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Abstract

In this paper, we examine strategic settings in which players have interdependent

preferences. Players’ utility functions depend not only on the strategy profile being

played, but also on the realized utilities of other players. Thus, players’ realized utilities

are interdependent, capturing the psychological phenomena of affective empathy and

emotional contagion. We offer a solution concept for these empathetic games and

show that the set of equilibria is non-empty and, generically, finite. Motivated by

psychological evidence, we then analyze sympathetic and antipathetic games. In the

former, players’ utilities increase in others’ realized utilities, capturing unconditional

friendship; in the latter, the opposite holds, resembling hostility.
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1 Introduction

In this paper, we analyze a novel class of games with interdependent utilities by considering

players I whose primitive utility functions, say U ≡ (Ui)i∈I , depend on the strategy profile

s ∈ S being played and also on the realized utilities of others u−i. An empathetic game is

a structure 〈I,S,U〉. For every strategy profile s ∈ S, players’ realized utilities (ui)i∈I solve

the interdependent utility system — namely, ui(s) = Ui(s, u−i(s)) for all i ∈ I. This type of

utility-interdependence, also known as non-paternalistic preferences,1 has been used to model

(pure) altruism in a variety of settings, ranging from the economics of the family (Becker,

1974; Ray, 1987; Bernheim, 1989; Bergstrom, 1997, 1999; Galperti and Strulovici, 2017)2 to

social networks (Bourlès et al., 2017).3 More recently, Ray and Vohra (2019) consider non-

paternalistic preferences to explore strategic settings with “payoff-based externalities,” in

which a player’s payoff depends on her own action and the realized payoffs of other players.

However, important formal features of this framework have been neglected by the lit-

erature. Most papers assume that the utility-interdependence either has a linear structure

or satisfies a contraction condition, forcing unique realized utilities at any strategy profile

or unique reduced-form preferences over outcomes.4 Thus, in all these instances, one can

perform equilibrium analysis by applying standard solution concepts to the induced reduced-

form game.5 In more general settings, little is known about what happens if feedback effects,

captured by the interdependent utility system U , do not induce unique reduced-form prefer-

ences over outcomes. In such cases, standard game-theoretic solution concepts, such as the

Nash equilibrium, are inapplicable. In general, it is unclear how to systematically embed

non-paternalistic preferences in strategic settings or how to perform equilibrium analysis.

In this paper, we examine empathetic games with general utility interdependences. To

this end, we first augment the basic game-theoretic framework to encompass settings with

general utility systems U . Specifically, our conceptual contribution begins by endowing

1As Ray and Vohra (2019) stated, “. . . we might derive our happiness or hatred directly from the extent

to which others are enjoying themselves, and not from how they are doing so” (p. 1).
2For example, in an intertemporal allocation context with multiple generations, each generation

may care about its own consumption and the well-being of other generations (Koopmans, 1960;
Saez-Marti and Weibull, 2005; Pearce, 2008).

3Non-paternalistic preferences have also been used in other contexts, including national savings (Ramsey,
1928; Phelps and Pollak, 1968), public finance (Barro, 1974), economic growth (Bernheim, 1989), and envi-
ronmental economics (Dasgupta, 2008).

4For instance, Pearce (2008) invoked Hawkins-Simon conditions on the system of marginal utilities to
ensure the existence and uniqueness of a reduced-form utility profile with intuitive comparative statics.
Likewise, Ray and Vohra (2019) focused on coherent games, where coherence is a weaker condition (on the
interdependent utility system U) that yields a unique and “stable” vector of payoffs at every action profile.

5See Bergstrom (1989); Bernheim and Stark (1988); Lindbeck and Weibull (1988); Fels and Zeckhauser
(2008); Pearce (2008); Bourlès et al. (2017); Courty and Engineer (2017); Ray and Vohra (2019).
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players with beliefs regarding other players’ realized utilities. Next, we require these beliefs

to be consistent with the underlying interdependent utility system U . This means that,

for any strategy profile s, individual beliefs about others’ utilities can be rationalized by a

solution for this utility system. Formally, for any strategy profile s, players’ realized utilities

solve ui(s) = Ui(s, u−i(s)) for all i ∈ I. Finally, an equilibrium is a pair containing a strategy

profile and beliefs such that the strategies are mutual best responses, given consistent beliefs.

We then offer technical contributions for an arbitrary empathetic game. Because emo-

tional feedback among players can cause emotional synchronization to explode, we first tackle

the questions of existence, (generic) finiteness, and robustness. We establish that under mild

technical conditions on the utility functions — namely, smoothness and boundedness — an

equilibrium exists and, typically, there is a finite number of them (Proposition 1). Thus, our

solution concept puts enough discipline on the endogenous variables, ensuing tight predic-

tions. Proving generic finiteness demands novel mathematical arguments and is our primary

technical contribution. Finally, we show that, although our belief consistency condition re-

quires players to know which solution of the utility system U is realized at any profile in

and out of equilibrium, relaxing this requirement for the latter has no impact on equilibrium

outcomes (Proposition 2). These results provide a fundamental step for building a useful

framework to perform an equilibrium analysis of empathetic games in general settings.

Next, we proceed to characterize equilibrium outcomes. In general, the emotional feed-

back effects among players can lead to multiple consistent realized utilities for some strategy

profiles. For instance, without changes in behavior, an “emotional contagion” process may

lead players to either “happiness” or “misery,” depending on the strength of the feedback

effects. As a result, computing equilibria directly from the definition is, generally, difficult.

We introduce an auxiliary maxmin utility function for each player that depends only on

strategy profiles. These functions give players their best-response utility assuming they have

“pessimistic” beliefs, meaning that whenever their realized utilities take multiple values they

believe their lowest utility will be realized. We show that an outcome is an equilibrium if and

only if (a) players’ realized utilities are at least their maxmin utility level, and (b) realized

utilities are constant across pure strategies played with positive chance (Proposition 3).

We then study how pre-existing relationships among individuals affect how they perceive

and experience the emotions of others. According to De Waal (2008), empathy can manifest

as either sympathy or antipathy, affecting the emotional contagion process. Our framework

allows us to capture relationships by specifying how the primitive utility functions U are

affected by others’ realized utilities. In sympathetic games, the utility function of each

player rises in others’ utilities, capturing, e.g., unconditional friendship or love. We find

that sympathy, such as love, can indeed lead to perverse outcomes, such as misery for all
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parties involved. Specifically, in sympathetic games, players realized utilities are positively

related and prone to take multiple ordered values. Multiplicity, generically, occurs provided

players care less about others as they become more happy, i.e., when marginal sympathy is

diminishing. A novel source of social inefficiency is prone to emerge here, for even if players

choose a strategy profile that potentially maximizes social welfare, their realized utilities may

self-reinforce in an inefficient way. By means of example, we show that, because sympathy

can lead to misery, a pair of sympathetic players may prefer to remain unmatched to prevent

such an outcome. Thus, a successful partnership seems to require an outset mechanism to

reduce this self-reinforcing “social anxiety.” These insights are consistent with psychological

evidence,6 which indicates that, although love brings happiness, it may also bring misery

and anxiety. In fact, individuals attracted to one another appear to be more inclined to

experience social anxiety. Altogether, love does not imply happiness, and the old adage that

“misery loves company” appears to hold true.

By contrast, in antipathetic games players’ utilities fall in those of others, resembling,

e.g., unconditional antagonism and hostility. In two-player antipathetic games, the emo-

tional contagion process causes realized utilities to be negatively related. Unlike sympathetic

games, social inefficiencies here stem from the suboptimal choice of players’ strategies. In

one example, we see that matching two players who dislike one another can be supported

in equilibrium provided that their emotions are neutralized so that no one can benefit from

the dissatisfaction of the other, which seems to be in line with anecdotal evidence.

Outline. We organize the rest of the paper as follows. In §2, we provide a novel psycho-

logical foundation for non-paternalistic preferences and further motivation for our analysis.

Then we set up the model and provide examples in §3 and analyze general empathetic games

in §4. Next, we characterize equilibrium outcomes in §5 and study sympathetic and antipa-

thetic games in §6. Section §7 relates our framework to other interdependent utility models,

and §8 concludes. Omitted proofs and supplemental material are in the Appendix.

2 Psychological Foundations

The type of preferences that we study in this paper capture the psychological phenomena of

affective empathy and emotional contagion among individuals. Let us explain this assertion.

Empathy, a neurological process that is deeply rooted in our brains,7 is the innate capacity

to experience the feelings of others and is an essential building block of social interactions.8 It

6See www.psychologytoday.com/us/blog/happiness-design/201502/will-love-make-you-happy.
7According to social psychology, empathy evolved as a proximate reward mechanism for pro-social be-

havior (e.g., mutual defense) in order to increase the evolutionary fitness of a given group (Batson, 2011).
8Human empathy lies at the center of Adam Smith’s “theory of moral sentiments” (Smith, 1822).
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is associated with mirror neurons that fire when individuals face emotional stimuli, sparking

emotional feedback and contagion.9 Recent research studies have found that empathy is a

fundamental driver of altruism (see, e.g., De Waal, 2008).

Social psychology broadly classifies empathy into two types: cognitive and affective.

Cognitive empathy is a neural ability to rationally recognize others’ intentions, beliefs, de-

sires, and objectives, and is related to the so-called “theory of mind.” Cognitive empa-

thy lies implicitly at the heart of game-theoretic models; for example, psychological games

(Geanakoplos et al., 1989) and modern theories of reciprocity (Rabin, 1993) build on the

idea of intention-based preferences. In contrast, affective empathy relates to the automatic

transmission and propagation of emotions in response to others’ emotions.10 Recent research

suggests that the brain processes cognitive empathy and affective empathy in different ways

(Kalbe et al., 2010). Altogether, this evidence indicates that, from an economic perspec-

tive, the type of preferences we consider aims to capture different psychological phenomena,

compared to intention-based preferences. We provide a detailed discussion of the differences

between empathetic games and psychological games in section §7-B.

An important component of affective empathy is emotional contagion. This process is

“. . . relatively automatic, unintentional, uncontrollable, and largely inaccessible to conversant

awareness. . . ” (Hatfield et al., 2014). In other words, affective empathy causes individuals

to, e.g., unconsciously synchronize their own emotions with those of others and, thus, con-

verge emotionally (Hatfield et al., 1993; Singer et al., 2004). Results in social psychology

suggest that emotional convergence may occur very quickly (in less than one second) during

face-to-face interactions (Iacoboni, 2009). From an economic viewpoint, it seems that our

utilities are automatically and unintentionally affected by others’ utilities; thus, using an

interdependent utility system to determine the individuals’ realized utilities makes sense.

