α̃(χ(0), 0)φ̃ξ(χ(1), ξ)M , where the inequality holds as α̃ is

strictly decreasing (Proposition 7), φ̃ξ(v, ξ) strictly decreasing in v (Claim C.1), and χ′ > 0

(Proposition 7). Next,
∫ 1

0
−α̃(χ(0), 0)φ̃ξ(χ(1), ξ)dξ= α̃(χ(0), 0)[φ̃(χ(1), 0)− φ̃(χ(1), 1)]<∞.

Finally, the envelope formula (24) holds, by Theorem 2 in Milgrom and Segal (2002). �

Proposition C.2.1. Consider a pair (χ, α̃), satisfying the necessary conditions of Proposi-

tion 7. If, in addition, (χ, α̃) obeys formula (24), the candidate pair (χ, α̃) is an equilibrium.

Proof: It is enough to show that, given (χ, α̃), potential victims have no incentives to deviate

on the equilibrium path. Pick arbitrary ξ, ξ̂ ∈ [0, 1]. Using formula (24):

L(ξ, ξ̂, χ(ξ̂)|α̃) = L(ξ̂, ξ̂, χ(ξ̂)|α̃) + α̃(χ(ξ̂), ξ̂)[φ̃(χ(ξ̂), ξ̂)− φ̃(χ(ξ̂), ξ)]M

= L(ξ, ξ, χ(ξ)|α̃)−

∫ ξ̂

ξ

α̃(χ(t), t)φ̃ξ(χ(t), t)Mdt + α̃(χ(ξ̂), ξ̂)[φ̃(χ(ξ̂), ξ̂)− φ̃(χ(ξ̂), ξ)]M

= L(ξ, ξ, χ(ξ)|α̃)−

∫ ξ̂

ξ

α̃(χ(t), t)φ̃ξ(χ(t), t)Mdt + α̃(χ(ξ̂), ξ̂)

∫ ξ̂

ξ

φ̃ξ(χ(ξ̂), t)Mdt

︸ ︷︷ ︸

(⋆)

Notice that (⋆) ≥ 0 because the map t 7→ α̃(χ(t), t)φ̃ξ(χ(t), t
′) is increasing for all t′ ∈ [0, 1],

by inequality (23). Thus, L(ξ, ξ, χ(ξ)|α̃) ≤ L(ξ, ξ̂, χ(ξ̂)|α̃), and so χ is incentive compatible
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given α̃, i.e., condition (13) holds. �

D Vigilance and Policing as Complements

The baseline model assumes that the events that the criminal fails and the criminal is

captured are statistically independent. I now relax this assumption. Suppose that the

probability of capture is ph if the criminal fails (e.g., an alarm turned on and police became

more aware of the incident) and pl < ph if the criminal succeeds. (The baseline model

assumes ph = pl = p.) Recalling that x denotes the legal penalty when the criminal is

apprehended, the expected criminal payoff (2) turns to:

ϕ[−phx+ (1− ph)0] + (1− ϕ)[pl(M − x) + (1− pl)M ]− c,

which is equal to:

(1− ϕ)M − (ϕph + (1− ϕ)pl)x− c,

where ϕph+(1−ϕ)pl reflects the expected probability of capture. All told, the supply curve (5)

turns to:

S(ϕ) = F [(1− ϕ)M − (ϕph + (1− ϕ)pl)x].

Differentiating S in ϕ shows that the supply curve remains downward sloping:

S ′(ϕ) = F ′[·](−M − (ph − pl)x) = −F ′[·](M + (ph − pl)x) < 0.

Thus, the qualitative findings of this paper remain valid. Now, one may wonder about the

effects on the levels of crime and vigilance. If apprehending criminals is more likely when

the vigilance and policing are complements, i.e. ϕph + (1 − ϕ)pl > p, then the new supply

curve is below the one in which there are no complementarities, because

F [(1− ϕ)M − (ϕph + (1− ϕ)pl)x] < F [(1− ϕ)M − px)].

Because demand D is upward sloping, the new equilibrium entails fewer attempted crimes α

but a greater success rate 1−ϕ, relative to the benchmark case. The crime rate κ = (1−ϕ)α

could rise or fall depending on the demand elasticity, as discussed in §5. Altogether, the

resulting model would be isomorphic to a model with no complementarities but with a

higher probability of capture (i.e., higher ℓ).
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