Emotional contagion usually emerges in face-to-face interactions, as human beings are

prone to automatically mimic the expressions, vocalizations, postures, and movements of

other people with whom they interact (Hatfield et al., 1993). For instance, when someone

smiles, one tends to spontaneously smile back; likewise, an angry facial expression may

spark an angry expression on another’s face (Hawk et al., 2012). Emotional contagion is

also important in settings in which individuals have pre-existing relationships. When family

members, friends, or foes love, like, hate, or envy one another, their emotions may impact

one another in unexpected ways. The relevance of emotional contagion, however, may also

extend, indirectly, to social interactions with unknown individuals11 because the emotions of

9Neuroscientific studies have shown that the observation of pain experienced by others and the experience
of pain automatically activate similar regions of the brain (Singer et al., 2004; Jackson et al., 2005).

10See, e.g., http://greatergood.berkeley.edu/topic/empathy/definition.
11Recent studies indicate that empathetic responses are also elicited even when scanned subjects do not
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one individual, such as happiness and sadness, may propagate to a larger group of individuals.

This psychological phenomena provides us with further motivation for our definition of

equilibrium described in the following section. In particular, in this paper we think of realized

utilities as the steady states of an emotional contagion process.

3 Games with Affective Empathy

In what follows, for given sets X and Y , recall that Y X is the set of all functions f : X → Y .

Also, for any non-empty set X , the set ∆(X) denotes the set of probability measures on X .

3.1 An Empathetic Game and Equilibrium Concept

We consider a finite set of “empathetic” players I. Each player i ∈ I chooses a strategy si

from a finite set Si. Let s = (si)i∈I be a strategy profile, S = ×i∈ISi the set of all strategy

profiles, and S−i = ×j∈I\{i}Sj the set of strategy profiles excluding player i. For any player i,

a mixed strategy is a probability distribution σi ∈ ∆(Si), and a mixed profile is σ = (σi)i∈I ∈
Σ ≡ ×i∈I∆(Si). A mixed strategy of others excluding player i is σ−i ∈ Σ−i ≡ ×i∈I\{i}∆(Si)

and σ−i(s−i) ≡
∏

j 6=i σj(sj). A utility function to player i is a map Ui : S×R
I\{i} → R, defined

over strategy profiles s ∈ S and other players’ realized utility profiles u−i ∈ R
I\{i}. That is,

each player’s utility function depends not only on the strategy profile being played, but also

on his or her beliefs about the others’ final utilities at that profile. This formulation allows us

to capture the emotional contagion process associated with affective empathy, where players

are affected by the perceived well-being of others. For any profile s, an interdependent utility

system U (s, ·) : RI → R
I denotes the map u 7→ (Ui(s, u−i))i∈I . An empathetic game is a

structure Γ ≡ 〈I,S,U〉.
Notice that since players’ primitive utility functions do not depend exclusively on strategy

profiles, standard solution concepts, such as the Nash equilibrium, cannot be applied here.

To bypass this problem, we endow players with beliefs about others’ final utilities. For any

player i, an empathetic belief is a function ei : S → R
I\{i}, where ei(s) is the realized utility

profile that player i believes her co-players would attain if strategy s was played.

How does the actual utility of player i relate to how others’ conjecture i’s utility? We

follow the rational expectations approach and assume that players’ conjectures must be

consistent with the underlying model structure. Specifically, the perceived utility of player i

must coincide with her actual utility, as in, e.g., Bergstrom (1999). It is useful then to define

know the person in pain; see Singer and Fehr (2005).

5



the set of justifiable utility profiles, or utility set, U(s) ≡ {u ∈ R
I : u = U(s, u)},12 and

say that a profile of beliefs e = (ei)i∈I is consistent if, for any profile s, there exists a utility

profile u(s) ∈ U(s) such that for every player i ∈ I, ei(s) = u−i(s). That is, each player i has

correct beliefs about others’ utilities, given others’ beliefs e−i. So, if profile s is being played

and beliefs are consistent, then player i’s utility obeys: ui(s) = Ui(s, u−i(s)) for u(s) ∈ U(s).

Before defining our equilibrium notion, call UR
i (σ|e) the reduced-form utility of player i,

given profile σ and empathetic beliefs e, where:

UR
i (σ|e) ≡

∑

s∈S

Ui(s, ei(s))σ(s) (1)

Definition 1. A pair (e∗, σ∗) is an equilibrium if:

i) Beliefs e∗ are consistent;

ii) For each player i ∈ I and profile σi ∈ Σi, we have UR
i (σi, σ

∗
−i|e∗) ≤ UR

i (σ
∗|e∗).

As usual, an equilibrium is pure if σ∗ is a degenerate probability distribution. Notice

that realized utilities depend on a solution of the interdependent utility system U , which
is based on realized, not expected, strategies. Also, after any profile of strategies is ob-

served, players have a common equilibrium expectation about which utility profile applies.

Condition i) states that in equilibrium each player correctly infers or perceives others’ util-

ities, given their equilibrium beliefs; thus, beliefs cannot be refuted, given the information

available to each player, and are consistent with the logic of a self-confirming equilibrium

(Fudenberg and Levine, 1993).13 Condition ii) is standard and asserts that σ∗ must be a Nash

equilibrium with respect to reduced-form utilities, given consistent empathetic beliefs e∗.14

To close this section, we discuss our belief consistency condition from a psychological

perspective. As discussed in §2, we can imagine that belief consistency emerges from an

emotional contagion process. This feedback process naturally arises in face-to-face inter-

actions, wherein players “experience” the utility of others through their mimicry or body

language without changing their behavior. This process can be formally described with an

intuitive tatonnement process. Indeed, consider two players, i and j (to ease notational

burden). We venture that player i revises her beliefs upwards if her actual experience of

12In §4, we offer sufficient conditions to ensure that the utility set U(s) is non-empty for every profile s.
13In §4, we consider a weaker notion of consistency that allows players to disagree on the utility profile

that would be attained at non-equilibrium strategies.
14Notice that players have empathetic beliefs over realized — not over expected — utility profiles. So when

a mixed strategy is played, players’ empathetic beliefs do not depend on how players choose to randomize.
Thus, our equilibrium is not an equilibrium of the mixed extension, as is the case in standard games.
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player j’s utility is greater than her current belief. That is,

ėti(s) = Uj(s, e
t
j(s))− eti(s), (2)

for all players i, j and time t ≥ 0. Clearly, empathetic beliefs are at rest if and only if

they satisfy condition ii). In other words, our consistency condition selects a steady state

for process (2). Notice that this justification of belief consistency also applies to mixed

strategies as long as the emotional contagion process occurs at an ex post stage — namely,

after a strategy profile is realized. Finally, in face-to-face interactions, the tatonnement

process (2) combined with experimentation with respect to strategies should allow players

to, eventually, learn their payoffs in order to assess unilateral deviations.

3.2 Two Examples

A. The First-date Game. Anne (a) and Bob (b) simultaneously choose whether to go on

(G) or cancel (C) their first date. If both cancel, their utility is equal to Ui ((C,C) , uj) = 1.

If one of the players goes, the “stood up” party, say i, gets utility Ui ((C,G) , uj) = −1, which

can be interpreted as an ego penalty, while the “canceling” player j obtains Uj ((C,G) , uj) =

1. Finally, if both players go the date, their face-to-face interaction results in interdependent

utilities with i’s utility being Ui ((G,G), uj) =
√

2uj. This interdependency captures the idea

that players’ happiness level depends on their perceptions of how happy their partners are

and vice-versa. In other words, utilities are interdependent when players choose G and are

independent otherwise (as in these cases there is no face-to-face interaction). We summarize

this game below:

G C
G

√
2ub,

√
2ua −1, 1

C 1,−1 1, 1

What does belief consistency mean in this context? When Anne and Bob choose G, they

form respective beliefs ub and ua about the other’s final utility. If these beliefs are consistent,

they satisfy ua =
√
2ub and ub =

√
2ua. Thus, in principle, strategy profile (G,G) is

consistent with two starkly distinct outcomes. In one outcome, both players may end up with

low utility (0, 0) while in the other they may get (2, 2), namely, U(G,G) = {(0, 0), (2, 2)}.
As mentioned in §1, the emotional contagion process causes players’ utilities to be positively

or negatively reinforced. In particular, Anne derives high utility from the date whenever

Bob derives high utility from it (and vice-versa). This added multiplicity is important to

assess unilateral deviations. If Anne chose G, then Bob’s comparison of G and C would
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be ambiguous, as his utility necessarily depends on how optimistic both players are. In

fact, going on a date, i.e., strategy (G,G), with empathetic beliefs e∗i (G,G) = 2 for every

player i is a pure equilibrium. However, going on a date with pessimistic self-fulfilling beliefs

e∗i (G,G)=0 is not an equilibrium, because in this case cancelling C is a profitable unilateral

deviation. Thus, Definition 1 tells us exactly which strategy profile and pair of consistent

beliefs we shall expect from equilibrium play. Finally, notice that (C,C) is an equilibrium

for any beliefs e∗, whereas σ∗
a = σ∗

b = (2/3, 1/3), where 2/3 is the chance of playing G, with

e∗i (G,G) = 2 for i ∈ {a, b} is the unique, full-support, mixed equilibrium — for beliefs are

consistent, and (σa, σb) is a mixed Nash equilibrium given empathetic beliefs.

Altogether, the multiplicity of consistent beliefs in the previous example shows us that

positive attitudes are necessary if one wants two sympathizing people to match. From a

social viewpoint, matching may be desirable, because agents could engage in productive

behavior, exploiting potential complementarities in their skills. Nevertheless, agents may be

reluctant to match, as they recognize that compassion for another can lead them to misery.

This fear or “social anxiety” may push agents to stay isolated,15 which is an undesirable

equilibrium configuration from a social perspective. Thus, positive mindsets or optimistic

beliefs may drive agents not only to be more productive, but also happier.

B. A Gift-giving Game. Consider a gift-giving game in which player 1 decides whether

to make a monetary transfer to player 2. For simplicity, assume S1 = {0, 1}, namely, player 1

can either transfer one unit (s1 = 1) or nothing (s1 = 0). Transferring one unit costs player 1

a delivery fee φ ∈ (0, 1). Player 2 is passive in that his payoffs depend on player 1’s strategy.

First consider a standard game in which players are incentivized to share wealth through

a warm-glow effect (Andreoni, 1989). Specifically, player 1 derives no utility from his own

consumption, whereas player 2 cares about his and player 1’s final income. We capture

this setting with utility functions U1(s1, s2, u2) = αs1 and U2(s1, s2, u1) = (α − φ)s1, where

α ∈ (0, 1) controls the marginal utility of money to player 2.

In the unique equilibrium, player 1 chooses a full transfer s∗1 = 1 and obtains u∗
1 = α,

whereas player 2 gets u∗
2 = α− φ. This result holds regardless of how much player 2 values

player’s one transfer. Indeed, when the transfer fee is high enough φ > α, player 2 ends up

unhappy with negative utility. Although from player 1’s perspective she is being altruistic in

making the transfer, she does not internalize how her action impacts player 2’s final utility.

Let us now introduce affective empathy into this game. For this end, suppose that

player 1 cares also about player 2’s welfare such that his utility function is U1(s1, s2, u2) =

αs1 + βu2 with β ∈ (0, 1). In this scenario, there is a unique pair of consistent beliefs

15Interestingly, one of the most common anxieties for some people involves relationships with peers to
whom they are attracted; see https://en.wikipedia.org/wiki/Social_anxiety.
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e∗1(s1, s2) = (α − φ)s1 and e∗2(s1, s2) = αs1 + β(α − φ)s1. This empathetic game also has

a unique equilibrium. Player 1 chooses a full transfer s∗1 = 1 if and only if the fee is low

enough φ < α(1 + β)/β ≡ φ̄. While player 1 does not care directly about the fee, she

cares about player 2’s welfare which in turn depends on the fee φ. Indeed, we see that a full

transfer s1 = 1 makes both players worse off, provided the fee is high enough φ > φ̄. Player 1

now internalizes how her behavior impacts the final utility of player 2, and, therefore, her

final utility. This simple example shows how interdependent utilities can impact economic

behavior in transfer games with empathetic players.16 We provide more discussion about

interdependent utilities and reduced-form preferences in the literature review in §7.

4 Existence, Generic Finiteness, and Other Results

Unlike in games with independent payoffs, here a strategy profile σ ∈ Σ does not provide

a complete description of what utilities players might expect in an empathetic game. The

reason is that one strategy profile might be associated with more than one solution. In

Example 3.2, if Anne and Bob choose σi(G) = 1/2, then each player might obtain 1/4, or

3/4, depending on whether payoffs are either low or high at s = (G,G). This ambiguity

vanishes once we attach a realized utility to each strategy profile. A feasible outcome of

a game is a tuple o ≡ (σ, v) ∈ Σ × R
I , where v = (vi)i∈I is a utility profile with vi ≡

∑

s∈S

∏

j σj(sj)ui(s) and u(s) ∈ U(s) for every profile s. For any game Γ, call O the set

of feasible outcomes, and O∗ the set of equilibrium outcomes. Because every equilibrium

(e∗, σ∗) induces a unique outcome o∗ ∈ O∗
, WLOG we focus on equilibrium predictions

regarding strategies and realized utilities.

In general, a finite empathetic game may not have an equilibrium when utility functions

are unbounded. For example, consider a two-player empathetic game, where for some strat-

egy profile s ∈ S utilities are Ui (s, u−i) = u−i + 1 for i = 1, 2. The emotional contagion

causes an “explosion,” yielding an empty utility set U(s) = {∅}. It follows then that there

does not exist a consistent profile of beliefs that could potentially support an equilibrium.

Also, similar to standard finite normal-form games, empathetic games can have an infinite

number of equilibria. Here, indeterminacy may occur for other reasons. For instance, take a

two-player empathetic game with payoffs Ui (s, u−i) = u−i and for i = 1, 2 and s ∈ S. Thus,
for every profile s, the utility correspondence coincides with the 45◦ degree line, namely,

U(s) = {u ∈ R
2 : u1 = u2}. Consistency of beliefs implies that ei(s) = ej(s) for i = 1, 2 and

so in equilibrium, anything goes. To avoid these uninteresting cases, we henceforth make

the following assumption on the utility system, U = (Ui)i∈I , unless explicitly stated.

16Bourlès et al. (2017) provide an analysis of how transfers are shaped by altruistic social networks.
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Assumption 1. For all i ∈ I, Ui(s, ·) is continuously differentiable and bounded for all s.

We use the following definition of genericity. Fix an empathetic game Γ and consider a

family of “perturbed” empathetic games {Γp : p ∈ P}, where P is a subset of RI×S . For

any p ∈ P, the game Γp is constructed by perturbing the utility system U in Γ, so that

Up
i (s, u−i) ≡ Ui(s, u−i) + pi,s for all i ∈ I and s ∈ S. A property is generic, if for any

empathetic game Γ and any open set of perturbations P, there exists a subset of P̄ ⊂ P
with full Lebesque measure such that the property holds in the game Γp for all p ∈ P̄ .

Next, we show that under Assumption 1, our equilibrium notion is well-defined. As-

sumption 1; in particular, uniform boundedness rules out “explosions” of utilities due to

payoff-based feedback effects. Thus, for any strategy profile, a solution to the interdepen-

dent utility system exists, and so does a mixed empathetic equilibrium. The smoothness

requirement in Assumption 1 is technical, as explained in Remark 1 below.

Proposition 1. The equilibrium set O∗ is non-empty and generically finite.

In our equilibrium notion (Definition 1), players understand how their utilities depend

on one another and, further, they anticipate correctly the utilities of others when a given

strategy profile is played. This holds for on and off path strategies. However, one may wonder

what happens if players hold beliefs that are individually justifiable but not jointly consistent.

That is, what happens if players misperceived the realized utility of others when assessing a

unilateral deviation? Intuitively, off equilibrium, players may not interact face-to-face and

the emotional contagion process may not take place. Thus, rational players may hold beliefs

that are not consistent as long as they are individually justifiable. To address this issue,

we now introduce a weaker belief consistency condition (e.g., no face-to-face interactions off

equilibrium) that relies on common knowledge of the interdependent utility system U .
Fix an equilibrium profile σ∗ ∈ Σ. We say that a profile of beliefs e∗ is weakly consistent

if for each s ∈ supp (σ∗) there exists a utility profile u(s) ∈ U(s), such that ei(s) = u−i(s) for

all player i; and for all s /∈ supp(σ∗) beliefs satisfy ei(s) = u−i where (u−i, ui) ∈ U(s) for some

ui, for all player i. When beliefs are weakly consistent, players may disagree about the others’

welfare outside of equilibrium, since their joint beliefs might not solve the interdependent

utility system U , although individual beliefs are justifiable. Adjusting Definition 1 so that

beliefs are weakly consistent yields a weak equilibrium with an associated outcome set O∗∗.

Proposition 2 clarifies to what extent the modified consistency condition affects the pre-

dictive power of the empathetic framework. The next result does not require Assumption 1.

Proposition 2 (Outcome Equivalence). The equilibrium sets are equivalent O∗ = O∗∗.
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Consistent beliefs are weakly consistent, and thus O∗ ⊂ O∗∗. The other direction is more

involved, as seen in Appendix A.1. For an intuition, consider a pure (weak) equilibrium

outcome (s∗, v∗) ∈ O∗∗. Notice that, for any potential deviation si of player i, player j’s

utility Uj(si, s
∗
−i, ej(si, s

∗
−i)) and beliefs ej(si, s

∗
−i) are irrelevant for assessing whether s∗j is

optimal for player j, given s∗−j — as player j only cares about unilateral deviations. Thus, for

all strategy profiles s 6= s∗, we can construct consistent beliefs from weakly consistent beliefs,

ensuring that s∗ remains a mutual best response. The takeaway point is that weakening

the consistency condition has no impact in terms of equilibrium outcomes, which may be

surprising. This result not only extends our theory to less restrictive settings, but also

provides a cornerstone of the characterization of equilibrium outcomes in section §5.
We close this section by making an observation regarding the computation of equilibria

in empathetic games. Interestingly, one can find the equilibrium outcome set by following

a simple decomposition of the utility correspondence U. First, take a selection of this

correspondence, namely, a single-valued function ur : S → R
I satisfying ur(s) ∈ U(s) for

all profiles s ∈ S. Next, find the set of Nash equilibria in the reduced-form game 〈I,S, ur〉.
By Definition 1, the equilibria of this reduced-form game remain equilibria of the overall

empathetic game. Finally, repeat this procedure for all distinct selections ur. Then, one

can, typically, construct the equilibrium set O∗ in finitely many steps by Proposition 1 —

for generically, there is a finite number of selections ur. In §A.3, we show that the set of

equilibria is the union of equilibria in the reduced-form games (Claim A.1.1).

Remark 1 (On Generic Finiteness of Equilibria). The smoothness requirement in As-

sumption 1 allows us to use differential topology and invoke transversality theorems (Milnor,

1997). For a standard normal form game, Wilson (1971) shows that, generically, there can

be at most a finite number of equilibria. Wilson’s inductive argument — an extension of

the Lemke and Howson algorithm (Lemke and Howson, 1964) — requires that each player’s

payoff at any strategy profile can be independently perturbed. In empathetic games, per-

turbations are over the utility system, rather than the reduced-form utilities (i.e., elements

of the utility set U), and so Wilson’s construction is not applicable. Our proof uses an

alternative argument that relies on a transversality result. Likewise, we cannot use a version

of Sard’s theorem for generalized equations (Theorem 4.1 in Reinoza (1983) invoked, e.g.,

by Gül et al. (1993)) to argue generic regularity of mixed equilibria in a normal form game,

because it assumes that the system of equations can be perturbed by exogenous parame-

ters (here p). Here, transversality is shown with respect to perturbations of exogenous and

endogenous variables (p and u), which introduces novel technical challenges. ♦

Remark 2 (On Efficiency of Equilibria). In empathetic games, we can perform norma-
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tive analysis if we focus on outcomes instead of strategy profiles. An outcome (s, v) Pareto

dominates (is dominated by) (s′, v′) if v ≥ v′ (v′ ≥ v) with strict inequality for at least one

player. So an outcome is Pareto efficient if it is not dominated by any other outcome. In

general, the set of Pareto efficient outcomes is non-empty (Claim A.1.1).

Inefficiencies may arise in this context not only because players choose socially-suboptimal

strategies, but also because of the emotional reinforcement process that may lead agents to

low welfare levels (see Example A.1.1). In the intergenerational altruism literature, reduced-

form utilities over consumption streams are unique and may be time-inconsistent, generating

alternative sources of inefficiencies (Saez-Marti and Weibull, 2005; Pearce, 2008). Recently,

Ray and Vohra (2019) show that, if players are affected only by their own action and the

realized payoffs of others, then all equilibria are pareto efficient, provided the interdependent

utility system U yields unique and stable reduced-form payoffs. ♦

5 Characterization of Equilibrium Outcomes

We now provide a characterization of a set of equilibria. Assume that players are “cautious”

when assessing hypothetical deviations, meaning that whenever their realized utilities can

take multiple values for a given strategy profile, they expect their worst outcome to prevail.17

More precisely, define the justifiable utility set for player i, given strategy profile s, as

Ui(s)≡{ui : (ui, u−i) ∈ U(s) for some u−i}. Player i’s maxmin utility function vi :
∑

−i →
R is the maxmin utility that player i can achieve when others play σ−i:

vi(σ−i) ≡ sup
s′i∈Si

∑

s−i∈S−i

infUi(s
′
i, s−i)σ−i(s−i) (3)

Observe that (3) is player i’s best-response payoff to σ−i, assuming the worst-case scenario

for player i. These are the most favorable beliefs to support σ as an equilibrium profile.

Indeed, letting v (σ) ≡ (vi(σ−i))i∈I we find:

Proposition 3. A tuple (σ∗, v∗) is an equilibrium outcome if and only if (C.1) all players get

at least their maxmin utility, i.e., v∗ ≥ v(σ∗); and (C.2) for all player i, any strategy si played

with positive chance yields utility v∗i when others play σ∗
−i, for some weakly consistent beliefs.

First, observe that condition (C.1) holds iff for every player i and strategy si not in the

support of σ∗
i , we have v∗i ≥ ∑

s−i
infUi(si, s−i)σ

∗
−i(s−i). Second, Proposition 3 allows us

to easily identify which profiles cannot be an equilibrium. By condition (C.1), any strategy

profile that induces a utility less than the maxmin utility level for all players cannot be

17These beliefs are weakly consistent; thus, we can use them to characterize equilibria using Proposition 2.
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implemented as an equilibrium. Thus, as a corollary, characterizing pure equilibrium out-

comes is very simple, as condition (C.2) trivially holds. A tuple (s∗, v∗) is a pure equilibrium

outcome if and only if all players get at least their maxmin utility, i.e., v∗ ≥ v(s∗), where

slightly abusing notation, v(s) is the maxmin utility profile when s is played with probabil-

ity 1. Finally, for “totally mixed” strategies, i.e., sup(σ∗) = S, condition (C.1) immediately

obtains, and thus only condition (C.2) needs to be checked.18

In the next section, we provide examples that illustrate the usefulness of Proposition 3.

6 Games of Sympathy and Antipathy

Pre-existing relationships among individuals can affect how individuals empathize, i.e., how

they perceive and experience the emotions of others both positively and negatively. Em-

pathy can manifest as either sympathy or antipathy. Indeed, according to De Waal (2008):

“In human studies, subjects tend to sympathize with a confederate’s pleasure or distress

when they perceive the relationship as cooperative, and yet show an antipathetic response

(distress at seeing others’ pleasure, or pleasure at seeing others’ distress) if they perceive the

relationship as competitive” (p. 291).

6.1 Sympathetic Games

Social psychology demonstrates that sympathy is often observed in cooperative settings,

where the interests of the involved parties are aligned, such as in workplaces (Zillman and Cantor,

1977; Lanzetta and Englis, 1989; De Waal, 2008).19 Also, from an evolutionary viewpoint,

sympathetic attitudes naturally arise among subjects with similarity, familiarity, social close-

ness, and common experiences (Batson, 2011). These aspects trigger emotional contagion,

where agents feel what others feel without expecting anything in return. Notice that this

phenomenon is in contrast to reciprocity theory, where agents want to get even with other

agents. In reciprocity theory, agents view other agents favorably and unfavorably, depending

on the specific conditions present.

In this section, consider players whose realized utilities are positively related, i.e., they

are sympathetic toward each other. A sympathetic game is an empathetic game in which for

every player i ∈ I, the utility function Ui(s, ·) is increasing for all profiles s ∈ S and strictly

18One could also provide an upper-bound of possible equilibrium payoffs. Indeed, define player i’s maxmax
utility function by changing the “inf” for a “sup” in equation (3), resembling optimistic beliefs. This would
yield a vector of payoffs, say, v̄(σ) ≡ v̄i(σ−i)i∈I . Clearly, if (v, σ) is an equilibrium outcome, then v ≤ v̄(σ).

19Preston and De Waal (2002) survey the literature on intensity of empathy in humans (animals).
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increasing for some s ∈ S.20
Exploiting the extra structure of sympathetic games, we show in §A.3 that the set U(s)

is a complete lattice for all profiles s, and thus U(s) has a minimal and maximal element.

Moreover, in games with two players, the utility set U(s) is totally ordered (Claim A.3.1).

These results formally capture the idea that, due to emotional contagion among players,

similar behavior can lead to either joint excitement or shared frustration. This insight

appears particularly relevant for managerial practices, because it illustrates a psychological

force that may be important in analyzing how to keep workers’ morale high (Bewley, 1999).21

In Example 3.2-A, notice that vi(σj) = 1 for all i, j, and so (C,G) and (G,C) cannot

be equilibrium profiles, by Proposition 3. However, (C,C) and (G,G) can be supported

as equilibrium outcomes, provided beliefs e∗i (C,C) = 2 for all player i. In particular, the

totally mixed strategy σi(G) = 2/3 is an equilibrium, since strategies C and G yield the

same utility for all i, j (condition C.2).22 This example suggests that, although agents derive

pleasure from others’ pleasure, and thus collaborating (or going to the date) is efficient, an

“environment” that triggers positive self-reinforcing beliefs among the agents also appears

to be useful to ensure an efficient outcome.

We next discuss the marginal effects of sympathy. One can imagine that people are

more sympathetic toward those who are less fortunate. For instance, a person who is sick

may elicit more sympathy (per utile) than a person who is healthy. This demands that

the marginal increase in sympathy lessens as the welfare of others rises. Also, sympathetic

individuals may exhibit extreme compassion at the margin for those who are in peril, but

have no compassion for the auspicious ones. We say that a utility system U = (Ui)i∈I exhibits

diminishing (rising) marginal sympathy at s if Ui(s, ·) is strictly concave (convex) for any

player i; and it satisfies the Inada conditions if system U is continuously differentiable and

limuj↓−∞ ∂Ui(s, uj)/∂uj = −∞ and limuj↑∞ ∂Ui(s, uj)/∂uj = 0, for every player i. Since any

strictly concave function Ui : R → R is necessarily unbounded, we now relax Assumption 1.

20Consider the component-wise order, so that for any pair of vectors u, u′ ∈ R
I , u ≥ u′ iff ui ≥ u′

i for all
i ∈ I and u > u′ if for some i inequality is strict. We say that Ui(s, ·) is increasing at s if u−i ≥ u′

−i implies
Ui(s, u−i) ≥ Ui(s, u

′
−i) and strictly increasing if for u−i > u′

−i one has Ui(s, u−i) > Ui(s, u
′
−i). Analogous

definitions hold for decreasing and strictly decreasing functions.
21The structure of the utility set U(s) for sympathetic games share formal similarities with the set of Nash

equilibria in games with strategic complementarities — namely, both sets contain a largest and smallest
element — as their fixed-point correspondences are increasing. However, from a behavioral perspective, this
similarity breaks down: a sympathetic game may give rise to a game with strategic substitutes.

22Notice that, in sympathetic games, when utility functions are symmetric at a given strategy profile s,
the utility set U(s) takes a particularly simple form, namely, a utility profile u ∈ U(s) iff ui = uj for all
players i, j. This means that the utility set U(s) can be determined as the solutions of a single equation
ui = Ui(s, ui, ..., ui). To see this, suppose that an element of U(s) is not symmetric. Then, there must exist
a player i such that ui ≤ ui′ for all i

′ with strict inequality for some j. Since u−i and u−j differ only in one
element that is higher in u−i than u−j , we have ui=Ui(s, u−i)≥Ui(s, u−j)=uj , which is a contradiction.
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Figure 1: Understanding the utility set U. Left: When utility functions exhibit diminishing

sympathy, the utility function for player 2 is increasing and concave, and thus its inverse is increas-

ing, but convex. Thus, in the (u1, u2)-space, the utility of player 1 is increasing and concave, while

the inverse payoff for player 2 is increasing and convex. These functions intersect twice. Middle: A

unique fixed point is non-generic, provided Inada. Right: With rising marginal antipathy, player

1’s utility function is decreasing and concave and so is the inverse of player 2’s utility function;

thus, these functions can intersect more than twice.

Diminishing sympathy and Inada are natural behavioral assumptions for preferences

that are consistent with usual economic logic. Yet a unique solution to a payoff system,

often assumed in the literature, is non-generic.23 As seen in Example 3.2 and Figure 1, in

two-player sympathetic games, the utility set U(s) has, at most, two elements, provided that

players exhibit monotonic marginal sympathy. This holds generically when the utility system

satisfies the Inada conditions (Claims A.3.2–A.3.3).

Finally, in the left panel of Figure 1, the two solutions to the utility system are not

equally plausible in light of the tatonnement process (2) described in §3. Clearly, for all

initial beliefs above the highest solution, the belief process converges to this solution which

is, thus, stable. Yet, for starting beliefs below the lowest solution, feedback effects generates

explosive dynamics that diverges to −∞ for both players (extreme misery). Only for the

knife-edge case in which initial beliefs coincide with the lowest solution, that solution can

persist over time. In this sense, the lowest solution is less likely to prevail.

6.2 Antipathetic Games

Antipathy is the opposite of sympathy — a feeling of dislike for someone. Lanzetta and Englis

(1989) and Zillman and Cantor (1977) show that antipathy often arises in competitive envi-

ronments, where one party’s gains result in losses for the other party. As Bertrand Russell

once wrote, “I care for very few people and have several enemies—two or three at least

whose pain is delightful to me” (Russell, 2000, p. 73). In these environments, the emotional

contagion process induces realized utilities to be negatively related. Following §6.1, an an-

23The Inada assumption is critical. Suppose that Ui(s, ui) = ui − exp(−uj) for i = 1, 2, so Ui is strictly
increasing concave, and limuj↑∞ ∂Ui(s, uj)/∂uj=1. For small perturbations, there is a unique fixed point.
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tipathetic game is an empathetic game in which for every player i ∈ I, the utility function

Ui(s, ·) is decreasing for all profiles s ∈ S and strictly decreasing for some s ∈ S
Unlike in sympathetic games, the utility set U(s) does not have an ordered structure

with more than two players unless strong parametric assumptions for U are present, such as

symmetric linearity. This highlights that, in antipathetic games, emotions are not transitive,

which adds another layer of complexity. More precisely, consider an antipathetic game with

three players i = 1, 2, 3. An exogenous increase in the payoff of player 1 has a direct adverse

effect on player 3’s payoff. It also reduces player 2’s payoff, which indirectly improves player

1’s payoff. If antipathy between players 1, 2 and 2, 3 is strong, while the same between play-

ers 1 and 3 is only mild, then the indirect effect on player 3’s payoff may dominate. In other

words, while player 1 dislike player 3, the increase of player 3’s payoff has a strictly positive

impact on player 1. In this sense, the ancient proverb applies: “The enemy of my enemy is

my friend.” This logic does not arise in sympathetic games, as positive emotions are transi-

tive, or “The friend of my friend is my friend.” In antipathetic games, Henceforth, we focus

on the direct effects of antipathy, restricting our attention to two-player antipathetic games.

In general, in two-player antipathetic games, for any strategy profile, there exists a utility

profile that is the best for one player and the worst for the other. In fact, this is a general

property of two-player antipathetic games (Claim A.3.4).24 Also, unlike sympathy, antipa-

thetic games with concave utility functions (rising antipathy) do not limit the number of

elements of the utility system — as seen in the right panel of Figure 1.

Suppose Alice and Bob dislike each other, so that if they both choose G, then each player

gets Ui(s, uj) =
√

4− 2uj if uj ≤ 2 and Ui(s, uj) = 0 otherwise. Payoffs to other profiles

are as in Example 3.2. Observe that U(G,G) = {(0, 2), (1.23, 1.23), (2, 0)}.25 So aside from

the asymmetric solutions, in which one player enjoys the misfortune of the other, there is an

instance in which both Anne and Bob receive the same payoff.26 Here, the maxmin utilities

for pure strategies obey vi(G) = vi(C) = 1. Thus, (G,C) and (C,G) cannot be supported as

equilibria, by Proposition 3. Yet, (G,G) can be supported as equilibrium only for beliefs that

coordinate on ui(G,G) = 1.23. Profile (C,C) can always be supported as an equilibrium,

using the reasons previously discussed. Finally, notice that vi(σj) = 1 for any σj , and so

the only equilibrium in mixed strategy is symmetric and entails σi(G) = 0.9 and beliefs that

coordinate on ui(G,G) = 1.23. Altogether, this example suggests that the only stable way

24In two-player antipathetic games, every utility profile in U(s) is “payoff efficient” in the sense that there
is no other utility profile in U(s) that Pareto dominates (Remark 2) the other in terms of welfare. As a result,
inefficiencies stem exclusively from the suboptimal choice of players’ strategies. By contrast, in sympathetic
games this is usually not the case, as utility profiles are positively related and ordered (Claim A.3.1).

25Unlike sympathy §6.1, here the elements of U(s) are not symmetric even if utility functions (Ui)i are.
26This is a general feature of empathetic games with symmetric utility functions (Observation A.3.1).
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to put together two people that dislike each other is by neutralizing their emotions such that

no one can benefit from the dissatisfaction of the other, provided their outside options are

neither too high nor too low.

7 Paternalistic and Intention-based Preferences

We now study the relationship of our framework to other forms of interdependent preferences.

A. Outcome-based/Paternalistic Preferences. Our paper relates to the litera-

ture on material games, which are commonly used to model interdependent preferences; see

Sobel (2005) for a survey. This approach exploits the standard game-theoretic formulation,

wherein utilities are a function of outcomes. In material games, an outcome is a distribution

of material payments, such as consumption or money, across players. Specifically, for a fixed

game, an allocation rule assigns material payoffs x(s) ≡ (xi(s))i when profile s is played.

Preferences are represented by a compound utility function Vi(x(·)). Player i is deemed as

paternalistically altruistic towards player j if his utility rises in the material payoff of j (i.e.,

xj). This approach is flexible as preferences can be easily tweaked to rationalize experimental

data that is otherwise inconsistent using models that assume that agents are purely selfish (

Vi(x(·)) ≡ Vi(xi(·))). Versions of this specification have been used previously, e.g., in Levine

(1998); Fehr and Schmidt (1999); Bolton and Ockenfels (2000) and Grohn et al. (2014).

However, because of the reduced-form nature of this approach, it is unclear why and how

these utilities depend on the distribution of material payoffs, or what determines the specific

shape of these utility functions. If we interpret Vi(x(·)) as primitive utility functions, then

we may encounter paradoxes. As we show in §3.2-B, in certain settings a player that is

paternalistically altruistic towards another player may take actions that could indeed hurt

this player, as players do not internalize how their actions impact the final welfare of others.

Alternatively, we could interpret Vi(x(·)) as a realized utility function coming from a

primitive interdependent utility system U . Suppose players care about both their own mate-

rial outcome and the welfare of others so that Ui (xi, uj)=xi+ b
∑

j 6=i uj. This utility system

admits a paternalistic representation (Vi(x))i when b 6=1/(I − 1) and b 6=−1, which is given

by:

Vi(x) =
1 + 2b− bI

(1 + b)(1 + b− bI)
xi +

b

(1 + b)(1 + b− bI)

∑

j 6=i

xj . (4)

Notice that, since players are affected by both their own material gain and the total welfare

of others, we can think of players as if they cared about a linear combination of their own

material gains and those of others.27 Also, observe that the coefficients of Vi summarize those

27Bramoullé (2001) and Bourlès et al. (2017) study how primitive relationships of agents’ utilities impact
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of the primitive utility system Ui in an interesting way. For sympathetic games (i.e. b>0), the

weight placed on others’ material payoffs in (4) is positive iff sympathy among the players is

not too strong, or b < 1/(I−1).28 That is, reduced-form payoffs may fall in others’ material

payoffs when agents are too sympathetic, b > 1/(I−1).29,30 In general, the non-paternalistic

framework clarifies when (reduced-form) preferences that increase in the others’ material

outcomes are indeed capturing a genuine concern for the others’ final welfare.

B. Intention-based Preferences. Finally, our paper relates to the psychological

games literature (Geanakoplos et al., 1989; Dufwenberg, 2008; Rabin, 1993), wherein play-

ers want to be kind and unkind to whoever is kind and unkind to them, respectively. In

psychological games, utility functions not only depend on outcomes but also on higher-order

beliefs, which are beliefs about beliefs about beliefs about choices. For example, in Rabin

(1993), player’s i utility function is Vi(x(s)|ŝ) ≡ vi(xi(s)) + αi(ŝ)vj(xj(s)), where vi, vj are

material utilities that depend on the allocation rule x(s), α(ŝ) measures how much player i

cares for j, and ŝ = (ŝi, sj) denotes player i beliefs about what player j believes about him.31

The equilibrium concept discussed in Geanakoplos et al. states that, given high order beliefs,

players must play a best response and, given those responses, high order beliefs must be justi-

fied by their play. In the previous example, this means that if s is an equilibrium profile, then

it must be a mutual best response, given ŝ, and s = ŝ. By putting more structure on α(·) one
can model situations in which players, say, reciprocate kindness with kindness and meanness

with meanness; see Charness and Rabin (2002) and Falk and Fischbacher (2006).32

In intention-based models, agents have a strategic reason to reciprocate behavior. This

assumption may be better suited for environments in which players are anonymous, and thus

affective empathy is less important. However, in other settings, players may know each other

in such a way that their welfare are genuinely interlinked (e.g., family and relatives, friends,

or enemies), or interactions may be face-to-face. In these settings, affective empathy and

emotional contagion are, indeed, relevant, as the psychological evidence shows; see §1.
Finally, at a more technical level, in our paper utility functions depend on both strategies

reduced-form relationships in linear and separable environments; see Theorem 2 in Bourlès et al. (2017).
28For altruistic interdependent utility systems, Pearce (2008), Bergstrom (1999), and Bramoullé (2001)

provide sufficient conditions so that paternalistic payoffs Vi(x) are well defined and increasing in others’
material payoffs. In particular, conditions (A1)–(A3) in Pearce (2008) are equivalent here to b ∈ (0, 1/(I−1)).

29This situation is unstable as feedback effects lead to explosive utilities that diverge to either ∞ or −∞.
30Bernheim (1989) and Bernheim and Stark (1988) discuss how sympathy can lead to paradoxical results.
31Segal and Sobel (2007) provide conditions under which a player’s preferences over strategies s can be

represented as a weighted average of the utility from outcomes of the individual and his opponents. The
weight one player places on an opponent’s utility from outcomes depends on the players’ joint behavior ŝ.

32Levine (1998) and Gul and Pesendorfer (2016) provide an alternative (epistemic) approach to model
intentions using behavioral types which encode observable characteristics and personality traits. Winter et al.
(2016) develops a theory of strategic emotions in which players simultaneously choose strategies and mental
states to best respond one another, while mental states determine preferences over outcomes.

18



and the realized utilities of others. Because players act independently, reduced-form utili-

ties over outcomes are endogenously-determined through beliefs about the others’ realized

utilities. Like Geanakoplos et al. (1989), we also follow an equilibrium approach and use a

consistency condition. However, in our setting players internalize how their deviations would

impact the utility of others and thereby their own utility. Thus, our notion of consistency

applies to all strategy profiles and not just equilibrium ones.33

8 Concluding Remarks

Empathy shapes many, if not most, social interactions. In this paper, we propose a framework

that captures a type of empathy that has been extensively documented in social psychology

but unexplored in the economics literature. We focus on the role of affective empathy and

the related emotional contagion process among players. In our framework, players care

not only about a chosen strategy profile, but also about others’ realized utilities; thus, our

theory crucially distinguishes between primitive-utility and realized-utility functions. To

capture emotional feedback effects, we allow realized utilities to be interdependent. This

assumption raises conceptual and technical obstacles. Because feedback effects may lead to

multiple realized utilities, one can think of these games as if players’ preferences are described

by correspondences instead of utility functions. We provide a parsimonious and tractable

solution concept and characterize the corresponding set of equilibrium outcomes. We also

provide examples that illustrate the scope of the theory.

Our framework is not only tractable, but also useful in explaining psychological and

behavioral phenomena. We are currently exploring the role of affective empathy in principal-

agent settings. In particular, in Vásquez and Weretka (2016), we consider a labor market

in which a manager chooses both a team of workers and their compensation. The main

innovation is to introduce affective empathy among workers in the workplace, giving rise to

novel sources of multiplicity. We explore how firms respond to productivity shocks and show

that the model rationalizes the empirical findings of Bewley (1999), which establish that

in recessions firms are reluctant to reduce their employees’ wages, as wage reductions can

damage the workers’ morale. This empirical fact has been hard to reconcile with alternative

formulations of pro-social preferences. This indicates that our paper may provide a natural

stepping stone towards a more general understanding of the role of morale in economics.

In this paper, we consider the simplest case of simultaneous move games. This allows us to

33It is immediate to adapt our solution concept to settings with “limited empathy,” in which players expect
an equilibrium utility profile u∗ and best respond to one another taking u∗ as given. In this case, beliefs
need to be consistent only for equilibrium profiles, like in Geanakoplos et al. (1989).
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study strategic interactions with pre-existing relationships (e.g., sympathy or antipathy). An

important direction for future research is to allow agents’ relationships to evolve depending

on how the game transpires. For this goal, a natural first step is to extend the framework

to encompass dynamic considerations, and then focus on how pro-active behaviors shape

mutual attitudes. Also, allowing dynamics seems important for experimental work, because

most of the designs in this field have a sequential-move protocol.

Finally, in our current setting, we isolate a psychological force and let emotions trans-

mit unconsciously or subconsciously among players. It would be interesting to merge our

approach with psychological games to also capture strategic emotion transmission. For ex-

ample, players can be either sympathetic or antipathetic, depending on how certain behavior

is perceived.34 Allowing utility functions to depend not only on others’ realized utilities, but

also on hierarchies of beliefs regarding behavior, would provide a natural language to study

strategic and unconscious emotion contagion and its behavioral implications. Other concep-

tual issues that remain open include exploring other contending solution concepts (e.g., those

based on learning or rationality), and axiomatic foundations for interdependent utilities.35
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A Omitted Proofs

A.1 Proofs of Section §4

Proof of Proposition 1 : First we demonstrate existence of equilibrium. Fix a profile s ∈ S.
Since the interdependent utility system U(s, ·) is bounded, there exists a closed box36 B ⊂ R

I ,

such that U(s,RI) ⊂ B. Notice that U (s, ·) restricted to B maps into itself; the set B is

convex and compact, and the map is continuous, by Assumption 1. Thus, by Brouwer Fixed

Point Theorem, there exists u ∈ B with U(s, u) = u. This holds for any s ∈ S, and so the

utility profile set is non-empty, U(s) 6= ∅, for any s ∈ S.
Fix an empathetic game Γ = 〈I,S,U〉 with U satisfying Assumption 1. Let ur : S → R

I

be a selection of U(·), namely, a function satisfying ur(s) ∈ U(s) for all s. By non-emptiness

of U(·), at least one such selection exists. Next, consider a standard normal form game

Γr ≡ 〈I,S, ur〉. By Nash (1950), the game Γr has a mixed strategy equilibrium σ∗. Next,

define e∗i (s) = ur
−i(s) for all s and i. Since ur(s) ∈ U(s), we have that ur

i (s) = Ui(s, u
r
−i(s)) =

Ui(s, e
∗
i (s)), and so for any (i, σi), i’s reduced form payoff obeys:

UR
i (σ|e∗i ) =

∑

s∈S

∏

j∈I

σ∗
j (sj)u

r
i (s) ≥

∑

s∈S

σi(si)
∏

j 6=i

σ∗
j (sj)u

r
i (s) = UR

i (σi, σ
∗
−i|e∗i )

where the inequality holds, for σ∗ is a Nash equilibrium in Γr. Finally, Definition 1-i) holds,

for e∗ is jointly consistent for all s ∈ S by construction. Definition 1-ii) holds as σ∗ is a Nash

equilibrium in Γr. Thus, (σ∗, e∗) is an empathetic equilibrium of Γ. Using equation (1), and

letting v∗i ≡ UR
i (σ

∗|e∗i ) for all i, we see that (σ∗, v∗) ∈ O∗.

Next we demonstrate generic finiteness of equilibria. We develop a series of lemmas,

which we then use to prove the main result.

Lemma 1. For any open set P, there exists a subset of perturbations P0 with full Lebesgue

measure such that, in any game Γp with p ∈ P0, the utility set U(s) is finite for all s ∈ S.

Proof: Consider a function g : RI×|S| × P → R
I×|S|

, where given u = (us)s∈S , us ∈ R
I ;

and p = (ps)s∈S , ps ∈ R
I , one has

g(u, p) ≡ (U(s, us)− us + ps)s∈S (5)

The collection of all roots of function g(·, p) uniquely defines U(·) in a perturbed empathetic

game. We will show that g(·, p) has a finite number of roots for almost every perturbation

36A closed box B ⊂ R
I is a set B ≡ {b ∈ R

I : b̄ ≥ b ≥ b} for some b̄, b ∈ R
I with b̄i > bi for all i = 1, . . . , I.

Unlike a closed ball, a closed box has an orderedvstructure that we later exploit in §6.
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p. First, since g is additive separable in p with each parameter pi,s perturbing one equation

and U is continuously differentiable, function g(·) is smooth and so transverse to zero (i.e.,

g ⋔ 0). Second, by the Transversality Theorem, there exists a set P0 ⊂ P with full Lebesque

measure such that g(·, p) ⋔ 0 for all p ∈ P0. Thus, for each root u ∈ g−1(0, p), the Jacobian

of g has full rank. Third, by the Inverse Function Theorem, there exists a neighborhood

around each root u, such that g(·, p) (restricted to this neighborhood) is a bijection. Thus,

there can be at most one solution to g(·, p) = 0; i.e., root u ∈ g−1(0, p) is an isolated point.

Finally, by Assumption 1, for any p ∈ P0, there exists a closed box Bp ⊂ R
I×|S| such that

g−1(0, p) ⊂ Bp. Since Bp is compact and g−1(0, p) is a collection of isolated points, g−1(0, p)

is necessarily finite.37 So for almost every perturbation, utility set U(·) is finite. �

Now we exploit the geometry of our problem. Observe that the set of mixed strategy

profiles Σ = ×i∈I∆(Si) is a polyhedral set. Thus, by Theorem 19.1 in Rockafellar (1970), the

set of strategy profiles Σ has finitely many faces, that we index by k = 1, . . . , K and denote

by F k. Next, call F̃ k to the relative interior of F k (i.e., F̃ k ≡ riF ), and let Lk be the affine

hull of F k (i.e., Lk ≡ affF ); namely, the smallest affine subspace containing F k. Finally,

denote by (Lk)⊥ the orthogonal complement of Lk.

By Theorem 18.2 in Rockafellar (1970), the profile set Σ is partitioned by the relative

interior of its faces; that is, Σ =
⋃K

k=1 F̃
k where F̃ k ∩ F̃ k′ = ∅ for all k 6= k′. Thus, for any

profile σ ∈ Σ, there exists a unique face F k such that σ ∈ F̃ k.38 Also, for any F̃ k, there exist

subsets (Sk
i )i∈I with Sk

i ⊂ Si such that supp(σ) = ×i∈IS
k
i ≡ Sk for all σ ∈ F̃ k.

Next, fix k ∈ {1, . . . , K}. For any player i ∈ I, define a function vi(si|·) : R|Sk|×Lk → R,

that for each si ∈ Sk
i , vector ui ∈ R

|Sk| and σ−i assigns a real number,

vi(si|ui, σ) =
∑

s−i∈Sk
−i

∏

j 6=i

σj(sj)ui(si, s−i),

and vi(si|·) = 0, if si /∈ Sk
i . For σ ∈ F̃ k this function gives the expected utility of a pure

strategy si ∈ Sk
i to player i, given others’ playing σ−i and support payoff vector ui ∈ R

|Sk|.

For any (u, σ) ∈ R
I×|Sk|×Lk, we define vi(u, σ) ≡ (vi(si|u, σ))si∈Si

and v(u, σ) ≡ (vi(u, σ))i∈I .

Given a tuple (e, σ) with σ ∈ F̃ k, we say that a utility vector u (s) ∈ R
I×|Sk| generates

beliefs on the support if it solves u (s) ∈ U(s) for all s ∈ Sk and ei(s) = u−i(s) for each i ∈ I.

37For if not, one then could find an infinite sequence of distinct solutions belonging to a compact set. This
sequence would have a convergent subsequence, and so by continuity, the limit would be a root of g(·). But
then, for any open neighborhood about this limit, we could find another root in this neighborhood, which
contradicts the fact that roots are isolated.

38For example, a unit simplex Σ in R
3 has seven faces: three vertices, three edges and the simplex itself.

The relative interiors of the faces, i.e., vertexes themselves, simplex edges without its boundaries (vertexes)
and the interior of the simplex partition Σ.
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Lemma 2. Let (e∗, σ∗) with σ∗ ∈ F̃ k. Suppose (e∗, σ∗) is an empathetic equilibrium. Then,

there exists u∗ ∈ R
I×|Sk| that generates beliefs e∗ on the support, and v(u∗, σ∗) belongs to (Lk)⊥.

Proof: Suppose v(u∗, σ∗) /∈ (Lk)⊥. Then there exists δ ∈ Lk so that v (u∗, σ∗) · δ 6= 0.

Next, since F̃ k is an open set contained in Lk, there exists α ∈ R such that σ∗ + αδ ∈ F̃ k

and v(u∗, σ∗) ·αδ =∑i∈I vi(u
∗, σ∗) ·αδi > 0. So vi(u

∗, σ∗) ·αδi > 0 for some player i. Finally,

σ∗
i +αδi ∈ ∆(Sk

i ), and so player i has a profitable deviation, contradicting Definition 1-ii).�

The affine subspace Lk is an H-dimensional smooth manifold where H ≤
(
∑

i∈I |Si|
)

−I.

Let T k = {tkh}Hh=1 be an orthogonal base of Lk. As in Lemma 1, consider an open set of

perturbations P ⊂ R
I×|S|. Define a function fk : RI×|Sk| × Lk ×P → R

I×|Sk| × R
H , where:

fk(u, σ, p) ≡
(

(U(s, us)− us + ps)s∈Sk ,

(v(u, σ) · tkh)Hh=1

)

For motivation, consider a set of solutions to fk(u, σ, p) = 0. Observe that the first I ×
∣

∣Sk
∣

∣

equations fix a utility vector u that generates beliefs on the support Sk, whereas the last H

equations are necessary equilibrium conditions (Lemma 2). Altogether, if (u∗, σ∗) is an

empathetic equilibrium in a perturbed game Γp, then (u∗, σ∗) must be a root of fk(·, p).

Lemma 3. Consider Assumption 1. For each face F k, there exists a subset Pk of P with full

Lebesque measure such that for all p ∈ Pk, the set (fk)−1(0, p) contains only isolated points.

Proof: We first show that function fk is transverse to zero (fk ⋔ 0). First, each of the

first I×|Sk| components can be independently perturbed by p = (ps)s∈Sk . Second, note that,

for every strategy si ∈ Sk
i , the expected payoff vi(si|u, σ) =

∑

s−i∈S−i

∏

j 6=i σj(sj)ui(si, s−i)

can be made arbitrarily by choosing ui(si, s−i) accordingly. Third, for every profile s /∈ Sk,

each (basis) vector tkh is multiplied by zero. Thus, adjusting v in the direction of tkh can

independently perturb each of the orthogonality conditions. This change in v would affect

only the value of the hth condition, leaving all others unchanged. Altogether, the Jacobian

of fk has full rank I ×
∣

∣Sk
∣

∣+H , so fk is transverse to zero (fk ⋔ 0).39

Next we argue that each root of fk is isolated. First, by the Transversality Theorem,

there exists Pk ⊂ P with full Lebesque measure such that fk(·, p) ⋔ 0 for all p ∈ Pk. Thus,

39Given σ, the Jacobian of fk, Dfk, is a block matrix:

Dfk =





Dpf
k Duf

k

consistency e II×|Sk| Du(U − u)
orthogonality v 0 (Duv)T





where II×|Sk| is an identity matrix, Duv is the Jacobian of v in u, and Du(U −u) is that of U −u. Since Duv

has full rank, and the vectors in T k are orthogonal, the product matrix has full rank h. So Dfk has full rank.
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for any root (u, σ) ∈ (fk)−1(0, p), the Jacobian of fk(·, p) has full rank I×
∣

∣Sk
∣

∣+H . Finally,

by the Inverse Function Theorem, there exists a neighborhood of (u, σ), where fk(·, p) is a
bijection, which contains at most one root. Thus, the root (u, σ) is isolated. �

Lemma 4. Consider Assumption 1. There exists a set P̄ ⊂ P with full Lebesque measure

such that the equilibrium set in the game Γp is finite, for all p ∈ P̄.

Proof: First, for any p ∈ P and U satisfying Assumption 1, one can find a closed box

Bu ⊂ R
I×|S| so that for any u = (us)s∈S ∈ Bu, the utility vector us obeys U (s, us)+ ps = us.

Second, let BΣ ⊂ R

∑
i|Si| be a closed box containing Σ, and for each face F k, let Bk

Σ ≡ BΣ∩Lk.

Also, consider the set Bu × Bk
Σ. By construction, all profiles (u∗, σ∗) with σ∗ ∈ F̃ k that

can generate equilibria belong to Bu × Bk
Σ ∩

(

fk
)−1

(0, p). Since Bu × Bk
Σ is compact and

(

fk
)−1

(0, p) contains only isolated points (Lemma 3), the setBu×Bk
Σ∩
(

fk
)−1

(0, p) is finite.40

Next, by Lemma 3, there exists {Pk}Kk=1 such that (fk)−1(0, p) contains only isolated points

for all p ∈ Pk. Consider p ∈ P̄ ≡ ⋂K

k=0Pk (the union includes set P0 defined in Lemma 1).

Since Bu×Bk
Σ∩
(

fk
)−1

(0, p) is finite for each k, it follows that
⋃K

k=1(Bu×Bk
Σ)∩

(

fk
)−1

(0, p)

is finite too. Also, since {F̃ k}Kk=1 is a partition of Σ, we have that for every F̃ k ⊂ Bk
Σ:

Bu × Σ ∩
(

fk
)−1

(0, p) ⊂
K
⋃

k=1

(Bu ×Bk
Σ) ∩

(

fk
)−1

(0, p)

Thus, the set Bu×Σ∩
(

fk
)−1

(0, p) is finite. Note that each (u∗, σ∗) ∈ Bu×Σ∩
(

fk
)−1

(0, p)

can generate at most one strategy profile with “support” beliefs. Finally, the set of consistent

beliefs for profiles s not in the support is finite by that fact that, for p ∈ P0, the utility set

U(·) is finite for any strategy (Lemma 1). Altogether, the set of mixed empathetic equilibria

is finite, for all p ∈ P̄. �

We can now conclude the proof of Proposition 1. First, the utility set U(·) is finite in any

generic game, by Lemma 1. Second, by Lemma 2–3, the set of equilibria necessarily contains

only isolated points. Next, by Lemma 4, there is a finite number of such points. Finally,

since each equilibrium (e∗, σ∗) generates one outcome o∗, the equilibrium set is generically

finite, because O∗ is generically finite. �

Proof of Proposition 2: First, any empathetic equilibrium is a weak empathetic equilib-

rium, thus O∗ ⊆ O∗∗. Conversely, fix an equilibrium outcome o∗ = (σ∗, v∗) ∈ O∗∗ in-

duced by some weakly consistent empathetic beliefs e∗∗. Next, we construct consistent

beliefs e∗ that also induce equilibrium outcome o∗. For the sake of clarity, now we in-

troduce notation needed only here. For any i ∈ I, the deviation set of player i is Sd
i =

40See the proof of Lemma 1 for a more elaborated argument.
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{

s ∈ S0 : si 6= supp(σ∗
i ) and sj ∈ supp(σ∗

j ) for all j 6= i
}

. The residual set contains all pro-

files that are neither in a deviation set nor in the support of σ∗, that is, Sr ≡ S\
(
⋃

i∈I S
d
i ∪ supp(σ∗)

)

.

Now consider the following beliefs e∗. For all profiles s ∈ supp(σ∗), beliefs are as in the

original equilibrium: e∗i (s) ≡ e∗∗i (s) for all i ∈ I. Next, for any i ∈ I and any pro-

file s ∈ Sd
i , beliefs e∗∗ (s) are weakly consistent, and so there must exist a utility profile

u(s) ≡ (ui(s), e
∗∗
i (s)) ∈ U(s). Let e∗i (s) ≡ e∗∗i (s) for player i and e∗j (s) ≡ u−j(s) for all

j 6= i. Next, for any s ∈ Sr, pick any solution u(s) ∈ U(s) and define e∗i (s) ≡ u−i(s) for all

i ∈ I (at least one such profile exists since o∗ is a weak equilibrium outcome). Since the sets

supp(σ∗),Sr and
{

Sd
i

}

i∈I
form a partition of the strategy space S, beliefs e∗ are defined on

the entire domain S. Also, by construction, beliefs e∗ are consistent at all s ∈ S.
Now we argue that σ∗ is a mutual best response given e∗. Fix a player i. For any

σi ∈ ∆(Si), we have supp(σi, σ
∗
−i) ⊂ supp(σ∗) ∪ Sd

i . Since on these sets i’s beliefs are

unchanged, e∗i (s) = e∗∗i (s) we have UR
i (σi, σ

∗
−i|e∗i ) = UR

i (σi, σ
∗
−i|e∗∗i ) by (1). This means that

if σ∗
i is a best response to σ∗

−i given beliefs e∗∗i , then it is a best response given e∗i . This logic

holds for all players i ∈ I. So we have that beliefs e∗ are consistent at any s ∈ S, and σ∗ is

a Nash equilibrium given e∗i . Finally, for each i ∈ I, v∗i = UR
i (σ

∗|e∗i ) = UR
i (σ

∗|e∗∗i ), and so

equilibrium (σ∗, e∗∗) induces outcome o∗ = (σ∗, v∗). Altogether, O∗∗ ⊆ O∗. �

Let the set of all distinct selections of U(·) be denoted by R and let ur be its typical

element.41 Call O∗r the set of equilibrium outcomes, given ur.

Claim A.1.1 (Decomposition). Suppose Assumption 1 holds. The set of equilibrium out-

comes satisfies O∗ =
⋃

r∈R O∗r.

Proof: First, as in the proof of Proposition 1, Assumption 1 implies that utility set is non-

empty, U(s) 6= ∅ for any s ∈ S. Next, consider an equilibrium outcome o∗ = (σ∗, v∗) ∈ O∗.

By definition of equilibrium there exist consistent beliefs e∗, such that σ∗ is Nash equilibrium

given e∗ and (σ∗, e∗) induce utilities v∗. Now for every profile s and player i, let ur
i (s) ≡

Ui(s, e
∗
i (s)). Then, σ

∗ is a Nash equilibrium in Γr = 〈I,S, ur〉, and so o∗ ∈ O∗r ⊆ ⋃r∈R O∗r.

Conversely, consider o∗ = (σ∗, v∗) ∈ ⋃

r∈RO∗r. Then σ∗ is a Nash equilibrium for some

reduced-form utilities ur(·) ∈ U(·). Next, for every (i, s), let e∗i ≡ ur
−i(s). Since UR

i (s|e∗i ) =
ur
i (s) for all s and i, the pair (σ∗, e∗) is an equilibrium, and so

⋃

r∈R O∗r ⊆ O∗∗. �

Example 3.2 has two reduced-form games (R = {1, 2}):

G C
G 0, 0 −1, 1
C 1,−1 1, 1

G C
G 2, 2 −1, 1
C 1,−1 1, 1

41Observe that if U(·) is finite, there are |R| ≡∏s∈S |U(s)| < ∞ distinct reduced-form games.
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In the left reduced-form game, the set of equilibrium outcomes is a singleton: O∗1 =

{[(C,C), (1, 1)]}. In the right game, the equilibrium outcome set has three elements: O∗2 =

{[(C,C), (1, 1)], [(G,G), (2, 2)], [(2/3, 1/3)i=1,2, (1, 1)]}, where 2/3 is the chance of playing G.

Notice that the outcome of the left game is also an element of the outcome set of the right

game; thus the equilibrium outcome set coincides with O∗2.

Proposition A.1.1. The set of Pareto efficient outcomes OPareto is non-empty.

Proof: Since U is continuous and bounded (Assumption 1), we have that for any profile s ∈ S,
the set U(s) is non-empty, closed, and bounded. Thus, the set X0 ≡ Σ × (×s∈S U(s)) is

non-empty and compact. Next, for any i ∈ I define sets Xi, i ∈ I, recursively

Xi = arg max
(σ,u)∈Xi−1

∑

s∈S

∏

j∈I

σj(sj)ui(s)

Note that Xi⊆Xi−1; also, Xi 6= ∅ and compact, for Xi−1 6= ∅ and compact (Maximum The-

orem). Next, fix a tuple (σ, u) ∈ XI . We will show that (σ, u) induces a Pareto efficient

outcome o. Consider any o′ ∈ O characterized by (σ′, u′) ∈ X0. If (σ′, u′) ∈ XI , then by

definition, (σ, u) , (σ′, u′) ∈ Xi for all i, and so (σ′, u′) does not Pareto dominate (σ, u). Con-

versely, if (σ′, u′) ∈ X0/XI , then there exists i such that (σ′, u′) ∈ Xi−1 but (σ′, u′) 6∈ Xi.

Since Xi is the set of all profiles that maximize player’s i payoff on Xi−1, (σ, u) must leave

player i better off compared to (σ′, u′). Thus, (σ′, u′) does not Pareto dominate (σ, u); there-

fore, any outcome o characterized by (σ, u) ∈ XI is Pareto efficient. Finally, OPareto is

non-empty, because the set XI is non-empty, XI 6= ∅. �

Example A.1.1. Consider a version of Example 3.2:

G C
G

√
2ub,

√
2ua −1,−1

C −1,−1 −2,−2

Here strategy G is strictly dominant for all consistent beliefs. So this game has two

equilibrium outcomes: o∗H = ((G,G) , (2, 2)) and o∗L = ((G,G) , (0, 0)). Clearly, o∗H Pareto

dominates o∗L. In this example, players coordinate beliefs on an inefficient solution to the

interdependent utility system. In other words, Inefficiencies do not arise because of the

strategies that both agents elect, but because of the payoff level at which they coordinate their

beliefs, given their choice (G,G).
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A.2 Proofs of Section §5

Proof of Proposition 3: First, by Assumption 1, the utility set U(s) 6= ∅ for all s ∈ S. Also,
since utility functions (Ui)i∈I are continuous and bounded, we have that for any profile s,

the set U(s) is non-empty, closed, and bounded. Thus, Ui(s) is compact, and so infUi(s) =

minUi(s). Next, consider an outcome (σ, v) that violates the best response condition, so that

vi(σ−i) > vi for some i. Take any consistent beliefs e(·), satisfying vi =
∑

s∈S Ui(s, ei(s))σ(s)

for all i. Because vi(σ−i) > vi for some i, there must exist a strategy s′i 6= si such that:

vi <
∑

s−i∈S−i

minUi(s
′
i, s−i)σ−i(s−i) ≤

∑

s−i∈S−i

Ui(s
′
i, s−i, e(s

′
i, s−i))σ−i(s−i),

where the last equality follows by the definition ofUi and the fact that beliefs e are consistent.

Thus, s′i is a profitable deviation for player i, and so (s, v) cannot be an equilibrium outcome.

Conversely, fix an outcome (σ∗, v∗) with vi
(

σ∗
−i

)

≤ v∗i for all i (and so vi < ∞). We

introduce some notation to make the argument clearer. For any i ∈ I, define i’s deviation

set as Sd
i ≡ {(si, s∗−i) ∈ S : si /∈ supp(σ∗

i ) and s∗−i ∈ supp(σ∗
−i)} and the residual set

as Sr ≡ S/
(
⋃

i∈I Sd
i ∪ supp(σ∗)

)

. By construction, supp(σ∗),
{

Sd
i

}

i∈I
, Sr partition the

strategy profile space S. Now we define weakly consistent beliefs e∗(·). First, for each

s∗ ∈ supp(σ∗), take u(s∗) ∈ U(s∗) ensuring that v∗ =
∑

s∗∈supp(σ∗) u(s
∗)σ∗(s∗) and v∗i =

∑

s∗−i
∈supp(σ∗

−i
) u(s

∗
i , s

∗
−i)σ

∗
−i(s

∗
−i) for all s

∗
i ∈ supp(σ∗

i ), and for all player i ∈ I. Then, assign

e∗i (s
∗) = u∗

−i(s
∗) for all i ∈ I. Next, for any i and s ∈ Sd

i , take u (s) ∈ U(s) such that

ui (s) = minUi(s), and for all players let e∗j (s) = u−j (s). Finally, for s ∈ Sr, take any

u(s) ∈ U(s) and let e∗i (s) = u−i(s) for all i. Altogether, e
∗ is weakly consistent for all s ∈ S.

Next, by construction of beliefs, it is enough to assure that no player has incentives

to deviate to a pure strategy not in the support of σ∗. This is indeed the case, for since

Ui(s, e
∗
i (s)) = minUi(si, s

∗
−i) for all s ∈ Sd

i and v∗i ≥ vi
(

σ∗
−i

)

, it follows that:

v∗i ≥
∑

s∗−i∈supp(σ
∗
−i)

minUi(si, s
∗
−i)σ

∗
−i(s

∗
−i) =

∑

s∗−i∈supp(σ
∗
−i)

Ui(si, s
∗
−i, ei(si, s

∗
−i))σ

∗
−i(s

∗
−i),

for all si /∈ supp(σ∗
i ). Finally, since this logic holds for all i, (s∗, e∗) is a weak equilibrium

inducing a utility profile v∗. Thus, (s∗, v∗) is an equilibrium outcome, by Proposition 2. �

A.3 Proofs of Section §6

Claim A.3.1. For any profile s ∈ S there exist a reduced form utility profile us, us ∈ U(s)

such that us ≤ us ≤ us for all us ∈ U(s). Also, in games with two players, the set U(s) is

totally ordered: for any us, u
′
s ∈ U(s) and i 6= j we have ui,s ≥ u′

i,s iff uj,s ≥ u′
j,s.
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Proof: Fix s ∈ S. Since the utility system U(s, ·) is bounded (Assumption 1), there exists a

closed box B ⊂ R
I such that the image of U (and hence all its fixed points) is in B. Consider

a restriction of U (s, ·) to B. Since U (s, ·) is increasing and B is a complete lattice (it is a

closed and bounded box), the set U(s) is a non-empty complete lattice (so it has a maximal

and minimal element), by Tarski’s Fixed Point Theorem. Next, consider a two-player game,

and let us, u
′
s ∈ U(s) with ui,s ≥ u′

i,s. Thus, we have uj,s = Uj(s, ui,s) and u′
j,s = Uj(s, u

′
i,s),

for j 6= i. Since Uj(s, ·) is increasing, we have uj,s = Uj(s, ui,s) ≥ Uj(s, u
′
i,s) = u′

j,s. Reversing

the roles of i and j yields uj,s≥u′
j,s iff ui,s≥u′

i,s. �

Claim A.3.2. Let I = 2 and fix a profile s. The utility set U(s) has, at most, two elements.

Proof: Suppose wlog that both players exhibit diminishing empathy. For i = 1, 2 let Yi ≡
Ui(s,R) be a target set of utility function Ui(s, ·). Since Ui(s, ·) is strictly concave and hence

continuous, by the Intermediate Function Theorem Yi is convex. Let Ũi : Yj → Yi be a

restriction of Ui(s, ·) to Yj. Observe that any u ∈ U(s) necessarily satisfies u ∈ Y1 × Y2,

and hence it is a solution to Ũi (uj) = ui for i = 1, 2. By construction Ũi is surjective and

since Ui(s, ·) is increasing and strictly concave, it is also strictly increasing and hence Ũi

is injective. It follows that inverse function Ũ−1
2 : Y1 → Y2 is well defined. Finally, Ũ2 is

increasing and strictly concave, and hence, inverse Ũ−1
2 is increasing and strictly convex.

Let ϕ : Y1 → Y2 be defined as ϕ(x) = Ũ1 (x)− Ũ−1
2 (x). Observe that a vector (u1, u2) ∈

U(s) iff ϕ(u1) = 0 and u2 = Ũ2(u1). Function ϕ is the sum of two increasing strictly concave

functions, namely, Ũ1 and −Ũ−1
2 , hence it is strictly concave, and as such it can have at most

two roots. Otherwise one could find u′
1 > u′′

1 > u′′′

1 in Y1 such that ϕ(u′
1) = ϕ(u′′

1) = ϕ(u′′′
1 ),

which contradicts the strict concavity of ϕ(·). �

Claim A.3.3. Fix s ∈ S with U satisfying Inada. Generically, U(s) has two elements or none.

Proof: Let Ũ−1
2 as in the proof of Claim A.3.2. The limit limu1↓inf Y1

∂Ũ−1
2 /∂u1 = 0 and

limu1↑supY1
∂Ũ−1

2 /∂u1 = ∞, since U2 satisfies Inada. Next, we claim that if U2(s, u1) = Ũ−1
2

and ∂U2(s, u1)/∂u1 6= ∂Ũ−1
2 /∂u1, then there must exist u∗

1 6= u1 such that U2(s, u
∗
1) =

Ũ−1
2 (s, u∗

1). Suppose wlog that ∂U2(s, u1)/∂u1 > ∂Ũ−1
2 (s, u1)/∂u1. Then there exists a small

ε > 0 such that U2(s, u1+ε) > Ũ−1
2 (s, u1+ε). But, since the respective slopes of U2 and Ũ−1

2

vanish and explode as u1 ↑ ∞, there exists a large η > 0 such that U2(s, u1+η) < Ũ−1
2 (s, u1+

η). But then, by the Intermediate Value Theorem, there must exist u∗
1 ∈ (u1 + ε, u1 + η)

with U2(s, u
∗
1) = Ũ−1

2 (s, u∗
1). Altogether, if there is unique u1 with U2(s, u1) = Ũ−1

2 (s, u1),

then ∂U2(s, u1)/∂u1 = ∂Ũ−1
2 (s, u1)/∂u1. Since u2 = Ũ−1

2 (s, u1), a unique fixed point implies

that the Jacobian of U(s, u)−u is singular at u = (u1, u2). But then considering a perturbed

utility system U(s, u) + p with p ∈ P ⊂ R
I , and by the same logic of the proof of Lemma 1,
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the Jacobian of U(s, u)− u is singular only for a negligible set of perturbations. Finally, by

Lemma A.3.2, the set U(s) has generically either none or two fixed points. �

Claim A.3.4. Fix s ∈ S. For any us, u
′
s ∈ U(s) and i 6= j we have: ui,s ≥ u′

i,s iff uj,s ≤ u′
j,s.

Proof: Let us, u
′
s ∈ U(s) with ui,s ≥ u′

i,s. Thus, since Uj(s, ·) is decreasing for j 6= i, we have

uj,s = Uj(s, ui,s) ≤ Uj = u′
j,s. Reversing the roles of (i, j) yields uj,s ≥ u′

j,s iff ui,s ≤ u′
i,s. �

Observation A.3.1. The existence of a symmetric solution is a general feature of symmet-

ric empathic games. An empathic game is symmetric if Si = Sj and Ui(s, ·) ≡ Uj(s, ·) for

all players i ∈ I. Under mild conditions, a symmetric reduced-form utility profile always

exists. Suppose that ui = x ∈ R for all i ∈ I, and let Û(s, ·) : R → R where Û(s, x) ≡
U(s, u−i). Clearly, a symmetric reduced form utility profile is a fixed point of Û(s, x). As-

sume that U(s, ·) is differentiable. Then, by the antipathy assumption: (d/dx)Û(s, x) =
∑

ℓ 6=i(∂/∂uℓ)U(s, uℓ)|uℓ=x < 0. Thus, by the Intermediate Value Theorem, a symmetric pay-

off vector exists iff there exists x, x̄ ∈ R with Û(s, x) ≤ 0 ≤ Û(s, x̄). In the example of §6.2,
the utility function U(s, ·) is continuous and obeys U(s, 0)=1≥U(s, 1)=0 at s=(G,G).
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